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Abstract
We prove that the metric completion of the intrinsic length space associated with a
simply and rectifiably connected plane set is a Hadamard space. We also characterize
when such a space is Gromov hyperbolic.
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1 Introduction

Throughout this section X is a simply and rectifiably connected plane set; we make
no assumption about X being open or closed. Then Xl is the metric completion of
Xl := (X , l), the metric space where l is the intrinsic (Euclidean) length distance on
X .

Theorem Suppose X is a simply and rectifiably connected plane set. Then Xl is a
Hadamard space. Moreover, Xl is Gromov hyperbolic if and only if X does not contain
Euclidean disks of arbitrarily large radii, i.e., if and only if

R := sup
{
r > 0

∣∣ ∃D(x; r) ⊂ X
}

< +∞;

when this holds, X is 2R-hyperbolic and this is best possible.
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Recall that a Hadamard metric space is a complete CAT(0) space1; see Sect. 2.2.2.
Our result provides a bountiful supply of easily constructed Hadamard spaces.

The special case where X is a closed bounded Jordan plane region was established
in [1]; there the work of [3] is an essential ingredient. We present an elementary
argument for the case where X is a simply connected plane domain; see Sect. 3.1.2

It is easy to construct compact rectifiably connected plane sets X for which Xl

is geodesic but fails to have non-positive curvature. It would be useful to have a
characterization of the plane sets X for which Xl has non-positive curvature. As
Bishopmentions, in [5, Ex. 9.1.6, p. 310] the authors assert that for “any locally simply
connected plane set X”, Xl has non-positive curvature. However, as Bishop comments,
their discussion fails to mention certain essential details including, in particular, the
existence of geodesics.

2 Preliminaries

For real numbers r and s,

r ∧ s := min{r , s} and r ∨ s := max{r , s}.

2.1 Metric Space Notation and Terminology

Throughout this section X is an arbitrary metric space with distance denoted |x − y|;
this is not meant to imply that X possesses any sort of linear or group structure. In this
setting, all topological notions refer to the metric topology; here cl(A),bd(A), int(A)

are the topological closure, boundary, interior (respectively) of A ⊂ X .
Every metric space can be isometrically embedded into a complete metric space.

We let X̄ denote the metric completion of the metric space X ; thus X̄ is the closure of
the image of X under such an isometric embedding. We call ∂X := X̄\X the metric
boundary of X .

When A ⊂ X , there is a natural embedding Ā ↪→ X̄ and bd(A) ⊂ ∂A. Here if
A ⊂ X is open and X complete, then ∂A = bd(A), but in general Ā = cl(A) and
∂A = bd(A)\A where cl and bd denote topological closure and boundary in X̄

2.1.1 Paths, Arcs, Geodesics, and Length

A path in X is a continuous map R ⊃ I
γ−→ X where I = Iγ is the parameter interval

for γ and may be closed or open or neither and finite or infinite. The trajectory of
such a path γ is |γ | := γ (I ) which we call a curve and often–when easily understood
in context–we abuse notation and just write γ in place of |γ |.

1 By definition, our CAT(0) spaces are geodesic.
2 After this manuscript was completed, the author learned of the work [9]; the case when X is a simply
connected plane domain follows at once from their Proposition 12.1.
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A path I
γ−→ X is a geodesic if it is an isometry:

∀ s, t ∈ I , |γ (s) − γ (t)| = |s − t |

and X is a geodesic metric space if each pair of points can be joined by a geodesic.
When I is closed and I �= R, ∂γ := γ (∂ I ) denotes the set of endpoints of γ and

consists of one or two points depending on whether or not I is compact. For example,
if Iγ = [u, v] ⊂ R, then ∂γ = {γ (u), γ (v)}. When ∂γ = {a, b}, we write γ : a � b
(in X ) to indicate that γ is a path (in X ) with initial point a and terminal point b; this
implies an orientation—a precedes b on γ .

We call γ a compact path if its parameter interval is compact. A compact path γ

is a loop if ∂γ is a single point, and then |γ | is often dubbed a closed curve. A loop
γ : [u, v] → X is a Jordan loop (aka, a simple closed curve) if γ |[u,v) is injective.

An arc α is an injective compact path; here |α| is often called a simple curve; again,
we sometimes abuse notation and call |α| an arc. The interior of α is

o
α := α\∂α.

Given points a, b ∈ |α|, there is a unique subarc α[a, b] of α with endpoints a, b;
precisely, there are unique u, v ∈ I with α(u) = a, α(v) = b and α[a, b] := α|[u,v].
(Again, sometimes α[a, b] is this map and sometimes it denotes its trajectory.) We
also use this notation for a general path γ , but here γ [a, b] denotes the unique subpath
of γ that joins a, b obtained by using the last time γ is at a up to the first time γ is at
b.

When α : a � b and β : b � c are paths that join a to b and b to c respectively,
α�β denotes the concatenation3 of α and β; so α�β : a � c. The reverse of γ is the
path γ̃ defined by γ̃ (t) := γ (1− t) (when Iγ = [0, 1]) and going from γ (1) to γ (0).
Of course, |α�β| = |α| ∪ |β| and |γ̃ | = |γ |.

Every compact path contains an arc with the same endpoints; see [12].

The length of a compact path [0, 1] γ→ X is defined in the usual way by

�(γ ) := sup

{
n∑

i=1

|γ (ti ) − γ (ti−1)|
∣∣∣ 0 = t0 < t1 < · · · < tn = 1

}

,

γ is rectifiable when �(γ ) < ∞, and X is rectifiably connected provided each pair of
points in X can be joined by a rectifiable path. An arbitrary path γ is locally rectifiable
if each compact subpath of γ is rectifiable, and such a γ is rectifiable if

�(γ ) := sup
{
�(α)

∣∣ α a compact subpath of γ
}

< +∞.

Rectifiable paths always have endpoints, and so have unique extensions to compact
paths with the same length. Here is a precise statement; cf. [11, Thm. 3.2, p.7].

Fact 2.1 Let R ⊃ I
γ−→ X be a rectifiable path with I a finite interval. Then there is a

unique extension Ī
γ̄−→ X̄ of γ to a compact rectifiable path γ̄ and �(γ̄ ) = �(γ ).

3 We are ignoring how to parametrize the concatenation as this is not needed for our work.
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Every rectifiable path can be parametrized with respect to its arclength [11, p. 5].
When γ is a rectifiable path, we tacitly assume its parameter interval is Iγ = [0, �(γ )]
unless specifically stated otherwise.

2.1.2 Intrinsic Length Distance

Every rectifiably connected metric space X admits a natural intrinsic distance, its
so-called (inner) length distance given by

l(a, b) := inf
{
�(γ )

∣∣ γ : a � b a rectifiable path in X
}
.

A metric space (X , |·|) is a length space provided for all points a, b ∈ X , |a − b| =
l(a, b), and we call such a |·| a length (or intrinsic) distance function. An l-geodesic
[a, b]l is a shortest path joining a and b, and any shortest path can be parametrized to
be an l-geodesic.

The notation Xl := (X , l) is convenient, and then ∂l X := Xl\Xl . We note that
(Xl)l = Xl , which is a consequence of the facts that the length distance l = ld
associated with a length distance d is just d, and the completion of a length distance
is also a length distance.

