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Abstract
Differential equations of the form f ′′+A(z) f ′+B(z) f = 0 (*) are considered, where
A(z) and B(z) �≡ 0 are entire functions. The Lindelöf function is used to show that for
any ρ ∈ (1/2,∞), there exists an equation of the form (*) which possesses a solution
f with a Nevanlinna deficient value at 0 satisfying ρ = ρ( f ) ≥ ρ(A) ≥ ρ(B), where
ρ(h) denotes the order of an entire function h. It is known that such an example cannot
exist when ρ ≤ 1/2. For smaller growth functions, a geometrical modification of an
example of Anderson and Clunie is used to show that for any ρ ∈ (2,∞), there exists
an equation of the form (*) which possesses a solution f with a Valiron deficient
value at 0 satisfying ρ = ρlog( f ) ≥ ρlog(A) ≥ ρlog(B), where ρlog(h) denotes the
logarithmic order of an entire function h. This result is essentially sharp. In both proofs,
the separation of the zeros of the indicated solution plays a key role. Observations on
the deficient values of solutions of linear differential equations are also given, which
include a discussion of Wittich’s theorem on Nevanlinna deficient values, a modified
Wittich theorem for Valiron deficient values, consequences of Gol’dberg’s theorem,
and examples to illustrate possibilities that can occur.

Keywords Finite order · Logarithmic order · Linear differential equation ·
Nevanlinna deficient value · Valiron deficient value
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1 Introduction

The solutions of the linear differential equation

f (n) + An−1(z) f
(n−1) + · · · + A1(z) f

′ + A0(z) f = 0 (1.1)
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146 G. G. Gundersen et al.

with entire coefficients A0(z), . . . , An−1(z), A0(z) �≡ 0, are entire, and it is well
known that the zeros of any solution f �≡ 0 of (1.1) are of multiplicity ≤ n − 1.
The main focus of this paper is on solutions of (1.1) which have less than the usual
frequency of zeros. A standard measurement of the frequency of a c-point (c ∈ C) of
an entire function f is the Nevanlinna deficiency δN (c, f ) defined by

δN (c, f ) = lim inf
r→∞

m(r , f , c)

T (r , f )
= 1 − lim sup

r→∞
N (r , f , c)

T (r , f )
.

If δN (c, f ) > 0, then c is said to be a Nevanlinna deficient value of f .
Let ρ( f ) denote the order of an entire function f . It is known [6, p. 207] that an

entire function f cannot possess a finite Nevanlinna deficient value when ρ( f ) ≤ 1/2.
Thus it can be asked:

For any given ρ ∈ (1/2,∞), does there exist an equation of the form (1.1) that
possesses a solution f satisfying ρ( f ) = ρ and δN (0, f ) > 0?

If there are no restrictions on the orders of the coefficients A j (z) in (1.1), then
Gol’dberg’s theorem (stated in Sect. 3) could be used to easily answer this question
affirmatively, see the sentence following (1.3). By putting a common growth restric-
tion on the coefficients, the following result answers this question for second order
equations

f ′′ + A(z) f ′ + B(z) f = 0, (1.2)

where A(z) and B(z) �≡ 0 are entire functions.

Theorem 1 For any given ρ ∈ (1/2,∞), there exists an equation of the form (1.2)
which possesses a solution f satisfying δN (0, f ) > 0 and ρ = ρ( f ) ≥ ρ(A) ≥ ρ(B).

Theorem 1 is sharp with respect to ρ ∈ (1/2,∞) because, as noted above, the result
does not hold for ρ ≤ 1/2. The solution f in the proof of Theorem 1 is the classical
Lindelöf function Lρ in (6.1). Thus the crux of the proof is to find entire coefficients
A(z) and B(z) satisfying (1.2) and

ρ( f ) ≥ ρ(A) ≥ ρ(B). (1.3)

If the inequalities (1.3) were removed from the conclusion of Theorem 1, then
Theorem 1 would easily follow by combining Gol’dberg’s theorem with the known
properties that Lρ has all simple zeros and δN (0, Lρ) > 0, see Sects. 3 and 6. The
proof of Theorem 1 involves proving a separation of zeros property of Lρ , namely,
that the zeros of Lρ are uniformly q-separated for any q > ρ.

Regarding (1.3), recall that (1.2) cannot possess a non-trivial solution of finite
order in the case when ρ(A) < ρ(B), see [8, Thm. 2]. Many examples in the liter-
ature of solutions of (1.2) involve elementary functions, where A(z), B(z), f are of
integer order and satisfy the double inequalities (1.3). However, there are examples of
A(z), B(z), f that are of integer order and still do not satisfy (1.3), as Examples 2 and 8
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below show. In addition, Theorem 1 addresses all the orders in the infinite interval
(1/2,∞), not just the integer orders.

Example 2 If w(z) is any entire function, then f (z) = ez satisfies

f ′′ + w(z) f ′ − (1 + w(z)) f = 0.

For smaller growth functions f , we obtain an analogous result to Theorem 1 by
considering Valiron deficient values and logarithmic order. The Valiron deficiency
δV (c, f ) of a c-point of an entire function f is defined by

δV (c, f ) = lim sup
r→∞

m(r , f , c)

T (r , f )
= 1 − lim inf

r→∞
N (r , f , c)

T (r , f )
.

Clearly 0 ≤ δN (c, f ) ≤ δV (c, f ) ≤ 1. If δV (c, f ) > 0, then c is said to be a Valiron
deficient value of f .

For slowly growing entire functions, finite Nevanlinna deficient values are not
possible but Valiron deficient values are possible. The growth of such functions f can
be measured in terms of the logarithmic order ρlog( f ) defined by

ρlog( f ) = lim sup
r→∞

log T (r , f )

log log r
.

Observe that finite logarithmic order implies zero order, non-constant polynomials
have logarithmic order one, and that there donot exist any non-constant entire functions
of logarithmic order < 1, see [3,4].

A classical result of Valiron [1,21] says that any entire function f satisfying
T (r , f ) = O

(
log2 r

)
has no finite Valiron deficient values. Entire functions f sat-

isfying ρlog( f ) < 2 have this growth rate. Hence we state our main result regarding
Valiron deficient values as follows.

Theorem 3 For any given ρ ∈ (2,∞), there exists an equation of the form (1.2)
which possesses a solution f satisfying δV (0, f ) = 1 and ρ = ρlog( f ) ≥ ρlog(A) ≥
ρlog(B), where A(z) is transcendental.

Theorem 3 is essentially sharp with respect to ρ ∈ (2,∞) because the result does
not hold when ρ < 2, and the only unsettled case is when ρlog( f ) = 2 and f has
infinite logarithmic type.

The solution f in Theorem 3 is a laborious modification of a function due to
Anderson and Clunie [1], and its symmetric geometric construction takes a substantial
portion of this paper. More precisely, the proof of [1, Thm. 2] involves a canonical
product with negative real zeros of unbounded multiplicity. Such a function is a real
entire function (real on reals), but it cannot be a solution of (1.2) because it has zeros
with unbounded multiplicities. Thus we modify the reasoning in [1] in such a way
that the revised canonical product f has only simple zeros lying symmetrically in
the left half-plane, where f has the pre-determined logarithmic order. The zeros of f
will be pairs of complex conjugates so that f becomes real entire, and, in addition,

123



148 G. G. Gundersen et al.

f (r) = M(r , f ) holds. These properties are crucial for proving that δV (0, f ) = 1.
A consequence of the proof of Theorem 3 is that the zeros of the modified Anderson-
Clunie function f are uniformly logarithmically q-separated for any q > ρlog( f )−1.

After preparations in Sect. 5,we proveTheorem1 in Sect. 6,while after preparations
in Sect. 7,we proveTheorem3 inSect. 8. For convenience, Sect. 4 contains information
about the separation of zeros of entire functions.

In Sect. 3, we discuss the possibilities for the sets EN ( f ) and EV (g) of the Nevan-
linna and Valiron deficiencies of solutions f , g of equations of the general form (1.1).
It is shown that it follows from Gol’dberg’s theorem that EN ( f ) can be countably
infinite and EV (g) can be uncountable. The next section contains examples that illus-
trate a classical theorem of Wittich on Nevanlinna deficient values and a particular
modified Wittich theorem for Valiron deficient values.

2 Wittich’s Theorem

On the topic of possible deficiencies of solutions of equations of the form (1.1), we
recall the following well-known result of Wittich on Nevanlinna deficient values.

Wittich’s theorem ([15, Thm. 4.3], [22]) Suppose that a solution f of (1.1) is admis-
sible in the sense that

T (r , A j ) = o(T (r , f )), j = 0, . . . , n − 1, (2.1)

as r → ∞ outside a possible exceptional set of finite linear measure. Then 0 is
the only possible finite Nevanlinna deficient value for f. In particular, this is true for
transcendental solutions of (1.1) with polynomial coefficients.

The assumption on admissibility of f cannot be removed inWittich’s theorem. The
next example shows that if the growth of at least one of the coefficients in (1.1) is at
least that of a solution f , then any c ∈ C can be a Picard value of f .

Example 4 For an arbitrary c ∈ C and an arbitrary entire function w(z), the function
f (z) = ez + c with c as its Picard value solves the equation

f (4) + ce−z f ′′′ + w(z) f ′′ − w(z) f ′ − f = 0.

