
Computational and Applied Mathematics          (2024) 43:206 
https://doi.org/10.1007/s40314-024-02668-9

One-misrecorded Poisson INAR(1) model via two random
operators with application to crime and economics data

M. M. Gabr1 · Hassan S. Bakouch2,3 · Shimaa M. El-Hadidy4

Received: 12 May 2023 / Revised: 10 February 2024 / Accepted: 26 February 2024
© The Author(s) 2024

Abstract
In this paper, we propose a first-order non-negative integer-valued autoregressive (INAR(1))
model with one-misrecorded Poisson (OMP) marginal via a combination of the generalized
binomial thinning and mixture Pegram operators for zero-inflated and one deflated count
time series. The suggested model is suitable for multimodal, equi- and over-dispersed data
modeling. It contains two particular cases: the mixture of Pegram and thinning of a first-
order integer-valued autoregressive (MPT(1)) with Poisson and one-misrecorded Poisson.
The distribution of the innovation term is derived as a mixture of degenerate distributions
at 0 and 1, and two Poisson distributions with certain parameters. Regression and several
statistical properties of the proposed model are discussed. We investigate the distribution of
the runs (the lengths of zeros and ones). The parameters of the model are estimated using the
maximum-likelihood, modified Yule–Walker, and modified conditional least squares meth-
ods. The estimation of the parameters, their behavior, and their performance are presented
through a simulation study. Two practical data sets on the monthly cases of criminal records
and weekly sales are applied to check the proposed process’s performance against other
relevant INAR(1) models, showing its capabilities in the challenging case of over-dispersed
count data. Furthermore, the proposed model discusses data forecasting.
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1 Introduction and basics

In the recent years, there has been a lot of interest in modeling and forecasting the temporal
dependence and evolution of time series of low counts. Integer-valued time series arise in
many applications, such as queueing systems, finance, reliability theory, medicine, and epi-
demiology, among others. The non-negative integer-valued autoregressive (INAR)modelwas
developed by Al-Osh and Alzaid (1987) based on the binomial thinning operator introduced
by Steutel and van Harn (1979) and McKenzie (1985). The INAR process has undergone
numerous generalizations and modifications thanks to the efforts of many authors, including
Alzaid and Al-Osh (1990), Al-Osh and Aly (1992), and Alzaid and Al-Osh (1993). Mod-
els based on the negative binomial thinning operator were also constructed and taken into
consideration (Aly and Bouzar 1994; Ristić et al. 2009; Ristić and Nastić 2012). All of the
models previously described have one common feature, which is considering on indepen-
dent counting random variables to the thinning operation. The assumption of independence
simplifies the computations and enables obtaining simple, not complex, models with nice
characteristics. However, the fundamental drawback of such models is that they cannot be
used in practice with data that do not support this assumption. For example, it is reasonable
to expect some dependence between the survival or bankruptcy of some big companies in
the economy, or it is logical to expect that the occurrence of some natural disasters affects
the appearance or non-appearance of some other disasters in meteorology, etc. Therefore, a
modelwith dependent counting sequences is needed to be established. Brännäs andHellström
(2001), Ristić et al. (2013), Ilić (2016), and Nastić et al. (2017) introduced thinning operators
with dependent counting series. In this paper, the proposed model is based on the generalized
thinning with dependent Bernoulli counting series and Pegram’s mixture operators that were
introduced by Ilić (2016) and Biswas and Song (2009), respectively.

The generalized binomial thinning operator is defined as follows:

Definition 1.1 (Generalized binomial thinning operator with a dependent Bernoulli counting
series, GBT) As in Ilić (2016), the GBT operator α �ϑ was defined as

α�ϑ X
d=

{
X , w.p. 1 − (1 − α)/ϑ,

Bin(X , 1 − ϑ), w.p. (1 − α)/ϑ,
(1.1)

where X is a non-negative integer-valued random variable (RV), 0 ≤ 1 − α ≤ ϑ , and
ϑ ∈ (0, 1].
Ilić (2016) defined the first-order dependent counting INARmodel [NDCINAR(1)] based on
the GBT operator (�ϑ) as

Xt = α�ϑ Xt−1 + ξt , t ∈ Z, (1.2)

where {ξt } is a sequence of i .i .d. RV s such that Cov(ξt , Xs) = 0 for s < t . For more details
about this operator and its properties, see Ilić (2016).

Pegram (1980) introduced the discrete AR(p) that looks like ARMAmodels and permits
some of the serial correlations to be negative. Biswas and Song (2009) used the Pegram
operator to define the discrete ARMA model.

Khoo et al. (2017) introduced an INAR process with Poisson marginal via mixing the
binomial thinning that consists of independent Bernoulli counting series, with the mixture
Pegram operators (abbreviated MPT), and Khoo (2016) handled the MPT(1) process with
some discrete marginal distributions, such as binomial, geometric, and negative binomial.
Shirozhan and Mohammadpour (2018) and Shirozhan et al. (2019) presented the INAR(1)
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process with Poisson and geometric marginal distributions by combining the mixture Pegram
with the generalized binomial thinning,whichwas based on theBernoulli dependent counting
series (Ristić et al. 2013).

The models based on combining the mixture Pegram and thinning operators are easy to
interpret, have a simple form, and are more flexible in terms of the range of correlation. They
are appropriate for any discrete marginal distributions, including infinite and finite divisible
distributions, unlike the models based on the thinning operator, which are applied only for
infinite range distributions, and also applied to the multimodal data.

The conditional variance of the INAR(1) based on the independent counting series is
linear in Xt , but for a Pegram model, it is a quadratic function like the INAR(1) with depen-
dent counting series. Therefore, the quadratic property is not satisfied for INAR(1) with
independent counting series. This property implies large values of variance, which may be
appropriate to model over-dispersed data. The one-misrecorded Poisson distribution—also
known as a simple modified Poisson distribution or a Cohen Poisson distribution—forms the
basis of the proposed model and is introduced in the following definition.

Definition 1.2 (The one-misrecorded Poisson) The one-misrecorded Poisson distribution,
abbreviated as (OMP), of a RV X with parameters λ > 0, 0 ≤ φ ≤ 1, has the probability
mass function (p.m.f.)

