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Abstract
Several necessary and sufficient conditions for a family ofMöbius maps to be a normal
family in the extended complex plane C∞ are established. Each of these conditions
involves collections of two or three points which may vary with the Möbius maps in
the family, provided the points satisfy a uniform separation condition. In addition, we
derive a sufficient condition for the normality of a family of Möbius maps in terms of
the average value of the reciprocal of the chordal derivative.
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1 Introduction

We establish several necessary and sufficient conditions for a family of Möbius maps
to be a normal family in the extended complex plane C∞. Each of these conditions
involves collections of two or three points that satisfy a uniform separation condition.
These conditions are refinements of known characterisations of normal families of
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meromorphic functions. Despite the perceived elementary nature of Möbius maps,
and the familiarity of normal families in complex analysis, we believe that the role of
Möbius maps in normal families is not properly represented in the literature, so it may
be useful to record the following discussion.

A familyF of functions, eachmeromorphic in a region� inC∞, is a normal family,
or (more briefly) is normal, in� if each sequence taken fromF has a subsequence that
converges, uniformly with respect to the chordal metric χ , on each compact subset
of � to some meromorphic function (which may be the constant function ∞); see,
for example, [6,9,14,15,20]. The importance of normal families in complex analysis
is beyond doubt, and this stems largely from Montel’s famous three omitted values
theorem: a family F of functions, each meromorphic in a region �, is normal in �

if there are three distinct values u, v and w such that, for each f in F , none of the
equations f (z) = u, f (z) = v and f (z) = w has a solution z in �. In [8, p. 202]
Carathéodory extended Montel’s result to allow the omitted values to depend on the
function providing that these values satisfy a suitable separation condition which is
given in terms of a product of three chordal distances. See [6, Thm. 8.4] for a recent
proof of Carathéodory’s theorem.

Carathéodory’s Theorem A family F of functions, each meromorphic in a region �,
is normal in � if, for each f in F , there are three distinct values u f , v f and w f such
that f omits these values in �, and

inf{χ(u f , v f ) χ(v f , w f ) χ(w f , u f ) : f ∈ F} > 0. (1.1)

Here χ denotes the chordal distance on C∞. The use of the product here is a
distraction, for as χ ≤ 2, inequality (1.1) is equivalent to the three inequalities

inf{χ(u f , v f ) : f ∈ F} > 0;
inf{χ(v f , w f ) : f ∈ F} > 0;
inf{χ(w f , u f ) : f ∈ F} > 0.

A family of triples {(u f , v f , w f ) : f ∈ F} satisfying the three inequalities above is
said to be uniformly separated, and the same phrase is used to describe a family of
pairs {(u f , v f ) : f ∈ F} satisfying just the first inequality above.

Despite the importance of Montel’s three omitted values theorem, the existence of
three omitted values is not a necessary condition for normality (consider the functions
z �→ z +n, n = 1, 2, . . . , onC), and much later Montel improved this result by giving
a necessary and sufficient condition for the normality of a family of meromorphic
maps [16]. This later result, which does not seem to be as well known as it might be,
requires that there are four points in the codomain whose inverse image sets, which
need not be non-empty, are uniformly separated on compact subsets of �. This result
contains the three omitted values theorem as a special case, although the proof in [16]
contains an error which has been corrected in [7].We note that whereas Carathéodory’s
result requires the separation of points in the codomain, Montel’s result requires the
separation of points in the domain�. This apparent discrepancy will be resolved later.
For Möbius maps four points can be reduced to three points.
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Normal Families of Möbius Maps 525

Theorem 1 For any family F of Möbius maps the following are equivalent.

(a) The family F is normal in C∞.
(b) For any uniformly separated set of triples {(u f , v f , w f ) : f ∈ F}, the set{(

f −1(u f ), f −1(v f ), f −1(w f )
) : f ∈ F}

is also uniformly separated.
(c) There exists a uniformly separated set of triples {(u f , v f , w f ) : f ∈ F} such that{(

f −1(u f ), f −1(v f ), f −1(w f )
) : f ∈ F}

is uniformly separated.

Moreover, [7] contains a local three omitted values characterization of normality
as follows. Suppose that A is a set of four points in C∞. A family F of meromorphic
functions is normal in a region� if and only if each point z0 ∈ � has a neighbourhood
U0 in which each f inF omits at least three of the four values in A. For Möbius maps
the cardinality of the set A can be decreased from four to three. Loosely speaking, the
next result says that a family F of Möbius maps is normal if and only if each f in F
locally omits two of three given values.

Theorem 2 For any family F of Möbius maps and any region � in C∞ the following
are equivalent.

