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Abstract
We consider Walsh’s conformal map from the exterior of a set E = ⋃�

j=1 E j con-
sisting of � compact disjoint components onto a lemniscatic domain. In particular,
we are interested in the case when E is a polynomial preimage of [−1, 1], i.e., when
E = P−1([−1, 1]), where P is an algebraic polynomial of degree n. Of special inter-
est are the exponents and the centers of the lemniscatic domain. In the first part of
this series of papers, a very simple formula for the exponents has been derived. In
this paper, based on general results of the first part, we give an iterative method for
computing the centers when E is the union of � intervals. Once the centers are known,
the corresponding Walsh map can be computed numerically. In addition, if E consists
of � = 2 or � = 3 components satisfying certain symmetry relations then the centers
and the corresponding Walsh map are given by explicit formulas. All our theorems
are illustrated with analytical or numerical examples.

Keywords Walsh’s conformal map · Lemniscatic domain · Multiply connected
domain · Polynomial pre-image · Critical values · Green’s function · Logarithmic
capacity

Mathematics Subject Classification 30C20 · 30C35 · 65E10.

Communicated by Lothar Reichel.

B Olivier Sète
olivier.sete@uni-greifswald.de

Klaus Schiefermayr
klaus.schiefermayr@fh-wels.at

1 University of Applied Sciences Upper Austria, Campus Wels, Austria

2 Institute of Mathematics and Computer Science, University of Greifswald,
Walther-Rathenau-Straße 47, 17489 Greifswald, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40315-023-00492-6&domain=pdf


K. Schiefermayr, O. Sète

1 Introduction

In his 1956 paper [23], Walsh obtained a canonical generalization of the Riemann
mapping theorem from simply connected domains to multiply connected domains. In
his construction, an �-connected domain in Ĉ := C∪{∞} is mapped onto the exterior
of a generalized lemniscate, as indicated in the following theorem.

Theorem 1.1 Let E1, . . . , E� ⊆ C be disjoint, simply connected, infinite compact sets
and let

E =
�⋃

j=1

E j , (1.1)

that is, Ec = Ĉ \ E is an �-connected domain. Then there exists a unique compact set
of the form

L := {w ∈ C : |U (w)| ≤ cap(E)}, U (w) :=
�∏

j=1

(w − a j )
m j , (1.2)

where a1, . . . , a� ∈ C are distinct and m1, . . . ,m� > 0 are real numbers with∑�
j=1m j = 1, and a unique conformal map

� : Ec → Lc with �(z) = z + O
(
1

z

)

at ∞. (1.3)

If E is bounded by Jordan curves, then � extends to a homeomorphism from Ec to
Lc.

The compact set L in (1.2) consists of � disjoint compact components L1, . . . , L�,
with a j ∈ L j for j = 1, . . . , �. The components L1, . . . , L� are labeled such that a
Jordan curve surrounding E j is mapped by � onto a Jordan curve surrounding L j .
The centers a1, . . . , a� and the exponents m1, . . . ,m� in Theorem 1.1 are uniquely
determined. The domain Lc is the exterior of the generalized lemniscate {w ∈ C :
|U (w)| = cap(E)} and is usually called a lemniscatic domain; see [5, p. 106]. Here,
cap(E) denotes the logarithmic capacity of E .

Walsh’s conformal map onto a lemniscatic domain is a canonical generalization of
the Riemann map. Indeed, if � = 1 in Theorem 1.1, i.e., if E is simply connected,
the exterior Riemann mapRE : Ec → D

c
, uniquely determined by the normalization

RE (z) = d1z + d0 +O(1/z) at infinity with d1 > 0, satisfiesRE (z) = d1�(z) + d0,
which follows from [23, Thm. 4]; see also [18, Rem. 1.2]. Thus,RE and� are related
by a simple linear transformation, and L = {w ∈ C : |w − a1| ≤ cap(E)} is a disk,
where a1 = −d0/d1 and cap(E) = 1/d1.

The reason why we are interested in Walsh’s conformal map is that the lemniscatic
domain Lc in (1.2) has a very simple form and is in particular (the exterior of) a
classical lemniscate if the exponents m1, . . . ,m� in (1.2) are rational. In addition, as
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in the case of the Riemann map where the Green’s function for the complement of the
unit disk is simply log |w|, also the Green’s function for the complement of L in (1.2)
has the simple form

gL(w) = log |U (w)| − log(cap(E)) =
�∑

j=1

m j log
∣
∣w − a j

∣
∣ − log(cap(E)) (1.4)

and gE (z) = gL(�(z)) holds with � from Theorem 1.1. Moreover, Walsh’s confor-
mal map allows the construction of Faber–Walsh polynomials on sets E with several
components as in Theorem 1.1, generalizing the well-known Faber polynomials and
the classical Chebyshev polynomials of the first kind; seeWalsh’s original article [24],
the book of Suetin [21], and the article [20].

After Walsh’s seminal paper [23], further existence proofs of Theorem 1.1 were
published by Grunsky [3–5], Jenkins [6], and Landau [10]. The latter contains an iter-
ation for computing Walsh’s map, but it requires knowledge of the harmonic measure
of the boundary. None of these papers contain any explicit example, which might
be the reason that Walsh’s map has not been widely used so far. However, in Walsh’s
Selected Papers [25, pp. 374–377], Gaier recognizesWalsh’s conformalmap onto lem-
niscatic domains as one of Walsh’s major contributions. The first explicit examples of
Walsh’s map were derived in [19] and applied in [20] for polynomial approximation
on disconnected compact sets. In [13], Nasser, Liesen and the second author obtained
a numerical method for computing Walsh’s conformal map for sets E bounded by
smooth Jordan curves. The method relies on solving a boundary integral equation
(BIE) with the generalized Neumann kernel. This numerical algorithm also yields a
method for the numerical computation of the logarithmic capacity of compact sets
[11]. In [18], we obtained a characterization of the exponents m1, . . . ,m� in terms of
Green’s function and derived explicit formulas and examples of conformal maps onto
lemniscatic domains for polynomial pre-images E .

One main objective is the actual computation of the lemniscatic domain L , that is,
the computation of the exponentsm j and the centers a j , and of the conformal map �.
In this paper, we consider this question for sets E that are polynomial pre-images of
[−1, 1], i.e., E = P−1([−1, 1]), where P is an algebraic polynomial of degree n.
The set P−1([−1, 1]) consists of � components, 1 ≤ � ≤ n, where each component
consists of a certain number of analytic Jordan arcs [17]. In particular, the components
E j of P−1([−1, 1]) are not bounded by Jordan curves and thus the BIE method for
computing � and L from [13] does not apply here.

This paper is the second of a series of papers. In the first part [18], we characterized
the exponents as m j = n j/n, where n j is the number of zeros of the polynomial P
in the component E j and n is the degree of the polynomial P . Moreover, we derived
some general characterizations for the centers a1, . . . , a� and considered the cases
� = 1 and � = 2 in more detail.

Building on these results, the main contributions in this paper are the following.
(1) In Sect. 3, we consider sets E consisting of � = 2 real intervals, or, more

generally, of two components that are symmetric with respect to the real line. For these
sets, we have explicit formulas for the centers a1, a2 (Theorem 3.1). If, in addition,
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the set E is symmetric with respect to the origin then the corresponding Walsh map
� can be given explicitly; see Theorem 3.3 and the following two examples.