More generally, a continuous function X
ρ−→ (0,∞) on a rectifiably connected

metric space X induces a length distance dρ on X defined by

dρ(a, b) := inf
γ :a�b

�ρ(γ ) where �ρ(γ ) :=
∫

γ

ρ ds

and where the infimum is taken over all rectifiable paths γ : a � b in X . We describe
this by calling ρ ds = ρ(x)|dx | a conformal metric on X .

There are two useful properties of length spaces that we use repeatedly. First, for any
open setU in a length space X , we always have dist(x,bdU ) = dist(x, X\U ) for all
points x ∈ U . Second, X̄ is also a length space. In fact, for all x ∈ X , ξ ∈ ∂X , ε > 0
there is a path γ : x � ξ in X ∪ {ξ} with �(γ ) < |x − ξ | + ε.

We utilize the fact that rectifiable arcs in Xl can be approximated by arcs in X .
Here is a precise statement.

Lemma 2.2 Let X be rectifiably connected. Suppose γ̃ : p̃ � q̃ is a rectifiable arc in
Xl . Then for each ε > 0, there is a rectifiable path γ : p � q in X with l

(
γ (t), γ̃ (t)

)
<

ε for all t ∈ I := [0, �(γ̃ )] (where I is also the parameter interval for γ ); thus there
are rectifiable arcs α : p � q in X and α̃ : p̃ � q̃ in X ∪{ p̃, q̃}with α, α̃ ⊂ Nl(γ̃ ; ε).

Proof Sketch Given ε ∈ (0, �(γ̃ )), let n be the smallest positive integer with �(γ̃ )/n ≤
ε/10. Put ti := (i/n)�(γ̃ ) for 0 ≤ i ≤ n. Define xi := γ̃ (ti ) if γ̃ (ti ) ∈ X ; otherwise,
if γ̃ (ti ) ∈ ∂l X , choose any xi ∈ X with l

(
xi , γ̃ (ti )

)
< ε/10. Then l(xi−1, xi ) <

3ε/10 so there are rectifiable arcs γi : xi−1 � xi in X with �(γi ) < 3ε/10. Then
γ := γ1� · · · �γn has the asserted properties, where γi : [ti−1, ti ] → X is parametrized
proportional to arc length. ��

Here is information that we employ to construct Jordan loops inside X .
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Lemma 2.3 Let X be rectifiably connected. Suppose γi : p̃ � qi (i = 1, 2) are
rectifiable arcs in X ∪ { p̃} with γ1 ∩ γ2 = { p̃} ⊂ Xl . Then for each ε > 0, there are
points pi ∈ γi and a rectifiable arc α : p1 � p2 in X with l(p1, p̃) < ε, l(p2, p̃) <

ε, �(α) < ε and such that γ −1
1 [q1, p1]�α�γ2[p2, q2] is a rectifiable arc q1 � q2 in

X.

Proof Let ε > 0 be given. Choose points ai ∈ γi and a rectifiable arc β : a1 � a2
in X with each of l(a1, p̃), l(a2, p̃), �(β) less than ε/10. Let p1 be the last point of
β in γ1 and let p2 be the first point of β[p1, a2] in γ2. Then α := β[p1, p2] has the
asserted properties. ��

Let [0, 1) γ−→ X be a path in X . If there is a point ξ ∈ ∂X such that limt→1− |γ (t)−
ξ | = 0, then ξ is called a path accessible (metric) boundary point of X . In this situation,
we define γ (1) := ξ and obtain a path γ : [0, 1] → X ∪ {ξ} ⊂ X̄ . We describe this
by saying that γ is a path in X with terminal endpoint ξ ∈ ∂X .

We write ∂paX for the set of all path accessible boundary points of X . Restricting
attention to rectifiable paths γ yields rectifiably accessible (metric) boundary points
of X , denoted by ∂ raX . Clearly, ∂ raX ⊂ ∂paX ⊂ ∂X and each containment may be
strict. We define X ra := X ∪ ∂ raX .

A path in X need not be a path in Xl ; see [6, Ex. 3.6]. However, a rectifiable path
in X is also continuous as a map into Xl and therefore a path in Xl . Two rectifiable
arcs in X with a common endpoint in ∂l X , say

[0, �(α)] α−→ X ∪ {ξ} , [0, �(β)] β−→ X ∪ {ξ} with α(0) = ξ = β(0) ∈ ∂l X ,

are l-equivalent if and only if

lim
s→0+ l

(
α(s), β(s)

) = 0.

There is a natural one-to-one correspondence between ∂l X and the l-equivalence
classes of such rectifiable arcs; see [6, Prop. 3.29].

The identity map Xl
id−→ X is 1-Lipschitz and so has a 1-Lipschitz extension Xl

ι−→
X̄ . In general, ι = ιX need not be surjective nor injective. However, we always have
ι(∂l X) = ∂ raX .

We make repeated appeals to the following elementary fact; see [6, Lem. 3.17] and
also Fact 2.1.

Lemma 2.4 Let X = (X , |·|) be a rectifiably connected metric space with associated

length distance space Xl = (X , l). Suppose [0, 1) γ−→ X is a rectifiable path in X.
Then

lim
s,t→1− �

(
γ |[s,t]

) = 0 = lim
s,t→1− l

(
γ (s), γ (t)

)

so there exist points z ∈ ∂X and ζ ∈ ∂l X such that

lim
t→1− |γ (t) − z| = 0 = lim

t→1− l
(
γ (t), ζ

);
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therefore there are rectifiable paths

[0, 1] γ̄−→ X ∪ {z} ⊂ X̄ and [0, 1] γ̃−→ X ∪ {ζ } ⊂ Xl with γ̄ = ι◦γ̃

that are obtained by defining

γ̄ (t) :=
{

γ (t) for t ∈ [0, 1),
z for t = 1; and γ̃ (t) :=

{
γ (t) for t ∈ [0, 1),
ζ for t = 1;

Moreover, z ∈ ∂X if and only if ζ ∈ ∂l X . Also, �(γ̃ ) = �(γ̄ ) = �(γ ).

Corollary 2.5 Suppose X is rectifiably connected and a, b ∈ X ra := X ∪ ∂ raX. Then
a, b can be joined by a rectifiable path in X ∪ {a, b}. Moreover, if γ : a � b in
X ∪ {a, b}, then there are unique points ã, b̃ ∈ Xl and a rectifiable γ̃ : ã � b̃ in

Xl ∪
{
ã, b̃

}
with γ = ι◦γ̃ and �(γ ) = �(γ̃ ).

We define X ra × X ra lra−→ [0,+∞) by

lra(a, b) := inf
{
�(γ )

∣∣ γ : a � b a rectifiable path in X ∪ {a, b}}.

In general, lra need not be a distance on X ra because the triangle inequality may fail.
However, its restriction lra1 to X ra

1 × X ra
1 , where

X ra
1 := X ∪ ∂ ra1 X with ∂ ra1 X :=

{
z ∈ ∂ raX | card ι−1(z) = 1

}
,

is a distance on X ra
1 . The triangle inequality is easy to check if the intermediate point

lies in X and not difficult to verify when this point lies in ∂ ra1 X .
Setting

∂1l X :=
{
ξ ∈ ∂l X | ι−1(ι(ξ)

) = {ξ}
}

, X1
l := Xl ∪ ∂1l X , X ra

l := (X ra
1 , lra1 )

and ι1 := ι|X1
l
, we easily obtain the following.