(a) The family F is normal in �.
(b) For any set A = {u, v, w} of distinct points in C∞, each point z0 in � has a

neighbourhood in which each f in F omits at least two of the values in A.
(c) There exists a set A = {u, v, w} of distinct points in C∞ such that each point z0

in � has a neighbourhood in which each f in F omits at least two of the values
in A.

Next, Hinkkanen [10] and Lappan [12] independently showed that a family F of
functions, meromorphic in a region �, is normal in � if there are five distinct values
w1, . . . , w5 such that the family { f # : f ∈ F} of spherical derivatives of functions inF
is bounded on the union of the five inverse-image sets

{
f −1(w j ) : f ∈ F}

. Previously,
Lappan [11] had given a similar five-value characterization of normal functions on
the unit disc. Here we show that for families of Möbius maps, and with the chordal
derivative f χ rather than the spherical derivative f # (the choice of derivatives will be
discussed later), the number five is reduced to two.

Theorem 3 For any family F of Möbius maps the following are equivalent.

(a) The family F is normal in C∞.
(b) For any uniformly separated set of pairs {(u f , v f ) : f ∈ F},

sup
{

f χ (z) : f ∈ F , z ∈ f −1({u f , v f })
}

< +∞.

(c) There exists a uniformly separated set of pairs {(u f , v f ) : f ∈ F} with

sup
{

f χ (z) : f ∈ F , z ∈ f −1({u f , v f })
}

< +∞.

Beyond this, in Sect. 8 we will also derive a sufficient condition for the normality
of a family of Möbius maps in terms of the average value of the reciprocals of the
chordal derivatives taken over C∞; see Lemma 1 and Theorem 10. This result raises
the question ofwhether or not some such averaging result holds for families of rational,
or even meromorphic, maps.
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2 Preliminary Material onMöbius Maps

Throughout, C is the complex plane, which we identify with the co-ordinate plane
{(x1, x2, x3) : x3 = 0} in R3 in the usual way, and C∞ is the extended complex plane.
The unit sphere is denoted by S

2 and the open unit ball by B
3, each in R

3. Now the
stereographic projection of S2 onto C∞ is well known, and has a long history dating
back to Hipparchus of Nicae (190–125 bce) who may have been the first person to
introduce the terms ‘longitude’ and ‘latitude’. Apparently, the term ‘stereographic
projection’ was introduced by F. D’Aiguillon (1566–1617). However, we shall mainly
use its inverse, which we denote by �, and which is given by

�(z) =
(

2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
, �(∞) = (0, 0, 1), (2.1)

where x and y are the real and imaginary parts of z, respectively. Note that if I is the
inversion in the sphere in R

3 with centre (0, 0, 1) and radius
√
2, then stereographic

projection and its inverse are simply the restrictions of I to S
2 and C∞, respectively.

Finally, the chordal metric χ on C∞ is defined by χ(z, w) = |�(z) − �(w)|. It can
be computed using the formulas

χ(z, w) = 2|z − w|
√
1 + |z|2√1 + |w|2 and χ(z,∞) = 2

√
1 + |z|2 ,

for z, w �= ∞.
A Möbius map is a map of the form

f (z) = az + b

cz + d
, ad − bc = 1,

where the norm ‖ f ‖ of f is defined (unambiguously) by

‖ f ‖2 = |a|2 + |b|2 + |c|2 + |d|2 = ‖ f −1‖2.

Note that because ad − bc = 1,

‖ f ‖2 − 2 ≥ |a|2 + |b|2 + |c|2 + |d|2 − 2(|ad| + |bc|)
= (|a| − |d|)2 + (|b| − |c|)2,

so ‖ f ‖2 ≥ 2.
If f is meromorphic at a point z in C∞, then the chordal derivative f χ (z) of f at

z is, by definition,

f χ (z) = lim
w→z

χ
(

f (w), f (z)
)

χ(w, z)
.
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Normal Families of Möbius Maps 527

This was introduced by Marty in his fundamental paper on normal families under the
name derivée sphérique [13]. In more recent times, the spherical derivative has been
defined by

f #(z) = | f ′(z)|
1 + | f (z)|2 = lim

w→z

χ
(

f (w), f (z)
)

2|w − z| ,

and this should not be confused with our use of chordal derivative. LikeMarty, we pre-
fer to use the chordal derivative (rather than the modern spherical derivative) because
it is more natural to use the same metric in both the domain and codomain, it allows
either z or f (z) to be ∞, and (unlike the modern spherical derivative) it satisfies a
chain rule which we will need later, namely ( f g)χ (z) = f χ (g(z))gχ (z), where f g
denotes composition. Also, the chordal derivative of the identity map is the constant
1, whereas the spherical derivative of the identity map is not even constant.

