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Abstract
In this paper a kinetic modeling approach for an ecological system is proposed, based on the
prey–predator structure in terms of individuals experience. Specifically, a system of nonlinear
kinetic equations is formulated using standard tools. Both conservative and nonconservative
events are considered since proliferative/destructive rates and an external force field occur.
These results are compared to the ones of the classical theory of dynamical system to show
their consistency. In addition to a first local analytical result, some numerical simulations
are performed. The results thus obtained ensure that the kinetic model behaves in a way
consistent with other similar ecological models formulated by dynamical systems, involving
ordinary differential equations with lumped dependent variables. For each simulation, sta-
tionary solutions are shown. Moreover, oscillations appear for some values of the parameters
of the ecological system, and this suggests that bifurcations may appear.

Keywords Interacting populations · Structured populations · Kinetic theory · Ordinary
differential equations · Bifurcation

Mathematics Subject Classification 92D25 · 82C22 · 92B05 · 34A12

1 Introduction

Interacting complex systems have been widely studied in the last decades due to their numer-
ous applications in behavioral dynamics (Della Marca et al. 2023), epidemiology (Dimarco
et al. 2020), economy (Bertotti and Modanese 2011), psychology (Bellomo and Carbonaro
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2006), opinion dynamics (Cristiani and Tosin 2018), and so on. A broad presentation of
topics in mathematical biology is for instance contained in Murray (1993). These studies
are mainly related to the development of models. For instance, in epidemiology they can
predict the spread of infections, e.g. among human populations, that propagate by contact,
Brauer et al. (2008); Hethcote Herbert (2000); Trejos Deccy et al. (2022). In addition, it is
possible also to model the individual’s responses in the presence of such critical situations,
Capasso and Serio (1978); d’Onofrio and Manfredi (2022); d’Onofrio (2012); Manfredi and
D’Onofrio (2013). Models are also widely used in finance and economy (Bouri et al. 2019;
Filip et al. 2015; Kyriazis Nikolaos 2020) as well as in psychology (Gençer 2019; Hackman
and Katz 2010; Pielke 2003) and demographics (von Foerster 1959). Moreover, the increased
availability of fast computing devices has broadened this interest in these applications.

This paper focuses on the study and research of a model for a specific interacting complex
system in ecology. A large literature is present towards ecological systems. Among others,
the interested reader may refer to Rosenzweig Michael and MacArthur Robert (1963); Sun
et al. (2022); Liang et al. (2022); Chowdhury et al. (2022); Li et al. (2022); Zhao and Shen
(2022); Sun et al. (2022); Chen et al. (2023), and references therein. For instance, ecological
models have been used for studying and preserving interacting populations (Oliveira Nuno
and Hilker Frank 2010), for the dynamics of the spread of diseases (see Venturino 2016, and
references therein), as well as the control of crop pests (Jana and Kar 2013; Bhattacharyya
and Bhattacharya 2006), and in the aquatic environment for preventing harmful algal blooms,
whichdamage thefishing industry aswell as tourism,Chattopadhayay et al. (2002).Moreover,
they are also useful to combat pollution, see for instance (Bulai and Venturino 2016; Goyal
et al. 2014; Misra 2010). In these fields, often complex behaviors are observed, Malchow
et al. (2007).

Several sophisticated tools can now be used for the modeling of a complex system with
respect to a specific problem. Kinetic theory is one of these. Specifically, it is of relevant
interest for modeling interacting systems whose components, also called agents or particles,
interact in a binary and stochastic way (see Bellomo 2008; Bertotti and Delitala 2004; Bianca
2012; De Angelis and Delitala 2006, and references therein). Specifically, kinetic theory
provides a system either of integro-differential equations or differential equations, depending
on the particular model at hand, describing the evolution of the system at a mesoscopic scale.
The mesoscopic scale acts as a bridge between two antipodal scales: microscopic scale and
macroscopic scale. The microscopic scale describes the stochastic interaction among the
agents composing the whole system. At this level, mechanical and non-mechanical variables
characterize the evolution. For purposes of this paper, only a scalar non-mechanical variable
will be considered,which attains its values in a discrete subset ofR. However, themacroscopic
scale provides the evolution of the whole system. Therefore, the equations of kinetic theory
describe the evolution of the system at the mesoscopic scale.

This paper aims at applying the kinetic theory framework to a structured ecological system,
where a suitable structured approach is applied. At first, according to classical tools (see
again Rosenzweig Michael and MacArthur Robert 1963; Sun et al. 2022; Liang et al. 2022;
Chowdhury et al. 2022; Li et al. 2022; Zhao and Shen 2022; Sun et al. 2022; Chen et al. 2023,
and references therein), we consider an ecosystem composed of two populations: one of prey
and one of predators. The two populations are further divided according to the expertise level.
Then, the overall system is divided into four populations. On one hand, there are experienced
and inexperienced prey; on the other one, experienced and inexperienced predators. The
evolution of the systemdepends, at least, on the interactions betweenpairs of individuals, from
the four populations. At this point, a kinetic model is introduced for modeling this expertise-
level structured ecological system, that may be seen at different scales. At the microscopic
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scale, a real discrete variable, called activity, is assumed tomodel the expertise level. It isworth
pointing out that a discrete microscopic variable is not so unrealistic for our purposes, since
in an ecosystem it is possible to distinguish among a finite number of predators and/or prey,
with their related expertise level. In particular, this scale provides the binary and stochastic
interactions between pairs of individuals from different populations. The mesoscopic scale
furnishes a statistical description of the populations of experienced/inexperienced prey and
experienced/inexperienced predators. At this level, suitable distribution functions describe
the evolution of each population. The macroscopic scale provides the deterministic evolution
of the overall system, by using some kind of moments of the distribution functions.

It is worth pointing out that some attempts in modeling these ecological systems by means
of kinetic theory have been already addressed (see, among others, Malcai et al. 2002; Bel-
louquid andDelitala 2005; Finkelshtein et al. 2013; Toscani and Zanella 2023, and references
therein). Nevertheless, this paper provides some novelties. The first novelty lies in the use
of tools of kinetic theory for modeling an expertise level structured ecological systems. The
expertise level itself represents a novelty in the description of an ecosystem composed of dif-
ferent populations. It is worth stressing that we consider a generic kinetic model, where also
nonconservative events are involved. The proliferative/destructive rates are introduced, at the
level of stochastic interactions; roughly speaking, they represent nonconservative stochas-
tic interactions between couples of agents. Moreover, at the mesoscopic level, the action
of the external environment is considered, by introducing a suitable external force field.
These choices are not only of theoretical interest, but they are relevant for applications.
Indeed, a more realistic description of an ecological system passes for the introduction of
nonconservative events, and the study of related models. From an application viewpoint,
proliferative/destructive events may model, for instance, birth/death processes. Instead, the
external force field may mimic the impact, with related consequences, of the environment on
groups of experienced/inexperienced prey or experienced/inexperienced predators, as well as
climatic conditions, level of rainfall, drought. It is worth pointing out that recently a kinetic
framework under the action of a suitable external force field has just been used and analyzed
in Menale and Munafò (2023), in the context of mathematical epidemiology. To the best of
our knowledge, it is the first attempt in this direction, that is themodeling of an expertise-level
structured ecological system by using such a nonconservative kinetic framework.

