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Abstract

This paper deals with the so-called Radon inversion problem formulated in the follow-
ing way: Given a p > 0 and a strictly positive function H continuous on the unit circle
dDD, find a function f holomorphic in the unit disc ID such that fol | f(zt)|Pdt = H(z)
for z € dID. We prove solvability of the problem under consideration. For p = 2, a
technical improvement of the main result related to convergence and divergence of
certain series of Taylor coefficients is obtained.

Keywords Radon inversion problem - Holomorphic functions - Taylor series - Inner
functions

Mathematics Subject Classification 30B30 - 30B10

1 Introduction

Generally, if f is a function defined on a manifold M, the Radon transform assigns to
f its integrals over a given family of submanifolds of M. In 1917 such transformations
on hyperplanes were first studied by Radon [10]. The present paper is devoted to the
Radon-type transform defined on functions holomorphic in the complex unit disc that
evaluates integrals of p—th power of the modulus of the function along radii of the unit
disc. Let D denote the unit disc of C and O(D) be the space of functions holomorphic
inD. Givena p > 0, the transform under consideration assigns to a function f € O(D)
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a function R?(f): D —> R, for which

1
RP(F)(@) = f \f0)|Pdi. where z € D.
0

Then one may pose the following problem: Given a p > 0 and a strictly positive
continuous function H on the unit circle D, find a holomorphic function f € O(D)
such that

RP(f)(z) = H(z) forz € dD. (1)

It is worth mentioning that an almost everywhere version of the problem above was
already solved by the first author in [8] even in several complex variables. However,
the function R? (f) is well-defined at all points of dID. Hence, our purpose is to find
a function such that (1) not only holds almost everywhere, but for all z € 9.

As was observed in [8], the problem under consideration is similar to the generalized
inner function problem which in one variable is to find a function g € O(D) such that

lim |g(zt)| = G(z) forz € 0D )
t—1

given a strictly positive function G continuous on dID. The role of radial limits is just
played by values of the function R”(f)(z). Similarly as in [8], we intend to find a
solution to (1) by constructive methods that were applied in proving the existence of
a non-constant inner function in several complex variables. The main result of this
paper is Theorem 6 in which we prove solvability of the Radon inversion problem.
For details of the first two independent constructions of inner functions in the unit ball
we refer the reader to [1,2,9].

Throughout the article we shall use the following notation. Let o and p stand
for normalized Lebesgue measures on 9D and I respectively, i.e. o(dD) = 1 and
n(D) = 1. The supremum norm and L, norms on 0D and ID will be denoted by

IfIl=suplf)].  Ifllep= /BD |f(2)ldo(2),

zeD
1
112, = fd ) /0 £ ) Pido (2.

Let C (D) stand for the space of continuous functions in I) which are bounded by
L >0.
For p =2,if f = Y ;2 a,z" satisfies (1), then we observe that

1 o0
Rl = [ [ ar
D JO =0

0 2
lan|
= § = [|H1,sp < oo.
n=0

2
dtdo (2)

2n + 1
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One may consider what happens with the series
i ( jan|® )
= 2n +1

when s € [0, 1). It turns out that it is possible to construct a function f = Zf,ozo ap7"
such that (1) holds and ZZO:O (|an 12/(2n + 1))X = oofors € [0, 1). This is the second
main result of this paper given in Theorem 9. Our motivation to consider the above
Taylor series is [4], where a construction of an analytic function in the disc algebra
with a divergent series of Taylor coefficients with every power s € [0, 2) is presented.
For analogues in several complex variables see [5,6,12].

2 Radon Inversion Problem for Holomorphic Functions in the Unit
Disc

For p > 0 and ¢ = min{p, 1} we may define a metric space

HRP(D) :=13 f € OM): sup RP(f)(z) <
zedD

with metric

d(f.g) = sup (RP(f - 9)(2)"7.

Proposition 1 Space (HR? (D), d) is complete for any p > 0. Moreover, if f, 4 f
n—o0
in HRP (D), then R’ (f,) = RP(f) asn — oo on dD.