P(X = x) =
⎧⎨
⎩
e−λ(1 + λφ) x = 0,
e−λλ(1 − φ) x = 1,
e−λ λx

x ! x = 2, 3, . . . .
(1.3)

TheOMPwas invented by Cohen (1960) tomodel the data (or misclassified data) that con-
tain errors in reporting one as a zero, or it sometimes happens that a few of the observations
taking value one are misclassified and reported as zero. φ is the probability of misclassifica-
tion, or the proportion of ones reported as zeros. The OMP distribution has its application in
situations where the true values of ones are erroneously recorded as zeros with probability
φ, while values of two and more are recorded correctly from a Poisson. For example, when
determining the number of defects per unit or item examined, an inspector may make an
error by reporting units that actually contain a single defect as being perfect or defect-free.
The OMP is reduced to a Poisson distribution when φ = 0, the equi-dispersion case. Also,
all the observations falling into class one will be reported as zero when φ = 1.

For the OMP distribution, the corresponding probability generating function (p.g. f .),
mean, variance, second, third, and fourth moments are, respectively, given by

GX (s) = λφe−λ(1 − s) + eλ(s−1), (1.4)

E(X) = μX = λ(1 − φe−λ), (1.5)

Var(X) = C2(0) = σ 2
X = λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ)), (1.6)

E(X2) = μ(0) = λ2 + λ(1 − φe−λ), (1.7)

E(X3) = μ(0,0) = λ3 + 3λ2 + λ(1 − φe−λ), (1.8)

E(X4) = μ(0,0,0) = λ4 + 6λ3 + 7λ2 + λ(1 − φe−λ). (1.9)

Therefore, the Fisher index of dispersion (variance to mean ratio) is obtained as follows:

IX = Var(X)

E(X)
= 1 + λφe−λ(2 − φe−λ)

(1 − φe−λ)
= 1 + D(φ, λ),
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Fig. 1 Behavior of the function
D(φ, λ) on the index dispersion

where D(φ, λ) = λφe−λ(2−φe−λ)

(1−φe−λ)
. D(φ, λ) increases as φ increases from 0 to 1 and the degree

of over-dispersion increases. The value of function D(φ, λ) = 0 for large values of λ or for
φ = 0. The behavior of this function can be seen graphically in Fig. 1.

We can say that the OMP distribution is zero-inflated (there is an excess of zeros) and
one-deflated (there are fewer ones than expected), according to the two definitions given by
Ahmad (1968):

The first definition is that a class in a distribution will be said to be inflated if some of the
observations falling in other classes are erroneously misclassified in this class.

The second definition is that a class in a distribution will be said to be deflated if some of
the observations falling in the class are erroneously misclassified in another class.

Also, according to Johnson et al. (2005), pages (211 and 353), in describing the modified
distribution’s zero probability, we can conclude that if φ0 = λφe−λ > 0, then the Poisson’s
zero probability is increased (zero-inflation), while the Poisson’s one probability is decreased
for φ1 = −λφe−λ < 0 (one-deflation).

Moreover, according to Puig andValero (2006), a random variable X is zero-inflated when
its proportion of zeros is greater than the proportion of zeros of a Poisson variate with the
same expectation; zero inflation can be studied in a standard way using the zero-inflation
index, IZero, as

IZero = 1 + ln(P0)

μX
= 1 + −λ + ln(1 + λφ)

λ(1 − φe−λ)
= 1 + Z(λ, φ). (1.10)

The value of function Z(λ, φ) = −1 for φ = 0 and any value of λ, and this implies that
IZero = 0, consequently, X is a Poisson distribution. The value of Z(λ, φ) is greater than -1
since Z(λ, φ) increases as φ increases from 0 to 1. In particular, the behavior of the function
Z(λ, φ) is shown graphically in Fig. 2. As a result, the values of IZero > 0 and from the plot
in Fig. 2, we conclude that IZero ∈ (0, 1), which indicates zeroinflation (an excess of zero
with respect to a Poisson distribution).

Practical over-dispersed INAR(1) processes have been presented in the literature, such
as the negative binomial INAR(1) process (McKenzie 1986) and the compound Poisson
INAR(1) process (Schweer andWeiß 2014). These over-dispersed classes of INAR(1)models
fail when the data set contains a large number of zeros. To analyze count data with excess
zeros, Jazi et al. (2012) and Barreto-Souza (2015) introduced INAR(1) with zero-inflated
Poisson (ZIP) innovations and zero-modified geometric INAR(1) models, respectively. The
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Fig. 2 Behavior of the function
Z(φ, λ) on the zero index

over-dispersed and zero-inflated INAR(1) models, however, fail when a data set contains
both a large number of zeros and ones, which occurs frequently in practice, for example, in
the number of patients with a rare disease in various areas, the monthly counts of Computer-
Aided Dispatch (CAD) drug calls, etc. Furthermore, the illustrative examples in Sect. 4 show
real-life data examples with excesses of zero-and-one. So that a change in the p.m.fs. for
modeling zero-and-oneobservation is necessary.Qi et al. (2019),Mohammadi et al. (2022a, b)
introduced INAR(1) models with zero-and-one inflated Poisson (ZOIP), Poisson–Lindely
(ZOIPL), and geometric (ZOIG) that are useful tools for capturing the characteristics of such
count data. In these processes, the authors assume that the innovation term has a zero-and-one
inflated distribution.

The main aim of this paper is to construct an INAR(1) process for modeling over-, equi-
dispersed, andmultimodality data by assuming that themain time series {Xt } follows theOMP
distribution based on combining the GBT and mixture Pegram operators. Also, the proposed
process can be used to model zero-inflated and one-deflated data, and the misclassification
of ones as zeros (errors in recording at one or one-misrecorded data).

This paper is constructed as follows: In Sect. 2, an extension or generalization of the
MPT(1)model based on a dependent Bernoulli counting series with OMPdistribution (OMP-
EMPT(1)) is defined, and some properties of the innovation process and its p.m.f. are derived.
Also, several statistical and conditional properties of the model, including conditional and
joint distributions and jumps, are shown, along with a study of the distribution of zeros and
ones in the proposed process. In Sect. 3, the parameters of the process are estimated via the
maximum-likelihood (ML), modified conditional least-squares (MCLS), andmodified Yule–
Walker (MYW) methods. Also, the performance of the estimates is checked via a simulation
study. In Sect. 4, we provide two real-life data sets to model over-dispersed data, illustrating
the performance of the process throughout the goodness-of-fit statistics. Also, the model’s
adequacy is checked by the mean logarithmic score, benchmark chart, and non-randomized
probability integral transform (PIT). The predictive capacity of the proposedmodel is checked
through forecasting.

