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Abstract
The set of points where an entire function achieves its maximum modulus is known
as the maximum modulus set. In 1951, Hayman studied the structure of this set near
the origin. Following work of Blumenthal, he showed that, near zero, the maximum
modulus set consists of a collection of disjoint analytic curves, and provided an upper
bound for the number of these curves. In this paper, we establish the exact number
of these curves for all entire functions, except for a “small” set whose Taylor series
coefficients satisfy a certain simple, algebraic condition.Moreover,we give new results
concerning the structure of this set near the origin, and make an interesting conjecture
regarding the most general case. We prove this conjecture for polynomials of degree
less than four.
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1 Introduction

Suppose that f is an entire function, and define the maximum modulus by

M(r , f ):=max|z|=r
| f (z)|, for r ≥ 0.

In the notation of [9], the set of points where f achieves its maximummodulus, which
we call the maximum modulus set, is denoted by M( f ). In other words,

M( f ):={z ∈ C : | f (z)| = M(|z|, f )}. (1.1)

If f (z) := czn , for c ∈ C \ {0} and n ≥ 0, then M( f ) = C. Otherwise M( f )
consists of a union of closed maximum curves, which are analytic except at their end-
points; see [11, Thm. 10] or [1].Many authors have studied themaximummodulus set;
see, for example, [2,3,5–8,10]. The maximum modulus set of two cubic polynomials
is shown in Fig. 1.

It is a simple observation that if a �= 0, m ∈ Z, and f̃ (z):=azm f (z) for entire
functions f̃ and f , then M( f̃ ) = M( f ). Thus, following Hayman [4], we will
assume that f has the form

f (z):=1 + azk + higher order terms, for a �= 0, and k ∈ N. (1.2)

Throughout the paper f always has this form, and, in particular, the variables a and k
are fixed by this equation.

We are interested in the structure ofM( f ) near the origin. Hayman [4, Thm. I part
(iii)] proved the following.

Theorem A If f is an entire function of the form (1.2), then, near the origin, M( f )
consists of at most k analytic curves only meeting at zero. Moreover, for any two of
these curves there exists m ∈ Z such that the curves make an angle of 2mπ/k with
each other.

In this paper, we strengthen Hayman’s result by giving the exact number of such
curves for any entire function outside an exceptional set. To give a precise statement
of this set, we require the following definitions, the first of which is straightforward.

Definition 1.1 Let f be an entire function of the form (1.2).We define the inner degree
of f as the maximal μ:=μ f ∈ N such that f (z) = f̃ (zμ) for some entire function f̃ .

Note that in fact μ is the greatest common divisor of {n > 0 : f (n)(0) �= 0}, and so
it always divides k. The second definition is more complicated. Suppose that f is an
entire function of the form (1.2), so that we can write

f (z):=1 + azk +
∞∑

σ=k+1

bσ z
σ .
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On a Result of Hayman 781

Let pk(z):=1+azk , and for each n > k, define pn(z):=1+azk +∑n
σ=k+1 bσ zσ . It is

immediate that there is some least N ≥ k such that μpN = μ f . We then say that pN
is the core polynomial of f . Moreover, we stress that f may itself be a polynomial,
and it is possible that pN = f .

Definition 1.2 Suppose f is an entire function of the form (1.2), and let N be as defined
above. We say that f is exceptional if there exist m ∈ {1, . . . , 2k − 3}, m′ ∈ Z, and
σ ∈ {k + 1, . . . , N }, such that bσ �= 0 and also

mπ = k

σ

(
m′π − arg bσ

) + arg a. (1.3)

Observe that it is straightforward to determine if an entire function is exceptional,
simply by examining the coefficients in its Taylor series. Indeed, we only need to
check finitely many such coefficients even when f is transcendental. Note also that
no polynomial p with only two terms is exceptional; indeed, it is easy to explicitly
check the conclusion of Theorem 1.3, below, in this case.

Our first result establishes the number of curves that form M( f ) near the origin
for any f that is not exceptional.

Theorem 1.3 Let f be an entire function of the form (1.2) that is not exceptional. Then,
near the origin, M( f ) consists of exactly μ f analytic curves that only meet at zero.

Remark Note that Theorem 1.3 tells us, in a precise sense, that for “most” entire
functions, f , the setM( f ) hasμ f components near the origin. For, if f is exceptional,
then any sufficiently small perturbation of finitely many of its coefficients gives rise
to an entire function that is not exceptional.