Proof Let { f, }nen be a Cauchy sequence in HRP (D). Set ¢ > 0. There exists N € N
such that

(RP(fn — f)(@)"4 <& forallm,n> N, z € dD

and hence
1
/ [(fin — fu)@)|Pdt < &? forallm,n > N, z € 0D. 3)
0

Integration over 9D gives

1
f / |(fin — fu)(@D)|Pdtdo(z) < &9 forallm,n > N.
am Jo

Since f,, — fu is a holomorphic function, on the basis of [11, Prop. 1.5.4.], | fi —
fn|? is a subharmonic function. Let K be a compact subset of D, w € K and r =
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138 P. Kot, P. Pierzchata

dist(K, 0ID)/2, so that ﬁ(_w, r) C D. By applying the sub-mean-value theorem to the
function | f;,, — f,|? and D(w, r), we get forall m,n > N

[(fin — fn)(w)|p = [(fmn — fn)(é‘)lpdﬂ«(;)

ple(ﬁ(w, r) /Mw,r)
<5 [ 1= fenidrdo )
gq D JO

< —.
r2

In particular,

q
sup |(fin — f)W)IP < 5 forallm,n = N.
r

wek

This implies that { f;;},en converges locally uniformly on compact subsets of . Let
f be the limit function for { f, },cN. Since f,, are holomorphic, so is f.

Now we shall show that f, i> fand f € HR? (D). By (3),
s
/ [(fin — fu)@)|Pdr < &1 foralls € (0,1)m,n > N, z € 0D. 4)
0

Since f;,;, converges to f locally uniformly, we may pass with m to the limit in (4) to
obtain

1)
/ I(f — f)@O)|Pdt < &9 foralls € (0, 1)n > N, z € aD.
0

The above inequality holds for any é € (0, 1), so

1
f [(f — fu)@@D)|Pdt < &? foralln > Nz € aD.
0

Therefore, f, i) f. Moreover, by the triangle inequality, for all n > N
n—oo

sup (RP(£)@)"7 < sup (R”(f — £)(@)" + sup (RP(f)()"? < o,
zedD z€oD z€oD

which implies that f € HR? (D).
If 1, 4 f.thend(f, f,) —> 0. Finally, by the triangle inequality,
n—od n—oo

sup ((RP(f)(Z))l/fi _ (Rp(f,,)(z))l/q) < sup (RP(f — fn)(Z))l/q njo)oo'

zedD zedD

Thus, (RP ()9 = (RP(f))'/ as n — oo and consequently R?( f,) = RP(f)
asn — oo on dDD. O
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Theorem 2 Fix p > 0. Let f € C(D). If RP(f) € C(dD), then RP(f) € C(D).

an

Proof Consider a sequence of functions ¢, (z) := fo | f(zt)|Pdt, where {ay, },eN is a
sequence increasing to 1 and z € 9. Since f is continuous in D, {¢; (z)},eN is an
increasing sequence of continuous functions on dID. Moreover,

nli)nolo ¢n(z) = RP(f)(z) forevery z € D.

If RP(f) is continuous on 9D, then by Dini’s theorem ¢, converges uniformly to
RP(f) on oD.

Fix ¢ > 0. By continuity of R”(f) on 9D, there exists § > 0 such that for any
z,z € dDif |z — z| < 28, then

_ e
o [RP(f)(z) —RP(NH@I = 3
L | F(z0)|Pdt < & forz € aD
° —— — for
1—s) 57" =3¢
1 1 &
o | ——1 | f(zt)|Pdt < = for z € 9.
1-346 0 3
Let|z—w| < 8, where w € D, z € dD. Then there exists w* € 9D such that w = sw*
for some s € (1 —§, 1). Hence we may estimate

[RP (™) = RP ()|
= f | f (w*n)|Pdi — / | f (wi) [P
0 0

1 1
= / If(w*t)l”dt—/ |f (w*st)|Pdt
0 0
1 K
_ / fwrn|Pdi — - / | w*n)|Pdt
0 s Jo

1 1 1 1 1
< / If(w*t)l”dt——/ \f )Pt +—f \f (wt) P
0 . s Jo | ls s
1
- * P . * )4
< (1_3 1)/0 Fwrold+ = [ ipwnira
2¢
<=,
- 3

Finally, observe that by the triangle inequality, |z — w*| < |z — w| + |w — w*| < 26.
Therefore,

IR (f)(2) — RP(SHw)| < [RP(f)2) = RP(SH(wH)| + [RP(f)(w*) — RP(f)(w)]
L2
=3 + 3 =¢

for |z — w| <. O

This theorem implies immediately that for any solution g to the Radon inversion
problem, the function R”(g) is continuous in .
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140 P. Kot, P. Pierzchata

Lemma 3 Fix p > 0. Let H be a strictly positive continuous function on dDD. For every
e1, & € (0, 1) and compact set K C D there exist N € N and a polynomial Q such
that Q # 0 on 3D and if f,(z) = (np + D'/ Q(2)z", then for n > N the following

conditions are satisfied

. |fn@| <eforzeK
2. Hz)(1 — &2) < R (fu)(2) < H(z)(1 + &2) for z € ID.