By implementing the above kinetic approach, the four populations’ evolution is described
by a system of nonlinear ordinary differential equations, with quadratic nonlinearity. Given
a suitable initial data, the related Cauchy problem is defined. Nevertheless, the presence of
nonconservative events, i.e. proliferative/destructive rates and external force field, has an
important mathematical impact. Indeed, in this situation, some analytical properties may be
lost, e.g positivity and boundedness of solution; among the others, blow-up phenomena may
appear, Arlotti et al. (1999). At first, we prove a local in time result of existence and unique-
ness of a positive and bounded solution under some suitable and realistic assumptions. Then,
we provide some numerical simulations to discuss shape and long-time behavior of solu-
tions, under some conditions that reproduce different ecological scenarios. In particular, the
long-time behavior of solutions is relevant since global results are still missing if restrictive
assumptions on parameters are not considered. In order to prove the consistency of this new
kinetic approach, the results are compared to the classical ones of dynamical systems. More-
over, some novelties emerge from this approach. There are consequences of nonconservative
events on the dynamics, if compared to the conservative case. In particular, the action of the
external force filed influences the long-time behavior of the solution. Moreover, the impact
of expertise level is observed on the evolution of the four populations. Furthermore, these
numerical simulations seem to suggest that bifurcations may occur.
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The paper is organized as follows. Section 2 describes the kinetic model used in this
paper, by introducing both conservative and nonconservative interactions, and the action of
an external force field; moreover, a result local in time for existence and uniqueness is proved.
Section 3 applies the kinetic arguments, presented in previous Sect. 2, for modeling the new
ecological framework, structured by using the expertise level. According to this framework,
three different scenarios are discussed. In the first scenario, only conservative interactions
occur. In the other two, nonconservative events are considered, i.e. proliferative/destructive
rates and the external force field. Finally, we return to consider the conservative scheme again
where the system parameters are chosen so that oscillations appear. This allows us to perform
a first bifurcation analysis, by suitably choosing a bifurcation parameter. A final discussion,
with future research perspectives, concludes the paper.

2 The kinetic model

Let us consider an interacting system C composed of particles, also called agents or individu-
als in what follows, that have a stochastic interaction. Specifically, the system is divided into
n ∈ N functional subsystems such that particles belonging to the same functional subsystem
share the same strategy. The meaning of strategy depends on the particular application taken
into account, Bianca (2012). The microscopic state of the system is described by a discrete
variable u that acquires its values in a discrete subset of real numbers, i.e.

u ∈ I = {u1, u2, . . . , un} ⊆ R.

The distribution function of the i-th functional subsystem is

fi (t) : [0, T ] → R+,

that gives the number of particles, at time t > 0, in the microscopic state ui . For this
paper’s purposes, the i-th functional subsystem, for i ∈ {1, 2, . . . , n}, is characterized by
the microscopic state ui . Moreover, f(t) = ( f1(t), f2(t), . . . , fn(t)) represents the vector
distribution function of the overall system.

The macroscopic state is described by introducing the p-th order moment of the system,
for p ∈ N. Specifically, it is defined as

Ep[f](t) :=
n∑

i=1

u p
i fi (t).

From a physics viewpoint, the zeroth-order moment, the first-order moment and the second-
order moment correspond to density, linear momentum and global activation energy,
respectively.

The stochastic microscopic dynamics of the system are described by some suitable
quantities that model the interactions among particles. Specifically:

• The interaction rateηhk , for h, k ∈ {1, 2, . . . , n}, gives the number of encounters between
particles of the h-th functional subsystem and particles of the k-th functional subsystem.

• The transition probability Bi
hk , for i, h, k ∈ {1, 2, . . . , n}, gives the probability that a

particle of the h-th functional subsystem falls into the i-th functional subsystem after
interacting with a particle of the k-th functional subsystem. Since Bi

hk is a probability,
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hereafter the following property holds true

n∑

i=1

Bi
hk = 1, ∀h, k ∈ {1, 2, . . . , n}. (1)

The above parameters allow us to model a conservative system, that is a system where the
total number of individuals remains unchanged throughout the evolution. Nevertheless, to
gain a more realistic description of some phenomena, nonconservative effects need to be
considered, i.e. events that may change the total amount of interacting individuals. First, we
assume that the system is subjected to the action of the external environment. This action is
modeled by an external force field, that is a function

F(t) = (F1(t), F2(t), . . . , Fn(t)) ∈ Rn,

where

Fi (t) : [0, +∞] → R

represents the external action on the i-th functional subsystem, for i ∈ {1, 2, . . . , n}.
In some systems, as well as the ecological one of the current paper, the binary interactions,

between pairs of individuals, may be nonconservative, Arlotti et al. (1999). Therefore, some
nonconservative parameters are here introduced. Specifically, μhk , for h, k ∈ {1, 2, . . . , n},
represents the proliferative/destructive rate according to encounters between a particle in the
state uh and a particle in the state uk . In particular, if μhk ≥ 0 the events are proliferative,
whereas they are destructive if μhk ≤ 0. Thus, the external force field and the prolifera-
tive/destructive rates are responsible for the nonconservative dynamics, i.e. the total amount
of individuals may change during the evolution.

Bearing all the above in mind, the evolution of the i-th functional subsystem, for i ∈
{1, 2, . . . , n}, is described by the followingnonconservative kinetic framework under external
action

d fi
dt

(t) =
n∑

h,k=1

ηhk B
i
hk fh(t) fk(t) − fi (t)

n∑

k=1

ηik fk(t)

+ fi (t)
n∑

k=1

ηikμik fk(t) + Fi (t),

(2)

that is a nonlinear ordinary differential equation, with quadratic nonlinearities. In particular,
the first two terms on the right-hand side of the Eq. (2) model the conservative interactions
between pairs of particles. The former gives the number of particles that acquire the state
ui , due to interactions between particles in the state uh and particles in the state uk . The
latter gives the number of particles leaving the i-th functional subsystem. If the system were
subject only to these interactions, the dynamics would be conservative. The third term of (2)
accounts for the number of particles acquiring/loosing the state ui due to nonconservative
interactions, modeled by the rates μhk , between particles in the state uh and particles in
the state uk . Finally, the term Fi (t), for i ∈ {1, 2, . . . , n}, is the external action on the i-th
functional subsystem; this is a further nonconservative term in the kinetic framework (2).
These latter two terms are responsible for the nonconservative dynamics. It is worth pointing
out that this is the only term that does not depend on binary interactions between pairs of
agents, but only on the i-th functional subsystem itself.