2 Construction of themodel and its statistical properties

This section is implemented as follows: An extension of the MPT(1) with OMP marginal
distribution is constructed using a generalized binomial thinning (abbreviated as OMP-
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EMPT(1)). The p.m.f. for the innovation term of the model is obtained. The bivariate p.g. f .,
conditional p.g. f ., conditional mean and variance, k−step-ahead conditional mean and vari-
ance, transition probability, autocorrelation function, and the number of zeros and ones in
the model are discussed.

The proposed model is defined as follows:

Definition 2.1 (Extended MPT(1) with OMP, OMP-EMPT(1)) The OMP-EMPT(1) {Xt } is
defined as

Xt =
{

α�ϑ Xt−1 with probability p,
ξt with probability 1 − p,

also, this model can be expressed as

Xt =
⎧⎨
⎩

Xt−1 w.p. p
(
1 − 1−α

ϑ

)
,

(1 − ϑ) ◦ Xt−1 w.p. p (1−α)
ϑ

,

ξt w.p. 1 − p,

where "α�ϑ" refers to the GBT operator, and {ξt } is a sequence of i .i .d. RV s such that
ϑ ∈ (0, 1], p ∈ (0, 1), 0 ≤ 1 − α ≤ ϑ , λ > 0, and φ ∈ [0, 1].
Remark 2.1 Note the following sub-models:

• When ϑ = 1−α, the GBT is reduced to binomial thinning, and hence, the MPT(1) with
OMPmarginal, OMP-MPT(1), process is obtained, which has not been discussed before.

• When φ = 0 and ϑ = 1 − α, the constructed process is reduced to the MPT(1) with
Poisson distribution that is given by Khoo et al. (2017).

2.1 Probability distribution of the innovation term

The following proposition provides the distribution of the innovation process:

Proposition 2.1 The p.m. f . for ξt has the following representations:

P(ξt = 0) = 1

1 − p

×
[
λφe−λ(1 − pα) + e−λ

(
1 − p

(
1 − 1 − α

ϑ

))
−

(
p(1 − α)e−λ(1−ϑ)

ϑ

)]
,

P(ξt = 1) = 1

1 − p

[
−λφe−λ(1 − pα) + e−λλ

(
1 − p

(
1 − 1 − α

ϑ

))

−
(
p(1 − α)(λ(1 − ϑ))e−λ(1−ϑ)

ϑ

)]
,

P(ξt = j) = 1

1 − p

[
e−λ λ j

j !
(
1 − p

(
1 − 1 − α

ϑ

))

−
(
p(1 − α)(λ(1 − ϑ)) j e−λ(1−ϑ)

j !ϑ

)]
, j = 2, 3, . . . , (2.1)

for λ > 0, ϑ ∈ (0, 1], α ∈ [0, 1], and 0 ≤ 1 − α ≤ ϑ . The condition

0 ≤ p ≤ min(C1,C2), (2.2)
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where C1 and C2 are defined as

C1 = 1 + λφ

λφα + (
1 − 1−α

ϑ

) + ( 1−α
ϑ

)
eλϑ

, (2.3)

C2 = 1 − φ
1−α
ϑ

(1 − ϑ)eλϑ + (
1 − 1−α

ϑ

) − αφ
, (2.4)

is necessary for the p.m.f. of the innovation process ξt in Eq. (2.1) to be well defined and
non-negative for any j .

Proof By using the definition of (1 − ϑ) ◦ X = ∑X
i=1 Zi , where Zi ∼ Ber((1 − ϑ)), as a

result the p.g. f . of (1 − ϑ) ◦ X is given by G(1−ϑ)◦X = GX (ϑ + (1 − ϑ)s). First, we get
the p.g. f . of the innovation process {ξt } as a mixture representation of ones to the {Xt } as
follows:

For this purpose, the p.g. f . of {Xt } given by Definition (2.1) has the expression

GXt (s) = pGα�ϑ Xt−1(s) + (1 − p)Gξt (s)

= p

(
1 − 1 − α

ϑ

)
GXt−1(s) + p

(
1 − α

ϑ

)
G(1−ϑ)◦Xt−1(s) + (1 − p)Gξt (s)

= p

(
1 − 1 − α

ϑ

)
GXt−1(s) + p

(
1 − α

ϑ

)
GXt−1(ϑ + (1 − ϑ)s) + (1 − p)Gξt (s).

Hence, the p.g. f . of the innovation process {ξt } is

Gξt (s) = 1

1 − p

[
GXt (s) − p

(
1 − 1 − α

ϑ

)
GXt−1(s) − p

(
1 − α

ϑ

)
GXt−1(ϑ + (1 − ϑ)s)

]

= 1

1 − p

[
λφe−λ(1 − s) + eλ(s−1) − p

(
1 − 1 − α

ϑ

)
(λφe−λ(1 − s) + eλ(s−1))

−p

(
1 − α

ϑ

)
(λφe−λ(1 − (ϑ + (1 − ϑ)s)) + eλ((ϑ+(1−ϑ)s)−1))

]

= 1

1 − p

[
λφe−λ(1 − pα)(1 − s) +

(
1 − p

(
1 − 1 − α

ϑ

))
eλ(s−1)

−p

(
1 − α

ϑ

)
eλ(1−ϑ)(s−1)

]
. (2.5)

From Eq. (2.5), it can be noted that Gξt (1) = 1 and Gξt (0) = p(ξt = 0) with (2.2).
Using Eq. (2.5), the innovation process {ξt } has a mixture distribution of degener-

ate distributions at 0 and 1, Poisson(λ) and Poisson((1 − ϑ)λ) with mixing weights
λφe−λ(1−pα)

1−p ,− λφe−λ(1−pα)
1−p ,

1−p(1− 1−α
ϑ

)

1−p , and
−p( 1−α

ϑ
)

1−p , respectively. Hence, the p.m.f. of ξt
is represented by equation’s system given in Eq. (2.1). Finally, we demonstrate as follows
that this function is a p.m.f.

By the definition of generalized mixture of the distribution functions (Mohammadpour
et al. 2018), the sum of preceding mixing weights equals 1, and hence, it follows that∑∞

j=0 P(ξt = j) = 1.
The following step will demonstrate and confirm that the system of equations outlined in

Eq. (2.1) yields non-negative probabilities under the condition specified in by Eq. (2.1). For
each j = 0, 1, 2, . . ., we aim to prove that P(ξt = j) ≥ 0 as outlined below.
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When j = 0, ensuring P(ξt = 0) ≥ 0 is achieved through solving the subsequent
inequality

1

1 − p

[
λφe−λ(1 − pα) +

(
1 − p

(
1 − 1 − α

ϑ

))
e−λ − p

(
1 − α

ϑ

)
e−λ(1−ϑ)

]
≥ 0;

consequently,

λφe−λ + e−λ ≥ p

[
αλφe−λ +

(
1 − 1 − α

ϑ

)
e−λ +

(
1 − α

ϑ

)
e−λ(1−ϑ)

]
.