The following example shows that 0 may or may not be a deficient value for an
admissible solution.

Example 5 The function f (z) = exp
(
z2/2

)
is an admissible solution of

f ′′′ + ez f ′′ + (ez − zez − 1 − z2) f ′ − (zez + ez + 2z) f = 0,

which has 0 as a deficient value. On the other hand, from [9, Ex. 5], the function
g(z) = exp

(
z2
) + ez is an admissible solution of

f (4) + (8z3 − 13) f ′′ − (16z4 + 16z3 + 12z2 + 4z + 2) f ′

+ (16z4 + 8z3 + 12z2 + 4z + 14) f = 0.
(2.2)
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Deficient Values of Solutions of Linear... 149

We have T (r , g) ∼ N (r , 1/g) as r → ∞ by [19, Satz 1-2], so that δN (0, g) = 0.
Observe that f1(z) = exp

(
z2
)
and f2(z) = ez also satisfy (2.2), where δN (0, f1) =

δN (0, f2) = 1.

The next example gives an equation of the form (1.2) whose non-trivial solutions
are all admissible solutions with 0 as a deficient value.

Example 6 The functions f (z) = exp
(
z2/2

)
sin z and g(z) = exp

(
z2/2

)
cos z dis-

cussed in [8, p. 416] are linearly independent admissible solutions of

f ′′ − 2z f ′ + z2 f = 0. (2.3)

It follows that all the non-trivial solutions of (2.3) are admissible and have 0 as a
deficient value. Moreover, if w(z) is any entire function, then f and g satisfy

f ′′′ + (w(z) − 2z) f ′′ +
(
z2 − 2 − 2zw(z)

)
f ′ +

(
z2w(z) + 2z

)
f = 0.

More examples of this kind can be generated by using [8, Ex. 4].

Next we note that the above examples for Nevanlinna deficient values are also
examples for Valiron deficient values, since we always have δN (c, f ) ≤ δV (c, f ).
Although the set EN ( f ) is at most countable from the second fundamental theorem,
the set EV ( f ) can be uncountable. A classical result of Ahlfors-Frostman [18, p. 276]
shows that EV ( f ) always has logarithmic capacity zero. Improvements of this result
are due to Hyllengren [14] in the finite order case and to Hayman [12] in the infinite
order case. See also [6, Ch. 4].

Wittich’s theorem can easily be modified to deal with Valiron deficient values. To
achieve this,weneed to avoid all exceptional sets, and thus the reasoningworks only for
finite-order solutions. This modified result is particularly valuable when ρ( f ) ≤ 1/2,
as we know that f does not have finite Nevanlinna deficient values in this case.
Solutions of zero-order are also possible, provided that at least one of the coefficients
is transcendental [9]. For the convenience of the reader, a proof is given.

Modified Wittich’s theorem Suppose that a finite-order solution f of (1.1) satisfies
(2.1) as r → ∞ without an exceptional set. Then 0 is the only possible finite Valiron
deficient value for f.

Proof Let c ∈ C\{0}. Write (1.1) in the form

( f − c)(n) + An−1(z)( f − c)(n−1) + · · · + A0(z)( f − c) = −cA0(z),

which in turn can be written as

1

f − c
= − 1

cA0(z)

(

A0(z) + A1(z)
( f − c)′

f − c
+ · · · + ( f − c)(n)

f − c

)

.

Using a version of the lemma on the logarithmic derivative valid for functions of
finite order (where no exceptional set appears) together with the first main theorem
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150 G. G. Gundersen et al.

and the assumption (2.1) without an exceptional set, we obtain that m(r , f , c) =
O(log r) + o(T (r , f )), as r → ∞ without an exceptional set. The property (2.1)
guarantees that f is transcendental, even if the coefficients are polynomials. Thus,
m(r , f , c) = o(T (r , f )) as r → ∞ without an exceptional set. This proves that c is
not a Valiron deficient value of f . ��

Theorems 1 and 3 address a different question than that in Wittich’s theorem and
the modified Wittich’s theorem. That said, we mention for independent interest that
the proofs of Theorems 1 and 3 do not reveal whether the indicated solution f is an
admissible solution of (1.2) or not.

3 Gol’dberg’s Theorem and Sets of Deficiencies

Any zero of a non-trivial solution of (1.1) must have multiplicity≤ n−1. Conversely,
we have the following result.

Gol’dberg’s theorem [10, p. 300] Let f �≡ 0 be an entire function whose zeros all
have multiplicity at most n − 1, n ∈ N. Then f is a solution of some differential
equation of the form (1.1).

If n = 1, then f has no zeros, and the proof of Gol’dberg’s theorem is trivial. For
the convenience of the reader, we prove the case n = 2.

Proof of Gol’dberg’s theorem for n = 2. Let f �≡ 0 be any entire function whose
zeros are all simple. We assume that f has at least one zero, since otherwise the proof
is trivial.

We construct entire functions A(z) and B(z) �≡ 0 such that f solves (1.2). For A(z)
to be entire, at the zeros zk of f , A(z) needs to solve the interpolation problem

A(zk) = − f ′′(zk)
f ′(zk)

= σk, (3.1)

where σk ∈ C. Note that (3.1) can always be solved: If {zk} is a finite sequence, then
A(z) can be chosen to be the Lagrange interpolation polynomial, while if {zk} is an
infinite sequence, then A(z) can be constructed by means of Mittag–Leffler series. Let
ζ �= zk be fixed. Along with (3.1), we may require that

A(ζ ) �≡ − f ′′(ζ )

f ′(ζ )
. (3.2)

This guarantees that f ′′(z)+ A(z) f ′(z) �≡ 0. After an entire A(z) satisfying (3.1) and
(3.2) has been found, we define B(z) by

B(z) = −( f ′′(z) + A(z) f ′(z))/ f (z), (3.3)

which is entire and �≡ 0. This completes the proof. ��
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Deficient Values of Solutions of Linear... 151

Remark 1 If f �≡ 0 is any entire function, then for a suitable constant c, the function
g = f − c has all simple zeros. A consequence of this easy observation is that many
properties of f , such as the number of deficient values, remain valid for g, and by
Gol’dberg’s theorem, g solves some equation of the form (1.2).

Example 7 (1) Solutions of (1.2) may have any pre-given finite number q ≥ 2 of
Nevanlinna deficient values. Indeed, set

f (z) =
∫ z

0
e−ζ q dζ and ak = e2πki/q

∫ ∞

0
e−ζ q dζ,

where k = 1, . . . , q. Then f is entire, δN (ak, f ) = 1/q, and δN (c, f ) = 0
whenever c �= ak , k = 1, . . . , q, see [11, pp. 46–47]. Since f ′(z) = e−zq has no
zeros, we obtain that for any c �= ak , (k = 1, . . . , q), the function g = f − c has
all simple zeros and exactly q Nevanlinna deficient values, and by Gol’dberg’s
theorem, g is a solution of some equation of the form (1.2).

(2) Eremenko [6, p. 132] proved that for any countable set E ⊂ C and any ρ > 1/2,
there exists an entire function f of order ρ for which EN ( f ) = E . If f is any
such function, then for a suitable c ∈ C, the function g = f − c has only simple
zeros and countably many Nevanlinna deficient values, and g solves an equation
of the form (1.2).

(3) Let f be an entire function with uncountably many Valiron deficient values [6,
p. 118]. For a suitable c ∈ C, g = f − c has only simple zeros and uncountably
many Valiron deficient values, and g solves an equation of the form (1.2).

Gol’dberg’s theoremdoes not give information about the orders of the coefficients in
(1.1). Thus, although Gol’dberg’s theorem is useful in the above discussions, it cannot
be used to prove the respective inequalities ρ( f ) ≥ ρ(A) ≥ ρ(B) and ρlog( f ) ≥
ρlog(A) ≥ ρlog(B) in Theorems 1 and 3.

4 Separation of Zeros

We recall a few concepts from [20, Ch. V]. To shorten the notation, for q > 0, let �q

denote the standard sequence space consisting of sequences {wn} in C satisfying∑
n |wn|q < ∞. We say that an infinite sequence {zn} in C\{0} with no finite limit

points has a finite exponent of convergence λ > 0 if {1/|zn|} ∈ �λ+ε\�λ−ε for any
ε ∈ (0, λ), while λ = 0 if {1/|zn|} ∈ �ε for any ε > 0. The genus of {zn} is the unique
integer p ≥ 0 satisfying {1/|zn|} ∈ �p+1\�p. If λ /∈ N ∪ {0}, then p = �λ� (= the
integer part of λ), while if λ ∈ N ∪ {0}, then either p = λ or p = λ − 1. In all cases,
p ≤ λ. The Weierstrass convergence factors are

e0(z) = 1 and ek(z) = exp

⎛

⎝
k∑

j=1

z j

j

⎞

⎠ ,
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152 G. G. Gundersen et al.

where k ∈ N. If {zn} has finite genus p ≥ 0, then the canonical product

f (z) =
∞∏

n=1

(
1 − z

zn

)
ep

(
z

zn

)
(4.1)

converges uniformly on compact subsets ofC, and hence represents an entire function
having zeros precisely at the points zn . We have p ≤ λ ≤ ρ( f ).