In addition, we are able to provide in Theorem 1.4 more information on the number
and asymptotic behaviour of the curves that make up M( f ) near the origin, for any
entire function f . Set �:={0, . . . , k − 1}. For each j ∈ �, define the angle

ω j :=2 jπ − arg a

k
, (1.4)

and sectors,

S j (r , φ):= {
z ∈ C : 0 < |z| ≤ r and

∣∣arg z − ω j
∣∣ < φ

}
, for φ, r > 0. (1.5)

For a finite set A, we use #A to denote the number of elements of A. For an entire
function f and a set T ⊂ C we set

M( f |T ) =
{
z ∈ T : | f (z)| = max

w∈T :|w|=|z| | f (w)|
}

.
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782 V. Evdoridou et al.

Theorem 1.4 Suppose that f is an entire function of the form (1.2). Then there exist
R > 0, a set J :=J f ⊂ �, and disjoint analytic curves {γ j } j∈� such that

M( f ) ∩ {z : 0 < |z| ≤ R} =
⋃

j∈J

γ j , (1.6)

and with the following properties.

(a) There exists φ > 0 such that, for each j ∈ �, γ j = M( f |S j (R,φ)).
(b) Each γ j contains exactly one point of each positive modulus less than or equal

to R.
(c) Each γ j is tangent at the origin to the ray {z ∈ C : arg z = ω j }. In particular,

arg z = ω j + O(|z|1/2) as z → 0 along γ j .
(d) The cardinal #J is a multiple of the inner degree μ of f . Moreover, if j, j ′ ∈ �

and j ′ = j + mk/μ with m ∈ N so that 0 ≤ m < μ, then γ j ′ = e2π im/μγ j , and
j ′ is in J if and only if j ∈ J .

We remark that Theorem 1.4 is not completely new; Blumenthal’s results (see [11,
II.3]) imply that near the origin,M( f ) is a finite collection of closed analytic curves.
Both the upper bound on the number of curves in (1.6), and the first part of (c),
appeared in [4, Thm. 1]. However, we obtain more explicit estimates and include
proofs for completeness.

Remark Theorem 1.4(d) implies the following. The components of M( f ) near the
origin are contained in a disjoint union of families of analytic curves. Each family
contains μ f such curves, and the curves within each family are obtained from each
other by rotations of 2π/μ f radians around the origin. There is at least one of these
families, and at most k/μ f .

Observe that for an entire function f , Theorem 1.4 states in particular that the
number of components of M( f ) near the origin is at least its inner degree, that is,
#J f ≥ μ f . We distinguish the case of strict inequality.

Definition 1.5 We say that an entire function f of the form (1.2) ismagic if #J f > μ f .

Theorem 1.3 tells us that all magic entire functions are exceptional. The simplest
example of a polynomial that is magic seems to be the cubic

p(z):=1 + z2 + i z3,

see Fig. 1 and also Theorem 1.7. It is an open question to identify necessary and
sufficient conditions for an entire function to be magic. It is also an open question to
establish the size of #J f in the case where f is magic. We conjecture the following,
which, if true, would give a complete answer to the question of the number of disjoint
curves inM( f ) near the origin.

Conjecture 1.6 If f is magic, then #J f = 2μ f .

Although we have not been able to identify all magic entire functions, the following
gives a complete result for quadratic and cubic polynomials.
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On a Result of Hayman 783

Fig. 1 Computer generated graphics ofM(p) andM( p̃) near the origin. By Theorem 1.7, the polynomial
p is magic and so M(p) has two components near the origin. The polynomial p̃, which is only a small
perturbation of p, is not magic, and so M( p̃) has only one component near the origin

Theorem 1.7 Suppose that p is a polynomial of the form (1.2). If p is a quadratic,
then p is not magic. If p is a cubic, then p is magic if and only if

p(z) = 1 + az2 + bz3, where a, b �= 0 and Re(ba−3/2) = 0.

Remark It is straightforward to check that Theorem 1.7 implies that, for cubic poly-
nomials, p is exceptional exactly when p is magic. It is tempting to conjecture that
the same holds more generally.

The following is an immediate consequence of the proof of Theorem 1.7.

Corollary 1.8 Conjecture 1.6 holds for polynomials of degree less than four.
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784 V. Evdoridou et al.

Remark For ease of exposition, we have stated our results for entire functions. How-
ever, our arguments only require the existence of a Taylor series locally. Thus, with
a suitable definition of the maximum modulus set, our results can be applied to any
function analytic in a neighbourhood of the origin.

We observe finally that, if p is a polynomial, then our results can also be used to study
the structure ofM(p) near infinity. This is for the following reason. Suppose that the
degree of p is n, and let q be the reciprocal polynomial, defined by

q(z):=zn p

(
1

z

)
.

As observed in [8, Prop. 3.3], we have that z ∈ M(q) \ {0} if and only if 1/z ∈
M(p) \ {0}. Hence the structure of M(p) near infinity is completely determined by
the structure of M(q) near the origin.