Upon solving the aforementioned inequality for p, the following result is obtained:

p ≤ λφ + 1

αφλ + (1 − 1−α
ϑ

) + ( 1−α
ϑ

)eλϑ
. (2.6)

In the case of j = 1, the condition P(ξt = 1) ≥ 0 is satisfied if

1

1 − p

[
−λφe−λ(1 − pα) + e−λλ(1 − p(1 − 1 − α

ϑ
)) −

(
p(1 − α)(λ(1 − ϑ))e−λ(1−ϑ)

ϑ

)]

≥ 0;
therefore, we have

−λφe−λ + λe−λ ≥ p

[
1 − α

ϑ
(λ(1 − ϑ))e−λ(1−ϑ) +

(
1 − 1 − α

ϑ

)
λe−λ − αφλe−λ

]
.

Following the resolution for the preceding inequality, the condition for p is determined to
be

p ≤ 1 − φ

−αφ + (
1 − 1−α

ϑ

) + 1−α
ϑ

(1 − ϑ)eλϑ
. (2.7)

Finally, when j = 2, 3, 4, . . ., the condition P(ξt = j) ≥ 0 is satisfied if

1

1 − p

[
e−λ λ j

j !
(
1 − p

(
1 − 1 − α

ϑ

))
−

(
p(1 − α)(λ(1 − ϑ)) j e−λ(1−ϑ)

j !ϑ

)]
≥ 0,

or equivalently

1 − p

(
1 − 1 − α

ϑ

)
≥ p

(1 − α)(1 − ϑ) j eλϑ

ϑ
.

Consequently, the condition for p will be

p ≤ 1(
1 − 1−α

ϑ

) + 1−α
ϑ

(1 − ϑ) j eλϑ
. (2.8)

Let us assume that

C1 = 1 + λφ

λφα + (
1 − 1−α

ϑ

) + ( 1−α
ϑ

)
eλϑ

,

C2 = 1 − φ
1−α
ϑ

(1 − ϑ)eλϑ + (
1 − 1−α

ϑ

) − αφ
,

C3 = 1

1 − 1−α
ϑ

+ 1−α
ϑ

(1 − ϑ) j eλϑ
.
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Hence, it is evident that C3 increases with an increase in j , reaching its minimum at
j = 2. This is depicted in Fig. 3 and supported by the numeric findings (conditions,
confirmation numeric values, and folder of plots) available at https://drive.google.com/
drive/folders/1oDmUr-vuSw98V9eYDmIsLbKA6Ha35J1t?usp=sharing. Hence, C3 is con-
sistently greater than or equal to C2 or C1, leading to the conclusion that min(C1,C2,C3) =
min(C1,C2). �	
Remark 2.2 Taking theminimum ofC1 andC2 guarantees that the p.m.f. of ξt is non-negative
for j = 0, 1, 2, . . ..

From the numeric results and the graphs of the two conditions (C1 and C2), the minimum
is changed from C1 to C2, and this means that there is an inflection point or intersection
point of the two conditions. By setting C1 = C2, the value of the intersection point, φ, can
be obtained as follows:

φ = φ0 = ϑeλϑ

ϑ + (eλϑ − 1)(1 + λ − λϑ)
.

φ0 is considered as an inflection point between the two conditions, and at φ0, we have
C1 = C2. Figure4 illustrates the two conditions, C1 and C2, plotted under the specified
intervals for φ, with 0 ≤ φ ≤ φ0 and φ0 ≤ φ ≤ 1, and for λ = 0.5, 1, 5, 10, α =
0.83, and ϑ = 0.21. The illustrations in Fig. 4, coupled with the confirmation numeric
values file (https://drive.google.com/file/d/1-hHVIoHLUMZUn2Z9o-AxghExHADjzHPY/
view?usp=drive_link), demonstrate that:

• When φ < φ0, C1 becomes the minimum. Therefore, p should be within the interval
0 ≤ p ≤ C1.

• When φ > φ0, C2 becomes the minimum. Thus, p should be within the interval 0 ≤
p ≤ C2.

• If φ = φ0, then C2 = C1 = C . Hence, p should be within the interval 0 ≤ p ≤ C .

Remark 2.3 • If φ = 0, then min(C1,C2) = C1, which implies that p falls within the
interval 0 ≤ p ≤ C1. The condition in Eq. (2.2) is reduced to that proposed by Khoo
et al. (2017) for the case where φ = 0 and ϑ = 1− α, in the context of the MPT(1) with
Poisson distribution, which is a sub-model of the proposed model.

• If φ = 1, then min(C1,C2) = C2 and consequently 0 ≤ p ≤ C2.

As a visual illustration of the p.m.f. under the mentioned conditions:
For λ = 10;α = 0.83;ϑ = 0.21, the p.m.f. of the innovation process, ξt , is shown in:

• Figure5a with φ = φ0 = 0.02679988802 and C1 = C2 = 0.1805334165, so p must be
in the range 0 ≤ p ≤ 0.1805334165.

• Figure6a with φ = 0.5 > φ0 and taking p ≤ C2, i.e., p ≤ 0.1000412914.
For λ = 1;α = 0.6;ϑ = 0.5, the p.m.f of ξt is represented in:

• Figure5a with φ = φ0 = 0.5596162930 and C1 = C2 = 0.8408782799, so 0 ≤ p ≤
0.8408782799.

• Figure6b with φ = 0.7 > φ0 and taking p ≤ C2, i.e., p ≤ 0.6826117049.

Consequently, based on the aforementioned proposition, the mean, variance, and the sec-
ond and third moments of {ξt } are provided as follows, respectively:

E(ξt ) = λ(1 − pα)(1 − φe−λ)

1 − p
= μξt , (2.9)
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Fig. 3 Conditions C1,C2, and C3 at j = 2, 3, 4; λ = 0.1 to 10; α = 0.83; ϑ = 0.21

Var(ξt ) = 1

1 − p

[
(λ2(1 + p + pα(−2 + ϑ) − pϑ))

+(λ(1 − φe−λ))(1 − pα)

(
1 − (1 − pα)(1 − φe−λ)λ

1 − p

)]
, (2.10)

E(ξ2t ) = (1 − pα)λ(1 − φe−λ) + λ2(1 + p + pα(−2 + ϑ) − pϑ)

1 − p
, (2.11)

and

E(ξ3t ) = (1 − pα)λ(1 − φe−λ) + 3(λ2(1 + p + pα(−2 + ϑ) − pϑ))

1 − p

−λ3(−1 + p(−2 + 3ϑ − ϑ2 + α(3 − 3ϑ + ϑ2)))

1 − p
. (2.12)

2.2 Conditional properties of the process, joint distributions, and jumps

Regression properties are useful for estimating unknown parameters as well as forecasting
future values. In particular, the conditional expectation is used for the conditional least-
squares estimation method, k-step-ahead expectation for forecasting the future values of time
series data, and a conditional probability function for the maximum-likelihood estimation
method. The joint distributions are used to check the model’s time reversibility.