Proof Due to the fact that every continuous function can be approximated by a function
of class C*, there exists a strictly positive function v € C*°(dD) such that

v(2) (1 - %2) <H@ <v() (1 n 85—2) for z € aDD. )

Also, there exists a function u such that v(z) = ¢”*® for z € dD. Since v €
C*°(0D), u satisfies Holder condition. Let S(u) denote the Schwarz integral of u. By
its properties, Re(S(#)) = u on dID and S(u) is continuous in D (see [3,7]). Hence,
there exists r € (0, 1) such that

@ (1 - “95—2) < PRSI < ru@ (14 %2) fort € [r, 1] and z € O,
(6)

There exists a polynomial Q(z) that approximates the function ¢ @ in the following
way

(1 _ 65_2) P Re(SW)(2)) <10()|" < (1 + 85_2) P Re(SW)(2)) for z € D. @)

Let M := sup,.4p H (z). The maximum principle implies that

5) SM
sup ePRe(SW@) sup eP"@ = sup v(z) < sup H(z) = ——.  (8)

2D 2€8D 2€8D — €2 ;e9D 5—&

There exists a constant C > 0 such that SM /(5 — ¢2) < CH(z) for z € 9DD. Choose
N; € N such that 7+ < g, /(5C) for all n > Ni. Then consider a polynomial
fa(2) = (np + DYPQ(2)7", where n > Nj. For z € 9D and n > N, the above
inequalities give the required estimation

1 1 1
)
f | faOIPdt = (np + 1) f 0GoPiar = (1= Z) (p + 1) f P ReS@E) np gy
0 r r

© e 2 ! ® 3
=@ (1-2) p + 1)/ mdr = HE) (1-F) @ =t
r

4
> HE (1- %2) > H)(1 — &)

and

1 1
/ OVl = (ap+ 1) / 0GP dr
0 0
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The Radon Inversion Problem for Holomorphic Functions... 141

I
(;) (1 N %2> (np + 1)/ oPRe(SW@@D) np 4
0

©) 5M [T !

< p+1) (1 + 32) / P di + (1 + 32) P / P di
5/\5-¢ ) 5 f

) SM

<

5—¢e (1 + %) P+ H @) (1 + %2)3 (1 — pthy

()] 3
= HQ (1+2) e s m@ (14 2) (-t

> 5
H(z) (1 + %) (Crnp-H + (1 i %2>2)

H(z)(1 4+ &).

IA

IA

Now, to make f;, satisfy the statement 1 it is enough to select a natural number N, > N
such that for all n > N,

| f (2] = (p + DYP10@)|Iz]" <& for z € K.

Finally, observe that the function f;,, constructed above, where # is sufficiently large,
has the required properties. O

Remark 4 We can replace the statement 2 in Lemma 3 by one of the following

Y. H@)( —3) < RP(f)(2) < H(z) for z € 3D
2" H(z) — &y < RP(f)(z) < H(z) for z € 9.

Proof For statement 2’ it is enough to take H(z):= H(z)/(1—&)and & := &2/(2 —
&) in Lemma 3. To obtain conclusion 2" we apply the lemma above with &, := &,/ M,
where M := sup,yp | H (2)]. O

Lemma5 Fix p > 0. Let p > 0 and Q be a polynomial such that Q(z) # 0 for
z € JD. For every €3 € (0, 1) there exists N € N such that for n > N and all
functions g € Cp (D) the function f,(z) = (np + 1)V/P Q(2)7" satisfies

RP(f) (@) + RP(&)(2) — &3 < RP(fu + 8)(2) < RP(fu)(@) + RP(9)(2) + &3.

Proof Choose k € N such that k > p. First, by triangle inequality, observe that
1 1
RISy + 89 = /0 |y + g9 @EnlPtdr < /O | fu0)|Pdt
1
+ [ lsenrar =R @ + R 6.
Let § € (0, 1) be such that f; lg(zt)|? < e3/8. Since
s s
/ | fu(@)|Pdt < (np + 1)||Q||p/ "Pdt = || Q||P 8",
0 0

@ Springer



142 P. Kot, P. Pierzchata

there exists Ni € N such that f(f | fu(zt)|Pdt < e3/8 for all n > Nj. Thus, the above
inequalities imply the following

1
WWﬁ+ﬁ@=£Kﬁ+%mwwt
§ 1
=fuﬁ+¢mmwm+/uﬁ+ﬁmmmm
0 8
P P 1 1
zf|ﬂmwm—/'M@nMn+/|ﬂ@mhh—/|ynww
0 0 8 P

5 1
=RP(fu)@) + RP(g)(2) — 2/0 | fu(z)|Pdt — 2/3 g (z0)|Pdt

>W%mnR%mw%.

