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Abstract
In this paper, we give a positive answer to a rigidity problem of maps on the Riemann
sphere related to cross-ratios, posed by Beardon and Minda (Proc Am Math Soc
130(4):987–998, 2001). Our main results are: (I) Let E �⊂ R̂ be an arc or a circle. If a
map f : Ĉ �→ Ĉ preserves cross-ratios in E , then f is a Möbius transformation when
Ē �= E and f is a Möbius or conjugate Möbius transformation when Ē = E , where
Ē = {z̄|z ∈ E}. (II) Let E ⊂ R̂ be an arc satisfying the condition that the cardinal
number #(E ∩ {0, 1,∞}) < 2. If f preserves cross-ratios in E , then f is a Möbius or
conjugate Möbius transformation. Examples are provided to show that the assumption
#(E ∩ {0, 1,∞}) < 2 is necessary.
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1 Introduction andMain Results

In this paper we consider the relation between Möbius transformations and cross-
ratios of points in the complex plane. For any four distinct points a, b, c, and d in the
extended complex plane Ĉ, their cross-ratio and absolute cross-ratio are defined by

[a, b, c, d] = (a − c) · (b − d)

(a − d) · (b − c)

and

|a, b, c, d| = |a − c| · |b − d|
|a − d| · |b − c| ,

respectively. Note that |a, b, c, d| is the absolute value of [a, b, c, d], and the absolute
cross-ratio is well defined for points in R

n , whereas the cross-ratio is not.
We say amap f : Ĉ → Ĉ preserves cross-ratios, or preserves absolute cross-ratios

respectively, if for any four distinct points a, b, c, d ∈ Ĉ, [ f (a), f (b), f (c), f (d)] =
[a, b, c, d], or | f (a), f (b), f (c), f (d)| = |a, b, c, d|, respectively. Obviously, a
Möbius transformation

f (z) = a1z + a2
a3z + a4

: Ĉ �→ Ĉ (a1, a2, a3, a4 ∈ C, a1a4 − a2a3 �= 0)

preserves cross-ratios and absolute cross-ratios. We call

f (z) = a1 z̄ + a2
a3 z̄ + a4

: Ĉ �→ Ĉ (a1, a2, a3, a4 ∈ C, a1a4 − a2a3 �= 0)

a conjugate Möbius transformation. It preserves absolute cross-ratios but does not
preserve cross-ratios.

In higher dimensions, a Möbius transformation is a homeomorphism acting on
R̂

n , which is a finite composition of reflections (or inversions) in spheres. A Möbius
transformation of R̂n onto itself preserves absolute cross-ratios.

There are many papers about Möbius invariant or rigidity properties in classes of
mappings under various assumptions (see, for example, [1–3,5–16]).

In 1998 Haruki and Rassias [5] obtained the following rigidity result related to the
absolute cross-ratios in Ĉ.

Theorem A [5] Let D ⊂ Ĉ be a domain. Suppose that a map f : D → Ĉ is mero-
morphic and satisfies that |a, b, c, d| = 1 implies | f (a), f (b), f (c), f (d)| = 1 for
every a, b, c, d ∈ D. Then f is a Möbius transformation.

In 2001 Beardon and Minda [2] extended the result related to the absolute cross-
ratios for all dimensions.

Theorem B [2]Suppose that � ⊂ R̂
n is a region and an injection f : � → R̂

n satisfies
that |a, b, c, d| = 1 implies | f (a), f (b), f (c), f (d)| = 1 for every a, b, c, d ∈ �.
Then f is a Möbius transformation.
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In 2014 Yang [15] further extended the results to a more general setting.

Theorem C [15] Let �1,�2 be two domains in Hilbert space. Given k > 0, suppose
that a bijection f : �1 → �2 satisfies that for every a, b, c, d ∈ �1, |a, b, c, d| = k
implies | f (a), f (b), f (c), f (d)| = k. Then f is a Möbius transformation.

In the case of the extended complex plane, Beardon and Minda [2] mentioned
that if f : Ĉ → Ĉ preserves all cross-ratios, then it is Möbius, but if f pre-
serves cross-ratios with one value −1 (which means that [a, b, c, d] = −1 implies
[ f (a), f (b), f (c), f (d)] = −1), then f need not beMöbius. They proposed the ques-
tion: “What can be said about the intermediate situations?More precisely, is it possible
to characterize the subsets E ofCwith the property that if [ f (a), f (b), f (c), f (d)] ∈
E whenever [a, b, c, d] ∈ E , then f is Möbius?”