Our first observation in this section is that, even though the double inequalities
ρ( f ) ≥ ρ(A) ≥ ρ(B) in Theorem 1 occur for solutions of (1.2), they do not always
hold, as many examples show, including Examples 2 and 8.

Example 8 Let {zn} be the sequence defined by z2n−1 = 2n and z2n = 2n + εn , where
{εn} is any fixed sequence satisfying

0 < εn < exp
(− exp

(
2n
))

, n ≥ 1.

Thus the sequence {zn} has non-zero distinct points, and its exponent of convergence
is equal to zero. Then the canonical product

f (z) =
∞∏

n=1

(
1 − z

zn

)
(4.2)

is an entire function of order zero. Moreover,

f ′(zk) = − 1

zk

∏

n �=k

(
1 − zk

zn

)
,

f ′′(zk) = 2

zk

∑

m �=k

1

zm

∏

j �=k,m

(
1 − zk

z j

)
, (4.3)

so that

σk = − f ′′(zk)
f ′(zk)

= 2
∑

n �=k

1

zn − zk
. (4.4)

Then the reasoning in the proof of [2, Cor. 1] shows that

|σ2k−1| ≥ exp (exp (|z2k−1|)) + O(1).

Thus no finite order A(z) can satisfy (3.1), even though ρ( f ) = 0. As before, we set
B(z) to be the function in (3.3), and then ρ(B) = ∞.

Obviously, many zeros of the function f in (4.2) are close together. As stated in
Sect. 1, the separation of zeros of the indicated solutions play a key role in the proofs
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of Theorems 1 and 3. For illustrative purposes, we discuss some examples regarding
uniformly q-separated sequences (defined below).

Following an analogous definition in the unit disc [7], we say that a sequence {zn} of
finite genus p is uniformly q-separated for q ≥ 0 provided that there exists a constant
C > 0 such that

inf
k∈N

⎧
⎨

⎩
eC|zk |q ∏

n �=k

∣∣∣∣1 − zk
zn

∣∣∣∣

∣∣∣∣ep

(
zk
zn

)∣∣∣∣

⎫
⎬

⎭
> 0. (4.5)

An elementary differentiation of (4.1) followed by a substitution z = zk yields

f ′(z) = −
∞∑

j=1

z p

z p+1
j

ep

(
z

z j

)∏

n �= j

(
1 − z

zn

)
ep

(
z

zn

)
,

f ′(zk) = −ep(1)

zk

∏

n �=k

(
1 − zk

zn

)
ep

(
zk
zn

)
,

(4.6)

so that we may write (4.5) equivalently as

inf
k∈N

{
|zk |eC|zk |q | f ′(zk)|

}
> 0. (4.7)

The definition of a q-separated sequence in [13] assumes that C = 1 in (4.7).

Example 9 We prove that the zeros of the function f in (4.2) are not uniformly q-
separated for any q ≥ 0. Let q ≥ 0, and set k = 2n − 1. We have

|zk || f ′(zk)| =
∣∣∣∣1 − zk

zk+1

∣∣∣∣
∏

j �=k, k+1

∣∣∣∣1 − zk
z j

∣∣∣∣

= zk+1 − zk
zk+1

· exp
⎛

⎝
∑

j �=k, k+1

log

∣∣∣∣1 − zk
z j

∣∣∣∣

⎞

⎠

≤ εn

2n + εn
· exp

⎛

⎝
∑

j �=k, k+1

log

(
1 +

∣∣∣∣
zk
z j

∣∣∣∣

)
⎞

⎠

≤ εn

2n
· exp

⎛

⎝
∞∑

j=1

∣∣∣∣
zk
z j

∣∣∣∣

⎞

⎠ ≤ εn

2n
· exp (K |zk |)

for some constant K > 0 independent of k. Thus, for every C > 0,

|zk |eC|zk |q | f ′(zk)| ≤ exp
(
C2nq + K2n − n log 2 − exp

(
2n
) ) → 0

as n → ∞ (or equivalently as k → ∞).
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Remark 2 In Example 8, we showed that the function f in (4.2) could not satisfy
the conclusion in Theorem 1, and above we showed that the zeros of this function
are not uniformly q-separated for any q ≥ 0. In contrast, the zeros of the indicated
solution f in Theorem 1 (the Lindelöf function Lρ) are uniformly q-separated for
every q > ρ( f ), see Sect. 6.

For completeness, we construct an example of a uniformly q-separated sequence
for q > 0 and λ = 0.

Example 10 The sequence {zn} given by zn = 2n is uniformly 0-separated and
has zero exponent of convergence [13, p. 299]. For a fixed q > 0, choose γn ∈[
min {1/2, 2n exp (−2nq)} , 1), and define wn = zn +γn . Then {wn} is also uniformly
0-separated and has zero exponent of convergence. Let {ζn} denote the union sequence
{zn} ∪ {wn}. Construct canonical products P1(z) and P2(z) with zero sequences {zn}
and {wn}, respectively, and define P(z) = P1(z)P2(z). Then a calculation in the spirit
of Example 9, with P in place of f , shows that {ζn} is uniformly q-separated. The
details are omitted.

5 Preparations for the Proof of Theorem 1

The following auxiliary result is a modification of [13, Cor. 3.3] that is needed to find
an entire A(z) satisfying the interpolation problem (3.1) in our proof of Theorem 1.
As we see, the growth of such an A(z) depends heavily on the uniform q-separation
of the zeros of f . This needs to be taken into account when proving the inequality
ρ( f ) ≥ ρ(A).

Lemma 3 Suppose that {zn} is an infinite sequence of non-zero points in C with finite
exponent of convergence λ, and that {zn} is uniformly q-separated for some q ≥ 0
(and C > 0). Let {σn} be an infinite sequence of points in C, not necessarily distinct,
and let h : [0,∞) → [1,∞) be a continuous and non-decreasing function such that
|σn| ≤ h(|zn|) for n ∈ N.

Then there exists an entire function A(z) �≡ 0 such that

A(zn) = σn, n ∈ N, (5.1)

and, for any given α > 1,

ρ(A) ≤ max

{
λ, lim sup

r→∞
log I (αr)

log r

}
, (5.2)

where I (x) = maxe≤t≤x
log

(
h(t)eCtq

)

log t is a non-decreasing function for x ≥ e.

Proof Without loss of generality, we may suppose that {zn} is ordered according to
increasing moduli. Moreover, I (x) is well defined and non-decreasing by continuity.
Let P(z) be the canonical product of genus p ≤ λ having {zn} as its zero sequence.
By uniform q-separation, the points zn are simple, and hence 1/P ′(zn) ∈ C for any n.
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(a) Suppose that σn �= 0 for all n. Let H(z) denote the Mittag–Leffler series in [13,
Eq. (3.1)], i.e.,

H(z) =
∞∑

n=1

cn
z − zn

(
z

zn

)qn
, (5.3)

where cn = σn/P ′(zn) and {qn} is a sequence such that each qn ≥ 0 is the
smallest integer satisfying

qn ≥ max

{

α

(
log |cn|
log |zn| + p

)
,
log |cn |

n

log |zn| + p + 1

}

for |zn| > e, and set qn = 0 otherwise. Then H(z) is meromorphic in C and
A = PH is an entire function that satisfies (5.1). Hence it suffices to prove (5.2).

By the assumptions, there exists a constant C1 > 0 such that

|cn| ≤ C1|zn|h(|zn|)eC|zn |q , n ∈ N.

Thus

log |cn|
log |zn| ≤ log

(
h(|zn|)eC|zn |q )

log |zn| + C2, |zn| ≥ e, (5.4)

where C2 > 0 is a constant. Set

g(t) = log
(
h(t)eCtq

)

log t
+ C2, t ≥ e,

so that the inequality

log |cn|
log |zn| ≤ g(|zn|)

holds for every n such that |zn| ≥ e. As in the proof of [13, Cor. 3.3], we would
like to apply [13, Thm. 3.1] next, but the monotonicity of g(t) is not known, in
particular when 0 ≤ q < 1. Thus we replace g(t) with

G(t) = max
e≤x≤t

g(x),

which is a non-decreasing function by continuity. Now [13, Thm. 3.1] gives us

ρ(H) ≤ max

{
λ, lim sup

r→∞
logG(αr)

log r

}
.
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Indeed, it is apparent from the proof of [13, Thm. 3.1] that the finitely many
indices n for which |zn| < e have no affect on this conclusion. The assertion
(5.2) then follows from ρ(A) ≤ max{ρ(P), ρ(H)}.

(b) Suppose that σn = 0 for at least one n. If σn = 0 for all n, wemay choose A(z) =
P(z), in which case (5.1) and (5.2) clearly hold. Hence we may suppose that
σn = 0 for at least one index n but not for all n. Let {sn} denote the subsequence
of {σn} consisting of all the non-zero points. Let {zn} = {ζn}∪ {ξn} be a partition
of the sequence {zn} such that each ζn corresponds to sn . In other words, the
interpolation problem (5.1) is transformed into finding an entire function A(z)
such that

A(ζn) = sn and A(ξn) = 0. (5.5)

We factorize the canonical product P(z) as P(z) = R(z)S(z), where R(ζn) = 0
and S(ξn) = 0. Supposing that {sn} is an infinite sequence, let H(z) denote
the Mittag–Leffler series (5.3), where cn = sn/P ′(ζn) �= 0. Then A = PH is
entire and satisfies (5.5). The growth condition (5.2) is then proved just as in Part
(a). If {sn} is a finite sequence, then for H(z) we choose a finite Mittag–Leffler
series. Once again A(z) = P(z)H(z) is entire and satisfies (5.5) along with
ρ(A) = ρ(P) = λ. ��

Remark 4 (a) The proof of Lemma 3 differs from that of [13, Cor. 3.3] in two ways:
The possibility that σn = 0 for some n is now included, and the growth of the
majorant function g(t) has been considered in more detail.

