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Abstract
In this paper, we contemplate addressing nonlinear problems involving complex symmetric
Jacobian matrices. Firstly, we establish a parameter-free method called modified Newton–
CAPRESB (MN–CAPRESB) method by harnessing the modified Newton method as the
outer iteration and the CAPRESB (Chebyshev accelerated preconditioned square block)
method as the inner iteration. Secondly, the local and semilocal convergence theoremsofMN–
CAPRESBmethod are proved under some conditions. Eventually, the numerical experiments
of two kinds of complex nonlinear equations are presented to validate the feasibility of MN–
CAPRESB method compared to other existing iteration methods.

Keywords Complex nonlinear system · Preconditioned square block (PRESB) method ·
Chebyshev acceleration · Modified Newton method · Convergence analysis

Mathematics Subject Classification 65H10

1 Introduction

In many fields of physics and engineering, we often encounter nonlinear problems. Exam-
ples of such systems can be seen in Ortega and Rheinboldt (2000), Rheinboldt (1998) and
references therein.

We contemplate addressing the large and sparse nonlinear system:

F(x) = 0. (1)
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Here,

F : D ⊂ C
n → C

n

represents a continuously differentiable function.
We assume that the Jacobian matrix F ′(x) has the following form:

F ′(x) = W (x) + iT (x), (2)

where i = √−1 and matrices W (x), T (x) ∈ R
n×n are symmetric positive definite (SPD)

and symmetric positive semidefinite (SPSD), respectively.
For solving Eq. (1), many researchers have devoted themselves to proposing numerous

methods (Ortega and Rheinboldt 2000; Rheinboldt 1998; King 1973). The Newton method is
considered as a efficient and widely used iterative method for addressing nonlinear problems.
The inexact Newton method (Dembo et al. 1982) outperforms the Newton method. It could
be formulated as follows:

F ′(xk)mk = −F(xk) + rk, with xk+1 := xk + mk .

Here, x0 ∈ D stands for the provided initial vector, while rk denotes a residual acquired
during the inner iteration process. The modified Newton method (Darvishi and Barati 2007)
was established to reduce the computational load in Newtonmethod, which has the following
form: {

yk = xk − F ′(xk)−1F(xk),

xk+1 = yk − F ′(xk)−1F(yk).

Among the above methods, we can observe that tackling linear equations is an integral
part in these methods. So we review the methods for addressing complex linear equation

A f̃ = b, A ∈ C
n×n, f̃ , b ∈ C

n, (3)

where A = W + iT and the matrices W , T ∈ R
n×n are SPD and SPSD, respectively. In

2003, the Hermitian and skew-Hermitian splitting (HSS) method was constructed by Bai
et al., which was based on the specific structure of A (Bai et al. 2003). The modified HSS
(MHSS) (Bai et al. 2010) and preconditionedMHSS (PMHSS) (Bai et al. 2011)methods have
also been established for enhancing the HSS method. Moreover, Hezari et al. established a
single-step iterativemethod known as the SCSPmethod inHezari et al. (2016). Subsequently,
other researchers have extended and improved upon this method, leading to the development
of more effective iteration methods (Zheng et al. 2017; Salkuyeh and Siahkolaei 2018).
Furthermore, Wang et al. presented a novel iteration method combining real and imaginary
parts (CRI) (Wang et al. 2017). Since then, a number of researchers have devoted their efforts
to developing efficient iteration methods (Xiao and Wang 2018; Huang 2021; Shirilord and
Dehghan 2022) to solve Eq. (3).

Additionally, it can be confirmed that Eq. (3) is equivalent to the following equation:

A f ≡
[
W −T
T W

] [
z(1)

z(2)

]
=

[
p
q

]
≡ c. (4)

Here, f̃ = z(1) + i z(2) and b = p + iq . To address Eq. (4), a block PMHSS iteration
method (Bai et al. 2013) and the DSS real-valued iteration method (Zhang et al. 2019) were
proposed, which can be seen as the variants of PMHSS method (Bai et al. 2011) and DSS
method (Zheng et al. 2017). In recent years, several iteration methods akin to the generalized
successive overrelaxation (GSOR) approach have also been developed (Salkuyeh et al. 2015;
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Hezari et al. 2015; Edalatpour et al. 2015; Liang and Zhang 2016). Moreover, Axelsson et al.
presented the preconditioned square block (PRESB) preconditioner in Axelsson et al. (2014):

PPRESB =
[
W −T
T α2W + 2αT

]
,

where α is a real positive parameter.
The previously mentioned methods are effective in solving linear systems, but require

the selection of a positive parameter or even two parameters, which can be time-consuming
during practical implementation. For addressing this issue, a number of researchers provided
theoretical optimal parameters in their methods (Bai et al. 2003, 2010, 2011; Hezari et al.
2016; Zheng et al. 2017) while the process of computing optimal parameters often involves
the calculation of the eigenvalues ofmatrices, costing relativelymuch time. To avoid selecting
parameters, Liang and Zhang (2021) proposed a parameter-freemethod called the Chebyshev
accelerated PRESB (CAPRESB)method. They took advantage of the fact that the eigenvalues
of P−1

PRESBA are located in the interval [0.5, 1] when α = 1, making the PRESB method
comparably efficient without the parameter selection.

By incorporating the Newton method with the HSS method, Bai et al. established the
Newton–HSS method to address complex nonlinear systems in Bai and Guo (2010) and it
was improved by Wu et al. who established the modified Newton–HSS method (Wu and
Chen 2013). Examples of such methods can be seen in Zhang et al. (2021, 2022), Yu and
Wu (2022), Xiao et al. (2021), Dai et al. (2018), Feng and Wu (2021). In this paper, drawing
inspiration from these ideas, we establish a parameter-free method called MN–CAPRESB
method by incorporating the modified Newton method with CAPRESB method.

Throughout the full paper, we utilize the notation ‖ · ‖ to represent the Euclidean norm of
a vector or a matrix. If there is no specific explanation, the matrices W , T ∈ R

n×n are SPD
and SPSD, respectively. Moreover, 	(·) and 
(·) are used to represent the real and complex
components of the corresponding number, respectively.

The structure of the paper is outlined as follows. In Sect. 2, we present theMN–CAPRESB
method. In Sects. 3 and 4, the local and semilocal convergence theorems of our approach are
demonstrated under proper conditions, respectively. In Sect. 5, we provide numerical results
to illustrate the benefits of our approach compared to the MN–MHSS (Yang and Wu 2012),
MN–PMHSS (Zhong et al. 2015), MN–SSTS (Yu and Wu 2022) and MN–PSBTS (Zhang
et al. 2022) methods. Eventually, we provide a concise conclusion in Sect. 6.