Lemma 2.6 When X is rectifiably connected, X1
l

ι1−→ X ra
l is an isometry.

Proof Let ã, b̃ ∈ X1
l . Then a := ι(ã), b := ι(b̃) ∈ X ra

1 . Let γ : a � b be an arc in
X ∪ {a, b}. The ends of γ determine ã, b̃, so by Corollary 2.5 there is a rectifiable

γ̃ : ã � b̃ in Xl ∪
{
ã, b̃

}
with γ = ι◦γ̃ and �(γ̃ ) = �(γ ). Thus

l(ã, b̃) ≤ �(γ̃ ) = �(γ ).

Taking an infimum over all such γ gives

l(ã, b̃) ≤ l(a, b)
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and the opposite inequality holds because ι is 1-Lipschitz. ��

2.2 CAT(0) Metric Spaces

Here our terminology and notation conforms with that in [4]; also, see [5]. We recall
a few fundamental concepts, mostly copied directly from [4].

2.2.1 Geodesic and Comparison Triangles

A geodesic triangle � in X consists of three points in X , say a, b, c ∈ X , called the
vertices of � and three geodesics, say α : a � b, β : b � c, γ : c � a (that we may
write as [a, b], [b, c], [c, a]) called the sides of �. We use the notation

� = �(α, β, γ ) or � = [a, b, c] := [a, b]�[b, c]�[c, a] or � = �(a, b, c)

depending on the context and the need for accuracy.
A Euclidean triangle �̄ = �(ā, b̄, c̄) in C is a comparison triangle for � =

�(a, b, c) provided |a − b| = |ā − b̄|, |b − c| = |b̄ − c̄|, |c − a| = |c̄ − ā|. We
also write �̄ = �̄(a, b, c) when a specific choice of ā, b̄, c̄ is not required. A point
x̄ ∈ [ā, b̄] is a comparison point for x ∈ [a, b] when |x − a| = |x̄ − ā|. Assuming
that b �= a �= c (so b̄ �= ā �= c̄), the comparison angle of � at a is defined to be the
interior Euclidean angle of �̄ at ā and denoted by

�a(b, c) := �euc
ā (b̄, c̄).

Assume a �= p �= b and let α : p � a, β : p � b be rectifiable arcs in
X parameterized by arc length. The (upper) Alexandrov angle between α and β is
defined by

�p(α, β) := lim sup
s,t→0+

�p(α(s), β(t));

see [4, 1.12, p.9]. When [p, a], [p, b] are geodesics, �p(a, b) := �p([p, a], [p, b]).

2.2.2 CAT(0) Definition

A geodesic triangle � in X satisfies the CAT(0) distance inequality if and only if the
distance between any two points of� is not larger than the Euclidean distance between
the corresponding comparison points; that is,

∀ x, y ∈ � and corresponding comparison points x̄, ȳ ∈ �̄, |x − y| ≤ |x̄ − ȳ|.

We also say that � is CAT(0)-thin when it satisfies the CAT(0) distance inequality.
A geodesic metric space is CAT(0) if and only if each of its geodesic triangles is

CAT(0)-thin. A completeCAT(0)metric space is called aHadamard space. A geodesic
metric space X has non-positive curvature if and only if it is locally CAT(0), meaning
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that for each point a ∈ X there is an r > 0 (that can depend on a) such that the metric
ball B(a; r) (endowed with the distance inherited from X ) is CAT(0).

Of the many conditions which guarantee that a space is CAT(0), for instance, see
[4, Prop. 1.7, p. 161] or [5, Thm. 4.3.5, p.116], we mention only that a geodesic metric
space X is CAT(0) if and only if each of its geodesic triangles satisfies the CAT(0)
vertex angle criterion. Here � satisfies the CAT(0) vertex angle criterion if and only
if � has distinct vertices and the Alexandrov angle between any two sides of � is
not greater than the interior Euclidean angle between the corresponding sides of a
comparison triangle for �; equivalently, if and only if the (Alexandrov) vertex angles
of� are not greater than the corresponding (Euclidean) vertex angles of a comparison
triangle for �.

2.2.3 Triangle Tails

Let � = [a, b, c] = [a, b]�[b, c]�[c, a] be a geodesic triangle. Suppose there are
points bo ∈ [a, b] and co ∈ [a, c] such that the subgeodesics [a, bo] ⊂ [a, b] and
[a, co] ⊂ [a, c] coincide: i.e., [a, bo] = [a, co]. This common geodesic segment is a
tail of �, and � is tail-less if there are no such tails.4

It is not difficult to verify the following. (If the lengths of two sides of an Euclidean
triangle are increased by the same amount, then certain angles also increase.)

Fact 2.7 Let X be a geodesic metric space. Suppose every tail-less geodesic triangle
in X satisfies the CAT(0) vertex angle criterion. Then X is CAT(0).

2.2.4 Gromov Hyperbolicity Definition

A geodesic metric space X is δ-hyperbolic if and only if for all geodesic triangles �

in X , each edge of � lies in the δ-neighborhood of the union of the other two edges,
and X is Gromov hyperbolic if and only if it is δ-hyperbolic for some δ ∈ [0,+∞).

2.3 General Plane Information

We view the Euclidean plane as the complex number field C. Everywhere� is a plane
domain (i.e., an open connected set), �c := C\� and ∂� denote the complement and
boundary (respectively) of �.

The open disk of radius r centered at the point a ∈ C is

D(a; r) := {z : |z − a| < r} ,

D := D(0; 1) is the open unit disk, and the open r -neighborhood of a set A ⊂ C is

N(A; r) :=
⋃

a∈A

D(a; r) = {z : dist(z, A) < r} .

4 Caution: this does not mean that the sides of � do not overlap somewhere away from the vertices.
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2.3.1 Complex Analysis

The well known Riemann and Carathéodory mapping theorems assert that when �

is a simply connected plane domain, there is a conformal map (i.e., a holomorphic
homeomorphism) f : D → �, and if � is a Jordan domain, f extends to a home-
omorphism D̄ → �̄. So, each boundary point of a Jordan domain is path accessible
from the domain.

We repeatedly use the less known fact that when � is a simply connected plane
domain with rectifiable boundary (e.g., if ∂� is a rectifiable Jordan loop), then each
point of ∂� is rectifiably accessible from �; that is, ∂ ra� = ∂� and �ra = �̄. I
am indebted to Distinguished Professor Chris Bishop for explaining this to me. It is
a consequence of the fact that any Riemann map onto such a domain belongs to the
Hardy class H1; see the “easy half” of Chris’ result in [2].

A Riemann map D
f−→ � provides a conformal model for the length space �l .

Indeed, the conformal metric | f ′(z)| |dz| on D induces the length distance

d f (a, b) := inf
γ :a�b

∫

γ

| f ′(z)| |dz|

where the infimum is over all rectifiable arcs γ : a � b in D and D f := (D, d f )
f−→

(�, l) =: �l is an isometry. One can demonstrate that D f = D ∪ ∂ f D, where
∂ f D := {

ζ ∈ ∂D
∣∣ f

([0, ζ )
)
is rectifiable

}
; evidently, ∂ f D ⊂ ∂D f , and the opposite

containment can be established with the help of [10, Prop. 2.14-p.29, Cor. 2.17-p.35,
Thm. 4.20-p.88]. Thus �l is isometrically equivalent to D f . With this model, the map
ι : �l → �ra can be realized as the radial limit extension f : D f → �ra ⊂ �̄.