Definition 1.1 For a subset E ⊂ Ĉ, a map f : Ĉ → Ĉ preserves cross-ratios in E , if
[ f (a), f (b), f (c), f (d)] ∈ E whenever [a, b, c, d] ∈ E .

We restate their problem as the following.

Problem 1.2 (Beardon and Minda [2]) Is it possible to characterize subsets E of C
with the property that if f preserves cross-ratios in E, then f is Möbius?

We remark that since similar rigidity problems related to absolute cross-ratios are
already solved in all dimensions, in the three papers above, the problem related to
cross-ratios makes sense only for Ĉ.

In this paper,we shall give a positive answer to this problembyproving the following
two theorems.

Theorem 1.3 Let E �⊂ R̂ be an arc (or circle) and Ē = {z̄|z ∈ E}. If f : Ĉ �→ Ĉ

preserves cross-ratios in E, then f is a Möbius transformation when Ē �= E and f
is a Möbius or conjugate Möbius transformation when Ē = E.

Theorem 1.4 Suppose that E ⊂ R̂ is any (open or closed) arc satisfying that the
cardinal number #(E ∩ {0, 1,∞}) < 2. If a map f : Ĉ �→ Ĉ preserves cross-ratios
in E, then f is a Möbius or conjugate Möbius transformation.

Remark 1 The converse is true. If f is a Möbius or conjugate Möbius transformation,
then f preserves cross-ratios in E .

We next show that the assumptions in our theorems are necessary and reasonable
by the following example.

Example 1.5 Since the plane and the real line have the same cardinality, the classic
Cantor–Schroeder–Bernstein Theorem [4] guarantees that there exists a bijection g :
Ĉ �→ R̂. Therefore g is injective and circle-into-circle, but g is not a Möbius nor a
conjugate Möbius transformation. Obviously, for any four distinct points a, b, c, d,
[g(a), g(b), g(c), g(d)] ∈ R\{0, 1}, as g(a), g(b), g(c), g(d) share a common circle
R̂.

For any set E ⊂ Ĉ satisfying that R\{0, 1} ⊂ E , the injection g : Ĉ �→ R̂ always
preserves cross-ratios in E . Therefore one cannot expect results similar to those in the
theorems for such a set E in cross-ratios preserving case.
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700 B. Li, Y. Wang

Furthermore, ifwe let E = R̂, then #(E∩{0, 1,∞}) = 3.Of course ifwe let E = R,
then #(E ∩ {0, 1,∞}) = 2. Therefore the assumption that #(E ∩ {0, 1,∞}) < 2 in
the case E ⊂ R̂ is necessary.

As a consequence, we have the following.

Corollary 1.6 Let θ ∈ R\Z and Eθ = {reiθπ ∈ C : r > 0}. If f : Ĉ �→ Ĉ preserves
cross-ratios in Eθ , then f is a Möbius transformation. If θ ∈ Z and f : Ĉ �→ Ĉ

preserves cross-ratios in Eθ , then f is a Möbius or conjugate Möbius transformation.

2 The Proof of Theorem 1.3

We need the following two Lemmas.

Lemma 2.1 Let E be an arc (or circle) and {0, 1,∞} �⊂ E. If a map f : Ĉ �→ Ĉ

preserves cross-ratios in E, then f is injective and circle-into-circle.

Proof Without loss of generality, we may suppose that 0 /∈ E and choose μ ∈
E\{0, 1,∞}. Assume that there exist two distinct points z1, z2, such that f (z1) =
f (z2). Choose w1, w2 ∈ Ĉ, such that [z1, w1, z2, w2] = μ ∈ E . Then we have either
[ f (z1), f (w1), f (z2), f (w2)] = 0 /∈ E or the cross-ratio is not well defined for
f (z1) = f (z2). This is a contradiction. Therefore f is injective.
For any four distinct points a, b, c, d sharing a common circle, there exists aMöbius

transformation σ on Ĉ, such that σ(E) 	 a, b, c, d. Let z0 = σ(0), z1 = σ(1) and
z∞ = σ(∞). Then [z0, z∞, z, z1] = σ−1(z), since the Möbius transformation σ

preserves cross-ratios.
For any z ∈ σ(E), σ−1(z) ∈ E and [z0, z∞, z, z1] ∈ E . Since f preserves

cross-ratios in E , we have [ f (z0), f (z∞), f (z), f (z1)] ∈ E . On the other hand,
let τ be the Möbius transformation mapping 0, 1, ∞ to f (z0), f (z1), f (z∞). Then
[ f (z0), f (z∞), f (z), f (z1)] = τ−1( f (z)), whichmeans that f (z) lies in the arc τ(E)

for any z ∈ σ(E) and f (a), f (b), f (c), f (d) share a common circle, from which we
conclude that f is circle-into-circle and this completes the proof. 
�
Lemma 2.2 [10] Suppose that f : Ĉ �→ Ĉ is injective and circle-into-circle. If f (Ĉ)

does not lie on a circle, then f is a Möbius or conjugate Möbius transformation.