(2) In Sect. 4, we consider sets E consisting of � = 3 real intervals. In this case, the
centers a1, a2, a3 are the solution of a non-linear system of three equations, which can
be solved numerically. This is illustrated in Example 4.1 considering a two-parameter
family of three intervals. If, in addition, the set E is symmetric with respect to the
origin then a1, a2, a3 can be given by an explicit formula. In either case, the conformal
map � can be computed numerically by solving a polynomial equation and using the
mapping properties of � in Theorem 2.1.

(3) In Sect. 5, we propose an iterative method for the computation of a1, . . . , a� for
sets E consisting of an arbitrary number � ≥ 1 of real intervals, or, more generally, of �
components symmetric with respect to the real line. The key idea is that a1, . . . , a� are
the zeros of a certain polynomial with prescribed critical values but unknown critical
points, with an additional constraint on a1, . . . , a�. Once the centers a j of L are
computed, the conformal map � can be evaluated numerically. The iterative method
for the computation of a1, . . . , a� works for an arbitrary number of intervals. In all
our numerical examples, the method converges in very few iteration steps (at most 7
steps for up to 20 intervals) and returns highly accurate approximations of a1, . . . , a�.
In all examples where a1, . . . , a� are known explicitly, the computed values have an
error of the order of the machine precision. In those examples, where the exact values
of a1, . . . , a� are not known explicitly, the values obtained with our newmethod agree
to order 10−14 with those obtained by a modification of the BIE method from [13].
This suggests that both methods are very accurate.

In Sect. 2, we first collect results on Walsh’s conformal map � and the lemniscatic
domain for general compact sets E with certain symmetries. Second, we recall known
important facts on sets E which are polynomial pre-images. In Appendix A, a rather
general result concerning symmetric sets is proven, which is needed for the proofs in
Sects. 3 and 4.

2 General Compact Sets and Polynomial Pre-Images

2.1 Results for General Compact Sets

For a set K ⊆ Ĉ, we denote as usual K ∗ := {z : z ∈ K } and −K := {−z : z ∈ K }. If
K ⊆ C is compact then the Green’s function (with pole at infinity) of K c is denoted
by gK . If E = E1 ∪ · · · ∪ E� and E∗

j = E j for all components of E then we label
the components “from left to right”: By [18, Lem. A.2], each E j ∩ R is a point or an
interval, and we label E1, . . . , E� such that x ∈ E j ∩ R and y ∈ E j+1 ∩ R implies
x < y for all j = 1, . . . , �−1. As a first result, let us collect some mapping properties
of � if the set E has certain symmetries.

Theorem 2.1 Let the notation be as in Theorem 1.1.

(i) If E∗ = E, then �(z) = �(z), �(R\E) = R\L, and � maps the upper (lower)
half-plane without E bijectively onto the upper (lower) half-plane without L.
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(ii) If E = −E∗, i.e., E is symmetric with respect to the imaginary axis, then
�(z) = −�(−z), �(iR\E) = iR\L, and � maps the left (right) half-plane
without E bijectively onto the left (right) half-plane without L.

(iii) If E∗ = E and E = −E, then �(R±\E) = R
±\L, �(iR±\E) = iR±\L, and

�(z) is in the same quadrant as z.
(iv) Assume that E∗

j = E j for j = 1, . . . , �. Let R \ E = I0 ∪ · · · ∪ I� with open
intervals I j ordered from left to right, and let similarly R\L = J0 ∪ · · · ∪ J�
with open intervals J j ordered from left to right. Then � maps I j onto J j , that
is �(I j ) = J j for j = 0, . . . , �, and � is strictly increasing on R \ E, and in
particular on each interval I j .

(v) Assume that E∗
j = E j for j = 1, . . . , �. Then the Green’s function gE has �− 1

critical points z1, . . . , z�−1 ∈ C\E. These are simple and satisfy z j ∈ I j for
j = 1, . . . , � − 1. Moreover, �(z j ) = w j ∈ J j are the critical points of gL .
In particular, if z ∈ I j with z < z j (resp. z > z j ) then w = �(z) ∈ J j with
w < w j (resp. w > w j ), and

a1 < w1 < a2 < w2 < . . . < w�−1 < a�. (2.1)

Proof (i) Since E∗ = E , we have �(z) = �(z) for z ∈ C \ E by [19, Lem. 2.2],
hence �(z) ∈ R if and only if z ∈ R. Then the normalization �(z) = z + O(1/z) at
infinity implies that Im(�(z)) > 0 for z ∈ C\E with Im(z) > 0, and Im(�(z)) < 0
for z ∈ C\E with Im(z) < 0. (ii) Since E = −E∗, we have �(z) = −�(−z) for
z ∈ C\E by [19, Lem. 2.2], and (ii) now follows similarly to (i). (iii) follows from (i)
and (ii). The assertions (iv) and (v) follow from [18, Thm. 2.8] and its proof. ��

In the next theorem, we consider sets E that are symmetric with respect to the origin
and investigate the effect on the exponents m j and the centers a j of the lemniscatic
domain.

Theorem 2.2 Let E = ⋃�
j=1 E j be as in Theorem 1.1 with centers a1, . . . , a� and

exponents m1, . . . ,m� of L. If E = −E and if j1, j2 are such that E j2 = −E j1 , then
m j2 = m j1 and a j2 = −a j1 . In particular, if E j = −E j , then a j = 0. Moreover, the
set of critical points of gE is symmetric with respect to zero.

Proof If E = −E then �(−z) = −�(z) by [19, Lem. 2.2] or [18, Lem. 2.6], and
gE (−z) = gE (z) since gE (z) and gE (−z) both satisfy the properties of the Green’s
function, hence, in particular, (∂zgE )(−z) = −(∂zgE )(z). This shows that the set of
critical points of gE is symmetric with respect to zero. Next, let γ be a smooth closed
curve in C\E with wind(γ ; z) = δ j1,k for z ∈ Ek , then −γ surrounds the component
−E j1 = E j2 . We use [18, Thm. 2.3] and the substitution z = −u to obtain

m j2 = 1

2π i

∫

−γ

2(∂zgE )(z) dz = − 1

2π i

∫

γ

2(∂zgE )(−u) du

= 1

2π i

∫

γ

2(∂zgE )(u) du = m j1 .

Similarly,
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m j2a j2 = 1

2π i

∫

−γ

�(z)2(∂zgE )(z) dz = − 1

2π i

∫

γ

�(−u)2(∂zgE )(−u) du

= − 1

2π i

∫

γ

�(u)2(∂zgE )(u) du = −m j1a j1 ,

hence a j2 = −a j1 . ��

2.2 Results for Polynomial Pre-Images of an Interval

We consider polynomial pre-images of [−1, 1], that is,

E := P−1([−1, 1]) =
�⋃

j=1

E j , (2.2)

where P is a polynomial of degree n ≥ 1 with complex coefficients of the form

P(z) =
n∑

j=0

p j z
j = pnz

n + pn−1z
n−1 + · · · + p0 with pn = 0. (2.3)

Each component E j consists of a certain number of analytic Jordan arcs, see [17] for
details, and Ec is connected; see [18, Thm. A.4] or [17, Lem. 1 (viii)]. All zeros of P
are in E and each E j contains at least one zero of P , compare [18, Thm. 3.1]. By [15,
Proof of Thm. 5.2.5], the Green’s function of Ec is given by

gE (z) = 1

n
log

∣
∣P(z) +

√
P(z)2 − 1

∣
∣, z ∈ C \ E, (2.4)

where
√
P(z)2 − 1 has a branch cut along E and behaves as P(z) at ∞; compare also

the beginning of [18, Sect. 3]. Note that the critical points of gE are the critical points
of P in C \ E . Again by [15, Thm. 5.2.5], the logarithmic capacity of E is

cap(E) = 1
n
√
2 |pn| . (2.5)

In the next theorem, we summarize results from [18] that are needed in the sequel.