Let {Xt } be a stationary OMP-EMPT(1) process, then the conditional probability gener-
ating function (c.p.g. f .) and its corresponding conditional probability (one-step transition
probability) function are as follows:

GXt |Xt−1 (s) = E(sXt |Xt−1)

= pE(sα�ϑ Xt−1 |Xt−1) + (1 − p)E(sξt |Xt−1)

= p

[(
1 − 1 − α

ϑ

)
sXt−1 + 1 − α

ϑ
(ϑ + (1 − ϑ)s)Xt−1

]
+ (1 − p)Gξt (s)

= p

(
1 −

(
1 − α

ϑ

))
sXt−1

+p

(
1 − α

ϑ

)
(ϑ + (1 − ϑ)s)Xt−1 + λφe−λ(1 − pα)(1 − s)

123



One-misrecorded Poisson INAR(1) model via two... Page 11 of 41   206 

+
(
1 − p

(
1 − 1 − α

ϑ

))
eλ(s−1) − p

(
1 − α

ϑ

)
eλ(1−ϑ)(s−1), (2.13)

P(Xt = i |Xt−1 = j) = P(i | j) = pP(α�ϑ Xt−1 = i |Xt−1 = j) + (1 − p)P(ξt = i)

= p

(
1 − 1 − α

ϑ

)
I{ j}

+pI{i≤ j}
1 − α

ϑ

(
j

i

)
(1 − ϑ)iϑ j−i + (1 − p)P(ξt = i), (2.14)

Fig. 4 The conditions C1 and C2

123
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Fig. 5 PMF of the innovation process at φ = φ0, C1 = C2 = C , and p ≤ C

Fig. 6 PMF of the innovation process at φ > φ0 and p ≤ C2

where P(ξt = i), the p.m. f . of {ξt } is given by Eq. (2.1), t=0, 1, 2, . . ., and |s| ≤ 1, and I{ j}
is the indicator function with a degenerate random variable defined as

I{ j} =
{
1 Xt−1 = j
0 Xt−1 
= j .

(2.15)

Proposition 2.2 Let {Xt } be a stationary OMP-EMPT(1) process, then

1. The one-step-ahead conditional expectation is

E(Xt+1|Xt ) = pαXt + (1 − pα)λ(1 − φe−λ), (2.16)

2. The k-step-ahead conditional expectation is formulated as

E(Xt+k |Xt ) = (pα)k Xt + (1 − (pα)k)λ(1 − φe−λ). (2.17)

3. The one-step-ahead conditional variance is

V ar(Xt+1|Xt ) = p[(2α − αϑ + ϑ − 1) − pα2]X2
t

+p[(1 − α)(1 − ϑ) − 2αλ(1 − pα)(1 − φe−λ)]Xt

+((1 − pα)λ(1 − φe−λ)(1 − λ(1 − pα)(1 − φe−λ))
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+λ2(1 + p + pα(−2 + ϑ) − pϑ). (2.18)

4. The k-step-ahead conditional variance is given as

Var(Xt+k |Xt ) = (pA0)
k X2

t + pkB0

(
Ak
0 − αk

A0 − α

)
Xt

+((1 − pα)λ(1 − φe−λ) + λ2(1 − pA0))

(
1 − (pA0)

k

1 − pA0

)

+
(

(1 − pα)λ(1 − φe−λ)

A0 − α

)
B0

(
(pA0)

k − 1

pA0 − 1
− (pα)k − 1

pα − 1

)

−((pα)k Xt + (1 − (pα)k)λ(1 − φe−λ))2, (2.19)

where A0 = (2α − αϑ + ϑ − 1), B0 = (1 − α)(1 − ϑ).

Proof The proof of Proposition 2.2 is given in Appendix A.1. �	
The autocovariance, autocorrelation, and partial autocorrelation functions at lag k of {Xt }

are, respectively, given as follows:

γX (k) = (pα)k [λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ))], (2.20)

ρX (k) = (pα)k , k ∈ Z, (2.21)

βX (k) = Corr(Xk+1 − E(Xk+1|X2, . . . , Xk), X1)

= Corr(Xk+1 − (pα)Xk − (1 − p)μξ , X1) = (pα)k − pα(pα)k−1 = 0, k > 1,

(2.22)

βX (1) = Corr(Xk+1, Xk) = pα. (2.23)

Remark 2.4 • The unconditional mean and variance of the OMP-EMPT(1) process are
obtained by taking the limit of Eqs. (2.17) and (2.19) at k −→ ∞, that is

lim
k→∞ E(Xt+k |Xt ) = λ(1 − φe−λ) = E(Xt ), (2.24)

lim
k→∞ Var(Xt+k |Xt ) = [(1 − pα)λ(1 − φe−λ) + λ2(1 − pA0)]

(
1

1 − pA0

)

+
(

(1 − pα)λ(1 − φe−λ)

A0 − α

)
B0

( −1

pA0 − 1
− −1

pα − 1

)
− (λ(1 − φe−λ))2

= λ(1 − φe−λ)(1 − pα)

1 − pA0
+ λ2 − λ(1 − φe−λ)(1 − pα)B0

−B0(pA0 − 1)

+λ(1 − φe−λ)(1 − pα)B0

−B0(pα − 1)
− (λ(1 − φe−λ))2

= λ2 − (λ(1 − φe−λ))2 + (1 − pα)λ(1 − φe−λ)

1 − pA0
[1 − 1] + λ(1 − φe−λ)

= λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ)) = Var(Xt ). (2.25)

• From Eq. (2.19), it is concluded that the k−step-ahead conditional variance,
Var(Xt+k |Xt ), depends on X2

t , that is, quadratically depends on the past of the pro-
cess, and the coefficient of this dependence is (pA0)

k − (pα)2k . Thus, if ϑ 
= 0 and
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α ∈ (0, 1), which is a general case, then large values of variance could be expected when
the process reaches some significant realizations. This goes with the fact that Var(Xt ) is
approximated by Var(Xt+k |Xt ) for large values of k. Therefore, OMP-EMPT(1) model
provides a very convenient property in the application to over-dispersed data.