(b) Lemma 3 will be applied to the target sequence σk = − f ′′(zk)/ f ′(zk) in (3.1),
where f is a canonical product with genus p ≥ 0. A very similar target sequence
appears in the proof of [2, Thm. 1]. We have the representation

σk = −2p

zk
+ 2

∑

n �=k

(
zk
zn

)p 1

zn − zk
, (5.6)

which was proved for p = 0 in Example 8. For p ≥ 1, we have the first-order
derivatives (4.6). A second differentiation yields

f ′′(zk) = −2p

z2k
ep(1)

∏

j �=k

(
1 − zk

z j

)
ep

(
zk
z j

)

+ 2

zk
ep(1)

∑

n �=k

z pk
z p+1
n

ep

(
zk
zn

) ∏

j �=n,k

(
1 − zk

z j

)
ep

(
zk
z j

)
,

which together with (4.6) implies (5.6).
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(c) Let f be an entire function having simple zeros at the points an , and let {bn} be
a target sequence. Then the Lagrange interpolation series

L(z) =
∞∑

n=1

bn f (z)

f ′(an)(z − an)

is an entire solution to the interpolation problem L(an) = bn , provided that
L(z) converges uniformly on compact subsets of C, see [16, p. 195]. In our
case, however, the target sequence is unbounded, and the zero-sequence {an} is
uniformly q-separated. The latter means in general that | f ′(an)| can tend to zero
exponentially as n → ∞. Thus it seems unlikely that the Lagrange interpolation
series could be used in proving Theorem 1, and the use of Lemma 3 instead
seems to be justified.

6 Proof of Theorem 1

The solution f will be the Lindelöf function Lρ of order ρ > 1/2, which is a canonical
product with simple zeros precisely at the points zn = −n1/ρ , n ≥ 1, on the negative
real axis. We may write

Lρ(z) =
∞∏

n=1

(
1 + z

nα

)
ep

(
− z

nα

)
, (6.1)

where α = 1/ρ and p = �ρ� (= integer part of ρ) is the genus of Lρ . It is known (see
[5, p. 294] or [17, p. 54]) that

δN (0, Lρ) =
⎧
⎨

⎩

1 − | sin(πρ)|
q+| sin(πρ)| , q < ρ ≤ q + 1

2 ,

1 − | sin(πρ)|
q+1 , q + 1

2 < ρ ≤ q + 1,

where q ≥ 0 is an integer. It follows that δN (0, Lρ) > 0 for every ρ > 1/2. Since
entire functions of order≤ 1/2 have no finite Nevanlinna deficient values, the Lindelöf
functions illustrate the sharpness of this inequality.

Lemma 5 For k, n ∈ N, k > n, and α > 0, we have

α(k − n)kα−1 ≤ kα − nα ≤ α(k − n)nα−1, 0 < α ≤ 1, (6.2)

α(k − n)nα−1 ≤ kα − nα ≤ α(k − n)kα−1, 1 ≤ α < ∞. (6.3)

In particular, for every α > 0, we have kα − (k − 1)α ∼ αkα−1 as k → ∞.

The crux of the proof of Lemma 5 is a simple identity

kα − nα = α

∫ k

n
xα−1 dx,
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where the integrand xα−1 is decreasing for 0 < α < 1 and non-decreasing for α ≥ 1.
We omit the details.

Lemma 6 Let Lρ be the Lindelöf function of order ρ > 1/2 with zeros zk = −k1/ρ of
genus p = �ρ�. Then the (target) sequence σk = −L ′′

ρ(zk)/L ′
ρ(zk) can be written as

σk = 2p

kα
+ 2

∑

n �=k

(
k

n

)α p 1

kα − nα
, (6.4)

where α = 1/ρ. Moreover,

|σk | =
{
O(log k), p = 0,
O
(
kα(p−1)+1 log k

)
, p ≥ 1.

Proof The representation (6.4) follows immediately from (5.6). We estimate the
growth of |σk | in two steps.
(1) Suppose that p = 0. Then ρ ∈ (1/2, 1), i.e., α ∈ (1, 2). Using (6.4), we get

|σk |/2 ≤
∑

n≤k−1

1

kα − nα
+

∑

n≥k+1

1

nα − kα
=: S1(k) + S2(k),

where S1(1) = 0. Suppose that k ≥ 2. Since x �→ 1/(kα − xα) is an increasing
function for x ∈ [1, k − 1], the left endpoint rule and (6.3) give

S1(k) ≤
∫ k−1

1

dx

kα − xα
+ 1

kα − (k − 1)α

≤
∫ k−1

1

αxα−1dx

kα − xα
+ 1

α(k − 1)α−1 = O(log k) .

Analogously, x �→ 1/(xα − kα) is a decreasing function for x ≥ k + 1, so the
right endpoint rule and (6.3) give

S2(k) ≤
∫ ∞

k+1

dx

xα − kα
+ 1

(k + 1)α − kα

≤ 1

kα−1

∫ ∞

(k+1)/k

dt

tα − 1
+ 1

αkα−1 ,

where we made the change of variable t = x/k. It is clear that

∫ ∞

2

dt

tα − 1
≤ 2α

2α − 1

∫ ∞

2

dt

tα
= 2

(α − 1)(2α − 1)
.
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Since (tα −1)/(t2 −1) → α/2 as t → 1+, there exists, by continuity, a constant
β ∈ (0, α/2) such that tα − 1 ≥ β(t2 − 1) for all t ∈ [1, 2]. Therefore
∫ 2

(k+1)/k

dt

tα − 1
≤ 1

β

∫ 2

(k+1)/k

dt

t2 − 1
= 1

2β
log

(
2k + 1

3

)
≤ 1

2β
log k.

This yields S2(k) = O
(
k1−α log k

) = o(1), and, a fortiori, |σk | = O(log k).
(2) Suppose that p ≥ 1. Then ρ ∈ [1,∞), i.e., α ∈ (0, 1]. Using (6.4), we get

|σk |/2 − p

kα
≤

∑

n≤k−1

(
k

n

)α p 1

kα − nα
+

∑

n≥k+1

(
k

n

)α p 1

nα − kα

=: T1(k) + T2(k),

where T1(1) = 0. Now p ≤ ρ < p + 1, so that

α p = p

ρ
∈
(

p

p + 1
, 1

]
and α(p + 1) = p + 1

ρ
∈
(
1,

p + 1

p

]
. (6.5)

Suppose that k ≥ 2. Then (6.2) yields

T1(k) ≤
∑

n≤k−1

kα p

kα − nα
≤
∫ k−1

1

kα p

kα − xα
dx + kα p

kα − (k − 1)α

≤ kα(p−1)+1

α

(∫ k−1

1

αxα−1

kα − xα
dx + 1

)
≤ kα(p−1)+1

α

(
log

k

α
+ 1

)
,

or T1(k) = O
(
kα(p−1)+1 log k

)
. The function x �→ (xα p(xα − kα))−1 is strictly

decreasing for x ≥ k + 1, so that

T2(k) ≤
∫ ∞

k+1

kα p

xα p(xα − kα)
dx + 1

(k + 1)α − kα

≤ k1−α

∫ ∞

(k+1)/k

dt

tα p(tα − 1)
+ (k + 1)1−α

α
,

where we made the change of variable t = x/k. It is clear that

∫ ∞

2

dt

tα p(tα − 1)
≤ 2α

2α − 1

∫ ∞

2

dt

tα(p+1)
= C(α, p) < ∞.

Analogously as in Part (1) of the proof, we obtain

∫ 2

(k+1)/k

dt

tα p(tα − 1)
≤
∫ 2

(k+1)/k

dt

tα − 1
≤ 1

2β
log k
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for some β ∈ (0, α/2). This yields T2(k) = O
(
k1−α log k

)
. The desired estimate

for |σk | follows from the estimates for T1(k) and T2(k). ��
The estimates in the previous proof seem to have some flexibility. Hence the result

is unlikely to be sharp, but it is nevertheless more than enough for our use.

Lemma 7 Let Lρ be the Lindelöf function of order ρ ∈ (1/2,∞) with zeros zk =
−k1/ρ of genus p = �ρ�. Then there exists a constant C > 0 such that

inf
k

{
|zk |eC|zk |ρ log |zk |ρ |L ′

ρ(zk)|
}

≥ 1. (6.6)

In particular, the zero sequence of Lρ is uniformly q-separated for every q > ρ.

Proof Set α = 1/ρ for brevity. As the final conclusion is trivial, it suffices to prove
(6.6). We do this in two steps.