2 Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. We use the following, which is easy
to check.

Lemma 2.1 If f (z):= ∑∞
�=0 a�z� is an entire function, then

∣∣∣ f
(
reiθ

)∣∣∣
2 =

∞∑

�=0

|a�|2r2� +
∑

0≤ j<�

2|a j ||a�|r j+� cos(( j − �)θ + arg(a j ) − arg(a�)).

(2.1)

For the rest of the section, let us fix an entire function f as in (1.2), that is,

f (z):=1 + azk + higher order terms, for a �= 0, and k ∈ N.

Suppose that z = reiθ . Then, using Lemma 2.1,

∣∣∣ f
(
reiθ

)∣∣∣
2 = 
(r) + 2|a|rk cos(kθ + arg a) + O

(
rk+1

)
, as r → 0,

(2.2)

where


(r):=1 + |a|2r2k + . . . ,

is independent of θ .

Observation 2.2 It follows by inspection of (2.1) that all partial derivatives with
respect to θ of the O(·) term in (2.2) are also O(rk+1).
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On a Result of Hayman 785

Recall from the introduction that for each j ∈ �, we defined the angle ω j in (1.4)
and, for φ, r > 0, the sector S j (r , φ) in (1.5).

Proof of Theorem 1.4 Observe that M( f ) is contained in the set of points where∣∣ f (reiθ )
∣∣ is locally maximised, that is,

M( f ) ⊆
{
reiθ ∈ C : ∂

∂θ

∣∣∣ f
(
reiθ

)∣∣∣ = 0 and
∂2

∂θ2

∣∣∣ f
(
reiθ

)∣∣∣ ≤ 0

}
.

Using (2.2), and by Observation 2.2, we have that

∂

∂θ

∣∣∣ f
(
reiθ

)∣∣∣
2 = −2|a|krk sin (kθ + arg a) + O

(
rk+1

)
, as r → 0, (2.3)

and

∂2

∂θ2

∣∣∣ f
(
reiθ

)∣∣∣
2 = −2|a|k2rk cos (kθ + arg a) + O

(
rk+1

)
, as r → 0. (2.4)

Fix r1, φ > 0 sufficiently small, with the property that for all 0 < r ≤ r1 and
reiθ ∈ ⋃k−1

j=0 S j (r1, φ), the second derivative in (2.4) is not positive. Reducing r1 and
φ if necessary, we can deduce that for each 0 < r ≤ r1 and j ∈ �, there is exactly
one point reiθ ∈ S j (r1, φ) at which the derivative in (2.3) is zero; the fact that there
is at least one such point follows from (2.3), and the fact that there is at most one
follows from (2.4). Moreover, cos(kθ + arg a) takes the value 1 inside each sector,
and is bounded above by a quantity less than 1 which depends only on φ outside the
union of sectors. Now it follows from (2.2) that

M( f ) ∩ {z : 0 < |z| ≤ r1} ⊆
k−1⋃

j=0

S j (r1, φ). (2.5)

Next, for each j ∈ � and 0 < r ≤ r1, let

γ r
j :=M (

f |S j (r ,φ)

)
.

Note that γ r1
j is the solution set in S j (r1, φ) to (2.3) being zero. Using a change of

variables or the implicit function theorem, see [4, Lem. 4] or [11, II.3], one can see
that γ

r1
j is an analytic curve. It is easy to see that γ

r1
j contains exactly one point of

each modulus.
Thus, we have shown that there exists r1 > 0 and a collection {γ r1

j } j∈� of disjoint

analytic curves such that γ r1
j = M( f |S j (r1,φ)). By this and (2.5), we have

M( f ) ∩ {z : 0 < |z| ≤ r1} ⊆
⋃

j∈�

γ
r1
j .
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786 V. Evdoridou et al.

By results of Blumenthal [1], see [8, Sect. 3], it follows that there exists R < r1 such
that M( f ) ∩ {z : 0 < |z| ≤ R} = ⋃

j∈J γ R
j for some subset J ⊆ �. We deduce (a)

and (b).
Next we prove (c). First, note that by (2.2), for each j ∈ J , the curve γ j :=γ R

j is
asymptotic to the set of points where the term cos(kθ +arg a) is maximised. It follows
that γ j is tangent at the origin to the ray L j of argument ω j . It remains to estimate at
what rate points of γ j tend to L j as we move towards the origin.

For each 0 < r ≤ R, denote the argument of the point of γ j of modulus r by
ω j + θr . Fix j , and let z = rei(ω j+θr ) ∈ γ j . Then, by (2.2), as r → 0, we have

∣∣∣ f
(
reiω j

)∣∣∣
2−| f (z)|2 = 2|a|rk cos(arg a+kω j )−2|a|rk cos(arg a+kω j +kθr )+O

(
rk+1

)

= 2|a|rk(1 − cos(kθr ) + O(r)).