By assigning a suitable initial data f0 ∈ (
R+)n , the Cauchy problem or initial value

problem related to the above nonconservative kinetic framework is defined by (2), for t > 0,
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and the initial condition

f(0) = f0. (3)

If nonconservative events do not occur, i.e. neither the third nor the fourth terms of the
Eq. (2) are present, the overall system is conservative, i.e. the 0-th-order moment, E0[f](t),
that represents the density ρ(t), is constant during the evolution. Then, standard arguments
ensure that there exists a unique positive solution of the Cauchy problem (2)–(3), Bertotti
and Delitala (2004). Moreover, if we assume that

E0[f0] =
n∑

i=1

f 0i = 1,

then the solution f(t) is a probability, i.e.

E0[f](t) = 1, ∀t ≥ 0.

Instead, in the general framework (2) the global existence in time of a unique positive solution
is not guaranteed. In particular, since the density of the system is not conserved, i.e.

d

dt
(E0[f](t)) 	= 0, t > 0,

blow-up phenomena may occur.
Nevertheless, we can make some parameter assumptions that are not restrictive for the

goal of this paper. Under suitable choices, the following result local in time for the existence
and the uniqueness of solution of the initial value problem (2)–(3) can be obtained.

Theorem 1 Along with (1), assume that the following assumptions hold true:

(i) There exists η > 0 such that ηhk ≤ η, ∀h, k ∈ {1, 2, . . . , n}.
(ii) There exists μ > 0 such that |μhk | ≤ μ, ∀h, k ∈ {1, 2, . . . , n}.
(iii) ∀i ∈ {1, 2, . . . , n}, there exists Fi ≥ 0 such that Fi (t) = Fi , for all t ≥ 0.

Let f0 = (
f 01 , f 02 , . . . , f 0n

) ∈ (R+)n. Then, there exists a unique local positive solution
f(t) ∈ (C ([0, t0]))n, for t0 > 0, of the initial value problem (2)–(3).

Proof By using standard tools and some easy, but quite long, computations (for details, see
Bertotti 2010, and references therein), the assumptions (i)–(iii) and (1) ensure that the right-
hand side of Eq. (2) represents a locally Lipschitz operator. Therefore, locally in time, i.e. for
t ∈ [0, t0], for some t0 > 0, there exists a unique solution f(t) of the initial value problem
(2)–(3).

In order to prove the positivity of this local solution f(t), let us rewrite the Eq. (2), for
i ∈ {1, 2, . . . , n}, as

d fi
dt

(t) = fi (t)Ri (t) + Si (t), (4)

where

Ri (t) :=
n∑

k=1

ηik(μik − 1) fk(t)

Si (t) :=
n∑

h,k=1

ηhk B
i
hk fh(t) fk(t) + Fi (t).

123



A kinetic theory approach... Page 7 of 27   216 

Straightforward computations allow to obtain

fi (t) = f 0i e
γi (t) +

∫ t

0
eγi (t)−γi (τ )Si (τ ) dτ, (5)

with

γi (t) :=
∫ t

0
Ri (τ ) dτ.

Since f0 ∈ (
R+)n and Fi (t) = Fi ≥ 0, for all i ∈ {1, 2, . . . , n} and for all t ≥ 0, then the

operator Si (t) is positive, for all i ∈ {1, 2, . . . , n} and for all t ≥ 0. Therefore, the positivity of
this operator and the positivity of exponential function ensure the positivity of local solution
f(t) of the initial value problem (2)–(3). This concludes the proof. 
�

3 The new structured predator–preymodel

We consider an environment with four different populations. Specifically, two of these are
predators, whereas the other two are prey. The two groups of predators and those ones
of prey are ecologically partitioned by considering their experience in hunting and defense.
Among the predators, there are experiencedpredators and inexperiencedpredators. Similarly,
among the prey there are experienced prey and inexperienced prey. Specifically, there is a
mechanism of switching process among these groups. For instance, with a certain probability,
an inexperienced predator may pass into the set of experienced predators after an encounter
with an experienced or inexperienced prey. Moreover, to have a more realistic description,
nonconservative events are considered, i.e. proliferative/destructive rates μhk and a positive
constant external force field F. Roughly speaking, the former may represent the birth/death
rates, the latter may represent the action of the external environment on each population of
the system.

Therefore, this section aims at justifying the introduction of previous kinetic framework
to model the evolution of such an environment.

At first, the ecological system is viewed as an interacting system whose individuals are
the classes of predators and prey. Specifically, the overall system is divided into 4 functional
subsystems such that:

1. The first functional subsystem is composed of experienced predators;
2. The second functional subsystem is composed of inexperienced prey;
3. The third functional subsystem is composed of experienced prey;
4. The fourth functional subsystem is composed of inexperienced predators.

Then, the distribution function on the overall system writes

f(t) = ( f1(t), f2(t), f3(t), f4(t)) ,

where fi (t), for i ∈ {1, 2, 3, 4}, is the distribution function related to the i-th functional sub-
system. In this context, the p-th order moments Ep[f](t) have a specific biological meaning.
For instance, the 0-th-order moment represents the total density of the system, i.e. the total
number of experienced/inexperienced prey and experienced/inexperienced predators, at time
t ≥ 0.

In what follows, some scenarios, in both conservative and nonconservative cases, are
modeled and analyzed by using the kinetic framework (2), proposed in Sect. 2. Specifically,
the parameters of the related four ordinary differential equations are specialized with respect
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to each scenario. Then, given suitable initial data f0 ∈ (
R+)4, the following system of

nonlinear ordinary differential equations is derived
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d f1
dt

=
4∑

h,k=1

ηhk B
1
hk fh(t) fk(t) − f1(t)

4∑

k=1

η1k fk(t) + f1(t)
4∑

k=1

η1kμ1k fk(t) + F1

d f2
dt

=
4∑

h,k=1

ηhk B
2
hk fh(t) fk(t) − f2(t)

4∑

k=1

η2k fk(t) + f2(t)
4∑

k=1

η2kμ2k fk(t) + F2

d f3
dt

=
4∑

h,k=1

ηhk B
3
hk fh(t) fk(t) − f3(t)

4∑

k=1

η3k fk(t) + f3(t)
4∑

k=1

η3kμ3k fk(t) + F3

d f4
dt

=
4∑

h,k=1

ηhk B
4
hk fh(t) fk(t) − f4(t)

4∑

k=1

η4k fk(t) + f4(t)
4∑

k=1

η4kμ4k fk(t) + F4

f(0) = f0.