(1) Suppose that ρ ∈ (1/2, 1), i.e., α ∈ (1, 2). By appealing to (4.3) and (6.1), we
have

|zk ||L ′
ρ(zk)| =

∏

n≤k−1

(
kα

nα
− 1

) ∏

n≥k+1

(
1 − kα

nα

)
=: P1(k)P2(k),

where P1(1) = 1. The products P1(k) and P2(k) converge for any finite k, so it
suffices to estimate them for arbitrarily large values of k. We will make use of
(6.3) in these estimates.

We estimate P1(k) from below by

P1(k)
−1 =

k−1∏

n=1

nα

kα − nα
= exp

(
k−1∑

n=1

log
nα

kα − nα

)

≤ exp

(
k−1∑

n=1

log
n

α(k − n)

)

= exp

(

(k − 1) log
1

α
+

k−1∑

n=1

log
n

k − n

)

= exp (−(k − 1) logα) ≤ 1,

where k ≥ 2. When estimating P2(k) from below, we apply the right endpoint
rule to the decreasing function x �→ log (1 + kα/(xα − kα)) on [k + 1,∞), and
make use of Part (1) in the proof of Lemma 6. We conclude that

P2(k)
−1 =

∏

n≥k+1

nα

nα − kα
= exp

⎛

⎝
∑

n≥k+1

log

(
1 + kα

nα − kα

)⎞

⎠

≤ exp

(∫ ∞

k+1
log

(
1 + kα

xα − kα

)
dx + log

(k + 1)α

(k + 1)α − kα

)

≤ exp

(∫ ∞

k+1

kα

xα − kα
dx + log

(k + 1)αk

αkα

)

≤ exp

(
k
∫ ∞

(k+1)/k

dt

tα − 1
+ log

2αk

α

)
≤ exp (C1k log k)
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for some C1 = C1(α) > 0 and for all k ≥ 2.

Finally, we combine the estimates for P1(k) and P2(k), and obtain

|zk |eC|zk |ρ log |zk |ρ |L ′
ρ(zk)| = eCk log k P1(k)P2(k) ≥ 1, k ≥ 2,

where C is any constant satisfying C ≥ C1. This completes the proof of (6.6) in
the case ρ ∈ (1/2, 1).

(2) Suppose that ρ ∈ [1,∞), i.e., α ∈ (0, 1]. By appealing to (4.6) and (6.1), we
have

|zk ||L ′
ρ(zk)|

ep(1)
=

∏

n≤k−1

(
kα

nα
− 1

)
ep

(
kα

nα

) ∏

n≥k+1

(
1 − kα

nα

)
ep

(
kα

nα

)

=: Q1(k)Q2(k),

where Q1(1) = 1. The products Q1(k) and Q2(k) converge for any finite k, so
it suffices to estimate them for arbitrarily large values of k. We make use of (6.2)
and (6.3) in these estimates.

A trivial elimination of the Weierstrass convergence factor allows us to argue
analogously as in estimating P1(k) in Part (1) of the proof. In addition, we make
use of the inequality nn ≤ enn!, which is valid for all n ∈ N. We have

Q1(k)
−1 =

k−1∏

n=1

nα

kα − nα
ep

(
kα

nα

)−1

≤ exp

(
k−1∑

n=1

log
nα

kα − nα

)

≤ exp

(
k−1∑

n=1

log
knα

α(k − n)kα

)

= exp

(
(k − 1) log

1

α
+ (1 − α) log

kk−1

(k − 1)!
)

≤ exp(D1k),

where k ≥ 2 and D1 = log(1/α) + 1 − α ≥ 0 for 0 < α ≤ 1.

Before estimating Q2(k), we make the preliminary manipulations

Q2(k)
−1 =

∏

n≥k+1

nα

nα − kα
exp

⎛

⎝−
p∑

j=1

1

j

(
kα

nα

) j
⎞

⎠

= exp

⎛

⎝
∞∑

n=k+1

⎛

⎝log

(
1

1 − kα/nα

)
−

p∑

j=1

1

j

(
kα

nα

) j
⎞

⎠

⎞

⎠

= exp

⎛

⎝
∞∑

n=k+1

∞∑

j=p+1

1

j

(
kα

nα

) j
⎞

⎠ .

(6.7)
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A simple reasoning based on geometric series yields

Q2(k)
−1 ≤ exp

⎛

⎝
∞∑

n=k+1

(
kα

nα

)p+1 ∞∑

j=0

(
kα

nα

) j
⎞

⎠

= exp

( ∞∑

n=k+1

(
k

n

)α(p+1) nα

nα − kα

)

= exp

(

kα
∞∑

n=k+1

(
k

n

)α p 1

nα − kα

)

.

The estimate for T2(k) in the proof of Lemma 6 then yields Q2(k)−1 ≤
exp (D2k log k) for some D2 = D2(α) > 0 and for all k ≥ 2.

Finally, we combine the estimates for Q1(k) and Q2(k), and obtain

|zk |eC|zk |ρ log |zk |ρ |L ′
ρ(zk)| = eCk log k Q1(k)Q2(k) ≥ 1,

where C is any constant satisfying C > D1 + D2 and k ≥ 2 is large enough.
This completes the proof of (6.6) in the case ρ ∈ [1,∞). ��

Proof of Theorem 1 After these preparations, the actual proof of Theorem 1 is now
easy. Let f = Lρ be the Lindelöf function of order ρ ∈ (1/2,∞), which has simple
zeros and the required growth. In addition, the zeros of f are uniformly q-separated
for every q > ρ by Lemma 7. For K ≥ 1, define h : [0,∞) → [1,∞) by

h(t) =
{
K log(tρ + e), p = 0,
K
(
tρ(α(p−1)+1) log(tρ + e) + 1

)
, p ≥ 1.

Then

h(|zk |) = h(kα) =
{
K log(k + e), p = 0,
K
(
kα(p−1)+1 log(k + e) + 1

)
, p ≥ 1.

By Lemma 6, we may choose K ≥ 1 so that |σk | ≤ h(|zk |) for all k. Moreover, for all
p ≥ 0, we have log h(t) = O(log t). Thus

I (x) := max
e≤t≤x

log
(
h(t)eCtq

)

log t
≤ max

e≤t≤x
log

(
h(t)eCtq

)
= Cxq + O(log x),

and we conclude by Lemma 3 that there exists an entire function A(z) �≡ 0 satisfying
(3.1) such that

ρ(A) ≤ max{ρ( f ), q}. (6.8)
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The zero sequence {zn} of f that determines A in Lemma 3 is fixed, but it is also
uniformly q-separated for any q > ρ( f ) by Lemma 7. Thus the estimate in (6.8)
provided by Lemma 3 holds for any q > ρ( f ), and, a fortiori, ρ(A) ≤ ρ( f ).

Finally, we define the entire coefficient B(z) by (3.3), for which ρ(B) ≤ ρ(A) holds
by the lemma on the logarithmic derivative. It remains to show that B(z) �≡ 0. Suppose
on the contrary that B(z) ≡ 0, in which case (1.2) reduces to f ′′ + A(z) f ′ = 0. A
simple integration shows that

f ′(z) = exp

(∫ z

A(ζ ) dζ

)
.

Since f (and hence f ′) is of finite order, it follows that A(z) is a polynomial. This
gives us ρ( f ) = deg(A) + 1 ≥ 1. Since ρ( f ) ∈ N, it is clear from the definition of
the Lindelöf function that p = ρ( f ). However, according to the representation (4.6),
the derivative f ′ should have a p-fold zero at the origin, which is a contradiction. This
completes the proof. ��

7 Preparations for the Proof of Theorem 3

The separation of the zeros of the constructed solution f of (1.2) plays a key role in
the proof of Theorem 3. The zeros of f are uniformly logarithmically q-separated
(defined below) for every q > ρlog( f ) − 1.

For basic properties of entire (or, more generally, meromorphic) functions of finite
logarithmic order, we refer to [3,4]. In particular, the logarithmic exponent of conver-
gence of the zeros of an entire f is given by

λlog( f ) = lim sup
r→∞

log n(r)

log log r
,

where n(r) denotes the number of zeros of f in |z| < r , counting multiplicities.
Similarly to the usual order, the functions T (r , f ) and logM(r , f ) have the same
logarithmic order ρlog, and ρlog( f ′) = ρlog( f ). Differing from the usual order, where
λ( f ) ≤ ρ( f ), we have ρlog( f ) = λlog( f ) + 1. This reflects the fact that polynomials
are of logarithmic order one, and they have only finitely many zeros.

We require a new concept on point separation. We say that a sequence {zn} of finite
genus p is uniformly logarithmically q-separated for q ≥ 0 provided that there exists
a constant C > 0 such that

inf
k∈N

⎧
⎨

⎩
eC(log(1+|zk |))q ∏

n �=k

∣
∣∣∣1 − zk

zn

∣
∣∣∣

∣
∣∣∣ep

(
zk
zn

)∣∣∣∣

⎫
⎬

⎭
> 0. (7.1)

If f is given by (4.1), then using (4.6), we may write (7.1) equivalently as

inf
k∈N

{
|zk |eC(log(1+|zk |))q | f ′(zk)|

}
> 0.
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Certainly there exist sequences with zero exponent of convergence which are not
uniformly logarithmically q-separated for any q ≥ 0. Moreover, uniformly logarith-
mically 0-separated sequences are uniformly 0-separated sequences, and vice versa.