Since | f (reiω j )|2 − | f (z)|2 is not positive, neither is (1 − cos(kθr ) + O(r)). Since
1− cos(kθr ) ≥ (kθr )2/3 when θr is small, it follows that θr = O(r1/2) as r → 0. We
deduce (c).

From the definition of μ, it follows that f (z) = f (ze2π in/μ), for every z and every
integer n. With j, j ′, and m as in the statement of (d), it follows that z is in the sector
S j (R, φ) if and only if ze2π im/μ is in S j ′(R, φ). Combining these two facts, we obtain
the desired relationship between γ j and γ j ′ and also conclude that j ∈ J if and only if
j ′ ∈ J . Finally, note that considering the relation j ′ ≡ j mod k/μ we can divide �

into k/μ equivalence classes of μ elements each, and we have shown that J consists
of a union of some of these equivalence classes. This proves (d), which completes the
proof of the theorem. 
�

3 Auxiliary Results

To prove Theorem 1.3, we need to prove in Sect. 4 a key result on the maximum
modulus set of certain polynomials. In this section we give some auxiliary results
on the maximum modulus of any polynomial p of the form (1.2), which we state
separately since they do not require any further assumptions on p. In particular, these
results may be useful for future applications. Then, we state and prove the key result,
namely Theorem 4.3, in Sect. 4.

Throughout this section and Sect. 4, we fix a polynomial p of the form (1.2). Note
that if p(z) = 1+ azk , then Theorem 1.3 follows trivially. Hence we can assume that
p has at least three terms. Let p̂ be the polynomial of degree less than p such that

p(z) = p̂(z) + bzn, (3.1)

for some b �= 0 and n ∈ N the degree of p. Note that, in particular, p̂ is a polynomial
of the form (1.2), whose non-constant term of least degree is the same as that of p,
that is, azk . The polynomials p and p̂ will remain fixed from now on.

We next introduce some notation that will be used extensively in both this section
and the next. By Theorem 1.4(d) we know that Jp consists of one or more disjoint
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On a Result of Hayman 787

sets, each of which contains all the elements of � that are congruent modulo k/μp. If
j ∈ Jp, then we use [ j]p to denote this set, that is,

[ j]p:={ j ′ ∈ � : j ′ ≡ j mod k/μp}.

In addition, let R > 0, and let {γ j } j∈� be the collection of curves provided byTheorem
1.4, so that (1.6) holds. Then, for 0 < r ≤ R and j ∈ �, we let z j (r) denote the
unique point on γ j of modulus r . Moreover, reducing R if necessary, if {γ̂ j } j∈� is
the corresponding set of curves provided by Theorem 1.4 applied to p̂, then we let
ẑ j (r) denote the unique point on γ̂ j of modulus r . This completes the definition of the
notation.

We next give an observation which allows us to estimate the square of the modulus
of p in terms of that of p̂ at each point in the plane. This is an immediate consequence
of Lemma 2.1.

Observation 3.1 We have, as r → 0, that

∣∣∣p
(
reiθ

)∣∣∣
2 −

∣∣∣ p̂
(
reiθ

)∣∣∣
2 = 2|b|rn cos(nθ + arg b) + O

(
rn+k

)
, (3.2)

and all partial derivatives of the O(·) term with respect to θ are also O(rn+k).

The first lemma in this section is key to the proof of Theorem 4.3. Roughly speaking, it
says that, close to the origin, | p̂|2 at a point ẑ j (r) (which is where p̂ takes its maximum
modulus) is very close to | p̂|2 at a point z j (r) (which is where p takes its maximum
modulus).

Lemma 3.2 Suppose j ∈ �. Then

| p̂(ẑ j (r))|2 − | p̂(z j (r))|2 = O
(
rn+1/2

)
, as r → 0.

Proof To prove this result, it helps to simplify notation. Suppose j ∈ � is fixed. Then,
define real analytic functions f , g, h : R × R → R as

f (r , θ):=
∣∣∣p

(
rei(ω j+θ)

)∣∣∣
2
, g(r , θ):=

∣∣∣ p̂
(
rei(ω j+θ)

)∣∣∣
2
,

and finally,

h(r , θ):=2|b|rn cos(arg b + n(ω j + θ)).