For example, we now see that a Jordan loop � in �l corresponds to a Jordan
loop in D f ⊂ D̄ whose interior is a simply connected domain in D with f image a
simply connected D ⊂ � satisfying ∂D = ι(�), which is a rectifiably connected loop
(perhaps not Jordan) in �ra.

3 Proofs

Here we establish the Theorem stated in the Introduction. Now X is a given simply
and rectifiably connected plane set with Xl the metric completion of the intrinsic
(Euclidean) length space Xl associated with X . Also, Xl

ι−→ X̄ is the 1-Lip extension
of the identity map Xl → X .

First, we consider simply connected plane domains, then arbitrary simply and rec-
tifiably connected plane sets.

3.1 CAT(0) Proof for X a Simply Connected Plane Domain

Assume X = � is a simply connected plane domain. Evidently, �l is a complete
length metric space. We demonstrate that it is a 4-point limit of CAT(0) spaces, so by
[4, Thm. 3.9, p.196] it is also CAT(0) and hence a Hadamard space.
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The Riemann Mapping Theorem provides a conformal map D
f−→ � (i.e., a holo-

morphic homeomorphism). Let (rν) be a strictly increasing sequence in (0, 1) with
rν ↗ 1. For each ν ∈ N, define

fν(ζ ) := f (rνζ ), �ν := fν(D) = f (rνD),

and let Uν := fν(rνD) = f (r2ν D), λν := λ�ν , Mν := maxŪν
λν, and

εν := (
10 diaml(�ν)M2

ν

)−1.
Note thatUν is compactly contained in �ν which in turn is compactly contained in

�, and

diaml(�ν) = diam(�ν, l) with l = l�.

Also, for any plane domain D, λD ds denotes the Poincaré hyperbolic metric in D,
i.e., λD ds is the maximal complete metric in D with constant Gaussian curvature−1;
see [8]. Note that {Uν | ν ∈ N} is an increasing open cover of � and (Mν), (εν) are
increasing, decreasing positive sequences with Mν ↗ +∞, εν ↘ 0 respectively.

It is easy to check that �l is a 4-point limit of the spaces (�̄ν, lν) where lν is
Euclidean length distance in �ν . Since �ν is a Jordan domain, we could appeal to
Bishop’s result now, but it is easy to provide a simple alternative argument.

Consider the conformal metric ρν ds in �ν where

ρν := 1 + ενλν (and note thatρν ≤ 1 + (
10 diaml(�ν)Mν

)−1in Ūν).

Let dν be the length distance obtained from the metric ρν ds in �ν . Since log λν is
subharmonic and C∞ smooth in �ν , so is log ρν (see [7, 2.1, 2.2]) and therefore by
classical results (e.g., see [4, Thm.1A.6, Thm. 4.1, pp. 173,193]) each space (�ν, dν)

is CAT(0).
We check that �l is a 4-point limit of the CAT(0) spaces (�ν, dν).
Let x1, x2, x3, x4 ∈ �l and ε ∈ (0,diaml �1) be given. Define z1, z2, z3, z4 ∈ �

as follows: if xi ∈ �, let zi := xi ; otherwise, xi ∈ ∂l�, and we pick any zi ∈ � with
l(zi , xi ) < ε/10.

Next, for all 1 ≤ i < j ≤ 4, choose arcs σ
i j
n : zi � z j in � with �(σ

i j
n )

decreasing to l(zi , z j ). Fix N so that for all 1 ≤ i < j ≤ 4, n ≥ N �⇒ �(σ
i j
n ) <

l(zi , z j ) + ε/10; so �(σ
i j
n ) < 11

10 diaml(�ν).

For each n, Kn := ⋃
1≤i< j≤4 σ

i j
n is a compact subset of�, so there is an increasing

sequence (νn)n≥N such that for each n ≥ N , Mνn > 2ε−1 and Kn ⊂ Uνn ⊂ Ūνn ⊂
�νn . Then for each n ≥ N and all 1 ≤ i < j ≤ 4,
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l(zi , z j ) ≤ lνn (zi , z j ) ≤ dνn (zi , z j ) ≤ �ρνn
(σ

i j
n ) =

∫

σ
i j
n

ρνn ds

≤
(
1 + (

10 diaml(�ν)Mνn

)−1
)
�(σ

i j
n ) (because σ n

i j ⊂ Kn ⊂ Uνn )

≤ �(σ
i j
n ) + 11

100Mνn

< l(zi , z j ) + ε

10
+ 11ε

200
< l(zi , z j ) + ε

5

and so

l(xi , x j ) ≤ l(xi , zi ) + l(zi , z j ) + l(z j , x j ) ≤ dνn (zi , z j ) + ε

5
≤ l(zi , z j ) + 2ε

5

≤ l(zi , xi ) + l(xi , x j ) + l(x j , z j ) + 2ε

5
≤ l(xi , x j ) + 3ε

5
.

Thus, for all n ≥ N and 1 ≤ i < j ≤ 4: zi , z j ∈ �νn and |l(xi , x j ) − dνn (zi , z j )|
< ε. ��

3.2 CAT(0) Proof for General Case

Let X be a simply and rectifiably connected plane set. Our primary goal here is to
demonstrate that Xl is uniquely geodesic; the CAT(0) property follows.

Since X is simply connected, whenever � is a Jordan loop in X , D(�) := � ∪
Int(�) ⊂ X . Aswe employ this observation again and again, it is worthwhile to review
methods for constructing Jordan loops.

Given distinct points p, q in X ,

�(p, q) := {all rectifiable arcs γ : p � q inX} �= ∅.

Suppose β, γ ∈ �(p, q) and there is a point c ∈ γ \β. There are several ways to
construct a Jordan loop � in X that contains an open subarc of γ which in turn
contains c. Most simply, we move backwards, forwards along γ from c (towards
p, q respectively) and let a, b be (respectively) the first points of β ∩ γ . Here � :=
γ [a, b] ∪ β[a, b] has the asserted properties with c ∈ γ (a, b).

A minor possible problem is that we do not know the order of a, b along β. To
remedy this, set b1 := b and then, move backwards along γ (from c to p), and let a1
be the first point of β[p, b1] ∩ γ . Now �1 := γ [a1, b1]�β−1[b1, a1] has the asserted
properties and p ≤ a < b ≤ q along both β and γ . Yet another alternative is to set
a2 := a, move forwards along γ (from c to q), let b2 be the first point of β[a2, q] ∩ γ ,
and use �2 := γ [a2, b2]�β−1[b2, a2]. Note that the three Jordan loops �,�1,�2
could all be different.

For definitiveness, we always use the first alternative construction.
We assume int(X) �= ∅, so

O := {all components � of int(X)} �= ∅.
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Note that even if some � ∈ O has non-rectifiably accessible boundary points, �̄ ⊂ X

is still possible. For each � ∈ O , �l
ι�−→ �̄ is the 1-Lip extension of the identity map

�l → �.