The chordal derivative of the Möbius map f (z) = (az + b)/(cz + d), where
ad − bc = 1, is

f χ (z) = (1 + |z|2) | f ′(z)|
1 + | f (z)|2 = 1 + |z|2

|az + b|2 + |cz + d|2 ,

so
1

f χ (z)
= |az + b|2 + |cz + d|2

1 + |z|2 . (2.2)

Next, we convert an elementary Euclidean identity forMöbius maps into its chordal
form. For any Möbius map f and all z, w ∈ C,

∣∣ f (z) − f (w)
∣∣ = |z − w| √| f ′(z)| | f ′(w)| ,

provided neither f (z) nor f (w) is∞. By substituting formulas for the chordal distance
and chordal derivative into this Euclidean identity, we obtain

χ( f (z), f (w)) = χ(z, w)
√

f χ (z) f χ (w) , (2.3)

and in fact this equation is true for all z, w ∈ C∞.

3 Uniformly Bi-Lipschitz Families

Each Möbius map is a bi-Lipschitz map of the metric space (C∞, χ) onto itself (see,
for example, [3,6]) and, for z �= w, we have

1

‖ f ‖2 ≤ χ
(

f (z), f (w)
)

χ(z, w)
≤ ‖ f ‖2. (3.1)
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528 A. F. Beardon et al.

The best inequality of this form is

χ(z, w)

E( f )
≤ χ

(
f (z), f (w)

) ≤ E( f ) χ(z, w), (3.2)

where

E( f ) = 1

2

(
‖ f ‖2 +

√
‖ f ‖4 − 4

)

(see [3,4]) and the (geometric) reason for this will be given later.
Observe that we have an infinitesimal version of (3.1), namely

1

‖ f ‖2 ≤ f χ (z) ≤ ‖ f ‖2, (3.3)

and since ‖ f ‖ = ‖ f −1‖, we also have

1

‖ f ‖2 ≤ χ
(

f −1(z), f −1(w)
)

χ(z, w)
≤ ‖ f ‖2, 1

‖ f ‖2 ≤ (
f −1)χ

(z) ≤ ‖ f ‖2.

In any event, since ‖ f ‖ = ‖ f −1‖ and C∞ is compact, these inequalities together
with the Arzelà–Ascoli theorem (see [6, Thm. 5.3]) yield the following most basic
result of all; here F−1 = {

f : f −1 ∈ F}
.

Theorem 4 A family F of Möbius maps is normal in C∞ if and only if any one (and
hence all) of the following conditions hold:

(a) F is a uniformly bi-Lipschitz family of self-maps of (C∞, χ);
(b) sup{‖ f ‖: f ∈ F} < +∞;
(c) F−1 is normal in C∞.

Because ‖ f −1‖ = ‖ f ‖ and ‖ f g‖ ≤ ‖ f ‖ ‖g‖ for Möbius maps f and g (see [3,
p. 12]), Theorem 4 has the following corollary.

Corollary 1 Suppose that F = { f j : j ∈ J } and G = {g j : j ∈ J } are normal families
of Möbius maps in C∞. Then

{
f −1

j : j ∈ J
}
, { f j g j : j ∈ J } and

{
f j g

−1
j : j ∈ J

}
are

also normal families in C∞.

The first inequality in (3.1) leads to a proof of the following fact which is part of the
folk-lore of the subject: if ( fn) is a sequence of Möbius maps that converges uniformly
with respect to χ on C∞ to the function f , then f is also a Möbius map. Indeed, as
the fn are meromorphic throughout C∞ we see that f is meromorphic there; thus f
is a rational map. Next, { f1, f2, . . .} is a normal family so Theorem 4(a) implies that
there is a positive number L such that χ

(
fn(z), fn(w)

) ≥ Lχ(z, w) for all z and w

in C∞. If we fix distinct z and w and then let n tend to ∞, we find that f (z) �= f (w);
thus f is an injective rational map and so is a Möbius map. It follows from this that
the family of Möbius maps is closed in the family of all continuous self-maps of C∞
with the topology of uniform convergence relative to χ on C∞.
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Normal Families of Möbius Maps 529

If we recall Carathéodory’s theorem, then we see from (a) and (c) in Theorem 4 that
the separation of points in the domain, or the codomain, is equivalent to the separation
of their images, or pre-images, respectively. In short, the distinction between these
two issues is, for Möbius maps, illusory.

4 Separation of Points and Normality

Recall that a set {(u j , v j , w j ) : j ∈ J } of triples of distinct points in C∞ is uniformly
separated if

inf
j∈J

χ(u j , v j ) > 0, inf
j∈J

χ(v j , w j ) > 0, inf
j∈J

χ(w j , u j ) > 0.