We use a dash to denote differentiation with respect to θ . We need to estimate the
partial derivatives of f , g and h. It follows from (2.2) that

g′(r , θ) = −2|a|krk sin(kθ + kω j + arg a) + O
(
rk+1

)
,
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788 V. Evdoridou et al.

and

g′′(r , θ) = −2|a|k2rk cos(kθ + kω j + arg a) + O
(
rk+1

)
. (3.3)

Note that all derivatives of f and g with respect to θ are O(rk) as r → 0, because the
first term dominates. We also have that

h′(r , θ) = −2|b|nrn sin(nθ + nω j + arg b), (3.4)

and all derivatives of h with respect to θ are O(rn) as r → 0. Finally, it follows from
the definitions, along with Observation 3.1, that

f (r , θ) = g(r , θ) + h(r , θ) + O
(
rn+k

)
, (3.5)

f ′(r , θ) = g′(r , θ) + h′(r , θ) + O
(
rn+k

)
, (3.6)

and all the higher order derivatives of the O(·) term are also O(rn+k).

Recall that for r sufficiently small, z j (r) and ẑ j (r) are the respective points in the
curves indexed by j where p and p̂ attain the maximum modulus. Let us write

z j (r) = rei(ω j+θr ) and ẑ j (r) = rei(ω j+θ̂r ),

where the angles θr and θ̂r are both functions of r . In particular, it follows from the
definitions that

f ′(r , θr ) = 0 and g′(r , θ̂r ) = 0.

With this notation, our goal in this lemma is to estimate, for small values of r > 0, the
quantity g(r , θ̂r )−g(r , θr ). Recall that, by Theorem 1.4(c), θr and θ̂r are both O(r1/2)
as r → 0. Since f is real analytic, since g′(r , θ̂r ) = 0, and as θr − θ̂r = O(r1/2), it
follows by (3.6) and our bounds on the derivatives that

f ′ (r , θr ) = f ′ (r , θ̂r
)

+
(
θr − θ̂r

)
f ′′ (r , θ̂r

)
+ O

((
θr − θ̂r

)2 · rk
)

= h′ (r , θ̂r
)

+
(
θr − θ̂r

) (
g′′ (r , θ̂r

)
+ h′′ (r , θ̂r

))
+ O

(
rn+k

)

+ O

((
θr − θ̂r

)2 · rk
)

.

Since f ′(r , θr ) = 0, we can deduce that

(
θr − θ̂r

) (
g′′ (r , θ̂r

)
+ h′′ (r , θ̂r

))
= −h′ (r , θ̂r

)
+ O

(
rn+k

)
+ O

((
θr − θ̂r

)2 · rk
)

.
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On a Result of Hayman 789

Moreover, note that by (3.3) and the bounds on h′′, we have that

g′′ (r , θ̂r
)

+ h′′ (r , θ̂r
)

= −2|a|k2rk cos
(
kθ̂r + kω j + arg a

)
+ O

(
rk+1

)
,

and cos(kθ̂r + kω j + arg a) can be taken to be greater than 1/2. It then follows by
(3.4) that

∣∣∣θr − θ̂r

∣∣∣ = O
(
rn−k

)
+ O

((
θr − θ̂r

)2)
. (3.7)

Since θr − θ̂r = O(r1/2) = o(1), and since O((θr − θ̂r )
2) = o(θr − θ̂r ) it follows

that

∣∣∣θr − θ̂r

∣∣∣ = O
(
rn−k

)
, as r → 0. (3.8)

We can now deduce from (3.8), together with (3.5), (3.6), the real analyticity of f
and h, and our earlier estimates for the size of f ′′ and h′′, that

g
(
r , θ̂r

)
− g (r , θr ) =

(
f
(
r , θ̂r

)
− f (r , θr )

)
−

(
h

(
r , θ̂r

)
− h (r , θr )

)
+ O

(
rn+k

)

=
(
θ̂r − θr

) (
f ′ (r , θ̂r

)
− h′ (r , θ̂r

))
+ O

((
θ̂r − θr

)2 · rk
)

+ O
(
rn+k

)

=
(
θ̂r − θr

)
g′ (r , θ̂r

)
+ O

(
r2n

) + O
(
r2n−k

)
+ O

(
rn+k

)

= O
(
rn+1/2) ,

as required. Note that in the last step we have used that g′(r , θ̂r ) = 0 and also that
2n − k > n + 1/2, since n ≥ k + 1. 
�

Now, for each j ∈ �, we let t j :=2|b| cos(nω j + arg b), where we recall that
ω j :=(2 jπ − arg a)/k. Our next lemma allows us to compare the magnitude of p
on different γ j .