The following facts are useful.

(3.1a) Rectifiable Jordan loops. Suppose � is a rectifiable Jordan loop in X . Then
there is a unique � ∈ O with D(�) ⊂ �ra ∩ X , and if � ∩ � = ∅, then
� = Int(�).

(3.1b) Components of int(X). For distinct �1,�2 ∈ O , card(�ra
1 ∩ �ra

2 ∩ X) ≤ 1.
(3.1c) Unique length boundary points. For each � ∈ O , z ∈ ∂ ra� ∩ X �⇒

card ι−1
� (z) = 1.5

Proof of (3.1a) Since X is simply connected, D(�) ⊂ X , so D := Int(�) ⊂ X and
there is an � ∈ O with D ⊂ �. Evidently, D(�) = D̄ = Dra ⊂ �ra ∩ X ; see
Sect. 2.3.1. Fix a point o ∈ D. Given p ∈ �, let α : o � p in �. If � ∩ � = ∅, then
α ∩ � = ∅, so α ⊂ D whence p ∈ D and � = D. ��
Proof of (3.1b) Let a, b be distinct points in �ra

1 ∩ �ra
2 ∩ X for some �1,�2 ∈ O .

For j ∈ {1, 2}, pick rectifiable arcs α j : a � b in � j ∪ {a, b}. Since o
α j ⊂ � j ,

o
α1 ∩ o

α2 �= ∅ �⇒ �1 = �2, so we may assume that α1 ∩ α2 = {a, b}. Then
� := α1�α

−1
2 is a rectifiable Jordan loop in X , so by (3.1a) there is a unique � ∈ O

with D(�) ⊂ �ra ∩ X .
Fix a point o ∈ D := Int(�) and points z j ∈ o

α j ⊂ � j . Then for each j ∈ {1, 2},
any z ∈ � j can be joined to z j (by a rectifiable path in � j ) and then to o (by a
rectifiable path in � ∪ {

z j
}
), so there is a rectifiable path z � o in int(X). It follows

that �1 = � = �2. ��
Proof of (3.1c) Suppose z ∈ ∂ ra� ∩ X for some � ∈ O . Let α, β be rectifiable arcs in
� ∪ {z} both having z an endpoint. We show that α and β determine the same point in
∂l�.

Assume [0, �(α)] α−→ � ∪ {z} and [0, �(β)] β−→ � ∪ {z} with α(0) = z = β(0). We
verify that lims→0+ l

(
α(s), β(s)

) = 0.
First, suppose that for all υ ∈ (

0, �(α) ∧ �(β)
)
, α

(
(0, υ)

) ∩ β
(
(0, υ)

) �= ∅. Given
such an υ, pick σ, τ ∈ (0, υ) with α(σ) = β(τ). Then for any s ∈ (0, υ),

l
(
α(s), β(s)

) ≤ l
(
α(s), α(σ )

) + l
(
α(σ), β(τ)

) + l
(
β(τ), β(s)

) ≤ 2υ < ε

provided υ < 2ε.
Otherwise, we may assume α ∩ β = {z}. Let γ be a rectifiable arc in � from

the terminal point a of α to the terminal point b of β. Then α�β−1 and γ are arcs
in �(a, b) and z ∈ (α�β−1)\γ , so there is a rectifiable Jordan loop � in X that
contains an open subarc of α�β−1 which in turn contains z. Evidently, Int(�) ⊂ �

and D(�) ⊂ �ra ∩ X , and thus lims→0+ l
(
α(s), β(s)

) = 0. ��

5 Thus z ∈ ∂ra1 �; see Lemma 2.6.
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3.2.1 Entry and Exit Points

Let p, q be distinct points in X and � ∈ O . We say that γ ∈ �(p, q) enters � if
card(γ ∩ �ra) ≥ 2. We employ the following crucial facts.

(3.2a) Both points in �ra. card
({p, q} ∩�ra

) = 2 �⇒ ∀ γ ∈ �(p, q), γ ⊂ �ra.

(3.2b) One point in �ra. card
({p, q} ∩ �ra

) = 1 �⇒ ∃ e := e� ∈ ∂ ra� ∩ X such
that ∀ γ ∈ �(p, q)

{p, q} ∩ �ra = {p} �⇒ e ∈ γ, γ [p, e] ⊂ �ra, and γ (e, q] ∩ �ra = ∅,

{p, q} ∩ �ra = {q} �⇒ e ∈ γ, γ [e, q] ⊂ �ra, and γ [p, e) ∩ �ra = ∅.

(3.2c) Neither point in �ra. card
({p, q} ∩ �ra

) = 0 �⇒ if some arc in �(p, q)

enters �, then ∃ a := a�, b := b� ∈ ∂ ra� ∩ X such that ∀ γ ∈ �(p, q)

a, b ∈ γ, γ [a, b] ⊂ �ra, and
(
γ [p, a) ∪ γ (b, q]) ∩ �ra = ∅.

The points a, b in (3.2c) (and e in (3.2b)) are called entry, exit points (respectively)
for � relative to p, q. These entry, exit points depend only on p, q, and �.

Proof of (3.2a) Assume p, q ∈ �ra ∩ X and let γ ∈ �(p, q). We show that γ ⊂ �ra.
Let α : p � q be a rectifiable arc in � ∪ {p, q} ⊂ �ra ∩ X . Suppose there is a

point o ∈ γ \α. As discussed in the third paragraph at the beginning of this subsection,
there are points a, b ∈ α ∩ γ such that p ≤ a < b ≤ q along both α and γ with
� := γ [a, b]�α−1[b, a] a rectifiable Jordan loop in X and with o ∈ γ (a, b).

By (3.1a) there is a unique �o ∈ O with D(�) ⊂ �ra
o ∩ X . We claim that D :=

Int(�) ⊂ �, so � = �o and o ∈ �ra, and as o is an arbitrary point of γ \α, γ ⊂ �ra

as asserted.
Let z ∈ D and fix any point c ∈ α(a, b). Since � = ∂D is rectifiable, there is a

rectifiable arc β : z � c in D ∪ {c}. As c ∈ � ⊂ int(X) and D = Int(�) ⊂ �o ⊂
int(X), β ⊂ int(X) and so z ∈ β ⊂ �. ��

The proof of (3.2b) is similar to, but easier than, the proof of (3.2c) and so left to
the reader.

Proof of (3.2c) Assume γ ∈ �(p, q) enters �. There are distinct points po, qo ∈
γ ∩ �ra and we label these so that p < po < qo < q along γ . According to (3.2a),
γ [po, qo] ⊂ �ra. Roughly speaking, a, b are the endpoints of the maximal subarc of
γ that contains γ [po, qo] and lies in �ra. Some care is required because �ra need not
be closed in C nor in X .