2 MN–CAPRESBmethod

First of all, we review the CAPRESB method (Liang and Zhang 2021). For simplicity of
notation, we denote

P =
[
W −T
T W + 2T

]
.

P is the special case of PPRESB when α = 1. The details of CAPRESB method can be
described as follows:

Pu0 = r0, f1 = f0 + τ0

2
u0 (5)

and

Puk = rk, fk+1 = ζk fk + (1 − ζk) fk−1 + τkuk, k = 1, 2, . . . , (6)
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where rk = c − A fk , τk and ζk are positive acceleration parameters with

τ0 = 4

λ̃max + λ̃min

and

τk =
⎛
⎝ λ̃max + λ̃min

2
−

(
λ̃max − λ̃min

4

)2

τk−1

⎞
⎠

−1

, ζk = λ̃max + λ̃min

2
τk, k = 1, 2, . . .

with λ̃max = 1 and λ̃min = 0.5. The iteration formulas (5)-(6) are categorized to the Cheby-
shev acceleration method (Golub and Varga 1961). Moreover, for the CAPRESB method,
we can obtain the Algorithms 1 and 2 in Liang and Zhang (2021).

Algorithm 1 Liang and Zhang (2021) Computation of u from Pu = r with u =
[u(1)T , u(2)T ]T and r = [r (1)T , r (2)T ]T
1: Address (W + T )h = r (1) + r (2).
2: Set g = r (2) − Th.
3: Address (W + T )u(2) = g.
4: Set u(1) = h − u(2).

Algorithm 2 Liang and Zhang (2021) CAPRESB iteration method for (4)

1: Choose f0, take λ̃min = 0.5 and λ̃max = 1, compute r0 = c − A f0.
2: Solve Pu0 = r0 by Algorithm 1.
3: Set τ0 = 4

λ̃max+λ̃min
.

4: Compute f1 = f0 + τ0
2 u0.

5: for k = 1, 2, . . ., until convergence do
6: Compute rk = c − A fk .
7: Solve Puk = rk by Algorithm 1.

8: Compute τk =
(

λ̃max+λ̃min
2 −

(
λ̃max−λ̃min

4

)2
τk−1

)−1

, ζk = λ̃max+λ̃min
2 τk .

9: Compute fk+1 = ζk fk + (1 − ζk ) fk−1 + τkuk .
10: end for

FromAlgorithms 1 and 2,we know that theCAPRESBmethod involves two linear systems
aboutW + T at each iteration step, which can be accurately solved through sparse Cholesky
factorization or approximately through a preconditioned conjugate gradient (PCG) approach.

Actually, another parameter-free method called CADSS method was also proposed in
Liang and Zhang (2021), which accelerates the double-step scale splitting real-valuedmethod
(Zhang et al. 2019) with Chebyshev accelerated iteration method. Similarly, we can also
establish MN–CADSS method. However, at each step of CADSS method it involves four
linear systems to be solved. Based on it, we think that the CAPRESB method outperforms
the CADSS method. Hence, we only establish the modified Newton–CAPRESB method.
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Now, we summarize the convergence characteristics of the CAPRESB method in Liang
and Zhang (2021). From Axelsson (1996), the iterative error ek = fk − f∗ satisfies

ek = Qk(P−1A)e0 with Qk(z) =
Tk

(
λ̃max+λ̃min−2z

λ̃max−λ̃min

)
Tk

(
λ̃max+λ̃min

λ̃max−λ̃min

) , k = 0, 1, 2, . . . , (7)

where f∗ represents the exact solution of (4) and

Tk(z) = 1

2

[(
z +

√
z2 − 1

)k +
(
z −

√
z2 − 1

)k]
, −∞ < z < +∞,

which conforms to the subsequent recurrence equations:

T0(z) = 1, T1(z) = z and Tk+1(z) = 2zTk(z) − Tk−1(z), k = 1, 2, . . . .

Consequently, we have

max
λmin≤λ≤λmax

|Qk(λ)| ≤ max
λ̃min≤λ≤λ̃max

|Qk(λ)| = 1

|Tk
(

λ̃max+λ̃min

λ̃max−λ̃min

)
|

≤ 2

(√
2 − 1√
2 + 1

)k

, (8)

where λmax and λmin represent the largest and smallest eigenvalues of the matrix P−1A,
respectively, satisfying

λ̃min ≤ λmin ≤ λmax ≤ λ̃max.

IfP−1A is symmetric, it is straightforward to derive the convergence characteristics according
to Eqs. (7) and (8). Moreover, the authors in Liang and Zhang (2021) have proved thatP−1A
can be diagonalized, which contributes to the convergence characteristics of the CAPRESB
method. Now, we summarize the convergence characteristics of the CAPRESB method in
Liang and Zhang (2021).

Theorem 2.1 We denote ek = fk − f∗ and ẽk = f̃k − f̃∗, k = 0, 1, . . .. Here, fk =
[
z(1)k

z(2)k

]
,

f∗ =
[
z(1)∗
z(2)∗

]
, f̃k = z(1)k + i z(2)k , f̃∗ = z(1)∗ + i z(2)∗ , and f∗ and f̃∗ are the exact solutions of

(4) and (3), respectively. Then we have

‖ek‖ ≤ √
κ2(H)κμθk‖e0‖

and

‖ẽk‖ ≤ √
κ2(H)κμθk‖ẽ0‖,

k = 0, 1, . . ., where H = W +T , κ2(H) = ‖H‖‖H−1‖, κμ = 2+μ2
max+μmax

√
4 + μ2

max,

θ =
√
2−1√
2+1

, and μmax represents the largest eigenvalue of the matrix W−1T .

Proof From Theorem 3.1 in Liang and Zhang (2021), we know that there exist inverse matrix
X̃ and diagonal matrix D such that

P−1A = X̃ DX̃−1,
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where κ2(X̃) ≤
√

κ2(H)κμ

2 . According to the Eqs. (7) and (8), we can obtain

‖ek‖ = ‖Qk(P−1A)e0‖ = ‖Qk(X̃ DX̃−1)e0‖
= ‖X̃ Qk(D)X̃−1e0‖ ≤ ‖X̃‖‖Qk(D)‖‖X̃−1‖‖e0‖
= κ2(X̃)‖Qk(D)‖‖e0‖ ≤ √

κ2(H)κμθk‖e0‖,
k = 0, 1, . . .. It is trivial to see ‖ẽk‖ = ‖ek‖ and ‖ẽ∗‖ = ‖e∗‖. Hence, the other formula
holds. ��

Moreover, we propose the following theorem to further describe the convergence charac-
teristics.