If this is so then we let

χ [u j , v j , w j : j ∈ J ] = inf{χ(u j , v j ) χ(v j , w j ) χ(w j , u j ) : j ∈ J },

which is positive.
Similarly, a collection {(u j , v j ) : j ∈ J } of pairs of points is uniformly separated

if inf j∈J χ(u j , v j ) > 0.
The norm of a Möbius map can be expressed in terms of the images of the cube

roots of unity.

Theorem 5 If f is a Möbius map, then

‖ f ‖2 = 2√
3

χ
(

f (1), f (ω)
)2 + χ

(
f (ω), f (ω2)

)2 + χ
(

f (ω2), f (1)
)2

χ
(

f (1), f (ω)
)
χ

(
f (ω), f (ω2)

)
χ

(
f (ω2), f (1)

) , (4.1)

where ω = exp(2π i/3).

Proof First, we derive an expression equivalent to the right-hand side of (4.1). For-
mula (2.3) implies that the numerator of the rightmost fraction in (4.1) is

3
(

f χ (1) f χ (ω) + f χ (ω) f χ (ω2) + f χ (ω2) f χ (1)
)

and the denominator is

3
√
3 f χ (1) f χ (ω) f χ (ω2),

because χ(1, ω) = χ(ω, ω2) = χ(ω2, 1) = √
3. Therefore, the right-hand side of

(4.1) is
2

3

(
1

f χ (1)
+ 1

f χ (ω)
+ 1

f χ (ω2)

)
. (4.2)

Next, we rewrite (4.2) in terms of ‖ f ‖2. For |z| = 1, (2.2) gives

1

f χ (z)
= 1

2

(
‖ f ‖2 + 2Re

(
(ab + cd)z

))
. (4.3)
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If we replace z by 1, ω and ω2 in (4.3), and then add the three resulting identities, we
obtain

2

3

(
1

f χ (1)
+ 1

f χ (ω)
+ 1

f χ (ω2)

)
= ‖ f ‖2, (4.4)

because the sum of the cube roots of unity is zero. Hence, (4.1) holds. �

Corollary 2 Let F be a family of Möbius maps.

(a) If F is a normal family in C∞, say ‖ f ‖ ≤ N for all f ∈ F , then

χ [ f (1), f (ω), f (ω2) : f ∈ F] ≥ 3
√
3

N 6 .

(b) If ε > 0 and χ [ f (1), f (ω), f (ω2) : f ∈ F] ≥ ε, then F is a normal family in
C∞ with ‖ f ‖2 ≤ 8

√
3/ε for all f ∈ F .

Less precisely, a family of Möbius maps is normal if and only if the images of 1, ω
and ω2 are uniformly separated over the family.

Proof The assertion in part (a) follows immediately from (3.1) because χ(1, ω) =
χ(ω, ω2) = χ(ω2, 1) = √

3. The proof of part (b) is also brief since identity (4.1)
gives

‖ f ‖2 ≤ 8
√
3

χ
(

f (1), f (ω)
)
χ

(
f (ω), f (ω2)

)
χ

(
f (ω2), f (1)

) ≤ 8
√
3

ε
. (4.5)

A larger upper bound for ‖ f ‖2 was given in [6, Thm. 8.2] using a different method of
proof. �

Remark 1 The right-hand side of (4.1) relates toWeitzenböck’s inequality inEuclidean
geometry [21]; see [17] for a simple proof of amore general result. In order to establish
the connection, view f (1), f (ω) and f (ω2) as points on the unit sphere S

2. These
three points determine a plane in R

3 and a Euclidean triangle in this plane; let A, B,
C be the side lengths of this Euclidean triangle. Weitzenböck’s inequality asserts that

A2 + B2 + C2 ≥ 4
√
3 I , (4.6)

where I denotes the area of the triangle, and equality holds if and only if the triangle
is equilateral. Recall that the area of the triangle is given by I = ABC/(4R), where
R is the circumradius of the triangle. Hence, (4.6) gives

2
(

A2 + B2 + C2
)

√
3 ABC

≥ 2

R
, (4.7)

with equality if and only if the triangle is equilateral. Hence, ‖ f ‖2 ≥ 2/R. The
vertices of the triangle lie on the unit sphere, so R ≤ 1 and we obtain the known
inequality ‖ f ‖2 ≥ 2 with equality if and only if f (1), f (ω), f (ω2) are the vertices of
an equilateral triangle inscribed in a great circle (in which case f is a rotation of S2).
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Normal Families of Möbius Maps 531

We come now to a result at the heart of the arguments about separated values
(whether they be omitted values or pre-images). Recall that Möbius maps act triply-
transitively on C∞. In order to obtain the normality of a family of Möbius maps that
carry prescribed triples to another set of prescribed triples, uniform separation of the
triples is required.