Theorem 2.3 Let E be a polynomial pre-image as in (2.2).

(i) The set E has � connected components if and only if P has exactly � − 1 critical
points z1, . . . , z�−1 (counting multiplicities) for which P(zk) /∈ [−1, 1] for k =
1, . . . , � − 1.

(ii) The exponents m j in Theorem 1.1 are given by

m j = n j

n
, j = 1, . . . , �, (2.6)

123



Walsh’s Conformal Map onto Lemniscatic Domains...

where n j ≥ 1 is the number of zeros of P in E j .
(iii) For z ∈ Ec, we have

Q(�(z)) = P(z) +
√
P(z)2 − 1 (2.7)

with the polynomial

Q(w) := ei arg(pn)

cap(E)n
U (w)n = 2pn

�∏

j=1

(w − a j )
n j . (2.8)

Moreover,

L = {w ∈ C : |Q(w)| ≤ 1}, (2.9)

compare (1.2).
(iv) A point z ∈ C\ E is a critical point of P if and only if w = �(z) is a critical point

of Q in C\L, and

Q(w) = P(z) +
√
P(z)2 − 1. (2.10)

(v) The polynomial Q has � − 1 critical points in C \ L and these are the zeros of

�∑

k=1

nk

�∏

j=1
j =k

(w − a j ). (2.11)

Proof The exterior Riemann map of [−1, 1] is R : [−1, 1]c → D
c
, R(z) = z +√

z2 − 1, where
√
z2 − 1 has a branch cut along [−1, 1] and behaves as z at ∞. Then

(i) follows from [18, Thm. 3.1], (ii) from [18, Thm. 3.2], (iii) from [18, Thm. 3.3], (iv)
and (v) from [18, Lem. 3.5]. ��

Since the exponentsm j are determined in Theorem 2.3 (ii), let us turn our attention
to the determination of the centers a j . If all components E j of E are symmetric with
respect to the real line, we know that a1, . . . , a� are the solution of a certain non-linear
system of equations.

Theorem 2.4 Let P be a polynomial of degree n ≥ 1 such that E = P−1([−1, 1]) =
E1∪· · ·∪E� with E∗

j = E j for j = 1, . . . , �. Then a1, . . . , a� are real with a1 < . . . <

a�, the polynomial Q(w) in (2.8) has exactly �−1 critical pointsw1, . . . , w�−1 ∈ C\L,
and these are real, simple with a1 < w1 < a2 < w2 < a3 < . . . < a�. Similarly, P
has � − 1 critical points z1, . . . , z�−1 in C \ E, these are real, simple and satisfy

max(E j ∩ R) < z j < min(E j+1 ∩ R), j = 1, . . . , � − 1. (2.12)
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Moreover, a1, . . . , a� satisfy the system of equations

Q(w j ) = P(z j ) +
√
P(z j )2 − 1, j = 1, . . . , � − 1, (2.13)

�∑

j=1

n ja j = − pn−1

pn
. (2.14)

Proof The first part follows immediately from Theorem 2.1 (v). In particular,�(z j ) =
w j for j = 1, . . . , �−1. Then, (2.13) follows fromTheorem2.3 (iv), and (2.14) follows
from [18, Thm. 3.3]. ��

Equations (2.13)–(2.14) are a non-linear system of equations for a1, . . . , a�, pro-
vided that the critical points w1, . . . , w�−1 of Q outside L can be expressed explicitly
in terms of a1, . . . , a�; see (2.11). This is possible for � = 2 and � = 3, and we con-
sider these cases in Sects. 3 and 4. For larger �, this is no longer practical. In Sect. 5,
we develop a numerical method to compute a1, . . . , a� for arbitrary � ≥ 1.

Before we start this investigation, let us conclude this section with a theorem which
gives a necessary and sufficient condition for a unionof real intervals to be a polynomial
pre-image of [−1, 1], and which follows from [14, Lem. 2.1]; see also [16, Lem. 1].

Theorem 2.5 The set

E := [c1, c2] ∪ [c3, c4] ∪ [c5, c6] ∪ · · · ∪ [c2n−1, c2n] (2.15)

with

c1 < c2 ≤ c3 < c4 ≤ c5 < c6 ≤ . . . ≤ c2n−1 < c2n (2.16)

is the pre-image of [−1, 1] under a polynomial P of degree n, that is, E =
P−1([−1, 1]), if and only if c1, . . . , c2n satisfy the following system of equations:

ck1 − (ck2 + ck3) + (ck4 + ck5) − (ck6 + ck7)± · · · + (−1)n−1(ck2n−2 + ck2n−1)

+(−1)nck2n = 0 (2.17)

for k = 1, 2, . . . , n − 1.

Remark 2.6 (i) The set E in Theorem 2.5 is the union of � disjoint intervals, where
� ∈ {1, 2, . . . , n}, that is, E has � − 1 gaps.

(ii) With the help of c1, . . . , c2n satisfying (2.17), the corresponding polynomial P of
degree n (unique up to sign) can be given by

P(z) = 1 − 2
(z − c1)(z − c4)(z − c5)(z − c8)(z − c9) · · ·

(c2 − c1)(c2 − c4)(c2 − c5)(c2 − c8)(c2 − c9) · · ·
= −1 + 2

(z − c2)(z − c3)(z − c6)(z − c7)(z − c10)(z − c11) · · ·
(c1 − c2)(c1 − c3)(c1 − c6)(c1 − c7)(c1 − c10)(c1 − c11) · · · .

(2.18)
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2

Fig. 1 Real graph of a polynomial P of degree n = 7 whose pre-image of [−1, 1] consists of � = 4
intervals; see Example 5.4 for the explicit formula of P

Note that P(z) and −P(z) generate the same pre-image E .
(iii) Figure1 shows the real graph of a polynomial of degree n = 7 whose pre-image

consists of the � = 4 disjoint intervals E = [c1, c4]∪[c5, c6]∪[c7, c12]∪[c13, c14],
which has been computed with the help of (2.17) and (2.18).

3 Sets with Two Components

If the polynomial pre-image E = P−1([−1, 1]) has two components that are symmet-
ric with respect to the real line, the centers a1, a2 are given explicitly in Theorem 3.1,
which follows from the more general result in [18, Cor. 3.10]. This covers the impor-
tant case that E consists of two real intervals, that is, E = [b1, b2] ∪ [b3, b4] with
b1 < b2 < b3 < b4.

Theorem 3.1 Let P be a polynomial of degree n ≥ 1 as in (2.3) with either real or
purely imaginary coefficients such that E = P−1([−1, 1]) = E1 ∪ E2 with E∗

1 = E1
and E∗

2 = E2. Let n1, n2 be the number of zeros of P in E1, E2, respectively, and let
z1 be the critical point of P in C \ E. Then the points a1, a2 are real with a1 < a2 and
are given by

a1 = − pn−1

npn
−

((
n2
n1

)n1 (−1)n2

2pn

(
P(z1) +

√
P(z1)2 − 1

))1/n

,

a2 = − pn−1

npn
+

((
n1
n2

)n2 (−1)n2

2pn

(
P(z1) +

√
P(z1)2 − 1

))1/n

,

(3.1)

with the positive real n-th root in (3.1).