(6)

In each scenario, the assumptions of Theorem 1 are satisfied.
Since (6) is a system of nonlinear ordinary differential equations, the numerical simula-

tions have been performed by using fourth-order Runge–Kutta method with our own code
developed in MATLAB.

3.1 Conservative framework with equilibrium stationary solution

In a first scenario, a conservative system is considered. Specifically, proliferative/destructive
rates and external force field are both neglected. Therefore:

• for all h,k ∈ {1, 2, 3, 4}, respectively
μhk = 0,

• for all i ∈ {1, 2, 3, 4} and for all t ≥ 0, respectively

Fi (t) = 0,

A uniform initial data is assigned, i.e.

f0 = (0.25, 0.25, 0.25, 0.25) .

Then, due to the choice of the initial data f0 and the conservative structure, Theorem 1 ensures
that globally in time there exists a unique, bounded and positive solution, such that

4∑

i=1

fi (t) = 1, t > 0,

i.e. the total amount of individuals is conserved during the evolution.
The interaction rateηhk , forh, k ∈ {1, 2, 3, 4}, furnishes thenumber of encounters between

individuals of the h-th functional subsystem and individuals of the k-th functional subsystem;
the values are given in Table 1. It is worth stressing that the largest value is assigned to ηhh ,
for h ∈ {1, 2, 3, 4}, since we assume that the major part of the interactions occurs among
individuals of the same population. The transition probability Bi

hk , for i, h, k ∈ {1, 2, 3, 4},
models the interactions among individuals. Accordingly, there is a pay-off mechanism due
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Table 1 Conservative framework
with equilibrium stationary
solution: values of the interaction
rate ηhk

ηhk k = 1 k = 2 k = 3 k = 4

h = 1 1 exp(−1) exp(−2) 0.5

h = 2 exp(−1) 1 exp(−1) exp(−1)

h = 3 exp(−2) exp(−1) 1 exp(−3)

h = 4 0.5 exp(−1) exp(−3) 1

Table 2 Conservative framework
with equilibrium stationary
solution: values of the transition
probability Bi

h1 for which an
individual of the h-th population
migrates into the i-th population
after interacting with an
experienced predator

Bi
h1 h = 1 h = 2 h = 3 h = 4

i = 1 1 0.25 0.25 0.25

i = 2 0 0.25 0.25 0.25

i = 3 0 0.25 0.25 0.25

i = 4 0 0.25 0.25 0.25

Table 3 Conservative framework
with equilibrium stationary
solution: values of the transition
probability Bi

h2 for which an
individual of the h-th population
migrates into the i-th population
after interacting with an
inexperienced prey

Bi
h2 h = 1 h = 2 h = 3 h = 4

i = 1 0.25 0 0.2 0.25

i = 2 0.25 1 0.25 0.25

i = 3 0.25 0 0.25 0.25

i = 4 0.25 0 0.25 0.25

Table 4 Conservative framework
with equilibrium stationary
solution: values of the transition
probability Bi

h3 for which an
individual of the h-th population
migrates into the i-th population
after interacting with an
experienced prey

Bi
h3 h = 1 h = 2 h = 3 h = 4

i = 1 0.25 0.25 0 0.25

i = 2 0.25 0.25 0 0.25

i = 3 0.25 0.25 1 0.25

i = 4 0.25 0.25 0 0.25

to the interaction between experienced/inexperienced prey and experienced/inexperienced
predators. For instance, an inexperienced predator (resp. inexperienced prey) may become
an experienced predator (resp. experienced prey) after the encounter with an experienced
prey (resp. experienced predator), with a certain probability. Specifically, the values and
specifications of Bi

hk , for i, h, k ∈ {1, 2, 3, 4}, are reported in Tables 2, 3, 4 and 5.
The simulation of this conservative framework is shown in Fig. 1. As expected for

this model, the system converges to an equilibrium after some iterations. In particular, the

Table 5 Conservative framework
with equilibrium stationary
solution: values of the transition
probability Bi

h4 for which an
individual of the h-th population
migrates into the i-th population
after interacting with an
inexperienced predator

Bi
h4 h = 1 h = 2 h = 3 h = 4

i = 1 0.25 0.25 0.25 0

i = 2 0.25 0.25 0.25 0

i = 3 0.25 0.25 0.25 0

i = 4 0.25 0.25 0.25 1
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Fig. 1 The solution f(t) of the conservative framework with stationary equilibrium with initial data f0 =
(0.25, 0.25, 0.25, 0.25) and parameters according to Tables 1, 2, 3, 4 and 5

Table 6 Nonconservative
framework (both cases): values of
the interaction rate ηhk

ηhk k = 1 k = 2 k = 3 k = 4

h = 1 0.05 0.05 0.05 0.06

h = 2 0.05 0.03 0.05 0.05

h = 3 0.05 0.07 0.05 0.05

h = 4 0.05 0.05 0.07 0.05

stationary solution is

g = (0.3782, 0.2441, 0.2559, 0.1218).

The impact of expertise level is evident from the numerical simulations. Indeed, both expe-
rienced predators and experienced prey tend to predominate in the ecosystem, as shown by
the equilibrium g.

3.2 Nonconservative framework

In a second scenario, two nonconservative cases are analyzed, by properly developing the
entire kinetic framework (2).

The interaction rate ηhk , for h, k ∈ {1, 2, 3, 4}, is modeled in Table 6. Instead the transition
probability Bi

hk , for i, h, k ∈ {1, 2, 3, 4}, is shown in Tables 7, 8, 9 and 10. It is worth stressing
that these values are the same for both cases.