Theorem 6 Let {(u j , v j , w j ) : j ∈ J } and {(p j , q j , r j ) : j ∈ J } be uniformly sep-
arated sets of triples of distinct points in C∞ and, for each j , let h j be the unique
Möbius map such that h j (u j ) = p j , h j (v j ) = q j and h j (w j ) = r j . Then {h j : j ∈ J }
is a normal family of Möbius maps in C∞. Explicitly, for all j ,

‖h j‖ ≤ 8
√
3

χ [u j , v j , w j : j ∈ J ]1/2χ [p j , q j , r j : j ∈ J ]1/2 . (4.8)

This result combinedwithCorollary 1 implies thatwe canmove fromone uniformly
separated set of triples to another (typically, one of these sets might be the special triple
{1, ω, ω2}) by the use of a normal family {h j } of Möbius maps. For example, in such
arguments we can replace three given omitted values by three uniformly separated
values without creating or destroying normality.

Proof It is obvious from Corollary 2 that if {(u j , v j , w j ) : j ∈ J } is a uniformly
separated set of triples of distinct points in C∞ and if, for each j , f j is the unique
Möbius map such that f j (u j ) = 1, f j (v j ) = ω and f j (w j ) = ω2, then { f j : j ∈ J }
is a normal family of Möbius maps in C∞; indeed, from Corollary 2(b),

‖ f j‖2 ≤ 8
√
3

χ [u j , v j , w j : j ∈ J ] .

Similarly, if g j is theMöbiusmap such that g j (p j ) = 1, g j (q j ) = ω and g j (r j ) = ω2,
then

‖g j‖2 ≤ 8
√
3

χ [p j , q j , r j : j ∈ J ] .

As h j = g−1
j f j , we have ‖h j‖ = ‖g−1

j f j‖ ≤ ‖g−1
j ‖ ‖ f j‖ = ‖g j‖ ‖ f j‖, and (4.8)

follows from this. �


Essentially the same proof shows that the following result is also true (alternatively,
we can convert the uniformly separated pairs into uniformly separated triples and apply
Theorem 6).

Corollary 3 Let {(u j , v j ) : j ∈ J } and {(p j , q j ) : j ∈ J } be uniformly separated sets
of pairs of distinct points in C∞. Then there exists a normal family {h j : j ∈ J } of
Möbius maps in C∞ such that, for each j , h j (u j ) = p j and h j (v j ) = q j .

We can now prove Theorem 1.
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532 A. F. Beardon et al.

Proof of Theorem 1 To show that (a) implies (b), suppose that the set of triples
(u f , v f , w f ) is uniformly separated and thatF is normal. ThenF−1 is normal, and so
uniformlybi-Lipschitz. It follows that the set of triples

(
f −1(u f ), f −1(v f ), f −1(w f )

)

is uniformly separated, so (a) implies (b).
That (b) implies (c) is trivial.
Finally, we show that (c) implies (a). Theorem 6 implies that if both sets

{(u f , v f , w f ) : f ∈ F} and {( f (u f ), f (v f ), f (w f )) : f ∈ F} are uniformly sep-
arated, then F is a normal family. The same holds if we replace F by F−1, so the
hypotheses of (c) show that F−1 is normal. Thus F is also normal. �


The next example demonstrates that the separated triples in Theorem 1 cannot be
replaced with separated pairs.

Example 1 It is easy to see that the existence of two separated fibers does not imply
normality. Let F = { f1, f2, . . . } where fn = nz, and, for each f ∈ F , let u f = 0
and v f = ∞. Then χ(u f , v f ) = χ( f (u f ), f (v f )) = χ( f −1(u f ), f −1(v f )) = 2,
yet F is not normal in C∞.

Remark 2 It is known that if a sequence of Möbius maps converges at three distinct
points to three distinct values, then it converges uniformly on C∞ to a Möbius map
[18]. We sketch a proof of this fact that is reminiscent of standard proofs of Vitali’s
theorem using a normal families argument. Let f1, f2, . . . be a sequence of Möbius
maps. Suppose that z1, z2, z3 and w1, w2, w3 are two triples of distinct points in C∞
and fn(z j ) → w j , for j = 1, 2, 3. Let f be the uniqueMöbius map with f (z j ) = w j ,
j = 1, 2, 3. Theorem 1 implies that F = { fn : n = 1, 2, . . . } is a normal family. A
sequence of functions froma normal family converges locally uniformly to a fixed limit
function if and only if each subsequence has this same function as a local uniform limit.
If a subsequence of f1, f2, . . . converges uniformly on C∞, then the limit function
is a Möbius map that takes z1 to w1, z2 to w2 and z3 to w3. Hence, the limit must
be f because a Möbius map is uniquely determined by its action on three points. A
quantitative version of this result was established in [5].