The set A:= {
z∈γ [p, po]

∣∣ z∈�ra
}
is non-empty and bounded below, so it has

a greatest lower bound a. Similarly, there is a least upper bound b for B :={
z ∈ γ [qo, q] ∣∣ z ∈ �ra

}
. Clearly a, b ∈ γ ∩ ∂�,

(
γ [p, a)∪γ (b, q])∩�ra = ∅, and

it is not difficult to check that γ (a, b) ⊂ �ra.
To corroborate that a, b ∈ ∂ ra�, we employ (3.1c) in conjunction with Lemma 2.6

as follows. Since γ (a, b) ⊂ �ra∩X , it lies in the image of the isometry ι1� : �1
l → �ra

l .
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Thus γ̃ := (ι1�)−1◦γ (a, b) is a rectifiable arc in �1
l and so has endpoints ã, b̃ that we

label to have ι� images a, b. Thus a = ι�(ã), b = ι�(b̃) ∈ ι�(∂l�) = ∂ ra�.
Let β ∈ �(p, q). The path γ −1[a, p]�β�γ −1[q, b] contains a rectifiable arc a � b

that must lie in �ra. Since
(
γ [p, a)∪ γ (b, q])∩�ra = ∅, it must be that a, b ∈ β, so

β[a, b] ⊂ �ra. If, e.g., there were a point c ∈ β(b, q] ∩ �ra, then letting d be the first
point of β[c, q] in γ [b, q] would give an arc γ [b, d]�β−1[d, c], but b, c ∈ �ra would
imply γ [b, d] ⊂ �ra violating our choice of b. Similarly β[p, a) ∩ �ra = ∅. ��

Here is a noteworthy consequence of (3.1c) and (3.2a):

∀ � ∈ O, there is an isometric embedding �l
h�−→ Xl with ιX◦h� = ι�. (3.3)

Proof of (3.3) The identity map �
id�

↪−→ X induces a 1-Lipschitz embedding �l

id�l
↪−−→

Xl which then has a 1-Lipschitz extension h� : �l → Xl . We explain why id�l is an
isometric embedding.

Fix a, b ∈ � and let γ ∈ �(a, b). By (3.2a), γ ⊂ �ra ∩ X , so by (3.1c) γ lies in
the image of the isometry ι1� : �1

l → �ra
l ; see Lemma 2.6. Thus γ̃ := (ι1�)−1◦γ is a

rectifiable arc in �1
l with �(γ ) = �(γ̃ ) ≥ l�(a, b). Taking an infimum over all such

arcs γ , and using the fact that id�l is 1-Lipschitz, we now obtain lX (a, b) = l�(a, b).
It now follows that h� is an isometric embedding.

Evidently, h�(z) = z for z ∈ �. Suppose ζ ∈ ∂l�. Let [0, 1) α−→ � be a rectifiable
path that represents ζ . According to Lemma 2.4, α extends to rectifiable arcs α̃ in �l

and ᾱ = ι�◦α̃ in �ra ⊂ �̄ with ζ = α̃(1) and z = ᾱ(1) = ι�(ζ ) ∈ ∂ ra�.
But, α = id�l ◦α is also a rectifiable arc in X and so has extensions ᾱ in X ra (i.e.,

z ∈ X ra) and αX in Xl . If z ∈ X , then z ∈ �ra ∩ X , so {ζ } = ι−1
� (z), h�(ζ ) = z, and

ιX
(
h�(ζ )

) = ιX (z) = z = ι�(ζ ). If z ∈ ∂ raX , then ξ := αX (1) ∈ ∂l X , z = ιX (ξ),
and h�(ζ ) = ξ , so ιX

(
h�(ζ )

) = ιX (ξ) = z = ι�(ζ ). ��
To simplify notation, often we identify �l with its image h�(�l) ⊂ Xl , but we

must remember that some points6 in ∂l� may lie in X (and so not in ∂l X ).
We require similar information to deal with points in ∂l X . Given distinct points

p, q in Xl , define

�l(p, q) := {all rectifiable arcs γ : p � q inX ∪ {p, q}} �= ∅

and

�̄l(p, q) := {
all rectifiable arcs γ : p � q in Xl

} �= ∅.

The arcs in �l(p, q) are easier to work with (and all we need to compute l(p, q)), but
facts about �̄l(p, q) will help us establish uniqueness of l-geodesics.

Let p, q be distinct points in Xl and � ∈ O . The arcs in �̄(p, q) also have unique
entry, exit points as in (3.2c); here γ enters �l if card(γ ∩ �l) ≥ 2. We identify �l

with its image h�(�l) ⊂ Xl .

6 These are precisely the points in ι−1
� (∂ra� ∩ X).
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(3.4a) Both points in �l . card
({p, q} ∩ �l

) = 2 �⇒ ∀ γ ∈ �̄l(p, q), γ ⊂ �l .

(3.4b) One point in �l . card
({p, q} ∩ �l

) = 1 �⇒ ∃ e := e� ∈ ∂ ra� ∩
X such that ∀ γ ∈ �̄l(p, q)

{p, q} ∩ �l = {p} �⇒ e ∈ γ, γ [p, e] ⊂ �l , and γ (e, q] ∩ �l = ∅,

{p, q} ∩ �l = {q} �⇒ e ∈ γ, γ [e, q] ⊂ �l , and γ [p, e) ∩ �l = ∅.

(3.4c) Neither point in �l . card
({p, q} ∩ �l

) = 0 �⇒ if some arc in �̄l(p, q)

enters �l , then ∃ a := a�, b := b� ∈ ∂ ra� ∩ X such that ∀ γ ∈ �̄l(p, q)

a, b ∈ γ, γ [a, b] ⊂ �l , and
(
γ [p, a) ∪ γ (b, q]) ∩ �l = ∅.

Again, we call the points a, b in (3.4c) (and e in (3.4b)) entry, exit points (respectively)
for �l relative to p, q. These entry, exit points depend only on p, q, and �.

Proof of (3.4a) Suppose p, q ∈ �l and γ ∈ �̄l(p, q), but γ �⊂ �l . By replacing γ

with an appropriate subarc, we may assume γ ∩ �l = {p, q}. Let p1, q1 ∈ γ be
the first points7 at distance d := 1

10 l(p, q) from p, q respectively. Put ε := d ∧
distl(γ [p1, q1],�l).

Pick any points p0, q0 ∈ �with l(p0, p) < ε, l(q0, q) < ε.Mimicking the proof of
Lemma 2.2 gives us a rectifiable arc α : p0 � q0 in X with α ⊂ Nl(γ ; ε). According
to (3.2a), α ⊂ �ra ∩ X ⊂ �l . Since l(p, q) < l(p0, q0) + 2ε,

l(p0, q0) ≥ 10d − 2ε.

Fix a point a ∈ α with l(a, p0) = l(a, q0) ≥ 1
2 l(p0, q0) ≥ 5d − ε. Evidently, for

all b ∈ γ [p1, q1],

a ∈ α ⊂ �l �⇒ l(b, a) ≥ distl(b,�l) ≥ distl(γ [p1, q1],�l) ≥ ε.

Also, if b ∈ γ [p, p1], then

l(b, a) ≥ l(p, a) − l(p, b) ≥ l(p0, a) − l(p0, p) − l(p, b) ≥ 4d − 2ε ≥ 2ε.

Similarly, b ∈ γ [q1, q] �⇒ l(b, a) > ε. This contradicts α ⊂ Nl(γ ; ε). ��
Items (3.4b) and (3.4c) now readily follow. To see that the entry and exit points lie

in X , note that we can use arcs in X ∪ {p, q} to determine these points.