In the following example for a one-parameter family of two intervals, we apply the
formulas of Theorem 3.1 in order to obtain the lemniscatic domain and compute the
corresponding conformal map �.
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Example 3.2 For 0 < α < 1, consider the polynomial

P(z) = 1 + (z − 1)(2z + 1 + α2)2

(1 − α2)2
= 4z3 + 4α2z2 + (α4 − 2α2 + 3)z − 4α2

(1 − α2)2

of degree n = 3. It is easy to see that E = P−1([−1, 1]) = [−1, b2] ∪ [b3, 1], where
b2 = (1−α2)/2−α, b3 = (1−α2)/2+α.We have n1 = 2, n2 = 1, p3 = 4/(1−α2)2,
p2 = 4α2/(1− α2)2, and the critical point of P outside E is z1 = (3− α2)/6. Then,
using the correct branch of the square root as indicated after (2.4), we obtain

P(z1) +
√
P(z1)2 − 1 = −2α6 − 9α4 + 108α2 + 27 + 2α(9 − α2)(3 + α2)3/2

27(1 − α2)2
.

By (3.1), the centers are

a1 = −α2

3
− 1

6 3
√
4

(
2α6 − 9α4 + 108α2 + 27 + 2α(9 − α2)(3 + α2)3/2

)1/3
,

a2 = −α2

3
+ 1

3 3
√
4

(
2α6 − 9α4 + 108α2 + 27 + 2α(9 − α2)(3 + α2)3/2

)1/3
.

By Theorem 2.3 (iii), we have L = {w ∈ C : |w − a1|2 |w − a2| ≤ (1 − α2)2/8}. In
order to compute w = �(z) for z ∈ C\E , we solve the equation

2pn(w − a1)
2(w − a2) = P(z) +

√
P(z)2 − 1,

see Theorem 2.3 (iii). We use the mapping properties of � established in Theorem 2.1
to determine the correct value of w. The image of z1 is w1 = (n2a1 + n1a2)/n. For
real z, if z > 1 then w ∈ R with w > a2, if z1 < z < b3 then w1 < w < a2, if
b2 < z < z1 then a1 < w < w1, and if z < −1 thenw < a1. If Im(z) > 0, we choose
w with Im(w) > 0 that is closest to z. For the lower half-plane, we use �(z) = �(z).

In the limiting case α → 1, we have b2 → −1, b3 → 1, E degenerates to the
set {−1, 1}, and a1 → −1, a2 → 1. In the other limiting case α → 0, we have
b2 → 1/2 and b3 → 1/2, so that E tends to the interval [−1, 1], while a1 →
−1/(2 3

√
4) =: a1(0) and a2 → 1/ 3

√
4 =: a2(0), so that the corresponding set L

“converges” to {w ∈ C : |w+1/(2 3
√
4)|2|w−1/ 3

√
4| ≤ 1/8}, which is an “eight” self-

intersecting at w1 = (n2a1(0) + n1a2(0))/n = 1/(2 3
√
4), compare Fig. 2. However,

the centers a1, a2 of L do not converge to the center a1 = 0 of the lemniscatic domain
L = {w ∈ C : |w| ≤ 1/2} corresponding to E = [−1, 1]. This shows that a
discontinuity in the connectivity (in our example from � = 2 components to � = 1
component) leads to a discontinuity in the centers.

If the polynomial P is real and even, then E = P−1([−1, 1]) is symmetric with
respect to the real line as well as symmetric with respect to the origin, and we obtain
an explicit formula for the conformal map �.
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Fig. 2 Illustration of the Walsh map � for E = [−1, b2] ∪ [b3, 1] with b2 = (1 − α2)/2 − α and
b3 = (1−α2)/2+α for α = 0.1, 0.05, 0.01 (from top to bottom); see Example 3.2. Left: Original domain
with intervals (black) and a grid. Right: ∂L (black) and image of the grid under �

Theorem 3.3 Let the polynomial P(z) = ∑n
j=0 p j z j with pn = 0 be real, even and

assume that P has exactly one critical point z1 with critical value P(z1) /∈ [−1, 1]
and z1 is a simple zero of P ′, that is z1 /∈ E := P−1([−1, 1]) while the other n − 2
critical points are in E. Then the following assertions hold:

(i) The set E consists of two components, E = E1 ∪ E2, where E1, E2 are simply
connected disjoint infinite compact sets with E1 = −E2, and E = −E, E∗ = E,
and 0 /∈ E. In particular, only the following two cases can occur: E∗

1 = E1,
E∗
2 = E2 (case 1), and E∗

1 = E2 (case 2).
(ii) If E∗

1 = E1, E∗
2 = E2, then

a2 =
(

(−1)n/2

2pn

(

p0 +
√
p20 − 1

))1/n

> 0 (3.2)

and if E∗
1 = E2 then

a2 = i

(
1

2pn

(

p0 +
√
p20 − 1

))1/n

, (3.3)

with the positive real n-th root in both cases. For
√
p20 − 1, the positive branch

is taken if p0 > 1 and the negative branch if p0 < −1. Moreover, in both cases,
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a1 = −a2 and

L = {w ∈ C : |w2 − a22 |1/2 ≤ cap(E) = (2 |pn|)−1/n}. (3.4)

(iii) The Walsh map of E is � : Ec → Lc,

�(z) =

√
√
√
√
√a22 +

⎛

⎝ P(z)

2pn
+

√(
P(z)

2pn

)2

− 1

4p2n

⎞

⎠

2/n

with that branch of the n-th root and of the outer square root which yields positive
real values of �(z) for sufficiently large z on the positive real line.

Proof (i) The fact that E has � = 2 components is an immediate consequence of
Theorem 2.3 (i) since P has exactly one critical point outside E . Thus, E = E1 ∪ E2
with disjoint, simply connected, infinite compact sets E1, E2. Since P is real and even,
we have E∗ = E and E = −E . By Theorem A.1 (ii) and Corollary A.2, assertion (i)
follows.

(ii) and (iii): The number of zeros of P in E1 and in E2 is the same, i.e., n1 = n2 =
n/2. Since P is even, z = 0 is a critical point of P . Since 0 /∈ E , we have z1 = 0 and
thus p0 = P(0) ∈ R\[−1, 1].

We consider the two cases pointed out in (i).
Case 1: If E∗

1 = E1 and E∗
2 = E2 then (ii) is a direct consequence of Theorem 3.1

(where pn−1 = 0 since P is even). By (2.8), Q(w) = 2pn(w2 − a22)
n/2 and (iii)

follows fromTheorem2.3 (iii). Note that P(z)/(2pn) is a real polynomialwith positive
leading coefficient 1/2. Therefore, the complex roots have to be taken as indicated in
the theorem.