• The process is stationary, since the mean, variance, and autocovariance are finite and
independent of time.

• The autocorrelation and partial autocorrelation functions can be thought as model spec-
ification tools. When k −→ ∞ in Eq. (2.21), the autocorrelation function decays
exponentially to zero. Also, we have from Eq. (2.22), and noting that β(1) = pα, the
PACF of OMP-EMPT(1) cuts off after lag 1. As a result, it could be remarked that the
OMP-EMPT(1) model is an autoregressive process of order one.

The joint p.g. f . of two consecutive observations of this process, Xt and Xt−1, is

GXt−1,Xt (s1, s2) = p

(
1 − 1 − α

ϑ

)
[λφe−λ(1 − s1s2) + eλ(s1s2−1)]

+p
1 − α

ϑ
(λφe−λ(1 − s1(ϑ + (1 − ϑ)s2)) + eλ(s1(ϑ+(1−ϑ)s2)−1))

+(λφe−λ(1 − s1) + eλ(s1−1))

[
λφe−λ(1 − pα)(1 − s2)

+
(
1 − p

(
1 − 1 − α

ϑ

))
eλ(s2−1) − p

(
1 − α

ϑ

)
eλ(1−ϑ)(s2−1)

]
.

(2.26)

It is clear from Eq. (2.26) that GXt−1,Xt (s1, s2) is not symmetric in s1 and s2, implying that
the process is not time-reversible, and thus, the joint distribution of (Xt−1, Xt ) is not equal
to the joint distribution of (Xt , Xt−1).

The joint probability function of Xt−1, Xt is

PXt−1,Xt (i, j) = P(Xt = j |Xt−1 = i)P(Xt−1 = i), (2.27)

where P(Xt = j |Xt−1 = i) is the one-step transition probability function given by Eq.
(2.13) and P(Xt−1 = i) is the marginal probability distribution defined by Eq.(1.2).

The adequacy or sufficiency of the fitted models can be checked by jumps (see Weiß
(2009)). The jump process is also used to construct control charts that show changes in the
serial dependence structure. The p.g. f . of the jump process, Jt ≡ Xt − Xt−1, for t ≥ 2 is
obtained by replacing s1 and s2 by u−1 and u, respectively, in Eq. (2.26), as

GXt−1,Xt (u
−1, u) = p

(
1 − 1 − α

ϑ

)

+p
1 − α

ϑ

(
λφe−λ

(
1 −

(
ϑ

u
+ (1 − ϑ)

))
+ e

λ
((

ϑ
u +(1−ϑ)

)
−1

))

+(λφe−λ(1 − u−1) + eλ(u−1−1))

[
λφe−λ(1 − pα)(1 − u)

+
(
1 − p

(
1 − 1 − α

ϑ

))
eλ(u−1) − p

(
1 − α

ϑ

)
eλ(1−ϑ)(u−1)

]
.

(2.28)
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Utilizing Eq. (2.28) and the definition of the jump process, it is determined that the mean,
variance, autocovariance, and autocorrelation of Jt are, respectively, specified by

E(Jt ) = E(Xt − Xt−1) = 0, (2.29)

Var(Jt ) = Var(Xt − Xt−1) = 2Var(Xt ) − 2Cov(Xt , Xt−1)

= 2(1 − pα)[λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ))], (2.30)

γJ (k) = Cov(Jt , Jt+k)

= (pα)k−1(2pα − 1 − (pα)2)[λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ))],
(2.31)

ρJ (k) = Corr(Jt , Jt+k) = (pα)k−1(2pα − 1 − (pα)2). (2.32)

2.3 Distribution of zeros and ones

The run is defined by Mood (1940), as a succession of similar events that are preceded and
succeeded by different events, and the length of the run is determined by its number. The
distribution of runs has been extensively studied in the context of i .i .d. set-ups, and a well-
known application of runs is the runs test in non-parametric hypothesis testing. Jacobs and
Lewis (1978) introduced the distribution of the run length for a stationary discrete autore-
gressive process of first-order. The expected time of its stay in state i at a stress after entering
the process at state i from another state j can be evaluated using the run length. The expected
length of zeros and ones will be discussed in two different ways. Let {Xt } be the OMP-
EMPT(1) process, for a fixed state i ∈ {0, 1, 2, . . .}, supposeNi = inf{n ≥ 1 : Xn 
= i}− 1,
Ni is the run length of state i starting at time 1, where the length can be 0, 1, 2, · · · . Then,
the survival function, probability of Ni greater than or equal to n, of Ni is

P(Ni ≥ n) = P(X1 = X2 = . . . = Xn = i)

= P(X1 = i)(P(Xn = i |Xn−1 = i))n−1

= P(X1 = i)(P(i |i))n−1, n ≥ 1 (2.33)

and P(Ni = 0) = P(X1 
= i) = 1 − P(X1 = i), where P(X1 = i) and P(i |i) = P(Xn =
i |Xn−1 = i) = p(1 − 1−α

ϑ
)I{i} + p 1−α

ϑ
(1 − ϑ)i + (1 − p)P(ξn = i) are, respectively,

the stationary distribution and conditional distribution of the process given by Eqs. (1.3) and
(2.13).

Using the stationary and Markov properties of the proposed process, and based on the
expression of the survival function ofNi given by Eq.(2.33), the p.m. f . ofNi is obtained as

P(Ni = n) = P(Ni ≥ n) − P(Ni ≥ n + 1)

= P(Xn+1 
= i, Xn = i, Xn−1 = i, . . . , X1 = i)

= P(Xn+1 
= i |Xn = i)P(Xn = i |Xn−1 = i) . . . P(X2 = i |X1 = i)P(X1 = i)

= P(X1 = i)[1 − P(Xn+1 = i |Xn = i)](P(Xn = i |Xn−1 = i))n−1

= −P(X1 = i)(P(Xn+1 = i |Xn = i))n

= (1 − P(Xn+1 = i |Xn = i))

= P(X1 = i)[1 − P(i |i)](P(i |i))n−1, n ≥ 1. (2.34)
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Therefore, based on the previous expression for the p.m.f. of Ni given by Eq. (2.34), the
expected run length of state i is given by

E(Ni = n) =
∞∑
n=0

nP(Ni = n)