We will make use of this new separation concept for sequences of finite logarithmic
exponent of convergence, in which case p = 0 and the corresponding f reduces to
the form (4.2). The definition in (7.1) for general p is given for possible applications
in the future. Moreover, one could replace the polynomial and logarithmic weights by
some monotonic function ϕ : R+ → R, and discuss uniform ϕ-separation.

In the next example we will discuss the case λlog = 1 and q > 0.

Example 11 Let zn = 2n and wn = zn + εn , where q > 0 and

εn = min
{
1/2, 2n exp

(−(n log 2)q
)}

, n ≥ 1.

Then zn < wn < zn+1, wn+1 ≥ zn+1 ≥ 3wn/2 and wn ≤ zn + 1/2 ≤ 4zn/3. A
simplemodification of the reasoning in Example 10 shows that the combined sequence
{zn} ∪ {wn} has logarithmic exponent of convergence equal to one and the sequence
is uniformly logarithmically q-separated.

To get an analogue of Lemma 3, we first modify [13, Thm. 3.1] to the case of finite
logarithmic order. In the following statement, special attention has been paid to those
points zn that are near the origin, as well as to minor monotonicity issues in [13, (3.2)].

Lemma 8 Suppose the following assumptions hold:

(a) {zn} is a sequence of distinct non-zero points in C with λlog < ∞.
(b) {cn} is a sequence of non-zero points in C, not necessarily distinct.
(c) There exists a continuous function g : [e,∞) → [1,∞) such that log |cn|/ log |zn|

≤ g(|zn|) for all |zn| ≥ e.
(d) Given α > 1, {qn} is a sequence such that each qn ≥ 0 is the smallest integer

satisfying

qn ≥ max

{

α
log |cn|
log |zn| ,

log |cn |
n

log |zn| + 1

}

(7.2)

for |zn| > e, and set qn = 0 otherwise.

Then

H(z) =
∞∑

n=1

cn
z − zn

(
z

zn

)qn
(7.3)

is meromorphic in C, and has simple poles exactly at the points zn with residue cn.
Moreover, we have the growth estimates

λlog + 1 ≤ ρlog(H) ≤ max

{
λlog + 1, lim sup

r→∞
logG(αr)

log log r
+ 1

}
, (7.4)

where G(x) = maxe≤t≤x g(t) is a non-decreasing function for x ≥ e.
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Proof Without loss of generality, we may suppose that {zn} is ordered according to
increasing moduli. Moreover, G(x) is a well defined non-decreasing function by con-
tinuity.

Let β = 3
√

α (> 1) and e < R < ∞. Suppose that |z| = r ≤ R, and write

H(z) =
∑

|zn |≤βR

cn
z − zn

(
z

zn

)qn
+

∑

|zn |>βR

cn
z − zn

(
z

zn

)qn

=: S1(z) + S2(z).

(7.5)

The expression S1(z) in (7.5) is a finite sum, and therefore it represents a rational
meromorphic function in C. Hence, in order to prove that H(z) is meromorphic in C,
it suffices to show that S2(z) converges uniformly. But this can be done analogously
as in [13, p. 293] by making use of the fact that the genus of {zn} is p = 0.

Obviously, all poles zn of H(z) are simple and have residue cn .
The inequality λlog+1 ≤ ρlog(H) being clear from N (r , H) ≤ T (r , H), it remains

to prove the second inequality in (7.4). This culminates in estimating S1(z). As qn ≥ 0
is the smallest integer satisfying (7.2), it follows that

qn ≤ α

(
log |cn|
log |zn| + 1

)
+ 1 ≤ α (g(|zn|) + 1) + 1

≤ α (G(|zn|) + 1) + 1, |zn| ≥ e.

Proceeding as in [13, p. 294] (but replacing g with G to ensure monotonicity), we can
find a constant C > 0 such that

|S1(z)| ≤ Cn
(
β2R

)
(log R)β Rα(G(βR)+1),

provided that |z| ≤ R and |z| /∈ E ∪ [0, 1], where E ⊂ [1,∞) has finite logarithmic
measure. Let P be the canonical product associated with the sequence {zn}, and hence
ρlog(P) = λlog + 1. Then PH is entire, and

|P(z)H(z)| ≤ CM(r , P)
(
n
(
β2R

)
(log R)β Rα(G(βR)+1) + 1

)
,

provided that |z| ≤ R and |z| /∈ E ∪ [0, 1]. Taking now R = β2r and applying [8,
Lem. 5], we see that there exists an r0 = r0(β) > 0 such that

M(r , PH) ≤ CM(βr , P)

(
n(β4r)

(
log

(
β2r

))β

(β2r)α(G(αr)+1) + 1

)

for all r ≥ r0. Since log n(r) = O(log log r), we deduce that

ρlog(PH) ≤ max

{
λlog + 1, lim sup

r→∞
logG(αr)

log log r
+ 1

}
.
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The second inequality in (7.4) follows from ρlog(H) ≤ max{ρlog(P), ρlog(PH)},
which holds by using standard reasoning. ��
Lemma 9 Suppose that {zn} is an infinite sequence of non-zero points inCwith λlog <

∞, and that {zn} is uniformly logarithmically q-separated for some q ≥ 0 (and
C > 0). Let {σn} be an infinite sequence of points in C, not necessarily distinct, and
let h : [0,∞) → [1,∞) be a continuous and non-decreasing function such that
|σn| ≤ h(|zn|) for n ∈ N.

Then there exists an entire function A(z) �≡ 0 such that

A(zn) = σn, n ∈ N, (7.6)

and, for any given α > 1,

ρlog(A) ≤ max

{
λlog + 1, lim sup

r→∞
log F(αr)

log log r
+ 1

}
, (7.7)

where F(x) = maxe≤t≤x
log

(
h(t)eC(log(1+t))q

)

log t is a non-decreasing function for x ≥ e.

Proof Without loss of generality, we may suppose that {zn} is ordered according to
increasing moduli. Moreover, F(x) is well defined and non-decreasing by continuity.
Let P(z) be the canonical product having {zn} as its zero sequence. By uniform
logarithmic q-separation, the points zn are simple, and hence 1/P ′(zn) ∈ C for any n.

(a) Suppose that σn �= 0 for all n. If H(z) denotes the Mittag–Leffler series in (7.3),
where cn = σn/P ′(zn), then A = PH is entire and satisfies (7.6). Hence it
suffices to prove (7.7). By the assumptions, there exists a constant C1 > 0 such
that

|cn| ≤ C1|zn|h(|zn|)eC(log(1+|zn |))q , n ∈ N.

Thus

log |cn|
log |zn| ≤

log
(
h(|zn|)eC(log(1+|zn |))q

)

log |zn| + C2, |zn| ≥ e, (7.8)

where C2 > 0 is a constant. Choosing

g(t) =
log

(
h(t)eC(log(1+t))q

)

log t
+ C2

for t ≥ e, we deduce by Lemma 8 that

ρlog(H) ≤ max

{
λlog + 1, lim sup

r→∞
log F(αr)

log log r
+ 1

}
,
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where α > 1 and

F(x) = max
e≤t≤x

log
(
h(t)eC(log(1+t))q

)

log t
.

The assertion (7.7) then follows from ρlog(A) ≤ max{ρlog(P), ρlog(H)}.
(b) Suppose that σn = 0 for at least one n. If σn = 0 for all n, we may choose

A(z) = P(z), in which case (7.6) and (7.7) clearly hold. Hence we may suppose
that σn = 0 for at least one index n but not for all n. But this case is analogous
to Part (b) in the proof of Lemma 3. ��

8 Proof of Theorem 3

Anderson and Clunie proved the following result [1, Thm. 2]: Given any continuous
function ϕ(r) tending monotonically to infinity as r → ∞, nomatter how slowly, there
exists an entire function f such that logM(r , f ) = O

(
ϕ(r)(log r)2

)
and δV (0, f ) =

1.
The solution f to the problem above has real zeros with multiplicities tending

to infinity. Moreover, the proof given in [1] is based upon a technical restriction
ϕ(r) = O(log r), which yields ρlog( f ) ∈ (2, 3). Next we present a modification of the
Anderson-Clunie reasoning such that the solution f has only simple zeros, and hence
it is suitable for being a solution of (1.2). In addition, f has arbitrary pre-determined
logarithmic order on (2,∞).

Lemma 10 For every ρ ∈ (2,∞) there exists an entire function f with simple zeros
such that ρlog( f ) = ρ and δV (0, f ) = 1.

Proof Given m ∈ N and b > 0, define a polynomial

Pm,b(z) =
m∏

k=1

(
1 − z

beiϕm,k

)
, (8.1)

where the arguments ϕm,k are chosen such that the zeros beiϕm,k of Pm,b lie symmet-
rically in 3π/4 ≤ arg(z) ≤ 5π/4 and on the circle |z| = b as follows:

m = 1 : ϕ1,1 = π,

m = 2 : ϕ2,1 = 3π

4
, ϕ2,2 = 5π

4
,

m = 3 : ϕ3,1 = 3π

4
, ϕ3,2 = π, ϕ3,3 = 5π

4
,

m = 4 : ϕ4,1 = 3π

4
, ϕ4,2 = 11π

12
, ϕ4,3 = 13π

12
, ϕ4,4 = 5π

4
,
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and, in general, for any integer l ≥ 1,

m = 2l + 1 : ϕ2l+1,i = π − π

4
· l − i + 1

l
, i = 1, . . . , 2l + 1,

m = 2l : ϕ2l,i = π − π

4
· 2(l − i) + 1

2l − 1
, i = 1, . . . , 2l.