Case 2: E∗
1 = E2.We reduce this case to case 1 as follows. The polynomial P̃(z) :=

P(iz) also satisfies the assumptions of the theorem, and the set Ẽ = P̃−1([−1, 1])) =
−iE falls under case 1, so that the corresponding set L̃ and conformal map �̃ : Ẽc →
L̃c are determined by the formulas in case 1. By [19, Lem. 2.3], we have a2 = ĩa2 and
�(z) = i�̃(−iz), which yields after a short calculation the formulas in case 2. ��
Remark 3.4 (i) In Theorem 3.3, the following equivalence holds: E contains a real

point if and only if E∗
1 = E1 and E∗

2 = E2, which follows from [18, Lem. A.2].
In more detail: If x ∈ E ∩ R, then without loss of generality, x ∈ E1 and hence
x ∈ E∗

1 , hence E1 = E∗
1 . Conversely, if E

∗
1 = E1 and E∗

2 = E2, both E1 and E2
contain at least one real point [18, Lem. A.2].

(ii) If E∗
1 = E1, E∗

2 = E2 in Theorem 3.3 then ∂L ∩ R consists of the four points
c1 < c2 < 0 < c3 < c4 with c1 = −c4, c2 = −c3 and

c3,4 =
(
a22∓(2 |pn|)−2/n

)1/2
.

Denote E1 ∩ R = [b1, b2] and E2 ∩ R = [b3, b4] with b1 ≤ b2 < 0 < b3 ≤ b4;
see [18, Lem. A.2]. Since E1 = −E2, we have b1 = −b4, b2 = −b3. Then,
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Fig. 3 E = P−1([−1, 1]) = [−2, −0.2] ∪ [0.2, 2] in Example 3.5. Left: E (black) and a grid. Right: ∂L
(black), a1, a2 (black dots), and the image of the grid under �

by Theorem 2.1 (iv) and (v), �(]−∞, b1[) = ]−∞, c1[, �(]b2, 0[) = ]c2, 0[,
�(]0, b3[) = ]0, c3[, �(]b4,∞[) = ]c4,∞[. In addition, � satisfies �(0) = 0,
�(iR−) = iR−, �(iR+) = iR+.

(iii) If E∗
1 = E2, the roles of R and iR in (ii) switch.

Let us consider two illustrative examples for Theorem 3.3.

Example 3.5 (Two symmetric real intervals) For 0 < α < β, consider the polynomial

P(z) = 2

β2 − α2 (z2 − β2) + 1,

of degree n = 2. Then E = P−1([−1, 1]) = [−β,−α]∪[α, β], and n1 = n2 = 1. The
critical point of P is z1 = 0 /∈ E , so that P satisfies the assumptions in Theorem 3.3.

Since p0 = −(β2+α2)/(β2−α2) < −1,we have p0+
√
p20 − 1 = −(β+α)/(β−α).

Hence, by (3.2), a2 = (β + α)/2 and a1 = −a2, so that L = {
w ∈ C : |w − a22 |1/2 ≤

√
(β2 − α2)/4

}
. Since

P(z) +
√
P(z)2 − 1 = 1

β2 − α2

(
2z2 − α2 − β2 + 2

√

(z2 − α2)(z2 − β2)
)
,

we obtain

�(z) = 1√
2

√

z2 + αβ +
√

(z2 − α2)(z2 − β2)

which is in accordance with [19, Cor. 3.3]. Figure3 shows the sets E and L and the
image of a grid under �. For the numerical evaluation of �(z) we use the modified
formula

�(z) = z

√
√
√
√ 1

z2

(

a22 + P(z) + √
P(z)2 − 1

2pn

)

, z ∈ C \ E, z = 0,

with the main branch of the square root, and �(0) = 0; compare to [19, Thm. 3.1].
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Fig. 4 Pre-image E = P−1([−1, 1]) in Example 3.6 with α = 1.01. Left: E (black lines) and a grid. Right:
∂L (black curves), a1, a2 (black dots), and the image of the grid under �

Example 3.6 Consider the polynomial

P(z) = (z2 − α2)2

of degree n = 4 with parameter α > 1 and E = P−1([−1, 1]). The critical points of
P are z1 = 0 and z2,3 = ±α with the critical values P(z1) = α4 > 1 and P(z2,3) = 0,
hence z1 = 0 /∈ E and z2,3 ∈ E and the assumptions of Theorem 3.3 are satisfied.
Since ±α ∈ E , by Theorem 3.3 and Remark 3.4 (i), we have the case E∗

1 = E1,
E∗
2 = E2. Note that E1 = −E2. The component E2 is the union of the interval

[√α2 − 1,
√

α2 + 1] and of a Jordan arc symmetric with respect to the real line with
endpoints b3 = √

α2 + i and b4 = b3 = √
α2 − i (where Re(b3) > 0) intersecting

the interval at the critical point α; see [17, Thm. 1]. By (3.2), the points a1, a2 are
given by

a2 =
(
1

2

(
α4 +

√
α8 − 1

)
)1/4

, a1 = −a2.

The conformal map is given by

�(z) = 1

21/4

√
(
α4 +

√
α8 − 1

)1/2 +
(
(z2 − α2)2 +

√
(z2 − α2)4 − 1

)1/2
.

See Fig. 4 for an illustration.

4 Sets with Three components

Let the polynomial P be given as in (2.3) and assume that E given in (2.2) has � = 3
components, that is, E = P−1([−1, 1]) = E1 ∪ E2 ∪ E3. Then Q(w) in (2.8) has the
form

Q(w) = 2pn(w − a1)
n1(w − a2)

n2(w − a3)
n3 (4.1)
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with n1 + n2 + n3 = n. Moreover, Q has two critical points w1,2 in C \ L which are
the solutions of

n1(w − a2)(w − a3) + n2(w − a1)(w − a3) + n3(w − a1)(w − a2) = 0, (4.2)

see Theorem 2.3 (v). A short computation shows that

w1,2 = 1

2n

(

(n2 + n3)a1 + (n1 + n3)a2 + (n1 + n2)a3

∓
√

(
(n2 + n3)a1 + (n1 + n3)a2 + (n1 + n2)a3

)2 − 4n(n3a1a2 + n2a1a3 + n1a2a3)
)
.

(4.3)

If all three components E1, E2, E3 of E are symmetric with respect to R, then
a1, a2, a3 are the solution of the non-linear system of equations (2.13)–(2.14) in The-
orem 2.4, which can be solved numerically; see the following example.

Example 4.1 Let us construct a polynomial pre-image E = P−1([−1, 1]) consisting
of three real intervals. By Theorem 2.5, the set

E = [−1, γ1 − α] ∪ [γ1 + α, γ2 − β] ∪ [γ2 + β, 1], (4.4)

is the polynomial pre-image of a polynomial P of degree n = 3 if and only if
α, β, γ1, γ2 satisfy the equations

(−1)k − (γ1 − α)k − (γ1 + α)k + (γ2 − β)k + (γ2 + β)k − 1k = 0 (4.5)

for k = 1 and k = 2. Simplifying this system gives

γ1 = 1

2
(α2 − β2 − 1) and γ2 = 1

2
(α2 − β2 + 1). (4.6)

Hence, for α, β > 0, α+β < 1, and γ1, γ2 given by (4.6), the set (4.4) is a polynomial
pre-image. By (2.18), the polynomial of degree n = 3 (unique up to sign) with
E = P−1([−1, 1]) is given by

P(z) = −1 −
(
(z − γ1)

2 − α2
)
(z − 1)

(1 + γ1)2 − α2

= − z3 + (β2 − α2)z2 + (γ 2
1 − β2 − 1)z + α2 − β2

(1 + γ1)2 − α2 .