3.2.2 Stable Points

Given distinct p, q ∈ Xl , we call x ∈ Xl a (p,q)-stable point if x lies in every
γ ∈ �̄l(p, q). Let �(p, q) be the set of all (p, q)-stable points. Evidently, p, q, and

7 As we move along γ away from its endpoints p, q, respectively.
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all entry and exit points associated with p, q belong to �(p, q). It is not difficult
to see that �(p, q) is closed in X ∪ {p, q}, ordered via any arc in �̄(p, q), and
l(p, q) = l(p, x) + l(x, q) for any x ∈ �(p, q). To see that all arcs induce the same
ordering on any x, y ∈ �(p, q): note that if β, γ ∈ �̄l(p, q) with x < y, y < x along
γ, β, respectively, then γ [p, x]�β[x, q] is a path (which contains an arc) p � q but
avoids y contradicting y ∈ �(p, q).

By Lemma 2.2, x ∈ �(p, q) provided x ∈ γ for all γ ∈ �l(p, q). Also

�(p, q) = {p, q} ∪
⋃

x<y

�(x, y)

where the union is over all x, y ∈ X ∩ �(p, q), and,

x, y ∈ �(p, q) with p ≤ x < y ≤ q �⇒ x ∈ �(p, y).

Indeed, x, y ∈ γ ∈ �l(p, q) and ∃ x /∈ β ∈ �l(p, y) �⇒ x /∈ β�γ [y, q] ∈
�l(p, q).

Here are two especially useful facts.

∀ γ ∈ �l(p, q), z ∈ γ \�(p, q) �⇒ ∃ � ∈ O and a subarc (3.5a)

α ⊂ γ ∩ �ra with z ∈ o
α.

Consequently,

�(p, q) = {p, q} �⇒ ∃ � ∈ O such that p, q ∈ �l ⊂ Xl . (3.5b)

Proof Sketch for (3.5) Suppose γ ∈ �l(p, q) and z ∈ γ \�(p, q) ⊂ X . Pick an arc
β ∈ �l(p, q) with z /∈ β. Again, we can construct a Jordan loop � in X that contains
an open subarc of γ which in turn contains z, but a wee bit of care is required. Since
the ends of β, γ both determine the same points p, q ∈ Xl , there are points p1, p2
and q1, q2 on β, γ respectively, close in Xl , and as close to p, q as desired. Then
γ [p1, q1] ∪ β[p2, q2], together with short arcs p1 � p2, q1 � q2 in X , forms a
loop in X which contains the asserted Jordan loop �; see Lemma 2.3 for details. Now
(3.5b) follows from (3.1a).

To corroborate (3.5b), start with any γ ∈ �l(p, q). By (3.5b), for each z ∈ o
γ =

γ (p, q), there is an �z ∈ O and an arc αz ⊂ γ ∩ �ra
z with z ∈ o

αz . If w ∈ αz , then

∅ �= o
αw ∩ o

αz ⊂ �ra
w ∩ �ra

z ∩ X , so by (3.1b) �w = �z . It now follows that there is a

single � ∈ O with
o
γ ⊂ �ra, but then γ ⊂ �l . ��

3.2.3 Contructing Geodesics

Let p, q ∈ Xl . We exhibit an l-geodesic p � q in Xl .
Assume p, q ∈ X . Suppose there exists an � ∈ O with p, q ∈ �ra. By (3.1c),

there are unique points p̃, q̃ ∈ �l with p = ι�( p̃), q = ι�(q̃). By Sect. 3.1, there is
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a unique l-geodesic σ� : p̃ � q̃ in �l . Then by (3.3) and its proof, σX := h�◦σ� is
an l-geodesic in Xl with endpoints h�( p̃) = p and h�(q̃) = q.

Now suppose that for all � ∈ O , {p, q} �⊂ �ra. We construct a path σ : p � q in
Xl that has �(σ ) ≤ �(γ ) for all γ ∈ �(p, q). Thus σ is a shortest path and hence an
l-geodesic

If p ∈ �ra
p for some �p ∈ O , let ep ∈ ∂ ra�p ∩ X be the exit point associated with

q,�p as given in (3.2b) and let σp be the h�p image of the l-geodesic p̃ � ẽp in

(�p)l where p̃, ẽp are the unique points in (�p)l with p = ι�p ( p̃), ep = ι�p (ẽp). If
no such �p exists, put �p := ∅, ep := p, σp := {p}. Define �q , eq , σq in a similar
manner.

Let γ ∈ �(p, q). Note that
{
ep, eq

} ⊂ γ . Suppose z ∈ γ [ep, eq ]\�(p, q). By

(3.5b), there is an � ∈ O and an arc α ⊂ γ [ep, eq ]∩�ra with z ∈ o
α. Thus γ enters �

and so z ∈ γ (a�, b�) where a�, b� ∈ ∂ ra� ∩ X are the entry, exit points associated
with � as given in (3.2c).

It now follows that γ [ep, eq ]\�(p, q) is a union of countablymanyγn := γ (an, bn)
where an := a�n , bn := b�n are the entry, exit points (given by (3.2c)) associated
with the countably many �n that satisfy card(γ ∩ �ra

n ) ≥ 2 with �p �= �n �= �q .
Note that an, bn ∈ ∂ ra�n ∩ X and these entry, exit points correspond to unique points
ãn, b̃n ∈ ∂l�n ⊂ (�n)l .

For each n, let σn : an � bn in Xl be the h�n image of the l-geodesic ãn � b̃n
in (�n)l . Replacing each of the subarcs γ [p, ep], γ [eq , q], γn of γ with σp, σq , σn ,
respectively, we obtain an arc

σ := σp ∪ �(p, q) ∪ σq ∪
⋃

n

σn : p � q in Xl .

Since the new subarcs have lengths no larger than the replaced subarcs, �(σ ) ≤ �(γ ).
Since the entry, exit points relative to p, q do not depend on γ , the construction of σ

is independent of γ and σ is indeed an arc p � q in Xl with shortest length.

Assume p ∈ X and q ∈ ∂l X . Suppose q ∈ �l for some � ∈ O . Assume p /∈ �ra.
By (3.4b), there is a unique exit point e ∈ ∂ ra� ∩ X (that depends only on p), and by
earlier work, there are unique l-geodesics σq : e � q in �l ⊂ Xl and σp : p � e in
Xl , and we see that σ := σp�σq is a shortest arc p � q in Xl .

Suppose that for all � ∈ O , q /∈ �l . Start with any γ ∈ �l(p, q) and let (zn) be
an increasing sequence along γ with �(γ [zn, q]) → 0. If zn ∈ �(p, q), set xn := zn .
If zn /∈ �(p, q), then (3.5b) and (3.4c) provide entry, exit points an, bn ∈ γ ∩ ∂ ra�n

with zn ∈ γ (an, bn); here we set xn := bn . Thus (xn) is an increasing sequence in
�(p, q) with l(xn, q) → 0 as n → +∞.

As p, xn ∈ X , there are l-geodesics σn : p � xn in Xl . However, xn ∈ �(p, xn+1),
so σn ⊂ σn+1.8 Therefore, it follows that σ := ⋃

n≥1 σn is a rectifiable arc in Xl with
terminal endpoint q and with �(σ ) = l(p, q). Thus σ is a shortest arc, hence an
l-geodesic in Xl .