Theorem 2.2 In accordance with the conditions stated in Theorem 2.1, we can hold

‖ek‖ ≤ √
M

(
2 + M2 + M

√
4 + M2

)
θk‖e0‖ (9)

and

‖ẽk‖ ≤ √
M

(
2 + M2 + M

√
4 + M2

)
θk‖ẽ0‖, (10)

k = 0, 1, . . ., where M = ‖W−1‖(‖W‖ + ‖T ‖) and θ =
√
2−1√
2+1

.

Proof Actually, we can obtain

κ2(H) ≤ λmax(W ) + λmax(T )

λmin(W )
= M

and

μmax ≤ ‖W−1‖‖T ‖ ≤ M .

Hence, from Theorem 2.1, it holds that

‖ek‖ ≤ √
κ2(H)κμθk‖e0‖ ≤ √

M
(
2 + M2 + M

√
4 + M2

)
θk‖e0‖,

k = 0, 1, . . .. Moreover, it is straightforward to know the other formula holds. ��

The CAPRESB method is converged when W , T ∈ R
n×n are both SPSD and null(W ) ∩

null(T ) = 0, where null(A) denotes the null space of A (Liang and Zhang 2021). We restrict
W to be SPD to better estimate κ2(H) and μmax as Theorem 2.2 shows.

Then, we propose the MN–CAPRESB method, which implies that we utilize CAPRESB
method for the following equations:{

F ′(xk)dk = −F(xk), yk = xk + dk,

F ′(xk)hk = −F(yk), xk+1 = yk + hk .
(11)

Actually, the MN–CAPRESB method for addressing Eq. (1) can be derived as demonstrated
in Algorithm 3. We make the following markings to better illustrate the algorithm. P(x) and
A(x) denote the special case of P and A when W = W (x) and T = T (x), respectively.

Moreover, c(x) ≡
[	(−F(x))

(−F(x))

]
.
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Algorithm 3MN–CAPRESB method
1: Given an initial vector x0, a positive number tol as well as two sequences of positive integers {lk }∞k=0 and{mk }∞k=0.
2: for k = 0, 1, . . ., until ‖F(xk )‖ ≤ tol‖F(x0)‖ do
3: Assign dk,0 = hk,0 = 0.
4: For l = 0, 1, . . . , lk−1, implement Algorithm 2 for the first formula in (11), where f0 = 0,P = P(xk ),

A = A(xk ) and c = c(xk ). Obtain

⎡
⎣z(1)k,lk
z(2)k,lk

⎤
⎦ such that

‖F(xk ) + F ′(xk )dk,lk ‖ ≤ ηk‖F(xk )‖ with 0 ≤ ηk < 1, (12)

where dk,lk = z(1)k,lk
+ i z(2)k,lk

.
5: Assign yk := xk + dk,lk .
6: Calculate F(yk ).
7: For m = 0, 1, . . . ,mk − 1, implement Algorithm 2 to the second formula in (11), where f0 = 0,

P = P(xk ), A = A(xk ) and c = c(yk ). Obtain

⎡
⎣z̃(1)k,mk

z̃(2)k,mk

⎤
⎦ such that

‖F(yk ) + F ′(xk )hk,mk ‖ ≤ η̃k‖F(yk )‖ with 0 ≤ η̃k < 1, (13)

where hk,mk = z̃(1)k,mk
+ i z̃(2)k,mk

.
8: Assign xk+1 := yk + hk,mk .
9: end for

3 Local convergence theorem of theMN–CAPRESBmethod

Suppose that x∗ ∈ N0 ⊆ D with F(x∗) = 0, and N(x∗, r) represents an open ball centered
at x∗ with radius r .

Assumption 3.1 For any x ∈ N(x∗, r) ⊂ N0,we assume that the formulas below are satisfied.
(THE BOUNDED CONDITION) There exist numbers β, γ > 0 such that

max{‖W (x∗)‖, ‖T (x∗)‖} ≤ β, max{‖W (x∗)−1‖, ‖F ′(x∗)−1‖} ≤ γ.

(THE LIPSCHITZ CONDITION) There exist numbers Lw, Lt ≥ 0 such that

‖W (x) − W (x∗)‖ ≤ Lw‖x − x∗‖, ‖T (x) − T (x∗)‖ ≤ Lt‖x − x∗‖.
Lemma 3.1 Under the condition that r ∈ (0, 1

γ L ) and subject to Assumption 3.1, W (x)−1

and F ′(x)−1 exist for all x ∈ N(x∗, r) ⊂ N0. Additionally, the formulas below are satisfied
for any x, z ∈ N(x∗, r) with L := Lw + Lt :

‖F ′(x) − F ′(x∗)‖ ≤ L‖x − x∗‖,
max{‖W (x)−1‖, ‖F ′(x)−1‖} ≤ γ

1 − γ L‖x − x∗‖ ,

‖F(z)‖ ≤ L

2
‖z − x∗‖2 + 2β‖z − x∗‖,

‖z − x∗ − F ′(x)−1F(z)‖ ≤ γ

1 − γ L‖x − x∗‖
(
L

2
‖z − x∗‖ + L‖x − x∗‖

)
‖z − x∗‖.

Proof The proof closely resembles that of Lemma 3.3 in Xie et al. (2020), so we omit it here.
��
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Lemma 3.2 In accordance with the conditions stated in Lemma 3.1, let r ∈ (0, r0), r0 :=
min{r1, r2} and u := min{l∗,m∗}, where

r1 = β

L(1 + 3γβ)
,

r2 = 2(1 − 2τβγ θu)

(5 + τ)γ L
,

l∗ = lim infk→∞ lk and m∗ = lim infk→∞ mk. Moreover, the number u is subjected to

u >

⌊
− ln(2τβγ )

ln θ

⌋
,

where the notation �·� represents the smallest integer at least as much as the corresponding
real number. Additionally, we set

g(t; v) = γ

1 − γ Lt

[(
3 + τ

2

)
Lt + 2τβθv

]
.

Subsequently, for all xk ∈ N(x∗, r) ⊂ N0, we have

‖dk,lk − dk‖ ≤ τθu‖dk‖
and

‖hk,mk − hk‖ ≤ τθu‖hk‖.
Here, dk,lk and hk,mk are obtained by Algorithm 3, dk = −F ′(xk)−1F(xk) and hk

= −F ′(xk)−1F(yk). Moreover, θ =
√
2−1√
2+1

and τ =
√
M̃

(
2 + M̃2 + M̃

√
4 + M̃2

)
with

M̃ = 3γβ. When t ∈ (0, r) and v > u, we can obtain that

g(t; v) < g(r0; u) < 1.