In particular,

p3 = − 1

(1 + γ1)2 − α2 , p2 = − β2 − α2

(1 + γ1)2 − α2 .
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Fig. 5 Left: The set E in Example 4.1 with α = 0.05 and β = 0.3 in black and a grid. Right: Corresponding
lemniscatic domain (∂L in black), the points a1, a2, a3 (black dots), and the image of the grid under �

The critical points of P are given by

z1,2 = 1

6

(
2α2 − 2β2∓

√

α4 − 2α2(β2 − 3) + (β2 + 3)2
)
.

Next, we compute a1, a2, a3 for the set in (4.4). Note that n1 = n2 = n3 = 1.
Using (4.1) and (4.3), we can solve the system (2.13)–(2.14) numerically for a1, a2,
a3. Choosing numerical values, say α = 0.05 and β = 0.3, yields

E = [−1,− 19
20 ] ∪ [− 79

20 ,
5
32 ] ∪ [ 121160 , 1]

and

a1 = −0.7751 . . . , a2 = −0.1648 . . . , a3 = 0.8525 . . . .

TheMathematica command NSolve returns six distinct triples (a1, a2, a3), which are
permutations of each other, where only one satisfies a1 < a2 < a3. Figure5 illustrates
the conformalmap�.We computew = �(z) by solving Q(w) = P(z)+√

P(z)2 − 1
and determine the correct solution w (out of the n = 3 solutions) using the mapping
properties of � in Theorem 2.1.

If E has “double symmetry”, that is, E is symmetric with respect to zero and each
component is symmetric with respect to R, then the centers a1, a2, a3 can be given
explicitly.

Theorem 4.2 Let E = P−1([−1, 1]) = E1 ∪ E2 ∪ E3 with E = −E and E∗
j = E j

for j = 1, 2, 3. Let z1 < z2 be the critical points of P in R \ E. Then, z2 = −z1,
n1 = n3, a1 < a2 = 0 < a3 with a1 = −a3 and

a3 = √
n

n

√
√
√
√
√

∣
∣
∣P(z2) + √

P(z2)2 − 1
∣
∣
∣

2 |pn| nn2/22 (2n3)n3
(4.7)

with the positive real n-th root. In (4.7), z2 can also be replaced by z1.

Proof By Theorem A.1, E1 = −E3 and E2 = −E2. By Theorem 2.2, z2 = −z1,
n1 = n3, a1 = −a3 and a2 = 0. By Theorem 2.1 (v), we have a1 < a2 = 0 < a3.
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Therefore, by (4.1), Q(w) = 2pnwn2(w2 − a23)
n3 , and, by (4.3), w1,2 = ∓a3

√
n2/n,

and

Q(w1,2) = 2pn

(

∓
√
n2
n

)n2 (

−2n3
n

)n3
an3 .

Since Q(w1,2) = P(z1,2)+√
P(z1,2)2 − 1, see Theorem 2.4, and a3 > 0, we obtain

a3 = n

√(√
n

n2

)n2 (
n

2n3

)n3 1

2 |pn|
∣
∣
∣P(z2) +

√
P(z2)2 − 1

∣
∣
∣,

which implies (4.7). ��
Example 4.3 Let us construct a polynomial P of degree n = 3 with a pre-image
consisting of three symmetric intervals E = [−1,−β] ∪ [−α, α] ∪ [β, 1] with 0 <

α < β < 1. By Theorem 2.5, E is a polynomial pre-image if and only (2.17) holds,
which is equivalent to β = 1 − α. This implies 0 < α < 1/2. By Remark 2.6 (ii),

P(z) = −1 + 2
(z + 1)(z − α)(z − (1 − α))

(−β + 1)(−β − α)(−β − (1 − α))
= z3 − (1 − α + α2)z

α(1 − α)

(4.8)

satisfies P−1([−1, 1]) = E = [−1,−(1−α)]∪ [−α, α]∪ [1−α, 1] with n1 = n2 =
n3 = 1. The critical points of P are z1,2 = ∓√

(1 − α + α2)/3. We have a2 = 0,
a1 = −a3 and, by (4.7),

a3 = √
3

3

√
α(1 − α)

4

∣
∣
∣P(z2) +

√
P(z2)2 − 1

∣
∣
∣,

where a short calculation shows

P(z2) +
√
P(z2)2 − 1 = 2

3
√
3

(1 − α + α2)3/2

α(1 − α)
+ 2 − 3α − 3α2 + 2α3

3
√
3α(1 − α)

.

This yields the explicit formula

a3 = 3

√
1

2
(1 − α + α2)3/2 + 1

4
(2 − 3α − 3α2 + 2α3),

with positive real roots. Since a2 = 0, a1 = −a3, and n1 = n2 = n3 = 1, we have
explicitly determined the canonical domain Lc.

In the limiting case α → 0, the set E degenerates to {−1, 0, 1} and a3 → 1. In the
other limiting case α → 1/2, the set E tends to the interval [−1, 1] and

lim
α→1/2

a3 =
√
3

2 3
√
2

= 0.6874 . . . .
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Fig. 6 Set E in Example 4.3 with α = 0.2, 0.4, 0.49 (from top to bottom). Left: E (black lines) and grid.
Right: ∂L (black curves), a1, a2, a3 (black dots), and the image under � of the grid

Thus, the set L “converges” to {w ∈ C : |w|·∣∣w2 − 3 · 2−8/3
∣
∣ ≤ 1/8},whose boundary

is a double figure eight self-intersecting at ±2−4/3. As observed in Example 3.2, the
centers of L do not converge to the center 0 of the lemniscatic domain {w ∈ C :
|w| ≤ 1/2} corresponding to [−1, 1]. This shows again that a discontinuity in the
connectivity (in this example from � = 3 components to � = 1 component) leads to a
discontinuity of the centers.

Figure 6 illustrates the sets E and L , and the conformal map � for several values
of α. For z ∈ C \ E , we determine w = �(z) by solving the polynomial equation
Q(w) = P(z) + √

P(z)2 − 1, where the correct value is determined with the help of
the mapping properties of � in Theorem 2.1.

5 Several Intervals

In this section, we consider the case that E = P−1([−1, 1]) consists of � components,
each symmetric with respect to the real line. This includes in particular the important
case when E consists of � real intervals.

For a given polynomial P with critical points z1, . . . , z�−1 ∈ C\E , wewant to com-
pute the centers a1 < · · · < a� of L with the help of (2.13) and (2.14) in Theorem 2.4.
In other words, we are looking for the polynomial

Q(w) = 2pn(w − a1)
n1 · · · (w − a�)

n� ,

123



Walsh’s Conformal Map onto Lemniscatic Domains...

where n1, . . . , n� are known (these are the number of zeros of P in E1, . . . , E�, see
Theorem2.3 (ii)), such that the critical values ofQ at the critical pointsw1, . . . , w�−1 ∈
C\L are given; see (2.13). Additionally, a1, . . . , a� must satisfy (2.14).