Lemma 3.3 Let j, j ′ ∈ Jp̂. Then

|p(z j (r))|2 − |p(z j ′(r))|2 = (t j − t j ′)r
n + O

(
rn+1/2

)
as r → 0. (3.9)

Proof Let us write

z j (r) = rei(ω j+θr ) and z j ′(r) = rei(ω j ′+θ ′
r ),
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790 V. Evdoridou et al.

where the angles θr and θ ′
r are functions of r . Then, by Theorem 1.4(c), θr and θ ′

r are
both O(r1/2) as r → 0. By this, and by Observation 3.1, as r → 0 we have that

|p(z j (r))|2 = | p̂(z j (r))|2 + 2|b|rn cos(nω j + nθr + arg b) + O
(
rn+k

)

= | p̂(z j (r))|2 + 2|b|rn(cos(nω j + arg b) cos nθr

− sin(nω j + arg b) sin nθr ) + O
(
rn+k

)

= | p̂(z j (r))|2 + t j r
n + O

(
rn+1/2

)
,

where in the last line we have used that cos nθr = 1 + O(r) and sin nθr = O(r1/2).
Also, arguing similarly, we have

|p(z j ′(r))|2 = | p̂(z j ′(r))|2 + t j ′r
n + O

(
rn+1/2

)
, as r → 0.

Now, | p̂(ẑ j ′(r))| = | p̂(ẑ j (r))| since j, j ′ ∈ Jp̂. Hence, by Lemma 3.2, we have

|p(z j (r))|2 − |p(z j ′ (r))|2 = (| p̂(z j (r))|2 − | p̂(ẑ j (r))|2) − (| p̂(z j ′ (r))|2 − | p̂(ẑ j ′ (r))|2)
+ (t j − t j ′ )r

n + O
(
rn+1/2)

= (t j − t j ′ )r
n + O

(
rn+1/2) .


�
It follows from Lemma 3.3 that the magnitudes of the quantities t j , for j ∈ �, are

important for determining the size of |p(z)|. It proves useful to know exactly when
two of these terms can be equal. This is the content of the following lemma.

Lemma 3.4 Suppose j, j ′ ∈ �. Then t j = t j ′ if and only if there is an integer m such
that one of the following holds. Either

j ′ − j = m
k

n
, (3.10)

or

( j ′ + j)π = k

n
(mπ − arg b) + arg a. (3.11)

Proof This is a straightforward consequence of the fact that cos z1 = cos z2 if and
only if there is an integer m such that either z1 = z2 + 2mπ , or z1 = 2mπ − z2. The
details are omitted. 
�
The next lemma gives a simple relationship between the condition (3.10) and the sets
[ j]p.
Lemma 3.5 Suppose that j, j ′ ∈ Jp̂ with j ′ ∈ [ j] p̂ . Then (3.10) holds if and only if
j ′ ∈ [ j]p.
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Proof First, we note that since p(z) = 1 + azk + · · · + bzn = p̂(z) + bzn, and
μp ≤ μ p̂, there are natural numbers A0, A1, A2 such that μ p̂ = A0μp, k = A1μ p̂
and n = A2μp.Moreover, A0 and A2 are coprime, since if they shared a factor A3 > 1,
then we could replace μp with A3μp.

Since j ′ ∈ [ j] p̂, it follows by the definition of [ j] p̂ that there is an integer B0 such
that

j ′ − j = B0k

μ p̂
.

Suppose first that (3.10) holds. We can deduce that mA0 = B0A2. Since m is an
integer and A0 and A2 are coprime, m = B1A2, where B1 is an integer. Hence

j ′ − j = B1A2k

A2μp
= B1

k

μp
,

as required.
In the other direction, suppose that j ′ ∈ [ j]p. Then there is an integer B1 such that

j ′ − j = B1
k

μp
.

It follows that

j ′ − j = B1A2
k

n
,

and so (3.10) holds. 
�
Our last general lemma allows us to compare Jq and Jq̃ for two related entire functions
q, q̃ of the form (1.2), where q is a polynomial and q̃ may be a polynomial or may
be transcendental. Note that Jq and Jq̃ are the subsets of � provided by Theorem 1.4,
and these are both well defined sufficiently close to the origin.

Lemma 3.6 Suppose that q is a polynomial of the form (1.2), of degree n. Let {γ�}�∈�

be the set of curves provided by Theorem 1.4 applied to q, and for all sufficiently small
values of r , let z�(r) denote the point on γ� of modulus r . Suppose also that there exist
c, R > 0 such that

|q(z j (r))|2 ≥ |q(z j ′(r))|2 + crn, for j ∈ Jq , j
′ ∈ � \ Jq , and 0 < r ≤ R.

(3.12)

If q̃ is an entire function such that, for some ñ > n and b �= 0, its power series is

q̃(z) = q(z) + bzñ + · · · , (3.13)

then Jq̃ ⊂ Jq .
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Proof Suppose, by way of contradiction, that there exists j ′ ∈ Jq̃ \ Jq . Choose j ∈ Jq ,
and let r > 0 be small. Let {γ̃ }�∈� be the set of curves provided by Theorem 1.4
applied to q̃ . For all sufficiently small values of r , let z̃�(r) denote the point on γ̃� of
modulus r .