If0 < p < 1, then k = 1 does the job. For p > 1 we need a little bit more effort to
accomplish this. Denote

plk
dt

k—1

k
Z( )(fn(zt))m(g(zt))k_m
m

m=1

1
I (fr 8)(2) = /O

and notice that

k—1 k plk 1
Y (frr ©)(@) < Z( ) /0 | fu ()" | g (z0)| <P Ky
k
" | o|me/k ptk—m/kKOP Dl
m nmp + k

3

3

=~

=<

plk 1
) ”Q”mp/kLp(k—m)/k(np + 1)m/k/ tnmp/kdt
0

I

3

~3
k‘

m
— 0.
n—>0oo

Therefore, there exists N> € N such that I,f(f,,, g)(z) < e3/2forn > N,. This yields
the conclusion rather quickly
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The Radon Inversion Problem for Holomorphic Functions... 143

RP(fy + 8)(2) = / o + @)D

plk
f (1t + @) ar
1] &
-/ Z( )(fn(zt))’"(g(zt))k_m
0 m
1 1
< [Cinora+ [eeorra+ 72, 06

m=0
< RP(£)(2) + RP(2)(2) + %3

plk
dt

and

1
RP(fy+ 8)(2) = /O o + )07t

1 k k
-/ Z( )(fn(zt))m(g(zt))km
0 m=0
/ I(fF+ g5 @niPkar — ) (fa, 9)(2)
1
/Ifn(zt)lpdt+/ lg(zt)|Pdt — _ =
0 2 2
=RP(fu)(2) + RP(2)(2) — &3.

plk
dt

m}

Theorem 6 Fix p > 0. Let G be a strictly positive continuous function defined on oD.
There exists a function f € O(D) such that

RP(f)(z) = G(z) forz e dD.

Moreover, R?(f) € C(D).

Proof Since G is strictly positive, there exists m € N such that G(z) —27" > 0 for all
z € dD. We will apply Lemmas 3 and 5 iteratively to construct a sequence { f; },eN
of functions in the disc algebra and a sequence of real numbers 0 < rp <r; <--- <
ry < rpy1 < --- < 1 satisfying the following conditions

@ |fa@] =27 forzeD,,
(b) R? (Z fk> () < G(z) =27 "2 for z € 9D

k=1

P
> fiten

© f '
0 |i=1

We begin by selecting ro = 1/2 and applying Lemma 3 in version 2” with

dt > G(z) — 27" for z € 9.

— 1
H:=G6-2""S K.=D,, e:= 3 fi= 2~ (m+2)
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144 P. Kot, P. Pierzchata

to obtain a function f; € O(D) N C>(D) such that

e [fiR)| <1/2forzeDip
e G(z) —27mtD) < RP(f)(2) < G(z) — 2~ for z € AD.

Then choose 1 > r; > (1 4+ r9)/2 such that
at
/ | f1(z)|Pdt > G(z) —2~"FD for z € aD.
0

Proceeding inductively, let us assume that numbersro <ri <rp <---r, < 1land
functions fi, f2, ..., fu € O(D) N C*° (D) with properties a)—c) have been found.
We may apply Lemmas 3 and 5 with

n n

H:=G-R’ (Z fk) —27 D ey =) fid), K =Dy,
k=1 k=1

g1 = 27(n+1), £ 1= 2f(m+n+3)’ £y = 27(m+n+3)

to produce a new function f,+; € O(D) N C>®(D) such that the following statements
hold

| fag1(2)| <270FD for z €Dy,

n
Rp(fn+l) > G _ RP (Z fk) _ 2—(m+n+2) _ 2—(m+n+3) on 3]D)
k=1

n
RP(fus1) < G —RP (Z fk) — 27+ 54 9D

k=1
n+1 n
o RP (Z fk) > RP(fut1) + RP (Z fk) — 27+ 60 5D
k=1 k=1
n+1 n
o RP (Z fk) < RP(fa+1) + RP (Z fk> + 27 m+n+3) on D,
k=1 k=1

This gives on D

n+1 n
RY (Z fk> <R’ ( fk> + RP(fagr) 27000

k=1 k=1

n n
< RP (Z fk) +G—TRP (Z fk) — = (mHn+2) | H—(m+n+3)
k=1 k=1
= G — p—(m4n+3)
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The Radon Inversion Problem for Holomorphic Functions... 145

and
n+1 n
RP (Z fk) > RP (Z fk) + R (fgr) — 270
k=1
> R (Z fk> +G—RP (Z fk> — g~ (mAn+D)

k=1
-G =2 (m+n+1)_

Next select 1 > r, 41 > (1 + r,,)/2 such that

/rn+1
0

and the induction process is complete.