5 Locally Omitted Values and Normality

Montel’s three omitted values theorem tells us that a family of meromorphic functions
on a region � is normal in � if it omits three distinct values. Because Möbius maps
have no omitted values in C∞ itself, there is no analog of Montel’s three omitted
values theorem for Möbius maps on C∞. We recall a related result on omitted values
for Möbius maps, where normality is now on a proper subregion ofC∞, see [3, p. 42].

Theorem 7 Let � be a proper subregion of C∞, and let u and v be distinct points in
C∞. Then the family of Möbius maps that omit the values u and v in � is uniformly
Lipschitz on compact subsets of �.

Theorem 7 shows that a sufficient condition for normality of a family of Möbius
maps on � is that the family omits two distinct values, and this result has a
Carathéodory-type extension to variable omitted values provided they are uniformly
separated.
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Theorem 8 Suppose that � is a proper subregion of C∞, F is a family of Möbius
maps, and for each f ∈ F there exist distinct points u f , v f ∈ C∞ such that f omits
in � both u f and v f . If the pairs {(u f , v f ) : f ∈ F} are uniformly separated, then F
is uniformly Lipschitz on compact subsets of �.

Proof Suppose that χ(u f , v f ) ≥ ε for all f ∈ F , where ε > 0. Then in � each
f ∈ F satisfies the Lipschitz-type condition

χ( f (z), f (ζ )) ≤ 8χ(z, ζ )

ε
√

χ(z, ∂�)
√

χ(ζ, ∂�)

for all z, ζ ∈ �; see [3, p. 42]. This inequality implies that F is uniformly Lipschitz
on each compact subset K of � with explicit Lipschitz constant 8/

(
ε χ(K , ∂�)

)
. �


We are now in a position to prove Theorem 2.

Proof of Theorem 2 Suppose that (a) holds. Choose z0 ∈ � and let K be a com-
pact chordal disc centred at z0 and contained in �. Marty’s theorem and (2.3) imply
that there is a positive constant M such that for all z and w in K and all f in F ,
χ

(
f (z), f (w)

) ≤ M χ(z, w). Let ε be theminimum ofχ(u, v),χ(v,w) andχ(w, u).
Consider an open chordal disc D centred at z0 and contained in K with radius less
than ε/(2M). Then for all f ∈ F and any z1, z2 ∈ D,

χ( f (z1), f (z2)) ≤ Mχ(z1, z2) < ε.

It follows that at most one of the values u, v and w is contained in f (D). Thus (b)
holds. Next, (c) follows trivially from (b). Finally, suppose that (c) holds. Then, by
Theorem 8, each z in C∞ has an open neighbourhood on which F is normal. Because
normality is a local property, F is normal in �, which is statement (a). �


By using Theorem 8, it is possible to obtain a version of Theorem 2 involving
variable triples of points.

6 The Chordal Derivative and Normality

The norm of a Möbius map can be expressed in terms of the chordal derivative at any
pair of antipodal points. Recall that for any z ∈ C∞, z and−1/z are a pair of antipodal
points in C∞.

Theorem 9 For any Möbius map f and any z ∈ C∞,

‖ f ‖2 = 1

f χ (z)
+ 1

f χ (−1/z)
. (6.1)

Proof This is an elementary computation; add the identity (2.2) for z to the identity
with z replaced with −1/z. �
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Inequality (3.3) shows that if F is a normal family, then the family of chordal
derivatives { f χ : f ∈ F} is uniformly bounded on C∞. Using Theorem 9 we can
obtain a stronger necessary and sufficient condition for normality.

Corollary 4 Let F be a family of Möbius maps. Then F is a normal family in C∞ if
and only if sup

{
f χ (z) : f ∈ F , z ∈ f −1({0,∞})} < +∞.

Proof First, if F is a normal family, then { f χ : f ∈ F} is uniformly bounded on C∞,
so sup

{
f χ (z) : f ∈ F , z ∈ f −1({0,∞})} < +∞. Conversely, suppose that there

exists a positive constant M with f χ (z) ≤ M for z ∈ f −1({0,∞}) and all f ∈ F .
For f ∈ F , consider g = f −1. If z0 = f −1(0), then

1 = gχ ( f (z0)) f χ (z0) ≤ Mgχ (0),

so gχ (0) ≥ 1/M . Similarly, gχ (∞) ≥ 1/M . Then Theorem 9 implies that ‖ f ‖2 =
‖g‖2 ≤ 2M . This holds for all f ∈ F , so F is normal in C∞. �


Since we can pass from one uniformly separated set of pairs, or triples, to another
without creating or destroying normality, the choice of 0 and ∞ here is not essential
and these points can be replaced by any set of uniformly separated pairs, as is the case
in Theorem 3.