8 See the second paragraph of Sect. 3.2.2.
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Assume p, q ∈ ∂l X . If �(p, q) = {p, q}, then by (3.5b) p, q ∈ �l ⊂ Xl for some
� ∈ O and hence there is an l-geodesic joining these points. Suppose there exists an
x ∈ X ∩ �(p, q). Then by a previous case there are l-geodesics p � x and x � q
which paste together to give a path σ : p � q in Xl with �(σ ) = l(p, x) + l(x, q) =
l(p, q).

3.2.4 Uniqueness and CAT(0)

Our penultimate task is to verify uniqueness of l-geodesics in Xl . Let p, q be distinct
points in Xl , let σ : p � q be the l-geodesic in Xl constructed above, and suppose
ψ : p � q is also an l-geodesic in Xl . Then

σ ∩ �(p, q) = �(p, q) = ψ ∩ �(p, q).

Let z ∈ σ\�(p, q).

Appealing to (3.5b) we obtain an � ∈ O and an arc α ⊂ σ ∩ �ra with z ∈ o
α. This

means that card(σ ∩�l) ≥ 2, so by (3.4c) z ∈ σ [a, b] ⊂ �l where a, b ∈ ∂ ra� ⊂ Xl

are the entry, exit points associated with p, q,�. Also by (3.4c), a, b ∈ ψ . Since
ψ[a, b] ⊂ �l is a shortest arc and �l is CAT(0) (by Sect. 3.1), it must be that
ψ[a, b] = σ [a, b].

By symmetry it now follows that σ = ψ .

Finally, we confirm the CAT(0) property for Xl . Let � := [a, b, c]l = [a, b]l ∪
[b, c]l ∪ [c, a]l be a geodesic triangle in Xl . By Fact 2.7 we may assume that � is
tail-less. Since l-geodesics in Xl are unique, this means that � is a rectifiable Jordan
loop in Xl .

Since [a, b]l ∩ ([b, c]l�[c, a]l
) = {a, b}, �(a, b) = {a, b}. Now (3.5b) produces

an � ∈ O with a, b ∈ �l ⊂ Xl and so [a, b]l ⊂ �l . Similarly, �(b, c) = {b, c} and
�(c, a) = {c, a}, so [b, c]l ∪ [c, a]l ⊂ �l . Thus � ⊂ �l and therefore � satisfies the
CAT(0) vertex angle criterion.

3.3 Gromov Hyperbolicity Proof

Clearly, if X contains Euclidean disks of arbitrarily large radius, then Xl is not Gromov
hyperbolic. Suppose

R := sup
{
r > 0

∣∣ ∃D(x; r) ⊂ X
}

< +∞.

We show that X is 2R-hyperbolic, and that this is best possible.
Let � = [a, b, c]l be a geodesic triangle in Xl . We may assume that � is tail-less;

therefore, as explained immediately above, � ⊂ �l for some � ∈ O .
There is a simply connected �o ⊂ � with ∂�o = ι(�); see the last paragraph of

Sect. 2.3.1. Let Do := D(o; r) be a maximal open disk in �o. Then ∂Do ∩ ∂�o either
consists of two antipodal points or has cardinality at least three. Below we verify that
card(∂Do ∩ ∂�o) = 3.
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Notice that D̄o = Do∪∂Do isometrically embeds into�l ↪→ Xl so Sl := ∂l Do is a
Euclidean circle in Xl that bounds a Euclidean disk Dl in Xl . Note too that Sl∩� ⊂ �l

is isometrically equivalent to ∂Do ∩ ∂�o; one way to see this is to use the conformal
model for�l (see the last paragraph of Sect. 2.3.1) in conjunction with [10, Prop. 2.14,
Cor.2.17, pp. 29,35].

So, card(Sl ∩ �) ≥ 2; we show that Sl ∩ � = {ao, bo, co} with ao ∈ (b, c)l , bo ∈
(c, a)l , co ∈ (a, b)l .

First, let E ∈ {[a, b]l , [b, c]l , [c, a]l} be an edge of �. If E ∩ Sl contained two
distinct points x, y, then the Euclidean segment [x, y] �= E[x, y] would be an l-
geodesic x � y in �l which would violate unique geodesicity for �l ; thus

card(E ∩ Sl) ≤ 1. (3.6a)

Also,

∃ p ∈ E ∩ Sl �⇒ ∀ q ∈ E\ {p} , �p(q, o) ≥ π

2
. (3.6b)

Indeed, E is a complete convex subspace of �l , so any p ∈ E ∩ Sl is the unique
point of E nearest to o, and so (3.6b) follows from [4, Prop. II.2.4(3), p. 177]. Here
�p(q, o) = �p(E[p, q], [p, o]).

Thus 2 ≤ card(Sl∩�) ≤ 3. Suppose Sl∩� = {p, q}. Then ι(p), ι(q) are antipodal
points of ∂Do, so the Euclidean segment [p, q] is the l-geodesic p � q in �l . Now
p, q are not both vertices of � (otherwise (3.6a) would be violated) so we can select
a vertex, say a, of � so that

p ∈ [a, b]l , q ∈ [a, c]l , p �= a �= q �= c but maybe p = b.

According to (3.6b), �p(a, o) ≥ π/2 and �q(a, o) ≥ π/2. However, the comparison
triangle �̄(a, p, q) (in C) cannot have two vertex angles that are both of size π/2 or
larger.

Thus card(Sl ∩�) = 3. Employing (3.6a) again we see that Sl ∩�∩{a, b, c} = ∅.
It now follows that there are points ao ∈ (b, c)l , bo ∈ (c, a)l , co ∈ (a, b)l with
Sl ∩ � = {ao, bo, co}.

Take any point z ∈ �, say z ∈ [a, b]l , or even z ∈ [a, co]l . Look at a comparison
triangle�(ā, c̄o, b̄0) for [a, co, bo]l and pick a pointw ∈ [a, bo]l so that the Euclidean
segment [z̄, w̄] is parallel to [c̄o, b̄o]. Now we see that

l(z, w) ≤ |z̄ − w̄| ≤ |c̄o − b̄o| = l(co, bo) = |ι(co) − ι(bo)| ≤ 2r ≤ 2R

and therefore Xl is 2R-hyperbolic.

To see that this is best possible, fix R > 0 and consider the set

X := {
z ∈ C

∣∣ |Im(z)| ≤ R
} ;
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the points a := t, b := Ri, c := −Ri where t > 2R; and � := [a, b, c] = [a, b] ∪
[b, c] ∪ [c, a]. Let 2ϕ be the vertex angle for � at a; i.e., the angle between the edges
[a, b] and [a, c]. Pick y ∈ (0, R) so that z := 2R + iy ∈ [a, b]. Then

t

H
= cosϕ = 2R

h
and

R

H
= sin ϕ = R − y

h

where

H := |a − b| =
√
t2 + R2 and h := |z − b| = 2RH

t
.

Now
dist(z, [a, c])

H − h
= sin 2ϕ = 2

t R

H2 , so

dist(z, [a, c]) = 2R
t

H

H − h

H
= 2R

t√
t2 + R2

(
1 − 2R

t

)
→ 2R as t → +∞.

Since dist(z, [b, c]) = 2R, we see that X is δ-hyperbolic for δ := 2R but no smaller
δ works. ��
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