In his 1961 paper [7], Kammerer considered a similar problem and gave an algo-
rithm for computing the (real) polynomial of degree n with n−1 prescribed oscillating
critical values (and additionally two interpolatory conditions). Existence and unique-
ness of such a polynomial has been proved in [2]; see also [1, 8, 9, 12, 22] for further
results on polynomials with prescribed critical values. In [14, Sect. 6], Peherstorfer
and the first author provided a modification of Kammerer’s algorithm for computing
a polynomial pre-image consisting of � intervals. In the following, we modify Kam-
merer’s algorithm for the computation of Q, that is, for the computation of a1, . . . , a�.
For the sake of simplicity, let us concentrate first on the case of � real intervals.

Let the polynomial P be as in (2.3) and such that

E = P−1([−1, 1]) = [b1, b2] ∪ [b3, b4] ∪ · · · ∪ [b2�−1, b2�] (5.1)

with b1 < b2 < · · · < b2�. Let n j be the number of zeros of P in E j := [b2 j−1, b2 j ],
j = 1, . . . , �, and let z1, . . . , z�−1 be the critical points of P outside E which satisfy
b2 j < z j < b2 j+1, j = 1, . . . , � − 1; see Theorem 2.1 (v). The following algorithm
gives a procedure for numerically computing the critical points w1, . . . , w�−1 of Q
and the centers a1, . . . , a� of L satisfying (2.13) and (2.14) in Theorem 2.4.

Algorithm 5.1 Initial values:

a[0]
j = 1

2 (b2 j−1 + b2 j ), j = 1, . . . , �

w
[0]
j = 1

2 (b2 j + b2 j+1), j = 1, . . . , � − 1

FOR k = 0, 1, 2, . . . DO

1. Using a[k]
1 , . . . , a[k]

� as initial values, compute a[k+1]
1 , . . . , a[k+1]

� such that

Q[k+1](w[k]
j ) = P(z j ) +

√
P2(z j ) − 1, j = 1, . . . , � − 1,

�∑

j=1

n ja
[k+1]
j = − pn−1

pn
,

where

Q[k+1](w) = 2pn
(
w − a[k+1]

1

)n1 · · · (w − a[k+1]
�

)n� .

2. Compute the solutions w
[k+1]
1 , . . . , w

[k+1]
�−1 of the equation

�∑

i=1

ni

�∏

j=1
j =i

(
w − a[k+1]

j

) = 0.

ENDFOR
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Remark 5.2 The algorithm also works for more general sets E = ⋃n
j=1 E j with

E∗
j = E j for j = 1, . . . , �. In this case, let us define b1, . . . , b2� by

E j ∩ R = [b2 j−1, b2 j ], j = 1, . . . , �. (5.2)

Note that E j ∩ R is indeed a point or an interval; see [18, Lem. A.2]. In particular,
b1 ≤ b2 < b3 ≤ b4 < . . . < b2�−1 ≤ b2�. Then the algorithm works with the same
initial values.

In our MATLAB implementation of the above algorithm, we solve the non-linear
system of equations for a[k+1]

1 , . . ., a[k+1]
� in Step 1 using a Newton iteration, and com-

pute the new valuesw
[k+1]
1 , . . . , w

[k+1]
�−1 in Step 2 usingMATLAB’sroots command.

We stop the iteration when

∣
∣
∣a[k+1]

j − a[k]
j

∣
∣
∣ < abstol+ reltol ·

∣
∣
∣a[k]

j

∣
∣
∣ for all j = 1, . . . , �,

where we have chosen abstol = reltol = 10−13. We performed the following experi-
ments in MATLAB R2014b.

Example 5.3 We apply our algorithm to all previous examples. Table 1 lists the number
of iteration steps in our algorithm until convergence. For those sets where a1, . . . , a�

are known explicitly, also the maximal error max j=1,...,� |a[k]
j − a j | in the final step

is reported. We observe that in all examples the algorithm converges in very few
iteration steps.Moreover, in the examples where a j are known explicitly, the algorithm
terminates with an error close to machine precision, which suggests that the algorithm
is highly accurate. In Example 3.5, the initial guess is already the exact solution
and the iteration stops in its first step. Figure7 shows the error curves |a[k]

j − a j | for
Example 3.2 and Example 4.3.

In Example 4.1, the exact values of a1, a2, a3 are not known. For a comparison, we
first map Ec onto a region bounded by Jordan curves (through the successive applica-
tion of inverse Joukowskimaps to the intervals) and then apply the numerical boundary
integral equation (BIE) method from [13], which computes the centers a1, . . . , a�, the
exponentsm1, . . . ,m�, the capacity cap(E) and the conformal map�. The difference
between the values a j computed by the two methods is close to machine precision,
suggesting that both methods are very accurate.

Example 5.4 The polynomial P shown in Fig. 1 is

P(z) = −75.60176146228515z7 − 6.112631353464664z6 + 130.38101983617594z5

+ 7.91625847587283z4 − 63.44786532361087z3 − 1.793124210064775z2

+ 7.668606949720056z − 0.010502912343433701.

The set E = P−1([−1, 1]) consists of � = 4 intervals while n = deg(P) = 7. The
numbers of zeros of P in the intervals are n1 = 2, n2 = 1, n3 = 3, n4 = 1, which can
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Table 1 Number of iteration
steps until convergence and final
maximal error between the
computed and exact values of
a1, . . . , a�, where available; see
Example 5.3

Example iter. steps max. error
∣
∣
∣a[k]

j − a j
∣
∣
∣

3.2 4 3.6637 · 10−15

3.5 0 0

3.6 1 0

4.1 4 –

4.3 4 1.1102 · 10−16

Fig. 7 Error curves
∣
∣
∣a

[k]
j − a j

∣
∣
∣ for the sets E from Example 3.2 (left) and 4.3 (right). Missing dots mean

that the error is exactly zero

also be seen from Fig. 1. Our algorithm converges after 5 iteration steps to the values

a1 = −0.807906463544657 a3 = 0.341284084426686

a2 = −0.367217238438923 a4 = 0.878324884021925.

For comparison, we compute a1, . . . , a4 by adapting the BIE method from [13] as
described in Example 5.3. The difference of the computed values is of order 10−15,
suggesting that both methods are very accurate.

With the obtained values a1, . . . , a4, the conformal map w = �(z) is evaluated
as follows. We solve the polynomial equation Q(w) = P(z) + √

P(z)2 − 1, see
Theorem 2.3 (iii), and determine the correct value of w using the mapping properties
of � given in Theorem 2.1. Figure8 shows the sets E and L and also illustrates the
image of a grid under the conformal map �.

Example 5.5 Consider the polynomial

P(z) = 26z5 + 5z4 − 32z3 − 5z2 + 7z + 1

2
,

for which E = P−1([−1, 1]) consists of � = 5 intervals; see Fig. 9. Here, n1 = . . . =
n5 = 1. The centers a1, . . . , a5 of L are not known explicitly. Our algorithm converges
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Fig. 8 Left: Polynomial pre-image E = P−1([−1, 1]) with � = 4 intervals (black) and deg(P) = 7 from
Example 5.4 and a grid. Right: ∂L (black curves), a1, . . . , a4 (black dots), and the image of the grid under
the conformal map �

Fig. 9 Left: Polynomial pre-image E = P−1([−1, 1]) with � = 5 intervals (black) from Example 5.5 and
a grid. Right: ∂L (black curves), a1, . . . , a5 (black dots), and the image of the grid under the conformal
map �

in 4 steps to the values

a1 = −0.957893296657925, a4 = 0.464367835203743,

a2 = −0.570567929561560, a5 = 0.951037765762270.

a3 = −0.079252067054220,

For comparison, we compute a1, . . . , a5 also by adapting the BIE method from [13]
as described in Example 5.3. The difference of the computed results is of the order
10−14, i.e., both results agree up to almost machine precision.