By statement a), the sequence ) ;_, fx converges uniformly to the function f :=
Z,fozl fx on compact subsets of D and f € O(D). Then notice that for all r € (0, 1)
and z € 9D we have

/ f Gl = / lim_ ka(zt)
0 0

< lim (G(z) 2 (m+n+2)y
= G(z)

P
dt > G(z) — 2~ m+n+h

n+1

PN AED

k=1

dt = dt

Hence,
RP(f)(z) < G(z) for z € aD.

Let ¢ = max{p, 1}. For a given n € N and all z € dID from conditions a) and c) it

follows that
1/q
dt)

RPNV = ( /
1/q | 00
dr) - < fo Y fin

( k=n+1

1/q 00 rlq
G(z) - 2_(’"+”)> — ( > 2"‘)

| k=n+1

q

G(z) — 2—(’n+n)> —27mld 5 (G(2))V1.
n—oo

zt)

P 1/q
dt)

>

Therefore,

RP(f)(z) = G(z) forall z e dD.
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146 P. Kot, P. Pierzchata

These inequalities establish the conclusion RP(f) = G on 9D. Finally, it follows
from Theorem 2 that R?(f) € C(D). m]

3 Divergent Taylor Series

Lemma7 Let h € C(dD) be a strictly positive function, ¢ € C(D) be a bounded
function and a, 0, ¢ € (0, 1). There exist a natural number N € N and a sequence of
orthogonal polynomials { P, },eN such that on 0D the following statements hold

(s1) R2(Py) <ah, k=0,1,...

k
(s2) R? ij <h, k=0,1,...

j=0
k 1 k—1 k—1
(s3) R*| D _ P > Ja h=RDI P +R D Pi|. k=1.2....
j=0 j=0 j=0
k
s4) [R*[D_Pi| =) R¥Pp|<e, k=1.2,...
j=0 j=0
k k
s5) |R* [+ P | =D R*P) —R*¢)| <&, k=1.2,...
j=0 j=0

N
(s6) R*| Y _P; | > 0n
j=0

Proof First notice that Py = 0 satisfies conditions (s1) — (s2). Then Lemmas 3 and 5
applied to

5
H = gah, g ‘= ¢, &y =

produces a polynomial P; with the following properties

1 4
° Eah < §H < Rz(Pl) < H < ahon oD
o R2(P) +R*(p) —e < R*(p + P1) < R*(P1) + R*(¢) — & on dD.
Of course, the above statements imply (s1)—(s5) immediately.
We then proceed inductively as follows: Suppose that orthogonal polynomials

Py, Py, ..., P, have been found such that conditions (s1)—(s5) hold. By (s4) and
(s5), there exist p1, p2 € (0, 1) such that

k k
o [R? ZPf —ZRZ(PJ-) < p1 <¢eondDd
j=0 j=0

k k
. |R? ¢+ZPJ' _ZRZ(Pj)—RZ(@ < py < € on dD.
Jj=0 j=0
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The Radon Inversion Problem for Holomorphic Functions... 147

Select N1 € N such that N| > deg(Px). For our inductive step, again we may apply
Lemmas 3 and 5 to

k k k
5 ) !
H.Zga h—TR X_(:)P] , 81 ZJX_(:)P’ gZZX_:OPj+¢’ ‘92'23’

k
1
= i — 1 f h —R2 P; ) - ) -
£3 := min 6116%Da (2) jz_(:) il @ ).e—p1.6—p2

to obtain a polynomial Px4+1(z) := 2nr4+1 + /2 Qk+1(z)7™+1, where ng4+1 > N
and Q41 # 0 on dD. Therefore, the polynomial Py | is orthogonal to Py, Py, ..., P
and satisfies the following statements

(@) (1 —e2)H < R*(Pis1) < H on 9D
(b) R2(g1) + R*(Pret1) — &3 < R2(g1 + Peg1) < R*(g1) + R*(Pys1) + €3 on 9D
(©) R*(g2) + R*(Pey1) — &3 < R*(g2 + Piy1) < R*(g2) + R*(Pis1) + 3 on 3.