Proof of Theorem 3 To show that (a) implies (b), suppose that F is normal in C∞.
Then { f χ : f ∈ F} is uniformly bounded on C∞, say by M , and f χ (z) ≤ M for all
f ∈ F and z ∈ f −1({u f , v f }). Thus, (a) implies (b).

That (b) implies (c) is trivial.
Finally, we prove that (c) implies (a). By Corollary 3, we can construct a normal

family of Möbius maps H = {h f : f ∈ F} on C∞ such that, for all f , we have
h f (u f ) = 0 and h f (v f ) = ∞. Because H is normal, there is a finite constant L
such that hχ (w) ≤ L for all w ∈ C∞ and all h ∈ H. Let z0 = f −1(u f ). Then
h f f (z0) = 0, so we obtain the inequality(

h f f
)χ

(z0) = hχ
f (u f ) f χ (z0) ≤ L M,

where

M = sup
{

f χ (z) : f ∈ F , z ∈ f −1({u f , v f })
}
.

This inequality holds for all functions in K = {h f f : f ∈ F}. Likewise, the same
bound holds for all functions inKwhen z0 = f −1(v f ). Hence, Corollary 4 implies that
K is a normal family. As the familiesK andH−1 are both normal and f = h−1

f (h f f ),
Corollary 1 implies that F is normal in C∞. �


7 A Geometric Perspective

In this section we comment on the geometry that lies behind the results in this paper.
First, let H3 = {(x1, x2, x3) ∈ R

3 : x3 > 0}. Then H
3, when equipped with the
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metric ds = |dx |/x3, is a model of three-dimensional hyperbolic space, say with
hyperbolic distance ρ. Further, the group of Möbius automorphisms of H3 is the
group of conformal isometries of the associated hyperbolic geometry of H3. We then
have the fundamental result (see [3, p. 61]) that

‖ f ‖2 = 2 cosh ρ
(
ζ, f (ζ )

)
, ζ = (0, 0, 1). (7.1)

Next, as we remarked earlier, both stereographic projection and its inverse
� : C∞ → S

2 are appropriate restrictions of the inversion I in the sphere
{x ∈ R

3 : |x − ζ | = √
2}. Let R denote the Euclidean reflection in the plane x3 = 0

(and recall that we have identified this plane withC). SinceR fixes each point ofC∞,
we see that � is the restriction of the composite map I ◦ R to C∞. This composite
transformation maps C∞ onto S

2, and it maps the upper-half H3 of R3 onto the unit
ball B3.

Now, corresponding to each Möbius map f of C∞ onto itself there is a map
f ∗ : S2 → S

2 which is given by f ∗ = � f �−1; this simply transfers the action
of f on C∞ to an action of f ∗ on S

2. Since the Möbius map f acts on H
3 as well as

on C∞, we see by thinking of � as I ◦ R that f ∗ also acts on the unit ball B3, and
this action is an isometry of B3 endowed with the hyperbolic metric 2|dx |/(1− |x |2)
and hyperbolic distance ρ (for more details see, for example, [1–3,19]). Finally, since
I ◦ R : H3 → B

3 is an isometry (of the two hyperbolic metrics), we obtain

2 cosh ρ
(
0, f ∗(0)

) = 2 cosh ρ
(
ζ, f (ζ )

) = ‖ f ‖2, 0 = (0, 0, 0).

If we now return to (3.2), we find that the best Lipschitz constant for the action of f
on C∞ is

E( f ) = exp ρ
(
0, f ∗(0)

)
.

This description gives a visual explanation of Theorem 4; see Fig. 1, which indicates
why a uniform bound on ρ

(
0, f ∗(0)

)
imposes a uniform bound on the distortion of the

action of f ∗ on S2, and hence a bound on the distortion of f in terms of χ . Briefly, we
consider the family of all hyperbolic geodesics inB3 that pass through 0. Their images
under f ∗ are the family of geodesics that pass through f ∗(0), and it is intuitively clear
from Fig. 1 that if 0 is only moved a bounded distance, then the distortion on S

2 is
uniformly controlled.