In the first case, we assume an environment with finite resources. We model the conse-
quences of this finiteness by considering some sort of death rate related to each population.
Inspired by the classical Lotka–Volterra model, we provide the following values for the
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Table 7 Nonconservative
framework (both cases): values of
the transition probability Bi

h1 for
which an individual of the h-th
population migrates into the i-th
population after interacting with
an experienced predator

Bi
h1 h = 1 h = 2 h = 3 h = 4

i = 1 1 0 0 0

i = 2 0 0.9 0.25 0

i = 3 0 1 0.75 0

i = 4 0 0 0 1

Table 8 Nonconservative
framework (both cases): values of
the transition probability Bi

h2 for
which an individual of the h-th
population migrates into the i-th
population after interacting with
an inexperienced prey

Bi
h2 h = 1 h = 2 h = 3 h = 4

i = 1 0.9 0 0 0.75

i = 2 0 1 0 0

i = 3 0 0 1 0

i = 4 0.1 0 0.25 0.25

Table 9 Nonconservative
framework (both cases): values of
the transition probability Bi

h3 for
which an individual of the h-th
population migrates into the i-th
population after interacting with
an experienced prey

Bi
h3 h = 1 h = 2 h = 3 h = 4

i = 1 0.75 0 0 0.1

i = 2 0 1 0 0

i = 3 0 0 1 0

i = 4 0.25 0 0 0.9

Table 10 Nonconservative
framework (both cases): values of
the transition probability Bi

h4 for
which an individual of the h-th
population migrates into the i-th
population after interacting with
an inexperienced predator

Bi
h4 h = 1 h = 2 h = 3 h = 4

i = 1 1 0 0 0

i = 2 0 0.75 0.1 0

i = 3 0 0.25 0.9 0

i = 4 0 0 0 1

nonconservative rates μhk :

μhk =

⎧
⎪⎨

⎪⎩

0 h 	= k

−0.003 h = k.

It is worth pointing out that μi i < 0, for i ∈ {1, 2, 3, 4}, means a death rate for the i-th pop-
ulation due to interactions between individuals of the i-th population itself, i.e. intraspecific
competition. However, the choice of transition probabilities Bi

hk , for i, h, k ∈ {1, 2, 3, 4},
according to Tables 7, 8, 9 and 10, models a sort of birth process, still in the Lotka–Volterra
approach, due to the quadratic structure of interacting terms of the conservative part of Eq.
(2). Moreover, neither proliferation rates nor external factors, i.e. F(t) = 0, are considered.
The initial data is

f0 = (0.2, 0.3, 0.3, 0.2).

Then, the nonconservative kinetic framework (2) is used. The assumptions of Theorem 1 are
satisfied, hence the problem admits a unique and positive local solution.
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Fig. 2 The solution f(t) of the nonconservative framework (first case) with initial data f0 = (0.2, 0.3, 0.3, 0.2)
and parameters according to Tables 6, 7, 8, 9 and 10. The solution f(t) converges to 0, i.e. the extinction of all
individuals

The related numerical simulation is shown in Fig. 2. The solution f(t) converges to 0, i.e.
the extinction of all four populations occurs. Roughly speaking, the nonconservative rateμhh ,
for h ∈ {1, 2, 3, 4}, rules the impact of overpopulation for each species, in the spirit of Lotka–
Volterra dynamics. Since the environment does not provide external resources, i.e. F(t) = 0,
the extinction occurs. At the start, only experienced predators grow, and this occurs for two
reasons. On one hand, some inexperienced predators pass into the group of experienced
ones. On the other one, these predators get food in the interaction with populations of prey.
Nevertheless, as prey decrease due to the lack of external resources, the experienced predators
also begin to decrease and ultimately vanish as well.

In the second case, along with previous death rates, a positive constant external force field
F is introduced. Thus,

F = (0.01, 0.05, 0.01, 0.05) .

It furnishes suitable external resources from the environment, in a constant quantity for
each species, assuming that these are available in an unlimited fashion. It is worth noting
that the amount of resources for inexperienced populations is bigger than for experienced
ones. Indeed, F1 = F3 = 0.01 < 0.05 = F2 = F4. This choice is inspired by ecological
assumptions. Furthermore, the action of F does not depend on the current state of each
functional subsystem.

The system is modeled using the kinetic framework (2) with all four components on the
right-hand side. Theorem 1 still ensures the existence of a unique and positive solution,
locally in time. The numerical simulation of the scheme is shown in Fig. 3. The solution
f(t) converges to a stationary state g = (g1, g2, g3, g4) 	= 0, such that, according to the
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Fig. 3 The solution f(t) of the nonconservative framework (second case) with initial data f0 =
(0.2, 0.3, 0.3, 0.2), parameters according to Tables 6, 7, 8, 9 and 10 and external force field F =
(0.01, 0.05, 0.01, 0.05). No extinction occurs, indeed the solution converges very fast to a stationary state

nonconservative dynamics,

n∑

i=1

gi > 1.

Roughly speaking, the death rate μhh , that characterizes the first case, for h ∈ {1, 2, 3, 4},
is balanced by resources furnished by the environment, which are modeled by a positive
constant external force field F. Indeed, if one removes F, the solution collapses to 0, i.e. the
extinction of all populations. This is in agreement with what is expected. It is worth noting
that in this situation coexistence among the four populations is obtained. It is well-known that,
under some parameter conditions, the coexistence equilibrium may be stable. If one of these
parameters crosses a critical threshold, it could undergo a Hopf bifurcation, and therefore
generate a persistent limit cycle. However, crossing the threshold in the opposite direction
would lead to the extinction of the cycle, restoring the stable coexistence equilibrium. In
Fig. 3, such a stable equilibrium, under the action of a suitable external force field F, is
obtained. Moreover, in a similar way as for the conservative scenario, even in this case, when
subjected to the external force field F, the experienced predators tend to predominate. This
is numerically evident since

g = (4.1884, 3.7655, 2.4118, 1.5672).

However, in this scenario, the total number of inexperienced prey exceeds the one of experi-
enced prey, if still compared to the conservative case. At first glance, this may seem peculiar;
it could be attributed to the specific choice of the parameters of the system; for instance, they
are constant in time.
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Table 11 Conservative
framework with persistent
oscillatory solution: values of the
transition probability Bi

hk , for
h 	= k, for which an individual of
the h-th population migrates into
the i-th population after
interacting with an individual of a
different population k

B1
14 = 0.6 B1

21 = 0.4 B1
32 = 0 B1

43 = 0

B2
14 = 0 B2

21 = 0.6 B2
32 = 0.4 B2

43 = 0

B3
14 = 0 B3

21 = 0 B3
32 = 0.6 B3

43 = 0.4

B4
14 = 0.4 B4

21 = 0 B4
32 = 0 B4

43 = 0.6

3.3 Conservative framework with persistent oscillatory solution

Finally, we consider another situation for this expertise-level structured ecosystem with four
functional subsystems, where neither nonconservative interactions nor the external force field
are present. Thus, only conservative interactions among individuals are allowed, i.e. we use
the kinetic model (2) with μhk = 0, for all h, k ∈ {1, 2, 3, 4}, and F(t) = 0, for t ≥ 0. In
addition, the interaction rate is assumed to be uniform, i.e.