=
∞∑
n=1

nP(X1 = i)[1 − P(i |i)](P(i |i))n−1

= P(X1 = i)[1 − P(i |i)]
∞∑
n=1

n(P(i |i))n−1

= P(X1 = i)[1 − P(i |i)]
(

1

[1 − P(i |i)]2
)

= P(X1 = i)

1 − P(i |i) . (2.35)

The p.g. f . of Ni is

GNi (s) =
∞∑
n=0

sn P(Ni = n)

= P(Ni = 0) +
∞∑
n=1

sn p(Ni = n)

= (1 − P(X1 = i)) + P(X1 = i)
∞∑
n=1

sn

×[(1 − P(Xn = i |Xn−1 = i))(P(Xn = i |Xn−1 = i))n−1]
= (1 − P(X1 = i)) + s(1 − P(i |i))P(X1 = i)

1 − sP(i |i) . (2.36)

For the OMP-EMPT(1) process, the transition probability functions from zero to zero and
non-zero are, respectively, given by

P(Xn = 0|Xn−1 = 0) = p

(
1 − 1 − α

ϑ

)
I{0} + p

1 − α

ϑ
+ λφe−λ(1 − pα)

−p
1 − α

ϑ
e−λ(1−ϑ) + e−λ

(
1 − p

(
1 − 1 − α

ϑ

))
, (2.37)

and

δ0 = P(Xn 
= 0|Xn−1 = 0) = 1 − P(Xn = 0|Xn−1 = 0). (2.38)

Also, the transition probability functions from one to one and non-one are, respectively, given
by

P(Xn = 1|Xn−1 = 1) = p

(
1 − 1 − α

ϑ

)
I{1} + p

1 − α

ϑ
(1 − ϑ) − λφe−λ(1 − pα)

−p
1 − α

ϑ
e−λ(1−ϑ)λ(1 − ϑ) + λe−λ

(
1 − p

(
1 − 1 − α

ϑ

))
,

(2.39)
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and

η1 = P(Xn 
= 1|Xn−1 = 1) = 1 − P(Xn = 1|Xn−1 = 1). (2.40)

Using Eq. (2.35), the expected length of the runs of zeros and ones, the number of zeros
between two non-zero values, and the number of ones between two non-one values of the
process can be, respectively, derived as

E(N0) = P(X1 = 0)

1 − P(Xn = 0|Xn−1 = 0)
= e−λ(1 + λφ)

P(Xn 
= 0|Xn−1 = 0)
,

E(N0) = e−λ(1 + λφ)

1 − p
(
1 − 1−α

ϑ

)
I{0} − p 1−α

ϑ
− λφe−λ(1 − pα) + p 1−α

ϑ
e−λ(1−ϑ)

[ − e−λ
(
1 − p

(
1 − 1−α

ϑ

))]
.(2.41)

E(N1) = P(Xn = 1)

1 − P(Xn = 1|Xn−1 = 1)
= λe−λ(1 − φ)

P(Xn 
= 1|Xn−1 = 1)
,

E(N1) = λe−λ(1 − φ)

1 − p
(
1 − 1−α

ϑ

)
I{1} − p 1−α

ϑ
(1 − ϑ) + λφe−λ(1 − pα)

[ + p 1−α
ϑ

e−λ(1−ϑ)λ(1 − ϑ) − λe−λ
(
1 − p

(
1 − 1−α

ϑ

))]
. (2.42)

Using Eq. (2.33), the survival functions of N0 and N1 are, respectively, given by

P(N0 ≥ n) = P(X1 = 0)(P(Xn = 0|Xn−1 = 0))n−1, n ≥ 1 (2.43)

and

P(N1 ≥ n) = P(X1 = 1)(P(Xn = 1|Xn−1 = 1))n−1, n ≥ 1. (2.44)

Using the stationarity of the process, as in Barreto- Souza W (2015), and Eq. (2.34), the
p.m. f . for the number of zeros and ones is given as follows, respectively:

P(N0 = n) = P(Xn 
= 0, Xn−1 = 0, . . . , X1 = 0|X0 = 0)

= P(Xn 
= 0|Xn−1 = 0)P(Xn−1 = 0|Xn−2 = 0) . . . P(X1 = 0|X0 = 0)

= δ0(1 − δ0)
n−1,

for n ≥ 2 and P(N0 = 1) = P(X1 
= 0|X0 = 0) = δ0.

P(N1 = n) = P(Xn 
= 1, Xn−1 = 1, . . . , X1 = 1|X0 = 1)

= P(Xn 
= 1|Xn−1 = 1)P(Xn−1 = 1|Xn−2 = 1) . . . P(X1 = 1|X0 = 1)

= η1(1 − η1)
n−1,

for n ≥ 2 and P(N1 = 1) = P(X1 
= 1|X0 = 1) = η1. Based on Eq. (2.36), the p.g. f . for
N0 and N1 are, respectively, given by

GN0(s) = (1 − P(X1 = 0)) + s(1 − P(0|0))P(X1 = 0)

1 − sP(0|0) , (2.45)

and

GN1(s) = (1 − P(X1 = 1)) + s(1 − P(1|1))P(X1 = 1)

1 − sP(1|1) . (2.46)
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Remark 2.5 1. The expected run length of zeros and ones in the process, as in Jazi et al.
(2012) and Barreto-Souza (2015), can be determined in a different way, because the
run length of zeros and ones has a geometric distribution with probabilities δ0 and η1,
that is, P(N0 = n) = δ0(1 − δ0)

n−1, n ≥ 1, where δ0 is given by Eq. (2.38) and
P(N1 = n) = η1(1 − η1)

n−1, n ≥ 1, where η1 is given by Eq. (2.40), respectively. The
expected run length zeros and ones are calculated as

E(N0) = 1

1 − p
(
1 − 1−α

ϑ

)
I{0} − p 1−α

ϑ
− λφe−λ(1 − pα)

[ + p 1−α
ϑ

e−λ(1−ϑ) − e−λ
(
1 − p

(
1 − 1−α

ϑ

))]
, (2.47)

and

E(N1) = 1

1 − p
(
1 − 1−α

ϑ

)
I{1} − p 1−α

ϑ
(1 − ϑ) + λφe−λ(1 − pα)

[ + p 1−α
ϑ

e−λ(1−ϑ)λ(1 − ϑ) − λe−λ
(
1 − p

(
1 − 1−α

ϑ

))]
. (2.48)

2. The expected run length for the MPT(1) with Poisson marginal is obtained by setting
φ = 0 and 1 − α = ϑ in Eqs. (2.41 and 2.42) or Eqs. (2.47 and 2.48).