By Theorem 1.4(a), since both γ j ′ and γ̃ j ′ are contained in the same sector S j ′(r , φ)

for some r , φ > 0, and γ j ′ = M(q|S j ′ (r ,φ)), we have that

|q(z j ′(r))|2 ≥ |q(z̃ j ′(r))|2, for r > 0 small. (3.14)

By (3.13), (3.12), and (3.14), there are positive constants c, K such that, for small
values of r > 0, we have

|q̃(z̃ j ′(r))|2 ≤ |q(z̃ j ′(r))|2 + K 2r2ñ + 2Krñ|q(z̃ j ′(r))|
≤ |q(z j ′(r))|2 + K 2r2ñ + 2Krñ|q(z̃ j ′(r))|
≤ |q(z j (r))|2 − crn + K 2r2ñ + 2Krñ|q(z̃ j ′(r))|
≤ |q̃(z j (r))|2 − crn + 2K 2r2ñ + 2Krñ(|q(z̃ j ′(r))| + |q̃(z j (r))|).

For sufficiently small values of r this is a contradiction, since n < ñ and for such
values

|q̃(z̃ j ′(r))|2 ≥ |q̃(z j (r))|2.


�

4 Minimal Polynomials

In this sectionwe introduce the notion ofminimal polynomials,which is closely related
to the definition of exceptional ones.

Definition 4.1 Let p(z):=1 + azk + ∑N
σ=k+1 bσ zσ be a polynomial. We say that p

is minimal if for all m ∈ {1, . . . , 2k − 3}, m′ ∈ Z, and σ ∈ {k + 1, . . . , N } such that
bσ �= 0,

mπ �= k

σ
(m′π − arg bσ ) + arg a. (4.1)

Note that a two-term polynomial is minimal by default, and that, indeed, a polynomial
is minimal if and only if it is not exceptional.

The following simple lemma is critical to our arguments in this section, and indeed
underlies the definition of “exceptional”.

Lemma 4.2 Let p(z):=1 + azk + ∑N
σ=k+1 bσ zσ be a polynomial.

(a) For each k < n ≤ N, define pn(z):=1 + azk + ∑n
σ=k+1 bσ zσ . If p is minimal,

so is pn for all k < n ≤ N, and p is not exceptional.
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(b) If f is entire and not exceptional, then its core polynomial p is minimal.

Proof To prove (a) note first that the fact that, for k < n ≤ N , pn is minimal when
p is follows from the definition of minimal, where in (4.1) the variable σ might take
fewer values for pn than for p. Since (4.1) holds for a minimal polynomial p, (1.3)
cannot hold for p, and so p cannot be exceptional.
For (b) suppose that f is an entire map which is not exceptional. Then, by Definition
1.2, its core polynomial p is not exceptional, and (4.1) must hold for p. Hence, p is
minimal. 
�
The following result on minimal polynomials is key to the proof of Theorem 1.3.

Theorem 4.3 If p is a minimal polynomial,

(i) there exist c > 0 and R such that (3.12) holds with p in place of q.
(ii) There exists j ∈ � such that Jp = [ j]p.
Proof of Theorem 4.3 We prove the result by induction on the number of non-zero
terms in p. When p contains two non-zero terms, then we have that

p(z) = 1 + azk .

Clearly, the maximummodulus of p is achieved exactly when azk is real and positive,
in other words, when arg a + k arg z is a multiple of 2π . Then Jp = �, and so
Theorem 4.3(i) holds trivially. Note that Theorem 4.3(ii) is also straightforward.

Now suppose the theorem has been proved for up to � non-zero terms, and p has
� + 1 non-zero terms. Let p̂ be the polynomial defined in (3.1). Note that p̂ has fewer
terms than p, and since p is minimal, by Lemma 4.2, so is p̂. Hence, we can assume
that both the inductive conclusions apply to p̂.

Observe that, by the inductive hypothesis, and by the definitions of p and p̂, the
conditions of Lemma 3.6 are satisfied, with p̂ in place of q and p in place of q̃ . Hence
Jp ⊂ Jp̂.

Claim Set tkmax:=max{t j : j ∈ Jp̂}. Then

Jp = { j ∈ Jp̂ : t j = tkmax}. (4.2)

Proof of claim Note first, by Lemma 3.3, that if j, j ′ ∈ Jp̂, then (3.9) holds. This
implies that if t j ′ < t j , then j ′ /∈ Jp. Hence Jp ⊂ { j ∈ Jp̂ : t j = tkmax}.