Proof Firstly, since r < 1
γ L , for all xk ∈ N(x∗, r), it holds that

‖W (xk)‖ ≤ ‖W (xk) − W (x∗)‖ + ‖W (x∗)‖ ≤ Lw‖xk − x∗‖ + β

and

‖T (xk)‖ ≤ ‖T (xk) − T (x∗)‖ + ‖T (x∗)‖ ≤ Lt‖xk − x∗‖ + β.

Moreover, in accordance with Lemma 3.1, since r < r1,

‖W (xk)
−1‖(‖W (xk)‖ + ‖T (xk)‖) ≤ γ (L‖xk − x∗‖ + 2β)

1 − γ L‖xk − x∗‖ ≤ 3γβ.

According to the formula (10) in Theorem 2.2, we have

‖dk,lk − dk‖ ≤ √
Mk

(
2 + M2

k + Mk

√
4 + M2

k

)
θ lk‖dk,0 − dk‖

≤ τθ lk‖dk‖ ≤ τθu‖dk‖
and

‖hk,mk − hk‖ ≤ √
Mk

(
2 + M2

k + Mk

√
4 + M2

k

)
θmk‖hk,0 − hk‖

≤ τθmk‖hk‖ ≤ τθu‖hk‖,

123



Modified Newton–CAPRESB method for solving... Page 9 of 23   219 

where Mk = ‖W (xk)−1‖(‖W (xk)‖ + ‖T (xk)‖). Furthermore, since 0 < t < r , r < r2 and
v > u, we have

g(t; v) = γ

1 − γ Lt

[(
3 + τ

2

)
Lt + 2τβθv

]
< g(r0; u) < 1.

��
Theorem 3.1 In accordance with the conditions stated in Lemmas 3.1 and 3.2, for all
x0 ∈ N(x∗, r) and any positive integers sequences {lk}∞k=0, {mk}∞k=0, the sequence {xk}∞k=0
generated by the Algorithm 3 converges to x∗. Furthermore, it holds that

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2.

Proof Firstly, according to Lemmas 3.1, 3.2 and formula (11), if xk ∈ N(x∗, r) ⊂ N0, we
can obviously obtain

‖yk − x∗‖ = ‖xk − x∗ + dk,lk‖
≤ ‖xk − x∗ − F ′(xk)−1F(xk)‖ + ‖dk,lk − dk‖
≤ γ

1 − γ L‖xk − x∗‖
3L

2
‖xk − x∗‖2

+ γ τθ lk

1 − γ L‖xk − x∗‖
(
L

2
‖xk − x∗‖2 + 2β‖xk − x∗‖

)

= γ

1 − γ L‖xk − x∗‖
(
3 + τθ lk

2
L‖xk − x∗‖ + 2τβθ lk

)
‖xk − x∗‖

≤ γ

1 − γ L‖xk − x∗‖
(
3 + τ

2
L‖xk − x∗‖ + 2τβθ lk

)
‖xk − x∗‖

= g(‖xk − x∗‖; lk)‖xk − x∗‖
≤ g(r0; u)‖xk − x∗‖
≤ ‖xk − x∗‖

and

‖xk+1 − x∗‖ = ‖yk − x∗ + hk,mk‖
≤ ‖yk − x∗ − F ′(xk)−1F(yk)‖ + ‖hk,mk − hk‖
≤ γ

1 − γ L‖xk − x∗‖
(
L

2
‖yk − x∗‖ + L‖xk − x∗‖

)
‖yk − x∗‖

+ γ τθmk

1 − γ L‖xk − x∗‖
(
L

2
‖yk − x∗‖2 + 2β‖yk − x∗‖

)

= γ

1 − γ L‖xk − x∗‖
(
1 + τθmk

2
L‖yk − x∗‖

+ L‖xk − x∗‖ + 2τβθmk

)
‖yk − x∗‖

≤ γ g(‖xk − x∗‖; lk)
1 − γ L‖xk − x∗‖

(
1 + τθmk

2
Lg(‖xk − x∗‖; lk)‖xk − x∗‖

+ L‖xk − x∗‖ + 2τβθmk

)
‖xk − x∗‖
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≤ γ g(‖xk − x∗‖; lk)
1 − γ L‖xk − x∗‖

(
3 + τθmk

2
L‖xk − x∗‖ + 2τβθmk

)
‖xk − x∗‖

≤ g(‖xk − x∗‖; lk)g(‖xk − x∗‖;mk)‖xk − x∗‖
≤ g(‖xk − x∗‖; u)2‖xk − x∗‖
≤ g(r0; u)2‖xk − x∗‖
≤ ‖xk − x∗‖.

Based on the above formulas, we can use mathematical induction to prove that {xk}∞k=0 ⊂
N(x∗, r) converges to x∗. Actually, we have ‖x0 − x∗‖ < r . Moreover, it holds

‖x1 − x∗‖≤g(‖x0 − x∗‖; u)2‖x0 − x∗‖≤‖x0 − x∗‖ < r .

Therefore, we have ‖x1 − x∗‖ < r . Furthermore, assume that xn ∈ N(x∗, r), then it holds
that

‖xn+1 − x∗‖≤g(‖xn − x∗‖; u)2‖xn − x∗‖
≤g(r0; u)(2n+2)‖x0 − x∗‖ < r ,

which implies that xn+1 ∈ N(x∗, r) and

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2.

Additionally, when n → ∞, we get xn+1 → x∗. ��

4 Semilocal convergence theorem of MN–CAPRESBmethod

Assumption 4.1 Let x0 ∈ C
n and assume that the formulas below are satisfied.

(THE BOUNDED CONDITION) There exist positive numbers β, γ and δ such that

max{‖W (x0)‖, ‖T (x0)‖} ≤ β, max{‖W (x0)
−1‖, ‖F ′(x0)−1‖} ≤ γ, ‖F(x0)‖ ≤ δ.

(THE LIPSCHITZ CONDITION) There exist numbers Lw, Lt ≥ 0 such that for any
x, z ∈ N(x0, r) ⊂ N0,

‖W (x) − W (z)‖ ≤ Lw‖x − z‖, ‖T (x) − T (z)‖ ≤ Lt‖x − z‖.

Lemma 4.1 Subject to Assumption 4.1, for all x, z ∈ N(x0, r), if r ∈ (0, 1
γ L ), we have

W (x)−1 and F ′(x)−1 exist. Additionally, we can obtain the following inequalities with L :=
Lw + Lt :

‖F ′(x) − F ′(z)‖ ≤ L‖x − z‖,
‖F ′(x)‖ ≤ L‖x − x0‖ + 2β,

‖F(x) − F(z) − F ′(z)(x − z)‖ ≤ L

2
‖x − z‖2,

max{‖W (x)−1‖, ‖F ′(x)−1‖} ≤ γ

1 − γ L‖x − x0‖ .

