

ERRATUM

Erratum to: On the Characterisations of a New Class of Strong Uniqueness Polynomials Generating Unique Range Sets

Abhijit Banerjee¹ · Sanjay Mallick¹

Published online: 29 July 2017 © Springer-Verlag GmbH Germany 2017

Erratum to: Comput. Methods Funct. Theory (2017) 17:19–45 DOI 10.1007/s40315-016-0174-y

In the proof of Lemma 2.6 Case 2 has to be replaced as follows.

Case 2 Let $A = \omega^l$ for some l such that $0 \le l \le m-1$. Then also $F(t_0) = 0 = F'(t_0)$ implies $e^{nt_0} = A$ and $e^{mt_0} = 1$. Now, if possible, suppose that there exist more than one t_0 such that $e^{mt_0} = 1$ and $e^{nt_0} = A$, i.e., there exist t_{0p} , t_{0q} with $e^{t_{0p}} \ne e^{t_{0q}}$ such that $e^{mt_{0p}} = 1 = e^{mt_{0q}}$ and $e^{nt_{0p}} = A = e^{nt_{0q}}$, i.e., $e^{m(t_{0p}-t_{0q})} = 1$ and $e^{n(t_{0p}-t_{0q})} = 1$, i.e., $m(t_{0p} - t_{0q}) = 2k_1\pi i$ for some $k_1 \in \mathbb{Z}$ and $n(t_{0p} - t_{0q}) = 2k_2\pi i$ for some $k_2 \in \mathbb{Z}$. Since gcd(m, n) = 1, so there exists $x, y \in \mathbb{Z}$ such that mx + ny = 1, i.e., $m(t_{0p} - t_{0q})x + n(t_{0p} - t_{0q})y = (t_{0p} - t_{0q})$, i.e., $2k_1\pi i x + 2k_2\pi i y = (t_{0p} - t_{0q})$, i.e., $2\pi i (xk_1 + yk_2) = (t_{0p} - t_{0q})$, i.e., $2s\pi i = (t_{0p} - t_{0q})$, where $s = xk_1 + yk_2 \in \mathbb{Z}$.

Therefore $e^{t_{0p}} = e^{t_{0q}}$, which is a contradiction to $e^{t_{0p}} \neq e^{t_{0q}}$. Therefore $\phi(e^t)$, hence $\phi(z)$, has exactly one multiple zero ω^j , where $0 \le j \le m-1$ and $\omega^{mj} = 1$, $\omega^{nj} = \omega^l$ and that is of multiplicity 4. Now in particular if A = 1, then we have ω^j is the multiple zero of $\phi(z)$ for some $j \in \{0, 1, ..., m-1\}$ such that $\omega^{mj} = 1$ and $\omega^{nj} = 1$ i.e., $\omega^j = 1$ as gcd(m, n) = 1.

Communicated by Risto Korhonen.

The online version of the original article can be found under doi:10.1007/s40315-016-0174-y.

 Abhijit Banerjee abanerjee_kal@yahoo.de; abanerjeekal@gmail.com
Sanjay Mallick smallick.ku@gmail.com

¹ Department of Mathematics, University of Kalyani, Kalyani, West Bengal 741235, India