For the reverse inclusion, choose j ′ ∈ Jp, so that t j ′ = tkmax. Suppose that j ∈ Jp̂
and that t j = tkmax. We need to show that j ∈ Jp. Since t j = t j ′ , it follows from
Lemma 3.4 that either (3.10) or (3.11) hold. Since, p isminimal, (3.11) cannot hold. By
Theorem 4.3(ii) applied to p̂, we know that Jp̂ = [ j] p̂, and so j ′ ∈ Jp ⊂ Jp̂ = [ j] p̂.
Since (3.10) holds, we may apply Lemma 3.5 to conclude that j ∈ [ j ′]p and the claim
follows from Theorem 1.4(d). 
�

We now show that Theorem 4.3(i) holds for p. To see this, let j ∈ Jp and j ′ /∈ Jp.
If j ′ ∈ Jp̂, then t j ′ < t j by (4.2) and Theorem 4.3(i) follows from (3.9). If j ′ /∈ Jp̂,
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then, since j ∈ Jp̂, and p̂ has fewer terms than p, by our inductive assumption (3.12)
holds with q replaced by p̂ and n replaced by m, the degree of p̂. Since m < n, this
latter fact combined with Observation 3.1 yields (3.12) with q replaced by p.

It remains to show that Theorem 4.3(ii) holds for p. Fix j, j ′ ∈ Jp. We are required
to show that j ′ ∈ [ j]p. We have that j ′ ∈ Jp ⊂ Jp̂ = [ j] p̂ by our inductive
assumption. Since p is minimal we can deduce that (3.10) holds. Now by (4.2) we can
apply Lemma 3.5 to conclude j ′ ∈ [ j]p. 
�

5 Proof of Theorem 1.3

It remains to use Theorem 4.3 to complete the proof of Theorem 1.3. This is, in fact,
quite straightforward. Suppose that f is entire and not exceptional, and is of the form
(1.2). Let p be its core polynomial, that by Lemma 4.2 is minimal and has the same
inner degree as f . Then, by Theorem 4.3(ii), there exists j ∈ � such that Jp = [ j]p,
and, in particular, #Jp = μp.

Observe that, by Theorem 4.3(i) applied to p, and by the definitions of f and p,
the conditions of Lemma 3.6 are satisfied, with p in place of q and f in place of q̃ .
Hence J f ⊂ Jp. The result now follows since, by Theorem 1.4, J f contains at least
μ f elements, and μ f = μp by definition of p.

6 Proof of Theorem 1.7

In this section we prove Theorem 1.7. Suppose that p is a polynomial of the form
(1.2), and let n be its degree. Observe that if k = n, then its inner degree μp = k, and
so by Theorem 1.4(d), #Jp = μp and p is not magic. If k = 1, then by Theorem 1.4,
#Jp = 1 and p is not magic. In particular, these are the only two possible cases for
quadratic polynomials, and so they cannot be magic. Likewise, if p is cubic, then it
can be magic only if k = 2.

Suppose that p is a cubic polynomial, and that k = 2; that is, p(z) = 1+az2+bz3,
where a, b �= 0. Let β ∈ C be such that aβ2 = 1, and set b′:=bβ3 = ba−3/2. It is
easier to consider the polynomial

q(z):=p(zβ) = 1 + z2 + b′z3. (6.1)

Let z = reiθ so that −z = rei(π−θ), and set φ:= arg b′. By an application of
Lemma 2.1, together with standard trigonometric formulae, we can calculate that

|q(z)|2 − |q(−z)|2 = 2r3|b′| (cos(3θ+φ)+r2 cos(θ+φ)+cos(3θ−φ)+r2 cos(θ−φ)
)

= 4r3|b′| cosφ (cos 3θ + r2 cos θ).

Suppose that |θ | is small, which is the case if z is near the positive real axis. If the real
part of b′ is positive, then cosφ is positive, and we can deduce that |q(z)|2 > |q(−z)|2.
By Theorem 1.4(c), near the origin,M(q) lies near the real axis. It follows thatM(q)
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has only one component near the origin, which is asymptotic to the positive real axis,
and q is not magic.

If the real part of b′ is negative, then cosφ is negative, and we can deduce that
|q(z)|2 < |q(−z)|2. As above, it follows thatM(q) has only one component near the
origin, which is asymptotic to the negative real axis, and again q is not magic.

Finally, if b′ is imaginary, then cosφ = 0 and |q(z)| = |q(−z)|; in fact we have
q(z) = q(−z). It follows that M(q) has exactly two components near the origin,
which are obtained from each other by reflection in the imaginary axis. In particular,
q is magic.

Since z ∈ M(q) if and only if zβ ∈ M(p), we can deduce that p is magic if and
only if b′ is imaginary, as required.
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