Proof of Theorem 1.3 Let E �⊂ R̂ be an arc (or circle). If f preserves cross-
ratios in E , then f is injective and circle-into-circle by Lemma 2.1. So, for
any z ∈ E , [ f (0), f (∞), f (z), f (1)] ∈ E as [0,∞, z, 1] = z ∈ E . More-
over, for any two distinct points z1, z2 ∈ E , [ f (0), f (∞), f (z1), f (1)] �=
[ f (0), f (∞), f (z2), f (1)], since f is injective. There exists a point z0 ∈ E , such
that [ f (0), f (∞), f (z0), f (1)] /∈ R̂ by #(E ∩ R̂) < 3. That is, f (0), f (∞), f (z0),
f (1) do not lie in a common circle. Then f is a Möbius or conjugate Möbius trans-
formation by Lemma 2.2.

In particular, if Ē = E and f preserves cross-ratios in E , then f is a Möbius or
conjugate Möbius transformation.

If Ē �= E , then there exist μ ∈ E\Ē and four distinct points a, b, c, d such
that [a, b, c, d] = μ. We show that f is a Möbius transformation. On the contrary
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On a Rigidity Problem of Beardon and Minda 701

assume that f is a conjugate Möbius transformation. Then f̄ (z) is a Möbius transfor-
mation and [ f̄ (a), f̄ (b), f̄ (c), f̄ (d)] = μ. So [ f (a), f (b), f (c), f (d)] = μ̄ /∈ E .
This is a contradiction, since f preserves cross-ratios in E . Therefore f is a Möbius
transformation. The proof is completed. 
�

3 The Proof of Theorem 1.4

Suppose that an arc E ⊂ R̂ satisfies that {0, 1,∞} �⊂ E and a map f : Ĉ �→ Ĉ

preserves cross-ratios in E . Then f is injective and circle-into-circle by Lemma 2.1.
Note that f is a Möbius or conjugate Möbius transformation if and only if f (Ĉ) does
not lie in a circle by Lemma 2.2. Example 1.5 shows that there exists some injective
and circle-into-circle map whose image lie in a circle. In this section, we shall prove
that if #(E ∩ {0, 1,∞}) < 2 and f preserves cross-ratios in E , then f is a Möbius or
conjugate Möbius transformation.

For the sake of convenience, let �(a,b,c) denote the circle determined by a, b, c ∈ Ĉ

and γ c
[a,b] denote the arc in �(a,b,c) with endpoints a, b and containing c. Denote the

line segment with endpoints a, b ∈ C by I[a,b]. Similarly, let I(a,b) (I[a,b) or I(a,b])
denote an (sub-)open segment, and γ c

(a,b) (γ
c
[a,b) or γ c

(a,b]) denote an (sub-)open arc.

Obviously, if #(E ∩ {0, 1,∞}) < 2, then E must be a sub-arc of either γ 1
(0,∞), or

γ 0
(1,∞), or γ

∞
(0,1). We shall prove Theorem 1.4 for the case of E ⊂ γ 1

(0,∞). For the other
two cases, the discussions are similar and so we shall omit the details.

We need the following lemmas.

Lemma 3.1 For any a, b, c, d ∈ Ĉ, [a, b, c, d] ∈ γ 1
(0,∞) if and only if c ∈ γ d

(a,b).

Proof Suppose that σ is the Möbius transformation such that σ(a) = 0, σ(b) = ∞
and σ(d) = 1. Then [a, b, c, d] = σ(c) ∈ γ 1

(0,∞), which means c ∈ γ d
(a,b). 
�

Lemma 3.2 Suppose that E ⊂ γ 1
(0,∞) is an arc and a map f : Ĉ �→ Ĉ preserves

cross-ratios in E. Then f maps γ d
[a,b] into γ

f (d)

[ f (a), f (b)] for any three distinct points

a, b, d ∈ Ĉ.