However, Theorem 4 implies much more than this for, in conjunction with (7.1)
and the Arzelà–Ascoli theorem, it shows that sup{‖ f ‖: f ∈ F} < +∞ is not only
a necessary and sufficient condition for a family F of Möbius maps to be normal
on the boundary S

2 of B3 (and hence on C∞), it is also a necessary and sufficient
condition for F to be normal in B

3 itself. Finally, while Carathéodory (and others)
use the inequalities |a| ≤ M , |b| ≤ M , |c| ≤ M and |d| ≤ M instead of a logically
equivalent condition ‖ f ‖ ≤ M1, this conceals (rather than reveals) the underlying
geometry because whereas ‖ f ‖ has a clear geometric interpretation, the individual
coefficients have no such interpretation.
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f∗

Fig. 1 The distortion on S2 is controlled by the hyperbolic distance between 0 and f ∗(0)

8 The Average of the Reciprocal of the Chordal Derivative

From Theorem 9 we see that, for any Möbius map f , the average of the reciprocals
of the chordal derivatives f χ (0) and f χ (∞) is 1

2‖ f ‖2. The significance of 0 and ∞
here is that �(0) and �(∞) are two points on S

2 whose centre of gravity lies at the
origin 0 in R

3. Next, it is shown in [5] and in the proof of Theorem 5 that if ω1, ω2
and ω3 are the three cube roots of unity then, for a Möbius map f ,

1

3

(
1

f χ (ω1)
+ 1

f χ (ω2)
+ 1

f χ (ω3)

)
= 1

2
‖ f ‖2,

and the three points �(ω1), �(ω2) and �(ω3) on S
2 have centre of gravity 0. We

shall now absorb these two results into a more general result which will show that,
for certain probability measures μ on C∞ the expected value of the reciprocal of the
chordal derivative f χ of f with respect to μ is 1

2‖ f ‖2. We shall prove this for the
simplest case of a probability measure μ that is uniformly distributed over a finite set
of points z1, . . . , zn ; the general result follows in a similar way.

We start with a discrete uniform probability measure μ on C∞, with a mass 1/n
at each of the points z1 . . . , zn in C∞, and then transfer this to the measure μ∗ on S

2

which has a mass of 1/n at each of the points �(z1), . . . , �(zn). We need to assume
that the measureμ∗ has its Euclidean centre of gravity at 0, and with this we can prove
the following result.

Lemma 1 Let f be a Möbius map, and let z1, . . . , zn be points in C∞ such that
�(z1) + · · · + �(zn) = 0. Then

1

n

(
1

f χ (z1)
+ 1

f χ (z2)
+ · · · + 1

f χ (zn)

)
= 1

2
‖ f ‖2 = cosh ρ

(
0, f ∗(0)

)
.

Proof First, the identity cosh ρ
(
0, f ∗(0)

) = 1
2‖ f ‖2 was discussed in Sect. 7.

Next, the points z j are in C∞, and
∑

j �(z j ) = 0. Thus, from (2.1), we see that

z1
|z1|2 + 1

+ z2
|z2|2 + 1

+ · · · + zn

|zn|2 + 1
= 0
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and
|z1|2 − 1

|z1|2 + 1
+ |z2|2 − 1

|z2|2 + 1
+ · · · + |zn|2 − 1

|zn|2 + 1
= 0.

Since (trivially)

|z1|2 + 1

|z1|2 + 1
+ |z2|2 + 1

|z2|2 + 1
+ · · · + |zn|2 + 1

|zn|2 + 1
= n,

we see that

|z1|2
|z1|2 + 1

+ · · · + |zn|2
|zn|2 + 1

= 1

|z1|2 + 1
+ · · · + 1

|zn|2 + 1
= 1

2
n.

Finally, with f (z) = (az + b)/(cz + d), where ad − bc = 1, we have

1

n

n∑

j=1

1

f χ (z j )
= 1

n

n∑

j=1

|az j + b|2 + |cz j + d|2
|z j |2 + 1

= 1

n

n∑

j=1

(|a|2 + |c|2)|z j |2 + (|b|2 + |d|2) + (ab̄ + cd̄)z j + (āb + c̄d)z̄ j

|z j |2 + 1

= 1

2

(|a|2 + |b|2 + |c|2 + |d|2)

= 1

2
‖ f ‖2,

as required. �

We can now consider the general situation. We shall say that a Borel probability

measure μ onC∞ is admissible if the corresponding push-forward measure μ∗ on S2,
defined by μ∗(E) = μ

(
�−1(E)

)
, satisfies

∫

S2
x dμ∗(x) = 0;

equivalently, the measure μ∗ on S
2 has its Euclidean centre of gravity at the origin 0

in R3. We then have the following result.

Theorem 10 Let f be a Möbius map, and let μ be an admissible probability measure
on C∞. Then the expected value of 1/ f χ with respect to μ over C∞ is 1

2‖ f ‖2; that
is, ∫

C∞

1

f χ (z)
dμ(z) = 1

2
‖ f ‖2 = cosh ρ

(
0, f ∗(0)

)
.

We leave the reader to provide the proof of Theorem 10, which mirrors the proof
of Lemma 1 after replacing the sums by integrals.
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