Direct estimation on 9D gives (s2)

k+1 k
RD_P | <R[ D P | + R*(Prgr) + &3
j=0 j=0
k 5 k
<R*[ > P +za h=R*[ P
Jj=0 =
+4a (h=R? (50 Py))
<h

and (s3)

j=

k+1 k
R? Z P | >R? (Z Pj) + R*(Piy1) — €3
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148 P. Kot, P. Pierzchata

Furthermore, combining (a)—(c) and the induction hypothesis gives conditions (s4) —
(s5)

k+1 k k41
R? ZR/ <R? ZP/' + R*(Pry1) + 63 < ZR2(Pj) + p1 + €3

=0 Jj=0 j=0

+

=Y R*Pj)+e
j=0
and

k+1 k

RN Pi+o|<R*[D_Pi+¢
j=0 j=0

k+1
AR (Pey1) + 63 < RE@) + Y R*(P)) + p2 + &3
j=0
k+1
<R +R*|D_Pj | +e
j=0
Similarly,
k+1 k+1
R? ij >ZR2(Pj)—8
j=0 j=0
and
k+1 k+1
RI\DPi+¢|>R*@+R* D P | -e
j=0 Jj=0

The induction is now complete.
Observe that statements (s2) and (s3) imply that

n

; 2 . —

lim R Z(:)P’ () =h(z), z€dD
]:

and
n
R D P

j=0 neN
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The Radon Inversion Problem for Holomorphic Functions... 149

is an increasing sequence. Hence, by Dini’s theorem, R? (Z i—o Pj ) converges uni-
formly to h. Therefore, there exists N € N such that

N
> P;| >6h onaD.

Theorem 8 There exists a holomorphic function f(z) = Y oo anz" such that

1. R%(f) € C(D)

lan? \’
2. ) = oo, 0, 1).
;(2’1“) oo, sel0,1)

Proof For every j € N we may apply the preceding lemma with ¢ = 0, h =
1, a:=2"/, § :=1/2toobtain N; € N and a sequence of orthogonal polynomials
{ij}Ofngj, jeN such that

(a) R2(Pk) <2 I, k=

) 3 L _xe Zij

Observe that if n > m, then

N N 1/2
n 1 J m 1 J
sup | R? E —2E ij—z — 2P| @
z€dD = A =1 JT =

z€dD Jj=m+1 k=0
n 1 Nj 172

< sup S (R Do Pi | @

z€dD J:m_HJ =0

S
< —- —> 0
j< nm—>00
Jj=m+1

neN
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is a Cauchy sequence in HR?(ID) which by Proposition 1 is convergent in HR*(ID).
Therefore, we may define a function

Nj

Z%Z Pji € O(D).

Denote R> (Z”_l 1/% Zk 2o P ) by P,, for the moment. If n > m, then on 9D

[GAYER (Pmﬂ/z\

1/2 m N; 1/2
1
2 2
(e (Zrzm)) - (@ (Ere
1] k=0 j:lj k=0
1/2 " | N; 1/2
(S azn)) =5 (@(Ene
—m+1 Jj=m+1 J k=0
n 1 j 1/2 n 1
— _ 2 . —
=Y s (® (T =X %m0
j=m+1 k=0 Jj=m+1

Observe that there exists a constant C > 0 such that sup, s, [P, (2)| < C for all
n € N. Hence,

sup [P (z) — Pu(2)| = sup [((Pu@)Y? + Pu@)?) ((Pu()? = P (2))'?)]

z€dD z€d
<2C sup|(77n(Z))1/2 (Pu@)'?| — 0.
2ol n,m— o0
This implies that
R Z ZP g
j= 1 neN

is a Cauchy sequence in the space of continuous functions, so R>(f ) € C(0D) and
consequently by Theorem 2, the function R?( f) is also continuous in I.

Now we turn to conclusion 2. Let Pjx(z) = Zneljk Djkn(z) = Zneljk ajknz" be
the homogeneous expansion of P, where [ is the set of monomials’ degrees of the
polynomial Pjy. By construction, I, N Iy = @ for (j,m) # (i, k). Sets € [0, 1).
Notice that by statement b),

1Pikl3p = IR*(Pi)lliop <277, k=0,....Nj,
which implies that

5 N 1= 5 i(1—s)
1Pl3p = 1Pl3 (IPkIBp2") = 1PxI3p2/ 0™, k=0,....N,.
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Due to the orthogonality of the polynomials p jx,, a simple calculation shows that

2 n2
1Pl =1 S pinlBp = 3 Ipjnlp = 3 / / ajn 1" Pt (2)
nelji nelj nelji
2.2n |ajkn|
= Aipn|“t"dt = .
Z [0 1 in] Z 2n +1
neljy nelji

Finally, we conclude from all this that

) 1 lajl? X>Z 1y |a]kn
AL R VA A WAV 2n+1

Z Pkl
Jj.k

Jj.k,n €lji

o] 1 NJ 00 1 NJ

- Z s 1Pl = Z = 2 1Pkl sp2/do
=17 =0 =17 =0
00 1 Nj 2

= J— . J(1=s9) Jj(1=s)

_st Pit 2 >22J4v2
j=1 k=0 D j=1

=00

for s € [0, 1). The proof of the theorem is now complete. O

Observe that the above theorem does not depend on all the statements from Lemma 7.
However, we may improve Theorem 8 so that the function f satisfies also the Radon
inversion problem. This can be done by applying the full version of Lemma 7 with
suitable arguments.