ηhk = 0.05, ∀h, k ∈ {1, 2, 3, 4}. (7)

With this choice, we assume the same number of encounters between individuals from any
population. For the transition probability Bi

hk , first, we assume that

Bi
hh =

{
1 i = h

0 i 	= h.
(8)

By this choice, an individual cannot change population after interacting with another indi-
vidual of the same population. Therefore, it is worth noting that an individual can improve
its expertise level only by interacting with different populations. Moreover, the remaining
values of Bi

hk are shown in Table 11.
The initial data is

f0 = (0.9, 0.01, 0.02, 0.01) .

Theorem 1 ensures that there exists a unique and positive solution f(t), global in time, such
that

4∑

i=1

fi (t) = 1, t ≥ 0.

The numerical shape of the solution for this case is shown in Fig. 4. Evidently, the solution
is periodic. The presence of periodic solutions may indicate the presence of some bifurca-
tion structures in this particular model. This is in agreement with some classical ecological
situations, as well as the results of Lotka–Volterra equations, although it is well-known that
for the latter, oscillations arise because the equilibrium is a center. Thus, perturbing one of
them, another cycle is obtained that does not tend to the former one.

Even in this periodic case, the impact of expertise level clearly appears. Indeed, during
the oscillations, the higher peaks are gained by both experienced predators and experienced
prey. It is worth stressing that we may expect periodic solutions even in nonconservative
cases, i.e. when proliferative/destructive binary interactions and/or external actions occur.

However, an analytic studyof bifurcations is not possiblewith the classical approach for the
kinetic framework (2), even if in a conservative case, in view of the large number of equations
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Fig. 4 The solution f(t) of the conservative framework with persistent oscillatory pattern with initial data
f0 = (0.9, 0.01, 0.02, 0.01), uniform interaction rate (7) and transition probability according to (8) and
Table 11. The solution shows a persistent periodic pattern

involved and their particular structure. Therefore, this paper aims at providing a first kind of
investigation, by using just a numerical simulations viewpoint. Since several parameters are
presented, the following method is adopted. We fix all interaction rates, which are uniform,
and all transition probabilities, except for the parameter B1

21. Some simulations are provided
for different values of this quantity. Moreover, due to the property

∑4
i=1 B

i
hk = 1, for all

h, k ∈ {1, 2, 3, 4}, if B1
21 = R, for R ∈ [0, 1], then B2

21 = 1 − R. In particular, we assume

B1
21 = R = 0.25 + (6 × 0.0001 × i),

where i ∈ N, such that i ∈ [1, 1000]. Finally, the initial dataset is assigned
f0 = (0.95, 0.01, 0.02, 0.02) .

Then, the Cauchy problems related to the same initial data f0, for different values of B1
21

and B2
21, i.e. different values of the parameter R, are defined. Theorem 1 ensures their

well-posedness, globally in time. The asymptotic solutions of these Cauchy problems are
considered, denoted by f∞ = (

f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4

)
. In particular, for each value R, accord-

ing to the previous discrete real set, the maximum and minimum value of the asymptotic
solution is considered. Numerically, this is gained by running the algorithm up to the time
t = 1.5 · 105. Then, for each value of the parameter the corresponding asymptotic value of
f ∞
i , for i ∈ {1, 2, 3, 4}, is used. Figure 5 shows this situation. Specifically, close to the value

0.6 the parameter B1
21 shows a possible bifurcation structure.

Beyond kinetic and mathematical aspects, this analysis concerning oscillations and possi-
ble bifurcations has ecological interpretations and impacts. Figure 4 shows oscillations that
are sometimes found in empirical ecological data. For instance, such oscillations have been
questioned in Gilpin (1973). Moreover, a bifurcation analysis towards only a parameter, i.e.
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Fig. 5 First bifurcation analysis. On the horizontal axis the values of the parameter B1
21. The four plots show

the components of the stationary solution f∞ = (
f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
. The red line represents the maximum

value, whereas the black line the minimum value. In a neighborhood of B1
21 = 0.6 a bifurcation seems to

occur

B1
21, could be very useful to further test the model provided by system (2) with experimental

data that are certainly affected by some error.

3.4 Hopf bifurcations

We sketch here a possible theoretical approach to the onset of persistent oscillations, to
illustrate the difficulties of the problem.

We concentrate in particular on the coexistence equilibrium point, which is obtained
by setting to zero the left-hand side of the system (6). This gives a nonlinear algebraic
system whose zeros, if they exist, provide the population levels at steady state, namely f∞ =(
f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4

)
. Finding explicitly these values is a very hard task. Geometrically,

it turns into seeking the intersections of hypersurfaces in a four dimensional space. Most
of the times, one can just find sufficient conditions ensuring that one or more intersection
points exist, but without exhibiting explicit coordinate values. Furthermore, even if known,
these population values f ∞

i , i = 1, 2, 3, 4, would depend on the system parameters. Let π

represent the set of all the parameters appearing in (6):

π = {ηh,k, Bh,k, μh,k, Fh}, h, k ∈ {1, 2, 3, 4}.
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Then, the Jacobian of (6) must be determined and evaluated at the equilibrium, J (f∞(π)). Of
this matrix, the eigenvalues are needed. This means to find the roots of an algebraic equation
of degree four:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0. (9)

Now,

a1 = −tr(J (f∞(π))), a3 = det(J (f∞(π))),

while the remaining coefficientsa2 anda3, respectively, are the sumsof the principalminors of
order two and three of J (f∞(π)). It is to be remarked that all these coefficients depend on the
population values at f∞, and therefore implicitly on the systemparameters. To assess stability,
the Routh-Hurwitz criterion (Gantmacher and Brenner 2005) must be used. It requires the
nonnegativity of all the ai ’s and, in this case, in addition the following two conditions:

a1a2 > a3, a1a2a3 > a21a4 + a23 . (10)

Let b denote a selected bifurcation parameter, chosen among all the system parameters, so
that rewriting the last inequality in (10) as an equation, we have

b† = G(a1(π), a2(π), a3(π), a4(π)). (11)

This would represent the threshold value for which a Hopf bifurcation arises, giving rise to
the onset of persistent oscillations. However, (11) is in fact an implicit equation, because the
same parameter b in general appears also in the right-hand side, implicitly in the coefficients
ai ’s and as a consequence (11) in general is not a ready-to-use condition to assess the onset
of the system limit cycles.