Proof The proof resembles the Lemma 3 of Zhang et al. (2021); therefore, we omit it here. ��
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Let we denote

a := Lγ (1 + η), b := 1 − η, c := 2γ δ, where η := max
k

{max{ηk, η̃k}} < 1.

The sequences of iteration {tk} and {sk} are subject to the formulas below:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t0 = 0,

sk = tk − g(tk)

h(tk)
,

tk+1 = sk − g(sk)

h(tk)
.

(14)

Here, {
g(x) = 1

2ax
2 − bx + c,

h(x) = ax − 1.

We have the following property about the two sequences.

Lemma 4.2 Suppose that the numbers are subject to

γ 2δL ≤ (1 − η)2

4(1 + η)
.

Then the sequences {tk} and {sk} of (14) converge to t∗ with t∗ = b−√
b2−2ac
a . Furthermore,

0 ≤ tk < sk < tk+1 < t∗,
tk+1 − sk < sk − tk .

Proof The proof can be seen in Lemma 4.2 and Lemma 4.3 of Wu and Chen (2013). ��
Theorem 4.1 In accordance with the conditions stated in Lemmas 4.1 and 4.2, define r :=
min{r1, r2} and u := min{l∗,m∗}, where

r1 = β

L(1 + 3γβ)
,

r2 = b − √
b2 − 2ac

a
,

l∗ = lim infk→∞ lk and m∗ = lim infk→∞ mk. Moreover, the number u is subject to

u >

⌊
ln η

τ

ln θ

⌋
,

where τ and θ are same in Lemma 3.2. Then the sequence {xk}∞k=0 generated by the Algo-
rithm 3 converges to x∗.

Proof In fact, for any xk ∈ N(x∗, r), analysis resembling that of Lemma 3.2 indicates

‖dk,lk − dk‖ ≤ τθ lk‖dk‖
and

‖hk,mk − hk‖ ≤ τθmk‖hk‖.
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We use mathematical induction to prove the following formulas:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖xk − x0‖ ≤ tk − t0,

‖F(xk)‖ ≤ 1−γ Ltk
(1+η)γ

(sk − tk),

‖yk − xk‖ ≤ sk − tk,

‖F(yk)‖ ≤ 1−γ Ltk
(1+η)γ

(tk+1 − sk),

‖xk+1 − yk‖ ≤ tk+1 − sk .

(15)

According to Lemmas 4.1, 4.2 and formula (12), we can obtain

‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F(x0)‖ ≤ δ ≤ 2γ δ

γ (1 + η)
= 1 − γ Lt0

(1 + η)γ
(s0 − t0),

‖y0 − x0‖ = ‖d0,l0‖ ≤ ‖d0,l0 − d0‖ + ‖d0‖
≤ (1 + τθ l0 )‖d0‖ ≤ (1 + τθ l0 )γ δ ≤ 2γ δ = s0 − t0,

‖F(y0)‖ ≤ ‖F(y0) − F(x0) − F ′(x0)(y0 − x0)‖ + ‖F(x0) + F ′(x0)(y0 − x0)‖
≤ L

2
‖y0 − x0‖2 + η‖F(x0)‖ ≤ L

2
s20 + ηδ ≤ 1 − γ Lt0

(1 + η)γ
(t1 − s0),

‖x1 − y0‖ ≤ ‖h0,m0‖ ≤ ‖h0,m0 − h0‖ + ‖h0‖
≤ (1 + τθm0 )‖h0‖ = (1 + τθm0 )‖F ′(x0)−1F(y0)‖ < (1 + η)γ ‖F(y0)‖ ≤ t1 − s0.

Hence, when k = 0, the inequalities (15) are true. Now, assume that when n ≤ k − 1, the
inequalities (15) hold. We consider the case n = k. For the first inequality in (15), we can
obtain

‖xk − x0‖ ≤ ‖xk − yk−1‖ + ‖yk−1 − xk−1‖ + ‖xk−1 − x0‖ ≤ tk − t0.

Since xk−1, yk−1 ∈ N(x0, r) and due to the inequalities(13) as well as formulas in Lemma
4.1, it holds that

(1 + η)γ ‖F(xk)‖ ≤ (1 + η)γ ‖F(xk) − F(yk−1) − F ′(yk−1)(xk − yk−1)‖
+ (1 + η)γ ‖(F ′(yk−1) − F ′(xk−1))(xk − yk−1)‖
+ (1 + η)γ ‖F(yk−1) + F ′(xk−1)(xk − yk−1)‖

≤ (1 + η)γ L

2
‖xk − yk−1‖2 + (1 + η)γ L‖yk−1 − xk−1‖‖xk − yk−1‖

+ η(1 + η)γ ‖F(yk−1)‖
≤ a

2
(t2k − s2k−1) − atk−1(tk − sk−1) + η(1 − γ Ltk−1)(tk − sk−1)

= g(tk) − g(sk−1) + b(tk − sk−1) − atk−1(tk − sk−1)

+ η(1 − γ Ltk−1)(tk − sk−1)

= g(tk) − h(tk−1) + 1 − atk−1 − ηγ Ltk−1

h(tk−1)
g(sk−1)

= g(tk) + ηγ Ltk−1

h(tk−1)
g(sk−1)

< g(tk) = −h(tk)(sk − tk) < (1 − γ Ltk)(sk − tk).
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Therefore, it holds that

‖F(xk)‖ ≤ (1 − γ Ltk)

(1 + η)γ
(sk − tk)

and then

‖yk − xk‖ ≤ (1 + τθ lk )‖F ′(xk)−1‖‖F(xk)‖
≤ (1 + η)

γ

1 − γ Ltk
‖F(xk)‖

≤ sk − tk .

Also, by the inequality (12), we can obtain

(1 + η)γ ‖F(yk)‖ ≤ (1 + η)γ ‖F(yk) − F(xk) − F ′(xk)(yk − xk)‖
+ (1 + η)γ ‖F(xk) + F ′(xk)(yk − xk)‖

≤ (1 + η)γ L

2
‖yk − xk‖2 + η(1 + η)γ ‖F(xk)‖

≤ (1 + η)γ L

2
(sk − tk)

2 + η(1 − γ Ltk)(sk − tk)

= g(sk) − g(tk) + b(sk − tk) − atk(sk − tk)

+ η(1 − γ Ltk)(sk − tk)

= g(sk) − g(tk) − (1 − atk − ηγ Ltk)
g(tk)

h(tk)

= g(sk) − h(tk) + 1 − atk − ηγ Ltk
h(tk)

g(tk)

= g(sk) + ηγ Ltk
h(tk)

g(tk)

< g(sk) = −h(tk)(tk+1 − sk) < (1 − γ Ltk)(tk+1 − sk).