Proof For any z0 ∈ γ d
(a,b), we prove that f (z0) ∈ γ

f (d)

( f (a), f (b)). Let I be an open segment
in E containing some point p0. Let σ be the Möbius transformation mapping a, b, d
to 0,∞, 1 respectively. Denote c0 = σ−1(p0). For any z ∈ σ−1(E), [a, b, z, d] =
σ(z) ∈ E . So [ f (a), f (b), f (z), f (d)] ∈ E and f (z) ∈ γ

f (d)

( f (a), f (b)).

Let J be the closed arc in γ d
(a,b) with endpoints c0, z0. For any z ∈ J , there exists a

Möbius transformation σz which maps a, b, z to 0,∞, p0. Obviously, {σ−1
z (I )}z∈J is

an open covering of the closed segment J , which contains a finite sub-covering. That
is, there is an integer k > 0, and z1, z2, . . . , zk ∈ J , such that {σ−1

zi
(I )}k

i=1 is an open
covering of J . So {σ−1

zi
(E)}k

i=1 covers J . Let di = σ−1
zi

(1). For any i and z ∈ σ−1
zi

(E),

[a, b, z, di ] ∈ E and [ f (a), f (b), f (z), f (di )] ∈ E , which means f (z) ∈ γ
f (di )

[ f (a), f (b)]
by Lemma 3.1. Therefore f (z0) ∈ γ

f (d)

[ f (a), f (b)]. 
�
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702 B. Li, Y. Wang

Remark 2 Similarly, [a, b, c, d] ∈ γ 0
(1,∞) implies c ∈ γ a

(b,d) and [a, b, c, d] ∈ γ ∞
(0,1)

implies c ∈ γ b
(a,d). If f preserves cross-ratios in E ⊂ γ 0

(1,∞), then f maps γ a
[b,d]

into γ
f (a)

[ f (b), f (d)]. If f preserves cross-ratios in E ⊂ γ ∞
(0,1), then f maps γ b

[a,d] into
γ

f (b)

[ f (a), f (d)].

Remark 3 Let E◦ be the set of inner points of E . The condition #(E ∩ {0, 1,∞}) < 2
in Theorem 1.4 can be replaced by #(E ∩ {0, 1,∞}) < 3 and #(E◦ ∩ {0, 1,∞}) < 2.
For example, if E ⊂ γ 1

[0,∞), then [a, b, c, d] ∈ E implies c ∈ γ d
[a,b).

Definition 3.3 A circle-into-circle injection f is separation-preserving in circle, if,
for any circle γ and four distinct points a, b, c, d ∈ γ , a, b separate c and d in γ

implies that f (a), f (b) separate f (c) and f (d) in a circle � ⊃ f (γ ).

Lemma 3.4 An injection f : Ĉ �→ Ĉ maps γ d
[a,b] into γ

f (d)

[ f (a), f (b)] for any three distinct

points a, b, d ∈ Ĉ, if and only if f is separation-preserving in circle.

Proof Assume f is separation-preserving in circle. That is, for any four distinct points
a, b, c, d in a common circle satisfying that a, b separate c and d, f (a), f (b) separate
f (c) and f (d). Then for any z ∈ γ d

(a,b), a, b separate c and z and f (a), f (b) separate

f (c) and f (z), which implies that f (z) ∈ γ
f (d)

( f (a), f (b)) for any three distinct points

a, b, d ∈ Ĉ.
Assume f is not separation-preserving in circle. That is, there exist four distinct

points a, b, c, d in a common circle satisfying that a, b separate c and d, such that
f (a), f (b)donot separate f (c) and f (d). Assumewithout loss of generality that f (b),
f (d) separate f (a) and f (c). Then we find that a ∈ γ c

(b,d) and f (a) /∈ γ
f (c)

( f (b), f (d)).

That is, f does not map γ c
[b,d] into γ

f (c)
[ f (b), f (d)]. This completes the proof. 
�

From Lemmas 2.1, 3.2 and 3.4, we have the following lemma.

Lemma 3.5 Suppose that E ⊂ R̂ is an arc satisfying that #(E ∩ {0, 1,∞}) < 2. If
f : Ĉ �→ Ĉ preserves cross-ratios in E, then f is separation-preserving in circle.

Let Im(z) and Re(z) denote the imaginary and real part of z ∈ C respectively.
Denote the upper half plane of C by H = {z ∈ C : Im(z) > 0} and the lower one by
�. To obtain Theorem 1.4, we consider the case where f (Ĉ) lies in a circle.