Shouldwe instead be interested in one equilibrium inwhich one ormore population vanish,
the above considerations still hold. They however would apply to a point f∞ in which some
of the components are zero. Some simplifications would follow, but most likely a condition
similar to (11) will be found, maybe easier, but most likely still in implicit form.

In view of these considerations, we have investigated the occurrence of limit cycles
numerically, Fig. 4.

3.5 A sample of sensitivity analysis

We now provide some examples of how the system responds to changes in individual param-
eter values. The parameter reference set is given by those of Fig. 3 of Subsect. 3.2. We select
a few parameters and plot the equilibrium values of the four populations in each frame of
Figs. 6, 7, 8, 9, 10 and 11 as the chosen parameter attains different values in the selected
range. The initial data is chosen as follows and kept fixed: f0 = (0.01, 0.05, 0.01, 0.05).

In particular, for each case the set of parameter is fixed according to those in Fig. 3, except
for one:

• Case 1 (Fig. 6):

B4
12 = R = 0.1 + (4 × 0.0001 × i), i ∈ [1, 1000]; (12)

• Case 2 (Fig. 7):

B2
31 = R = 0.25 + (4 × 0.0001 × i), i ∈ [1, 1000]; (13)
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Fig. 6 Sensitivity analysis, case 1. On the horizontal axis the values of the parameter B4
12 according to (12).

The four plots show the components of the stationary solution f∞ = (
f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to

the values of B4
12. They all exhibit sensitivity to the parameter B4

12. Nevertheless, the fourth component of
f∞, i.e. the population of inexperienced predators, is the one that exhibits the highest sensitivity

• Case 3 (Fig. 8):

μ33 = −R = −0.003 − (4 × 0.000001 × i), i ∈ [1, 1000]; (14)

• Case 4 (Fig. 9):

μ44 = −R = −0.003 − (4 × 0.000001 × i), i ∈ [1, 1000]; (15)

• Case 5 (Fig. 10):

η14 = R = 0.06 + (3 × 0.00001 × i), i ∈ [1, 1000]; (16)

• Case 6 (Fig. 11):

F2 = R = 0.05 + (3 × 0.00001 × i), i ∈ [1, 1000]. (17)

The numerical simulations with respect to the above cases (12)–(17), shown in Figs. 6, 7,
8, 9, 10 and 11, highlight a different sensitivity of the model (6) to the different parameters
there present. In particular, the long-time solutions, f∞ = ( f ∞

1 , f ∞
2 , f ∞

3 , f ∞
4 ), exhibit a

more pronounced sensitivity to transition probabilities, as shown in Figs. 6 and 7. In this
case, the sensitivity pertains to all components of f∞, i.e. to all populations involved. When
one of the nonconservative parameters, μhh , is considered, the sensitivity pertains only the
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Fig. 7 Sensitivity analysis, case 2. On the horizontal axis the values of the parameter B2
31 according to (13).

The four plots show the components of the stationary solution f∞ = (
f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to

the values of B2
31. They all exhibit sensitivity to the parameter B4

12. Nevertheless, the third component of f∞,
i.e. the population of experienced prey, is the one that exhibits the highest sensitivity

related populations, i.e. the component f ∞
h , as shown in Figs. 8 and 9. However, in this

first numerical sensitivity analysis, the interaction rate, ηhk , seems to be a parameter that
does not alter the dynamics of the system; indeed, none of the components of f∞ exhibits
any sensitivity, as shown in Fig. 10. Finally, with respect to the external force field F, each
population of the system, i.e. f ∞

i , exhibits sensitivity to the related component of F, i.e. Fi ,
as shown by component f ∞

2 in Fig. 11 under condition (17). Nevertheless, in this latter case,
unlike what occurs with the nonconservative parameters, still some other components exhibit
some sensitivity, although less pronounced compared to the component of interest. Indeed, in
Fig. 11, the second population, i.e. f ∞

2 , exhibits the highest sensitivity to the parameter F2,
but also the third component, f ∞

3 , is involved. Anyway, it is worth noting that this represents
only a first numerical investigation, as stated above.
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Fig. 8 Sensitivity analysis, case 3. On the horizontal axis the values of the parameter μ33 according to (14).
The four plots show the components of the stationary solution f∞ = (

f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to the

values of μ33. The second and third components of f∞, i.e. the populations of inexperienced and experienced
prey, exhibit sensitivity to the parameter μ33. However, the first and fourth component, i.e. the populations of
experienced and inexperienced predators, are not at all influenced by this parameter

4 Conclusions and perspectives

To the best of our knowledge, this paper represents a first attempt at using kinetic theory for
modeling an expertise-level structured ecosystem, where both conservative and nonconser-
vative events occur. Indeed, proliferative/destructive binary interactions are considered, and
an external force field acts on the system. In particular, the latter term is important for two
reasons. On one hand, it does not depend on stochastic binary interaction between pairs of
individuals, but only on functional subsystems. On the other one, it does not take into account
the current state of functional subsystems themselves. Therefore, a general kinetic model is
derived.

At first, we have introduced and discussed the nonconservative kinetic framework under
external action (2). The general shape allows us to model both the evolution of an interacting
system where conservative and nonconservative interactions between pairs of agents occur,
coupledwith a generic external force field. Then, we have proved an existence and uniqueness
result of a positive solution, at least locally in time, i.e. Theorem 1, by providing a specific
analytical shape to the external force field. It is worth pointing out that we could have
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Fig. 9 Sensitivity analysis, case 4. On the horizontal axis the values of the parameter μ44 according to (15).
The four plots show the components of the stationary solution f∞ = (

f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to the

values of μ44. The first and fourth component of f∞, i.e. the populations of experienced and inexperienced
predators, exhibit a slight sensitivity to the parameter μ44. However, the second and third component, i.e. the
populations of inexperienced and experienced prey, are not at all influenced by this parameter

derived global results, but under too restrictive assumptions, not realist for the ecological
purposes of this paper. Accordingly, we havemodeled an ecological system composed of four
populations: experienced predators, inexperienced prey, experienced prey and inexperienced
predators. The overall system is divided into four functional subsystems, according to the
four populations. At mesoscopic level, the state of each functional subsystem is described
by a suitable distribution function fi (t), for i ∈ {1, 2, 3, 4}.