It follows that

‖F(yk)‖ ≤ (1 − γ Ltk)

(1 + η)γ
(tk+1 − sk)

and then

‖xk+1 − yk‖ ≤ (1 + τθmk )‖F ′(xk)−1‖‖F(yk)‖
≤ (1 + η)

γ

1 − γ Ltk
‖F(yk)‖

≤ tk+1 − sk .

Consequently, for any k, the formulas (15) are true. Since {tk} and {sk} converge to t∗, {xk}
and {yk} also converge, to say x∗. Additionally, according to Eq. (7) and

yk = xk + dk,lk , k = 0, 1, . . . ,

we have

lim inf
k→∞

[	(dk,lk )

(dk,lk )

]
= lim inf

k→∞ (I − Qlk (P(xk)
−1A(xk)))

[	(dk)

(dk)

]

= (I − Ql∗(P(x∗)−1A(x∗)))
[	(F ′(x∗)−1F(x∗))

(F ′(x∗)−1F(x∗))

]
= 0.
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In addition, since the eigenvalues of Ql∗(P(x∗)−1A(x∗)) are located in (−1, 1) according to
Eq. (8), we have F(x∗) = 0. ��

5 Numerical examples

In this part, we display two nonlinear problems to show the robustness of theMN–CAPRESB
method. We compare our method to the MN–MHSS (Yang and Wu 2012), MN–PMHSS
(Zhong et al. 2015), MN–SSTS (Yu and Wu 2022) and MN–PSBTS (Zhang et al. 2022)
methods. In practical implementation, selecting parameters can be a complex headache.
When conducting the experiments, for MN–MHSS and MN–PMHSS methods, to avoid this
repetitive and tedious process, we adopt the same experimental ideas as Xie et al. (2020) to
directly use the selected parameters, which are determined experimentally by minimizing the
respective iteration steps and errors in relation to the precise solution. We use the following
termination condition in the outer iteration:

‖F(xk)‖
‖F(x0)‖ ≤ 10−6.

Moreover, we use Outer IT and Inner IT to represent the number of outer and inner iterations,
respectively, and we denote the elapsed CPU time in seconds as “CPU time”. The experi-
mental results draw a conclusion that MN–CAPRESB method achieves better results than
both MN–MHSS and MN–PMHSS methods without the process of selecting a parameter
and exhibits strong competitiveness by virtue of its inherent lack of dependence on parameter
selection compared to the MN–SSTS and MN–PSBTS methods.

Example 1 (Yang and Wu 2012) We examine the subsequent nonlinear equations:⎧⎪⎨
⎪⎩

vt − (α1 + iβ1)(vx1x1 + vx2x2) + ρv = −(α2 + iβ2)v
4
3 , in (0, 1] × 
,

v(0, x1, x2) = v0(x1, x2), in 
,

v(t, x1, x2) = 0, in (0, 1] × ∂
,

where 
 = [0, 1] × [0, 1], the coefficients α1 = β1 = 1, α2 = β2 = 1 and ρ > 0.

For discretizing this system, we can utilize a similar methodology in Yang andWu (2012)
and get the following equation:

F(x) = Mx + (α2 + iβ2)h�tψ(x) = 0

with

M = h(1 + ρ�t)In + (α1 + iβ1)
�t

h
(IN ⊗ BN + BN ⊗ IN ),

ψ(x) =
(
x

4
3
1 , x

4
3
2 , . . . , x

4
3
n

)T

,

where BN = tridiag(−1, 2,−1) and n = N 2.
During the experiments, the initial vector x0 = [1, 1, . . . , 1]T and the inner tolerance ηk

and η̃k of linear systems have the same value η.
Tables 1 and 2 present the parameters α used in experiments for theMN–MHSS andMN–

PMHSS methods, respectively. These optimal parameters are determined based on extensive
experiments in Xie et al. (2020). Moreover, Tables 3 and 4 show the two parameters used in
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Table 1 The optimal values α in the MN–MHSS method in Example 1 (Xie et al. 2020)

N ρ = 1 ρ = 10 ρ = 200
η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

25 0.45 0.46 0.44 0.47 0.48 0.47 0.79 0.74 0.78

26 0.28 0.29 0.27 0.28 0.29 0.29 0.45 0.44 0.43

27 0.18 0.18 0.18 0.18 0.18 0.18 0.25 0.25 0.25

Table 2 The optimal values α in the MN–PMHSS method in Example 1 (Xie et al. 2020)

N ρ = 1 ρ = 10 ρ = 200
η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

25 0.90 0.90 0.90 0.85 0.84 0.84 0.66 0.65 0.50

26 0.82 0.81 0.80 0.78 0.77 0.76 0.76 0.70 0.55

27 0.66 0.70 0.70 0.61 0.67 0.68 0.80 0.72 0.55

the experiments for theMN–SSTS andMN–PSBTSmethods. It is worth emphasizing that the
main advantage of theMN–CAPRESBmethod is its parameter-free nature, contributing to the
effectiveness and convenience of the MN–CAPRESB method in practical implementation.

In Tables 5, 6, 7, 8 and 9, we display the experimental results regarding these five
approaches associated with the problem size N = 25 with inner tolerance η = 0.1, 0.2, 0.4,
as well as for N = 26 and N = 27 with the same inner tolerance value η = 0.4, respectively.
Additionally, the parameter ρ = 1, 10, 200, respectively. From these tables, we know that
theMN–CAPRESBmethod almost obtains extraordinary results regarding errors, CPU time,
and inner and outer iterations compared to the MN–MHSS and MN–PMHSS methods. By
comparing the results of different parameter values, we can observe that the MN–CAPRESB
method consistently performs well across different values of ρ, η and N , demonstrating
lower errors and fewer iterations compared to the MN–MHSS and MN–PMHSS methods.
Additionally, MN–CAPRESB demonstrates heightened competitiveness due to its inherent
parameter-free nature in comparison with the MN–SSTS and MN–PSBTS methods. There-
fore, the MN–CAPRESB method can be considered as an effective method.