Theorem 9 Let @ € C(3D) be a strictly positive function. There exists a holomorphic
function f(z) =Y noan" such that

1. R*(f)=® on D
2. R*(f) e C(D)

e¢]

|t | ’
3, ML 0, 1).
§<2n+l> oo, s€l0.D)

Proof Without loss of generality let us assume that sup,;p |9 (z)] < 1. We shall
construct a sequence of orthogonal polynomials { Qx } 72 , with the following properties

Ni
(pl) each Oy = Z Py is a sum of orthogonal polynomials Py;
j=0
k-1 k
(p2) R*(Pyj) < |® — R? (Z Qm) ondD, j=0,1,..., Ng
m=0 1,0D
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k
(p3) R? (Z Qm> < @ on oD

m=0
k k—1 k—1
4) R? m e — g2 m R? m | onaD
o (o) -5 (0 (S o)) (2o
1 k—1
(P9 1Qkl3p > 5 | & —R? (Z Qm>
m=0 1,0

We will apply Lemma 7 iteratively, with new a, h, ¢, 0, € at each iteration. Let us
begin our process by selecting Q¢ = 0. Next apply Lemma 7 to
inf |@(z)|, h o, ¢=0, 60 !
a = 1m s = s =0, = —,
zedD ‘ 2

This produces N; € N and orthogonal polynomials Pjg, Pi1, ..., Pin, such that
o R*(P1j) < [|®]1,5p ondD, j=0,1,..., N

Ni
o R? ZPU < @ on oD

j=0
Al 11

o R*|D P> 5@ > ;@ ondD.
j=0

Now it is enough to define Q1 := Zj\lo Py . Proceeding inductively, let us assume
that orthogonal polynomials Qq, Q1, ..., Qk with the required properties (p1) — (p5)
have been constructed. We then may apply Lemma 7 with

k k+1 3 k
(p_Rz <Z Qm) ’ hZZZ(¢—R2 <Z Qm))a
1,0D m=0

a =

m=0

k k
o _2 L. ey
¢ = mzzzo Om, 0:= 3 &= g ZIEI})fI‘D (@(Z) R <m§::0 Qm) (Z))

to obtain Ni11 € N and orthogonal polynomials Pi11,0, Pry1,1, - .., Pri1,n,,, that
are also orthogonal to the polynomials Qq, Q1, ..., Qk and satisfy the following
conditions

k+1

(@) R*(Piy1.j) < ondD, j=0,..., Nip1

(o)

=0

3

1,0D

Ni+1 3 k

(b) R? ZPH],,- <h=Z & —R2 (Z Qm)> on dD
j=0 m=0
Nit1 1 k

() R? X(:) Pisrj | > 0h =3 (cp — R2 (Z; Qm>> on D
j= m=
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k Ni+1 k Ni+1
d) |R? Z Om+ Z Pry1,j —R? (Z Qm> - R? Z Pryy,j < 2¢
m=0 Jj=0 m=0 Jj=0
on oD.

If we define Qi41 1= Zjﬁg‘ Pyt1,j, then statements (p1) — (p2) and (p5) immedi-
ately hold. Other properties (p3) — (p4) follow from simple calculations

k+1 k k
R (Z Qm> <R? (Z Qm> + R Q1) +26 < R? (Z Qm)
m=0

m=0 m=0
k
+P _Rz <Z Qm) =9
m=0
and

k+1 k k
R? (Z Qm) > R? (Z Qm) +R*(Qk41) =26 = R? (Z Qm>
m=0

m=0 m=0

(o)

That completes the induction. Combining statements (p3)—(p4) iteratively gives the
following

Cele)-e-Lfos(Ee)) #(Ee)

m=0 m=0
3 ) k—1
“ieom(ze)

Xop

This leads to the conclusion that lim,_, o R> (ZZ:O Qk) = @ on 0D. Moreover, if
n > m, then

n m 1/2 n 1/2
sup <R2 (Z Ox — Zw) (z)) sup (RZ( > Qk) (z))
z€dD k=0 k=0 z€dD k=m+1
sup ( 3 (RZ(Qk)(Z))1/2>

zedD k=m+1

n k—1 1/2
a5 26 (e
z€dD k=m+1 m=0

k
n
3
5 (I> TG
. 2
j=m+1

— 0.
n,m—00

IA

IA
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Hence, {ZZ:O Ok }n <y 1s @ Cauchy sequence in HR? (D) and by Proposition 1 is convergent

in HR*(D). It follows that the function f = Zk —o Qk is well-defined and holomorphic
in . Then Proposition 1 also tells us that R?(f) = lim,—c R? (3 }_, Qk) = @ on JD.