The computed values a1, . . . , a5 are used to compute numerically the conformal
map � as described in Example 5.4. Figure9 illustrates the conformal map. The
difference of the values of � on the grid computed by this method and by the BIE
method from [13] is of the order 10−14.We have again a very good agreement between
both methods, which suggests that both methods are very accurate.

Example 5.6 Let P(z) = αT10(z), where α = 1.05 and T10 is the Chebyshev polyno-
mial of the first kind of degree n = 10. Then E = P−1([−1, 1]) consists of � = 10
intervals; see Fig. 10. Similarly to Example 5.5, we compute a1, . . . , a10 with our
algorithm, which converged in 5 iteration steps. In addition, we compute the confor-
mal map �, illustrated in Fig. 10. We repeated the same numerical experiment with
P(z) = αT20(z)with α = 1.05, for which E = P−1([−1, 1]) consists of 20 intervals.
Our algorithm for computing a1, . . . , a20 converged in 6 steps.
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Fig. 10 Left: Polynomial pre-image E = P−1([−1, 1]) with � = 10 intervals (black) from Example 5.6
and a grid. Right: ∂L (black curves), a1, . . . , a10 (black dots), and the image of the grid under the conformal
map �
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A Appendix

Given a set E = ⋃�
j=1 E j with certain symmetries, we characterize the possible

relations between the components E1, . . . , E�. In this section, unlike in the previous
parts of the paper, the components E j are allowed to shrink to points, and we require
that the E j are non-empty simply connected compact sets. Note that if E j has at least
two points, then it is an infinite compact set.

Theorem A.1 Let E = ⋃�
j=1 E j with E = −E and disjoint, simply connected non-

empty compact sets E1, . . . , E�.

(i) If � = 1 then 0 ∈ E.
(ii) If � = 2 then E1 = −E2 and 0 /∈ E.
(iii) If � = 3 then there exists j0, j1, j2 with { j0, j1, j2} = {1, 2, 3} with 0 ∈ E j0 =

−E j0 and E j1 = −E j2 .
(iv) If � = 2k is even then {1, . . . , �} is partitioned into k pairs ( j1, j2) with E j1 =

−E j2 , and 0 /∈ E.
(v) If � = 2k + 1 is odd then {1, . . . , �} is partitioned into { j0} with 0 ∈ E j0 = −E j0

and k pairs ( j1, j2) with E j1 = −E j2 .

Proof First, let � = 1, i.e., let E be a simply connected non-empty compact set with
E = −E . If E consists of a single point then E = −E implies E = {0}. Otherwise,
E is an infinite compact set (since E is simply connected with at least two distinct
points), and we can apply Theorem 1.1 to E . The symmetry E = −E implies that
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L = {w ∈ C : |w| ≤ cap(E)} since a1 = 0 by Theorem 2.2, and that � is odd. The
assumption 0 ∈ Ec leads to the contradiction 0 = �(0) ∈ Lc. This shows that 0 ∈ E
and concludes the proof of (i).

Let � ≥ 2 and E = ⋃�
j=1 E j with E = −E . The function f (z) = −z satisfies

f (E) = E . For j ∈ {1, 2, . . . , �}, the set f (E j ) is connected and, since f (E j ) ⊆ E ,
there exists k j ∈ {1, . . . , �} with f (E j ) ⊆ Ek j . Define σ : {1, . . . , �} → {1, . . . , �},
j �→ k j . We show that σ is a permutation. Suppose it is not, then there exists
k0 ∈ {1, . . . , �} such that f (E j ) � Ek0 for all j , which implies E = f (E) =
⋃�

j=1 f (E j ) ⊆ ⋃�
j=1, j =k0 E j � E , a contradiction. Thus σ is a permutation. Since

f (E) = E , we also have f (E j ) = Ek j for all j ∈ {1, . . . , �}.
We write the permutation σ as a product of disjoint cycles. Since f is an involution,

i.e., f ( f (z)) = z, we have σ 2 = id, which shows that the cycles have length 1 or
2 (transpositions). A cycle of length 1, say ( j), corresponds to a set with −E j =
f (E j ) = E j , which satisfies 0 ∈ E j by (i). Since the sets E1, . . . , E� are disjoint,
there can be noother cycle of length 1. Thus,σ is the product of (disjoint) transpositions
and possibly one cycle of length 1.

The remaining assertions now follow easily. If � = 2 then σ = (1, 2) and f (E1) =
E2, i.e., E1 = −E2. More generally, if � = 2k is even, σ is a product of k (disjoint)
transpositions and there are k pairs ( j1, j2) which partition {1, . . . , 2k}, such that
E j1 = −E j2 . In particular, 0 /∈ E , since otherwise 0 ∈ E j1 = −E j2 implies 0 ∈
E j1 ∩ E j2 , a contradiction. If � = 3 then σ = ( j0)( j1, j2)with { j0, j1, j2} = {1, 2, 3},
that is E j1 = −E j2 and E j0 = −E j0 with 0 ∈ E j0 . More generally, if � = 2k + 1 is
odd, σ is a product of one cycle of length 1 and k (disjoint) transpositions, i.e., there
is one j0 ∈ {1, . . . , 2k + 1} with 0 ∈ E j0 = −E j0 and k pairs E j1 = −E j2 . ��

The method of proof of Theorem A.1 yields an analogous statement for sets that
are symmetric with respect to the real line.

Corollary A.2 Let E = ⋃�
j=1 E j with E∗ = E and disjoint, simply connected non-

empty compact sets E1, . . . , E�. Then {1, 2, . . . , �} is partitioned into sets { j0} with
one element, for which E∗

j0
= E j0 , and sets { j1, j2} with two distinct elements, for

which E∗
j1

= E j2 .
In the special case � = 2, i.e., E = E1 ∪ E2 with E∗ = E, then either E∗

1 = E1
and E∗

2 = E2, or E∗
1 = E2.

Proof Let f (z) = z and f (E) = E∗ = E , for which f ( f (z)) = z for all z ∈ C.
Proceeding as in the proof of Theorem A.1, we obtain that f (E j ) = Eσ( j) with a
permutation σ , which decomposes into cycles of length 1 or 2. Hence the components
of E are either symmetric (E∗

j = E j , corresponding to a cycle ( j)) or come in pairs
E∗

j1
= E j2 (corresponding to a cycle ( j1, j2) of length 2). ��

Remark A.3 Themethod of proof of TheoremA.1 can be generalized to E = ⋃�
j=1 E j

with disjoint, simply connected non-empty compact sets E1, . . . , E�, and a continuous
function f : E → E with f (E) = E and f k = f ◦ · · · ◦ f = id for some integer
k ≥ 2 (where k is minimal with this property). Then σ defined as in the proof of
Theorem A.1 is a permutation that satisfies σ k = id. In particular, σ can be written as
a product of disjoint cycles, where the length of each cycle divides k. Indeed, σ k = id
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implies ck = id for every cycle c of σ , hence a cycle c has length l(c) ≤ k. Write
k = ql(c) + r with 0 ≤ r < l(c). Then id = ck = cr , which implies r = 0 since
r < l(c) and l(c) is the smallest positive exponent with cl(c) = id. Hence, l(c) divides
k.
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