Then, different scenarios have been proposed. After showing the well-posedness of initial
value problems, through Theorem 1, a numerical analysis has been performed. At first, in
Subsect. 3.1, a conservative case is considered, where neither nonconservative interactions
nor external force field occur. The evolution of the overall system depends only on stochastic
binary interactions between pairs of individuals of the four populations, modeled by interac-
tion rate ηhk , for h, k ∈ {1, 2, 3, 4}, and transition probability Bi

hk , for i, h, k ∈ {1, 2, 3, 4}.
The dynamics converge to a stationary solution, where experienced predators and experi-
enced prey predominate. Subsection 3.2 focuses on two nonconservative scenarios. In a first
case, only destructive rates μhk < 0, for h = k, are considered. Since these nonconservative
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Fig. 10 Sensitivity analysis, case 5. On the horizontal axis the values of the parameter η14 according to (16).
The four plots show the components of the stationary solution f∞ = (

f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to

the values of η14. In this case, none of the populations exhibits any sensitivity to the parameter

parameters model the natural death rate of populations, then, at the equilibrium, the evolu-
tion of the system gives the extinction of all populations. It is worth stressing that only the
population of experienced predators grows in the first instants due to the migrating process
from the population of inexperienced predators. However, if a positive external force field is
added, then the extinction does not occur, and the system converges to an equilibrium, where
experienced predators still predominate. From an ecological viewpoint, this can be seen as a
coexistence equilibrium. Roughly speaking, the positive constant external force field models
the action of the environment providing resources to all four populations. In particular, it is
assumed that the amount of resources for inexperienced populations is bigger than the one for
experienced populations; this is motivated by ecological considerations. Since the long-time
behavior depends on the presence of the external force field, then a nonequilibrium stationary
state of the system has been found, Gallavotti (2004); Bianca and Menale (2019). Therefore,
a correspondence between a kinetic nonequilibrium stationary state and an ecological coex-
istence equilibrium seems to emerge. Finally, Subsect. 3.3 returns to a conservative situation,
where an oscillatory pattern now occurs, by assigning suitable values to the parameters of
the system, i.e. interaction rate and transition probability. Therefore, in view of this result,
a first bifurcation analysis is performed for this situation, by considering different values of
one of the parameters of the system. The numerical simulations suggest the possibility that a
bifurcation threshold can be determined. The presence of possible bifurcations is of relevant
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Fig. 11 Sensitivity analysis, case 6. On the horizontal axis the values of the parameter F2 according to (17).
The four plots show the components of the stationary solution f∞ = (

f ∞
1 , f ∞

2 , f ∞
3 , f ∞

4
)
with respect to the

values of F2. The second and third component of f∞, i.e. the populations of inexperienced and experienced
prey, exhibit a sensitivity to the parameter F2. However, the first and fourth component, i.e. the populations
of inexperienced and experienced predators, are not at all influenced by this parameter.

interest, and the reason is twofold. First, providing results towards stability and equilibria is
of theoretical interest in a kinetic system, since standard tools cannot be generally used due
to the large number of equations and parameters involved. In addition, a bifurcation analysis
is suitable in perspective of future tests with experimental data, that are affected by errors.

The firstmain novelty of this paper is represented by the use of the general nonconservative
kinetic framework (2) for modeling a specific ecosystemmodel, which is characterized by the
expertise level. There is an advantage related to the generality andversatility of the framework.
Indeed, the kinetic parameters can furnish a more detailed description of the system. The
related transition probability ensures a more realistic evolution of dynamics. According to
expectations, the numerical simulations confirm the importance of the expertise level; indeed,
experienced predators tend to predominate, in long-time evolution of the system. Experienced
prey tends to predominate too, even if in some situations inexperienced prey predominate. The
impact of nonconservative interactions and external force field appear clearly; indeed more
realistic scenarios are thus gained. Among others, extinction and coexistence are obtained.
Therefore, the versatility of the system adapts well to different ecological situations, also
with respect to the external environment due to the generality of the external force field F(t)
in the system (1). It is worth noting that the reason for the specific parameter choices of this
paper is twofold. On one hand, our aim is to show different patterns that can be quite realistic

123



  216 Page 24 of 27 M. Menale, E. Venturino

from an ecological viewpoint. On the other one, we want to emphasize the versatility and
generality of the nonconservative kinetic framework (1), through solutions characterized by
different shape and long-time behavior.

Of course, this paper represents a first attempt in this direction. Indeed, we recognize
some limitations. Among others, the conservative parameters ηhk and Bi

hk are assumed to
be constant in time and independent with respect to the state of the system; this could be
not so realistic for some applications (see for details Holling 1959; Real 1977; Dawes and
Souza 2013). In the same direction, we want to work for nonconservative parametersμhk and
the external force field F(t). Therefore, a research perspective is the study of a framework
where parameters, that characterize stochastic interactions, are, at least, time-dependent. For
instance, they could be affected by noise, as recently investigated in Bertott et al. (2023),
where a system of stochastic differential equations has been derived.Moreover, the numerical
simulations provided in Sect. 3 are only numerical experiments. Then, it would be interesting
the development of simulations for these frameworks by using experimental data. A further
research perspective is the analytical study of the nonconservative framework (2), that is the
research of conditions to get existence and uniqueness of a positive and bounded solution,
globally in time. In a similarway, it would be interesting to investigate of analytical conditions
to obtain some results towards the connection between kinetic nonequilibrium stationary state
and coexistence equilibrium. To attain this latter goal, the introduction of a thermostat term,
such that one of the moments of the system (2) is kept constant during the evolution, may be
suitable both for analytical and ecological reasons (for details towards kinetic thermostatted
equations, the interested reader is referred to Bianca (2012); Bianca and Mogno (2018);
Bianca and Menale (2019); Menale and Carbonaro (2020), and references therein). Indeed,
a thermostat could avoid, at least, blow-up phenomena, ensuring a positive solution for the
related initial value problem, globally in time. Moreover, it is reasonable from an application
viewpoint, since the total amount of interacting agents (i.e. experienced/inexperienced prey
and experienced/inexperienced predators) cannot grow indefinitely over time. In a similar
way, a deeper theoretical analysis of stability and bifurcations is mandatory, building upon
the numerical investigations provided in Subsects. 3.4 and 3.5. Finally, two further future
works open up in perspective. One is the account for systems where the external force
field F[f](t) explicitly depends on the distribution function f(t), in order to have a more
realistic description. The second work is the continuous version of the kinetic framework
(2), discussed in this paper. For this aim, a continuous activity variable has to be considered,
that is u ∈ Du ⊆ R, where Du is a continuous real subset. This choice has not only a pure
mathematical reason but also an ecological one. Indeed, a continuous expertise level could
better describe the characterization of individuals in a population, for both predators and
prey, as just recently is the case in an epidemiological context in Della Marca et al. (2023). A
continuous activity variable will lead to a system of nonlinear integro-differential equations.
Nevertheless, this would involve also computational problems, beyond analytical ones.
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