Indeed, from Tables 5, 6 and 7, it is evident that the residuals of the MN–CAPRESB
method exhibit identical values despite having the same scales N and parameters ρ, but
varying inner tolerances η. As the inner tolerance increases, the numbers of outer iterations
steps forMN–MHSS andMN–PMHSSmethods significantly increase, which leads to longer
runtime, while the MN–CAPRESB method remains constant. Thus, the MN–CAPRESB
method is robust and efficient. On the other hand, as the scale of the problem increases, the
MN–CAPRESB method has become increasingly advantageous in terms of time compared
to the MN–MHSS and MN–PMHSS methods, which has more obvious advantages when
dealing with large-scale problems. From Table 9, when N = 27, theMN–CAPRESBmethod
almost takes half and one-third of the time compared to the MN–PMHSS and MN–MHSS
methods, respectively. While the MN–CAPRESB method may not yield as strong results as
the MN–SSTS and MN–PSBTS methods, its inherent lack of parameter selection confers a
competitive edge.
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Table 4 The optimal values in
the MN–SSTS and MN–PSBTS
methods with η = 0.4 in
Example 1

N MN–SSTS MN–PSBTS
ρ = 1 ρ = 10 ρ = 200 ρ = 1 ρ = 10 ρ = 200

26 (1,2.1) (1,2.1) (1,2.9) (1,2) (1,2.1) (1,2)

27 (1.1,2) (1.1,2) (1,3.4) (0.9,2) (0.9,2) (0.7,2)

Table 5 Comparison results for η = 0.1 and N = 25 in Example 1

ρ Method Error CPU time (s) Outer IT Inner IT

1 MN–MHSS 7.2790E−07 0.0857 3 88

MN–PMHSS 7.2882E−08 0.0623 3 24

MN–SSTS 2.6191E−08 0.0466 2 4

MN–PSBTS 3.3308E−09 0.0403 2 4

MN–CAPRESB 4.2361E−08 0.0408 3 12

10 MN–MHSS 7.4263E−07 0.0668 3 84

MN–PMHSS 8.7206E−08 0.0544 3 24

MN–SSTS 3.6688E−08 0.0232 2 4

MN–PSBTS 3.5208E−09 0.0263 2 4

MN–CAPRESB 4.2372E−08 0.0354 3 12

200 MN-MHSS 5.3905E−07 0.0601 3 56

MN–PMHSS 1.8192E−07 0.0571 3 33

MN–SSTS 3.5999E−07 0.0255 2 4

MN–PSBTS 9.9839E−08 0.0252 2 4

MN–CAPRESB 4.2490E−08 0.0385 3 12

Table 6 Comparison results for η = 0.2 and N = 25 in Example 1

ρ Method Error CPU time (s) Outer IT Inner IT

1 MN–MHSS 4.9280E−08 0.1125 5 109

MN–PMHSS 7.4718E−08 0.0629 4 24

MN–SSTS 2.6191E−08 0.0244 2 4

MN–PSBTS 3.3308E−09 0.0252 2 4

MN–CAPRESB 4.2361E−08 0.0373 3 12

10 MN–MHSS 5.0143E−08 0.1094 5 104

MN–PMHSS 9.3472E−08 0.0618 4 24

MN–SSTS 3.6688E−08 0.0255 2 4

MN–PSBTS 3.5208E−09 0.0258 2 4

MN–CAPRESB 4.2372E−08 0.0350 3 12

200 MN–MHSS 7.1307E−07 0.0726 4 55

MN–PMHSS 7.0172E−07 0.0653 4 30

MN–SSTS 2.9263E−07 0.0244 2 4

MN–PSBTS 9.5113E−08 0.0251 2 4

MN–CAPRESB 4.2490E−08 0.0360 3 12
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Table 7 Comparison results for η = 0.4 and N = 25 in Example 1

ρ Method Error CPU time (s) Outer IT Inner IT

1 MN–MHSS 9.7372E−07 0.1196 7 86

MN–PMHSS 7.3461E−08 0.0920 6 24

MN–SSTS 2.6191E−08 0.0288 2 4

MN–PSBTS 3.3308E−09 0.0276 2 4

MN–CAPRESB 4.2361E−08 0.0363 3 12

10 MN-MHSS 9.5369E−07 0.1351 7 82

MN–PMHSS 9.2401E−08 0.0921 6 24

MN–SSTS 3.6688E−08 0.0253 2 4

MN–PSBTS 3.5208E−09 0.0278 2 4

MN-CAPRESB 4.2372E−08 0.0366 3 12

200 MN–MHSS 8.4941E−07 0.1249 7 54

MN–PMHSS 8.2641E−07 0.0907 6 30

MN–SSTS 3.2668E−07 0.0237 2 4

MN–PSBTS 9.5113E−08 0.0249 2 4

MN–CAPRESB 4.2490E−08 0.0362 3 12

Table 8 Comparison results for η = 0.4 and N = 26 in Example 1

ρ Method Error CPU time (s) Outer IT Inner IT

1 MN–MHSS 9.1057E−07 2.8687 7 133

MN–PMHSS 1.1226E−07 2.3434 6 24

MN–SSTS 2.0666E−08 0.7293 2 4

MN–PSBTS 1.0308E−08 0.6748 2 4

MN–CAPRESB 4.1676E−08 1.0550 3 12

10 MN-MHSS 2.3714E−07 3.3109 8 144

MN–PMHSS 1.4335E−07 2.3003 6 24

MN–SSTS 5.1667E−08 0.7877 2 4

MN–PSBTS 1.3274E−08 0.6696 2 4

MN–CAPRESB 4.1679E−08 1.0910 3 12

200 MN–MHSS 9.6074E−07 2.8979 7 86

MN–PMHSS 7.8701E−07 2.3283 6 29

MN–SSTS 2.1291E−07 0.6811 2 4

MN–PSBTS 9.6046E−07 0.6722 2 4

MN–CAPRESB 4.1722E−08 1.0617 3 12

Example 2 (Xie et al. 2020) Considering the complex nonlinear Helmholtz system:

−�u + σ1u + iσ2u = −eu,

with σ1 and σ2 being both real coefficient functions. We can wield finite differences to
discretize the problem, which contributes to the following nonlinear equation:

F(x) = Kx + φ(x) = 0,
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Table 9 Comparison results for η = 0.4 and N = 27 in Example 1

ρ Method Error CPU time (s) Outer IT Inner IT

1 MN–MHSS 2.3578E−07 45.6399 8 222

MN–PMHSS 2.6894E−07 32.7058 6 24

MN–SSTS 1.4336E−08 10.0528 2 4

MN–PSBTS 5.7080E−08 9.7595 2 4

MN–CAPRESB 4.1492E−08 15.0786 3 12

10 MN–MHSS 2.3230E−07 45.1905 8 218

MN–PMHSS 3.2313E−07 33.5342 6 24

MN–SSTS 1.4909E−08 9.6249 2 4

MN–PSBTS 7.0031E−08 9.6085 2 4

MN–CAPRESB 4.1493E−08 15.5962 3 12

200 MN–MHSS 1.9379E−07 46.1425 8 162

MN–PMHSS 9.0820E−07 33.5194 6 28

MN–SSTS 5.8149E−08 9.5555 2 4

MN–PSBTS 7.8489E−08 9.4226 2 4

MN–CAPRESB 4.1500E−08 15.5269 3 12

where

K = (M + σ1 I ) + iσ2 I

and

φ(x) = (ex1 , ex2 , . . . , exn )T

with

M = I ⊗ CN + CN ⊗ I and CN = 1

h2
tridiag(−1, 2,−1).