Lemma 3.6 Suppose that a map f : Ĉ �→ R̂ is separation-preserving in circle and
fixes 1,−1,∞. If there exists z0 ∈ H such that f (z0) ∈ I(−1,1), then f (H) ⊂ I(−1,1).

Proof Note that f (z) ⊂ I(−1,1) for any z ∈ γ
z0
(−1,1) ∪ I(−1,1). Denote the bounded

component of Ĉ\(I[−1,1]∪γ
z0[−1,1])by D1.Weclaim that f (z) ⊂ I(−1,1) for any z ∈ D1.

Let u be the point of intersection of γ z
(−1,∞) and γ

z0
(−1,1). So f (z) ∈ I(−1, f (u)) ⊂ I(−1,1)

(see Fig. 1).
Let z1, w1 be points in�(−1,1,z0) satisfying that Re(z1) = Re(w1) = 0, Im(z1) > 0

and Im(w1) < 0, and o1 = (z1 + w1)/2 be the center of �(−1,1,z0). Let (see Fig. 2)

on+1 = zn + on

2
, zn+1 = on+1 + i

√
1 + Im(on+1)2
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Fig. 1 f (D1) ⊂ I(−1,1)

Fig. 2 f (H) ⊂ I(−1,1)

and wn+1 = 2on+1 − zn+1, for n = 1, 2, . . .. Obviously, on is the centre of �(−1,1,zn),
and zn, wn ∈ �(−1,1,zn) satisfy Re(zn) = Re(wn) = 0, Im(zn) > 0 and Im(wn) < 0
for any n ≥ 1. We have

on+1 = on + i

2

√
1 + Im(on)2, Re(on) = 0

and the sequence {Im(on)}∞n=1 strictly increases. Then Im(on) tends to +∞ as n tends
to +∞, which is due to the fact that Im(on+1) − Im(on) ≥ 1/2 for any n ≥ 1.
Therefore Im(zn) → +∞ and Im(wn) = −1/ Im(zn) → 0 as n tends to +∞.

We shall prove that f (zn) ∈ I(−1,1) for all n ≥ 1 by induction. As f (z1) ∈ I(−1,1),
we may suppose that f (zn) ∈ I(−1,1) for some n. Since f is separation-preserving in
circle, f (wn) /∈ I[−1,1]. If f (wn) > 1 (see Fig. 2), let w be the point of intersection
of γ

wn+1
(−1,1) and I(1,wn). Then f (w) ∈ I(1, f (wn)). If f (wn) < −1, let w be the point of

intersection of γ
wn+1
(−1,1) and I(wn ,−1). Then f (w) ∈ I( f (wn),−1). There always exists a

point w ∈ γ
wn+1
(−1,1), such that f (w) /∈ I[−1,1]. Then f (zn+1) ∈ I(−1,1) since zn+1 is

separated with w by −1, 1 in the circle �(−1,1,zn+1).
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Fig. 3 Contradiction: ∃w0 ∈ �, such that f (w0) ∈ I(−1,1)

Denote the bounded component of Ĉ\(I[−1,1] ∪ γ
zn[−1,1]) by Dn . Then f (Dn) ⊂

I(−1,1) for f (zn) ∈ I(−1,1) for any n, which means f (H) ⊂ I(−1,1). 
�

Proof of Theorem 1.4 It follows from Lemma 3.5 that f is separation-preserving in
circle. We shall prove that f (Ĉ) does not lie in a circle. To the contrary we assume
that f maps Ĉ into R̂ and fixes 1, −1 and ∞ by composing some suitable Möbius
transformations. Moreover, there always exists z0 ∈ H , such that f (z0) ⊂ I(−1,1),
since we may replace f (z) by f (z̄), if necessary. Lemma 3.6 gives that f (z) ∈ I(−1,1)
for any z ∈ H .

Without loss of generality, we may assume that f (z0) ∈ I( f (0),1). Let w0 be a point
in �(−1,0,z0) ∩ �. Then f (z0) /∈ I[−1, f (0)] (see Fig. 3), which means that f (w0) ∈
I(−1, f (0)) ⊂ I(−1,1).

Again we have from Lemma 3.6 that f (w) ∈ I(−1,1) for any w ∈ �. Meanwhile,
wn ∈ � and f (wn) /∈ I(−1,1) for any n ≥ 1 as in Lemma 3.6. This is a contradiction.
Therefore f (Ĉ) does not lie in a circle. It then follows from Lemma 2.2 that f is a
Möbius or conjugate Möbius transformation. The proof is completed. 
�
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