If m is even, then all zeros on |z| = b are pairwise complex conjugate numbers. If
m is odd, then precisely one of the zeros on |z| = b lies on the negative real axis,
while the rest are pairwise complex conjugates. Thus, if z ∈ R, we have Pm,b(z) ∈ R

due to the elementary identity ζ ζ = |ζ |2. In particular, Pm,b is a real polynomial, and
log Pm,b(z) is analytic in −3π/4 < arg(z) < 3π/4.

If Pm,b has a real zero at ζ ∈ R−, then the modulus

∣∣∣∣1 − z

ζ

∣∣∣∣ = |ζ − z|
|ζ |

on any circle |z| = r is maximal when z = r . Suppose then that ζ, ζ is any pair of
conjugate zeros of Pm,b. Then the modulus

∣∣∣∣

(
1 − z

ζ

)(
1 − z

ζ

)∣∣∣∣ = |ζ − z||ζ − z|
|ζ |2

on any circle |z| = r is maximal when z is simultaneously as far as possible from both
points ζ, ζ that lie in 3π/4 ≤ arg(w) ≤ 5π/4, that is, when z = r . We repeat this
reasoning for all zeros of Pm,b, and conclude that

M(r , Pm,b) = Pm,b(r). (8.2)

Moreover, a simple geometric reasoning yields the growth estimates

(
1 + r2

b2

)m/2

=
(√

b2 + r2

b

)m

≤ Pm,b(r) ≤
(
1 + r

b

)m
. (8.3)

Next we define two non-decreasing sequences {bn} and {cn} of positive integers by
setting b1 = 1 = c1, and

bn = exp

⎛

⎜
⎝

⎛

⎝
n−1∑

j=1

c j

⎞

⎠

2/(ρ−2)
⎞

⎟
⎠ , cn =

⌊
(log bn)

ρ−1
⌋

=

⎢⎢⎢
⎢
⎣

⎛

⎝
n−1∑

j=1

c j

⎞

⎠

2(ρ−1)/(ρ−2)
⎥⎥⎥
⎥
⎦ ,

for n ≥ 2, where �x� denotes the integer part of x . This definition corresponds to the
choice of points bn, cn in [1] where ϕ(r) = (log r)ρ−2. We define a formal canonical
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product f in terms of the polynomial factors in (8.1) as

f (z) =
∞∏

n=1

Pcn ,bn (z), (8.4)

and prove that this function has the required properties.
For r > 1 there exists an integer n such that bn < r ≤ bn+1. If n(r) denotes the

number of zeros of f in |z| < r , counting multiplicities, then

n(r) = n(bn) =
n∑

j=1

c j = cn + (log bn)
(ρ−2)/2

≤ 2(log bn)
ρ−1 ≤ 2(log r)ρ−1.

(8.5)

Thus the zeros of the formal product f have logarithmic exponent of convergence
at most ≤ ρ − 1, so that f is entire, and, in fact, ρlog( f ) ≤ ρ, see [4]. Let β =
2(ρ − 1)/(ρ − 2) > 2 for short. The auxiliary function

g(x) = (1 + x)β

1 + xβ
, x ≥ 0,

is increasing on [0, 1] and decreasing on [1,∞). Since g(0) = 1 and since g(x) → 1
as x → ∞, we have g(x) ≥ 1 for all x ≥ 0, that is,

(1 + x)β ≥ 1 + xβ, x ≥ 0.

Therefore, we have c1 = c2 = 1, c3 = �2β� ≥ �22� = 4, and

cn ≥ ⌊
(1 + cn−1)

β
⌋ ≥

⌊
1 + cβ

n−1

⌋
≥ cβ

n−1 ≥
⌊
(1 + cn−2)

β2
⌋

≥
⌊
1 + cβ2

n−2

⌋
≥ cβ2

n−2 ≥ · · · ≥ cβn−3

3 ≥ 4βn−3
, n ≥ 4.

(8.6)

Let μ > ρ − 1, so that σ := μ/(ρ − 1) − 1 > 0. Since

∞∑

n=4

cn
(log bn)μ

≤
∞∑

n=4

cn
(�(log bn)ρ−1�)μ/(ρ−1)

=
∞∑

n=4

1

cσ
n

≤
∞∑

n=4

4−σβn−3
< ∞,

∞∑

n=2

cn
(log bn)ρ−1 ≥

∞∑

n=2

cn
�(log bn)ρ−1� + 1

=
∞∑

n=2

cn
cn + 1

= ∞,

it follows that the logarithmic exponent of convergence of the zero sequence of f is
equal to ρ − 1, and thus ρlog( f ) = ρ, see [4].

It remains to prove that δV (0, f ) = 1, which is equivalent to

lim inf
r→∞

N (r , 1/ f )

T (r , f )
= 0.
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It suffices to show that

lim
n→∞

N (bn, 1/ f )

T (bn, f )
= 0. (8.7)

For n ≥ 2, we have

N (bn, 1/ f ) =
∫ bn

0

n(t)

t
dt ≤ n(bn−1)

∫ bn

1

dt

t

=
⎛

⎝
n−1∑

j=1

c j

⎞

⎠ log bn = (log bn)
ρ/2.

(8.8)

Estimating the characteristic function from below requires more work. To begin with,
we observe that the representation [1, (5.3)] for logM(r , f ) is not valid in our case.
However, we see by means of (8.2) and (8.3) that

logM(r , f ) = log f (r) =
∞∑

n=1

log Pcn ,bn (r) ≥
∞∑

n=1

cn
2
log

(
1 + r2

b2n

)
.

For a fixed r > 0 and all t > r , we deduce by (8.5) and L’Hospital’s rule that

0 ≤ n(t) log

(
1 + r2

t2

)
≤ 2

log
(
1 + r2

t2

)

(log t)−(ρ−1)
∼ 4r2

ρ − 1
· (log t)ρ

r2 + t2
→ 0,

as t → ∞. Therefore, Riemann–Stieltjes integration and integration by parts give us

logM(r , f ) ≥ 1

2

∫ ∞

0
log

(
1 + r2

t2

)
dn(t) = r2

∫ ∞

0

n(t) dt

t(t2 + r2)
.

Using the well-known inequality [11, p. 18]

logM(r , f ) ≤ 3T (2r , f ), r > 0,

we then deduce that

T (r , f ) ≥ r2

12

∫ ∞

0

n(t) dt

t(t2 + r2
4 )

≥ n(bn)r2

12

∫ 2bn

bn

dt

t(t2 + r2
4 )

, (8.9)

where

n(bn) =
n∑

j=1

c j ≥ cn =
⌊
(log bn)

ρ−1
⌋

≥ (log bn)
ρ−1 − 1.
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Substituting r = bn and t = bnu in (8.9), it follows that

T (bn, f ) ≥ 1

12

(
(log bn)

ρ−1 − 1
) ∫ 2

1

du

u(u2 + 1
4 )

≥ 1

40

(
(log bn)

ρ−1 − 1
)

.

Combining this with (8.8) finally gives (8.7), because ρ > 2. ��

It is not necessary for k, n in Lemma 5 to be integers. We will state, without proof,
the following analogue of Lemma 5 needed later on.

Lemma 11 For 0 < A < B and γ > 0, we have the inequalities

γ (B − A)Bγ−1 ≤ Bγ − Aγ ≤ γ (B − A)Aγ−1, 0 < γ ≤ 1, (8.10)

γ (B − A)Aγ−1 ≤ Bγ − Aγ ≤ γ (B − A)Bγ−1, 1 ≤ γ < ∞. (8.11)

It turns out that the zero sequence of the function f in Lemma 10 is separated in
the following sense.

Lemma 12 The zero sequence of the function f in (8.4) is uniformly logarithmically
q-separated for every q > ρ − 1.

Proof Let {zn} denote the zeros of f organized first according to increasing modulus
and then, on each circle |z| = b j , according to increasing argument on [3π/4, 5π/4].
This fixes {zn} uniquely. Since ∑n |zn|−1 < ∞ and since |zn| ≥ e for n ≥ 2, we
observe that

∏

n≥2

∣∣
∣∣1 − z1

zn

∣∣
∣∣ ≥

∏

n≥2

(
1 − 1

|zn|
)

≥ C0 > 0.

If k ≥ 2, we have |zk | = bi for some 2 ≤ i ≤ k, and

∏

n �=k

∣∣∣∣1 − zk
zn

∣∣∣∣ =
∏

|zn |<bi

∣∣∣∣1 − zk
zn

∣∣∣∣
∏

|zn |>bi

∣∣∣∣1 − zk
zn

∣∣∣∣
∏

|zn |=bi , zn �=zk

∣∣∣∣1 − zk
zn

∣∣∣∣

=: P1(k)P2(k)P3(k),
(8.12)

where we set P3(2) = 1 because zn is on the circle |z| = b2 only when n = 2. The
products P1(k), P2(k), P3(k) converge for any finite k, so it suffices to estimate them
for arbitrary large values of k (or for arbitrarily large values of i due to |zk | = bi ).