Furthermore, due to Theorem 2 the function R2( £) is continuous in D.
Now we prove the second part of the theorem. Taking into account that Qg = 0, we may

observe that f = > to; Ok = Y pey Zl,‘vio Pyj. Property (p2) implies that

k
1Py 13,0 = [R* P 5p <

- R? (S Qm)

m=0

1,0D
which is equivalent to

—k

(i)

m=0

IPGI3p <1, j=0...., Ny
1,0D

If s € [0, 1), then we may apply above inequality to obtain that

—k
k—1
1PG I3 > 1P 13 | | @ — R (Z Qm) 1P 13,
m=0 1,0 P
o P L J=0.....Ne. (9
@ - R? (Z Qm) 1P 13,1
m=0 1,0D

Let

P =Y prjn(@) =Y ajn?"

nely; nely;
be the homogenous expansion of Pyj, where Ii; is the set of monomial’s degrees of the

polynomial Py;. By construction, I,j N Iy; = @ for (m, j) # (k,i). Orthogonality of the
polynomials py;j, gives the equality

2
n2 |ak]n|
1Pl =D Ipkjnllsp = Z/ / lakjnz"t" Pdedo (@) = 7 S

nely; nely; nely;

We conclude with the following estimation

lagjnl>\' Iakjnl2 >,
2 m+il) = 2. Z2n+1 =22 IRyl
k,j k,j ely; k=1 j=0
JJn o \n€lyj j=
KGs=1)

9 oo
25

e(t)

m=0

2
S IPG I3
j=0

1,0D
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k(s—1)

oo k—1
) (Z Qm> 1Qkl3.
k=1 m=0 1,0D
s 1 i1 k(s—1)+1
14 2
25 fe-m (o)
k=1 m=0 1,0D
1
> - =
=z ) 5=
k>1/(1—s)
for s € [0, 1). This completes the proof. O

It is worth mentioning that in contrast to Theorem 6, in the above theorem we have
applied Proposition 1 to show that the function that has been constructed in Theorem
9 satisfies the Radon inversion problem. This provides two different approaches in
proving solvability of the problem under consideration.

4 Final Remarks

Herein, we shall give some remarks about the comparison of the Radon inversion
problem we have solved in this paper and the generalization of the inner function
problem formulated in (2). The second problem in one variable can be easily solved
by applying the Schwarz integral. There exists a continuous real valued function ¢
such that G = ¢?. Solving a standard Dirichlet problem for ¢ we obtain a harmonic
function uy € C (D) such that up = ¢ on 9. Then, the Schwarz integral for uy
produces a function S(ug) € O(D) such that Re(S(uy)) € C(D) and Re(S(ug)) =
¢ on 0D (see e.g. [3,7]). Now it is enough to take g := ¢S®s) Here we observe that
if f, g € O(D) are solutions of (1) and (2) respectively, then both functions |g| and
RP(f) are continuous up to the boundary 0D as has been shown in Theorem 2.
However, there is a significant difference between the problems under consideration
regarding zero sets of their possible solutions. On the one hand, notice that if g is a
solution of the generalized inner function problem (2), then continuity of |g| up to
the boundary D implies that g cannot have infinitely many zeros. On the other hand,
there exists a solution of the Radon inversion problem that has infinitely many zeros.
In Theorem 6 we have constructed a function f(z) := Y vo;(nkp + DVP Qr(2)2™,
where Qy is a polynomial with certain properties. The function f is a solution to (1).
Observe that it may be modified suitably to have infinitely many zeros in the following
way: For m € N there exist R, € (0, 1) and n,, € N sufficiently large such that

m—1
> up + DV 0r@2"| < (mp + DVYPREQ(2)] for z € 8D,
k=1

Then by Rouché’s theorem, polynomial Y j-; (nxp + 1)'/? Qx(2)z" has the same
number of zeros as (1, p+1)/? Q,,(z)z" in the disc D Rr,, - Choosing suitably increas-
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ing sequences {R;,}men C (0, 1) and {n;,}en C N we may guarantee that f has
infinitely many zeros in D.
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