During our experiments, we take values of parameters σ1 = 100 and σ2 = 1000.
Tables 10 and 11 show the parameters used in experiments. In addition, the initial guess
x0 = [0, 0, . . . , 0]T , the inner tolerance η = 0.1, 0.2, 0.4 as well as the problem size
N = 30, 60, 90, respectively. Also, we use above five iteration methods to solve this nonlin-
ear problem. We can know that MN–PMHSS method is almost as efficient as MN–MHSS
methodwhileMN–CAPRESBmethodoutperforms themuponTables 12, 13 and14.Actually,
MN–CAPRESB method almost takes half of the time and one-third of inner iteration steps
compared to MN–MHSS and MN–PMHSS methods. Moreover, MN–CAPRESB method is
competitive with MN–SSTS and MN–PSBTS methods from cpu, outer and inner iterations.
Consequently,we yield the conclusion thatMN–CAPRESBmethod outperformsMN–MHSS
and MN–PMHSS methods and stands as a viable competitor to MN–SSTS and MN–PSBTS
methods.

6 Conclusion

In this paper, we establish a parameter-free method called the MN–CAPRESB method for
addressing nonlinear complex equations by harnessing the modified Newton method as the
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Table 10 The optimal values α in
the MN-MHSS and MN-PMHSS
methods in Example 2 (Xie et al.
2020)

N MN–MHSS MN–PMHSS
η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 553 557 557 1.81 1.79 1.79

60 775 781 788 1.26 1.28 1.37

90 899 890 907 1.11 1.12 1.15

Table 11 The optimal values in the MN–SSTS and MN–PSBTS methods in Example 2

N MN-SSTS MN–PSBTS
η = 0.1 η = 0.2 η = 0.4 η = 0.1 η = 0.2 η = 0.4

30 (1.39,0.8) (1.5,1) (1.44,1.1) (2,0.8) (2,0.85) (2,0.89)

60 (1.4,1.05) (1.5,1) (1.5,1) (1.8,1) (1.9,1) (2,1)

90 (1.45,1) (1.5,1) (1.4,1) (2,1) (2,1) (2.1,1)

Table 12 Comparison results for N = 30 in Example 2

η Method Error CPU time (s) Outer IT Inner IT

0.1 MN-MHSS 4.6502E−07 0.0509 3 30

MN–PMHSS 4.6503E−07 0.0485 3 30

MN–SSTS 3.1523E−08 0.0334 3 12

MN–PSBTS 3.0870E−08 0.0359 3 11

MN–CAPRESB 9.1572E−08 0.0283 2 12

0.2 MN–MHSS 1.7833E−07 0.0416 4 32

MN–PMHSS 1.7834E−07 0.0474 4 32

MN–SSTS 6.6470E−07 0.0261 3 11

MN–PSBTS 4.6608E−07 0.0268 3 9

MN–CAPRESB 3.7283E−08 0.0257 3 13

0.4 MN–MHSS 1.7833E−07 0.0666 8 32

MN–PMHSS 1.7834E−07 0.0844 8 32

MN–SSTS 2.6853E−07 0.0383 5 11

MN–PSBTS 1.0885E−07 0.0399 5 10

MN–CAPRESB 3.7283E−08 0.0238 3 13

outer iteration and the CAPRESB (Chebyshev accelerated preconditioned square block)
method as the inner iteration. The local and semilocal convergence theorems of our approach
are proved. Moreover, to validate the superiority and robustness of the MN–CAPRESB
method, we conduct some experiments on two kinds of nonlinear examples compared to
other existing iteration methods. Unlike some existing methods, theMN–CAPRESBmethod
can avoid selecting one parameter or even two parameters. However, our research is not
exhaustive. We may harness other efficient outer iteration method to accelerate our method,
which may be a interesting topic to further explore.
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Table 13 Comparison results for N = 60 in Example 2

η Method Error CPU time (s) Outer IT Inner IT

0.1 MN–MHSS 4.4020E−07 0.5670 3 31

MN–PMHSS 6.9827E−07 0.5808 3 30

MN–SSTS 9.3212E−09 0.5227 3 13

MN–PSBTS 4.8060E−07 0.5384 3 12

MN–CAPRESB 9.0249E−08 0.3436 2 12

0.2 MN–MHSS 2.7986E−07 0.7160 4 32

MN–PMHSS 2.7986E−07 0.7616 4 32

MN–SSTS 6.8504E−07 0.5178 3 11

MN–PSBTS 7.2537E−08 0.5316 3 12

MN–CAPRESB 3.6800E−08 0.5253 3 13

0.4 MN–MHSS 1.7806E−07 1.4331 8 33

MN–PMHSS 7.0880E−07 1.3319 7 30

MN–SSTS 6.8504E−07 0.8723 5 11

MN–PSBTS 2.1456E−07 0.8788 5 10

MN–CAPRESB 3.6800E−08 0.5275 3 13

Table 14 Comparison results for N = 90 in Example 2

η Method Error CPU time (s) Outer IT Inner IT

0.1 MN–MHSS 2.8124E−07 2.5655 3 33

MN–PMHSS 2.8126E−07 2.5802 3 33

MN–SSTS 9.2014E−08 2.4487 3 12

MN–PSBTS 1.2224E−08 2.4905 3 13

MN–CAPRESB 8.9789E−08 1.6216 2 12

0.2 MN–MHSS 4.3020E−07 3.3408 4 32

MN–PMHSS 4.3023E−07 3.4350 4 32

MN–SSTS 6.8674E−07 2.4570 3 11

MN–PSBTS 3.2544E−08 2.4794 3 12

MN–CAPRESB 3.6624E−08 2.4557 3 13

0.4 MN–MHSS 1.8412E−07 5.9144 7 34

MN–PMHSS 2.8390E−07 6.1905 7 33

MN–SSTS 1.2136E−07 4.0904 5 11

MN–PSBTS 2.7452E−07 4.0454 5 10

MN–CAPRESB 3.6624E−08 2.4000 3 13
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