Estimate for P1(k): We have

P1(k) ≥
∏

|zn |<bi

(∣∣
∣∣
zk
zn

∣∣
∣∣ − 1

)
=

i−1∏

m=1

(
bi
bm

− 1

)cm
≥

i−1∏

m=1

(
bi
bi−1

− 1

)cm
.
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If i = 2, we get P1(k) ≥ e − 1 > 1, while if i ≥ 3, we use the inequality ex − 1 ≥ x ,
and obtain

P1(k) ≥
i−1∏

m=1

⎛

⎝

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

γ

−
⎛

⎝
i−2∑

j=1

c j

⎞

⎠

γ⎞

⎠

cm

,

where γ = 2/(ρ − 2). If γ = 1, we clearly have P1(k) ≥ 1. If γ > 1, then (8.11)
gives

P1(k) ≥
i−1∏

m=1

⎛

⎜
⎝γ

⎛

⎝
i−2∑

j=1

c j

⎞

⎠

γ−1

ci−1

⎞

⎟
⎠

cm

≥
i−1∏

m=1

(
γ cγ

1

)cm ≥ 1.

If 0 < γ < 1, then from (8.10) we have

e(log(1+|zk |))q P1(k) ≥ e(log bi )q
i−1∏

m=1

⎛

⎜
⎝γ

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

γ−1

ci−1

⎞

⎟
⎠

cm

≥ exp

⎛

⎜
⎝

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

γ q

−
i−1∑

m=1

cm log

⎛

⎜
⎝
1

γ

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

1−γ
⎞

⎟
⎠

⎞

⎟
⎠ .

The function x �→ xγ q − x log
(
x1−γ /γ

)
is eventually increasing and unbounded for

every q > 1/γ . Summarizing, for any γ > 0 there exists a constant C1 = C1(γ, q) >

0 such that

e(log(1+|zk |))q P1(k) ≥ C1, q >
ρ − 2

2
, k ≥ 2. (8.13)

Estimate for P2(k): Clearly j ≤ c j ≤ c j+1 for every j ≥ 3, and so

cn ≤
⎛

⎝
n−1∑

j=1

c j

⎞

⎠

β

≤ (
(n − 1)cn−1

)β ≤ c2βn−1

≤
⎛

⎝
n−2∑

j=1

c j

⎞

⎠

2β2

≤ (
(n − 2)cn−2

)2β2 ≤ c(2β)2

n−2

≤ · · · ≤ c(2β)n−3

3 ≤ (
2β
)(2β)n−3 ≤ 2(2β)n−2

, n ≥ 5.

(8.14)
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Suppose that γ = 1. For m ≥ i + 1 ≥ 5, the estimate (8.6) yields

bi
bm

= exp

⎛

⎝−
m−1∑

j=i

c j

⎞

⎠ ≤ exp
( − cm−1

) ≤ exp
( − 4βm−4)

. (8.15)

In particular, bi/bm ≤ 1/e < 1/2 for allm ≥ i+1 ≥ 5. Thus, using log(1−x) ≥ −2x
for x ∈ [0, 1/2], we have

P2(k) ≥
∏

|zn |>bi

(
1 −

∣
∣∣∣
zk
zn

∣
∣∣∣

)
=

∞∏

m=i+1

(
1 − bi

bm

)cm

= exp

( ∞∑

m=i+1

cm log

(
1 − bi

bm

))

≥ exp

(

−2
∞∑

m=i+1

cm · bi
bm

)

.

By combining (8.14) and (8.15), we deduce that

P2(k) ≥ exp

(

−2
∞∑

m=5

exp
(
(2β)m−2 log 2 − 4βm−4

))

.

Since (2β)m−2 log 2 − 4βm−4 ≤ −4βm−5
for all m large enough, the series above

converges. Suppose then that γ > 1. We multiply both sides of the first inequality in
(8.11) by the constant −1, and use the resulting inequality together with m ≥ i + 1 to
deduce that

bi
bm

= exp

⎛

⎝

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

γ

−
⎛

⎝
m−1∑

j=1

c j

⎞

⎠

γ⎞

⎠

≤ exp

⎛

⎜
⎝−γ

⎛

⎝
i−1∑

j=1

c j

⎞

⎠

γ−1

·
m−1∑

j=i

c j

⎞

⎟
⎠

≤ exp
(
−γ cγ−1

1 cm−1

)
≤ exp (−cm−1) .

Next we use (8.6) to obtain

bi
bm

≤ exp
( − 4βm−4)

,

and thenproceed in the sameway as in the caseγ = 1. Finally, suppose that 0 < γ < 1.
We multiply both sides of the first inequality in (8.10) by the constant −1, and use the
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resulting inequality together with m ≥ i + 1 to deduce that

bi
bm

≤ exp

⎛

⎜
⎝−γ

⎛

⎝
m−1∑

j=1

c j

⎞

⎠

γ−1

·
m−1∑

j=i

c j

⎞

⎟
⎠ ≤ exp

⎛

⎜
⎝−γ cm−1

⎛

⎝
m−1∑

j=1

c j

⎞

⎠

γ−1
⎞

⎟
⎠

≤ exp
(
−γ cm−1

(
(m − 1)cm−1

)γ−1
)

= exp
(
−γ (m − 1)γ−1cγ

m−1

)
,

wherem ≥ i+1 ≥ 5. For i large enough, bi/bm ≤ 1/e < 1/2 clearly holds. Similarly
as above,

P2(k) ≥ exp

(

−2
∞∑

m=i+1

cm · bi
bm

)

≥ exp

(

−2
∞∑

m=5

exp
(
(2β)m−2 log 2 − γ (m − 1)γ−14γβm−4

))

.

Since (2β)m−2 log 2 − γ (m − 1)γ−14γβm−4 ≤ −4γβm−5
for all m large enough, the

series above converges. Summarizing, for any γ > 0 there exists a constant C2 > 0
such that

P2(k) ≥ C2, k ≥ 2. (8.16)

Estimate for P3(k): Recall that P3(k) is undefined for i = 1, and that we have set
P3(k) = 1 for i = 2, so suppose that i ≥ 3. Now ci ≥ c3 ≥ 4. There are ci − 1
factors in P3(k). The distance between two consecutive zeros zn on the circle |z| = bi
is 2bi sin(π/(4(ci − 1))). Using sin x ≥ x/

√
2 for 0 < x < π/4, we get

P3(k) =
∏

|zn |=bi , zn �=zk

|zn − zk |
bi

≥
(
2 sin

π

4(ci − 1)

)ci−1

≥
( √

2π

4(ci − 1)

)ci−1

≥
(

1

ci − 1

)ci−1

≥
(
1

ci

)ci
,

and so

e(log(1+|zk |))q P3(k) ≥ exp
(
(log bi )

q − ci log ci
)

≥ exp
(
(log bi )

q − (ρ − 1)(log bi )
ρ−1 log log bi

)
.

The function x �→ (log x)q − (ρ − 1)(log x)ρ−1 log log x is eventually positive for
every q > ρ − 1. Thus there exists a constant C3 = C3(q) > 0 such that

e(log(1+|zk |))q P3(k) ≥ C3, q > ρ − 1, k ≥ 2. (8.17)
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Final conclusion We complete the proof of Lemma 12 by combining (8.12) with
(8.13), (8.16) and (8.17). ��
Proof of Theorem 3 After these preparations, the actual proof of Theorem 3 is now
easy. Let f be the function in (8.4). By Lemma 10, f has the required properties
for the solution of (1.2). Further, by Lemma 12, the zero sequence of f is uniformly
logarithmically q-separated for any q > ρ − 1. Since ρ = ρlog( f ) = ρlog( f ′′), the
target sequence {σn} in (3.1) can be estimated as follows: For every σ > ρ there exist
constants C > 0 and C1 > 0 such that

|σn| ≤ C1|zn| exp
(
(log(1 + |zn|))σ + C(log(1 + |zn|))q

)
, n ∈ N.

Using Lemma 9, we conclude that there exists an entire function A(z) satisfying (3.1)
such that ρlog(A) ≤ max{ρlog( f ), q}, where we may suppose that q ≤ ρlog( f ).

Finally, we define the entire coefficient B(z) by (3.3). It is easy to see that A(z)
must be transcendental. For if A(z) is a polynomial, then

T (r , B) = m(r , B) = m

(
r ,

f ′′

f
+ A

f ′

f

)
= O(log r),

so that B(z) is also a polynomial. But this leads to a contradiction as any transcendental
solutionmust be of positive usual order in the case of polynomial coefficients [9]. Thus

lim inf
r→∞

T (r , A)

log r
= ∞.

Using the lemma on the logarithmic derivative to get

|B(z)| ≤
∣∣∣∣
f ′′(z)
f (z)

∣∣∣∣ + |A(z)|
∣∣∣∣
f ′(z)
f (z)

∣∣∣∣ ,

we then obtain ρlog(B) ≤ ρlog(A). Thus it remains to show that B(z) �≡ 0. Suppose
on the contrary that B(z) ≡ 0, in which case (1.2) reduces to f ′′ + A(z) f ′ = 0. Then
either f is a polynomial or ρ( f ) ≥ 1, which are both impossible. This completes the
proof. ��
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