3 Estimation of parameters and a simulation study

In this section, the unknown parameters of the OMP-EMPT(1) model will be estimated based
on the maximum-likelihood (ML), modified Yule–Walker (MYW), and modified conditional
least-squares (MCLS) methods. Suppose that � = (α, ϑ, φ, λ, p)T is the vector of parame-
ters that will be estimated using a realization X1, X2, . . . , Xn from the process, where n is
the sample size.

3.1 Maximum-likelihood estimation

The considered maximum-likelihood (ML) estimators take into account the temporal depen-
dence between time series ordered records. The ML function of the considered realization is
given by

L(�; x) = P(X1 = x1, . . . , Xn = xn) = P(X1 = x1)
n∏
j=2

P(X j = x j |X j−1 = x j−1).

The corresponding log-likelihood function can be written as

l(�; x) = log L(�; x) = log px1 +
n∑
j=2

log P(X j = x j |X j−1 = x j−1), (3.1)

where P(X j = x j |X j−1 = x j−1) is the one-step transition probability given by Eq. (2.13)
and px1 is given by Eq. (1.3). The maximum-likelihood (ML) estimator of � is the value
�̂ML = (α̂ML, ϑ̂ML, φ̂ML, λ̂ML, p̂ML)T , which maximizes the log-likelihood function in
Eq. (3.1). The ML estimators are computed using the numerical methods found in most
statistical software to solve the nonlinear system obtained from ∂l(�;x)

∂�
= 0. To maximize

the log-likelihood function of the proposed process, the optim function in R software is used.
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3.2 Modified Yule–Walker estimation

The Modified Yule–Walker (MYW) estimators are computed via a combination of Yule–
Walker estimators and ML estimators that have been introduced by Miletić Ilić et al. (2018).
The MYW estimators of the parameters α, p, λ, φ, θ are based on the sample values of
ρX (1), E(X2

t ) − E(Xt ), E(Xt ),Cov(X2
t , Xt−1). Recall that ρX (1) = Corr(Xt , Xt−1) =

pα, E(Xt ) = λ(1−φe−λ) and E(X2
t ) = λ2+λ(1−φe−λ). Using the earlier sample values,

the estimators for α, p, λ, and φ are obtained as

λ̂YW =
√∑n

t=1 X
2
t − ∑n

t=1 Xt

n
,

φ̂YW = êλYW

(
1 − X

λ̂YW

)
,

α̂YW = ρ̂X (1) =
∑n

t=2(Xt − X)(Xt−1 − X)

p̂ML
∑n

t=1(Xt − X)2
,

where p̂ML is the ML estimator of p and it is used as the initial estimator of the parameter.
Then, the YW estimator of p is given by

p̂YW =
∑n

t=2(Xt − X)(Xt−1 − X)

α̂YW
∑n

t=1(Xt − X)2
.

To estimate the parameter ϑ , first, the Cov(X2
t , Xt−1) is computed

Cov(X2
t , Xt−1) = pCov((α�ϑ Xt−1)

2, Xt−1) + (1 − p)Cov(ξ2t , Xt−1)

= p(2α − αϑ + ϑ − 1)[E(X3
t−1) − μX E(X2

t−1)]
+p(1 − α)(1 − ϑ)Var(Xt−1),

using Eqs. (1.8), (1.7), and (1.6) for E(x3t−1), E(X2
t−1) and Var(Xt ), then

Cov(X2
t , Xt−1) = p(2α − 1)(λ3 + 3λ2 + λ(1 − φe−λ)(1 − λ2 − λ(1 − φe−λ)))

+p(1 − α)[λ2 + λ(1 − φe−λ)(1 − λ(1 − φe−λ))

+λ2(2 + λφe−λ)pϑ(1 − α).

By solving the previous equation to ϑ , then the YW estimator of the parameter ϑ is obtained
as

ϑ̂YW = Ĉ − p̂YW [(2α̂YW − 1)M̂1 + (1 − α̂YW )V̂1]
p̂YW (1 − α̂YW )̂λ2YW (2 + λ̂YW φ̂YW e−̂λYW )

,

where M̂1 and V̂1 are defined as

M̂1 = λ̂3YW + 3̂λ2YW + λ̂YW (1 − φ̂YW e−̂λYW )(1 − λ̂2YW − λ̂YW (1 − φ̂YW e−̂λYW )),

V̂1 = λ̂2YW + λ̂YW (1 − φ̂YW e−̂λYW )(1 − λ̂YW (1 − φ̂YW e−̂λYW )),

and Ĉ is the estimator of Cov(X2
t , Xt−1) given by

Ĉ = 1

n − 1

n∑
t=2

X2
t Xt−1 −

(
1

n − 1

n∑
t=2

X2
t

) (
1

n − 1

n∑
t=2

Xt−1

)
.
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3.3 Modified conditional least-squares estimation

In this section, the unknown parameters of the proposed model are estimated by modified
conditional least-squares (MCLS). The MCLS is presented by Miletić Ilić et al. (2018) and
Karlsen and TjøStheim (1988) to estimate the parameters, and it is based on a combination
of CLS andML estimators. The parameters α, ϑ, p, φ, and λ are estimated by the two-step
CLS method. The first step is estimating the parameters α, p, φ, and, λ by minimizing the
function Qn(α, p, φ, λ)

Qn(�) =
n∑

t=2

(Xt − E(Xt |Xt−1))
2

=
n∑

t=2

(Xt − pαXt−1 − (1 − pα)λ(1 − φe−λ))2;

the estimators are then obtained by solving the system of equations: ∂Qn(�)

∂(α, p, φ, λ)T
= 0 and

combining the CLS method with the ML approach. Because the parameters α and p cannot
be separable and because when the Qn function is differentiated with respect to φ and λ, they
lead to the same estimated equation, the method of moments is used to estimate one of these
parameters. With this, we use the CLS to derive the estimators of α, φ, and p and suppose
that λ will be estimated using the method of moments; also, we have that ∂Qn(�)

∂(α, p, φ)T
= 0,

then the estimators of α, λ, p and φ are, respectively, given by

α̂cls =
∑n

t=2 Xt Xt−1 − 1
n−1

∑n
t=2 Xt

∑n
t=2 Xt−1

p̂ML

(∑n
t=2 X

2
t−1 − 1

n−1

(∑n
t=2 Xt−1

)2) , (3.2)

λ̂cls = λ̂mm =
√∑n

t=1 X
2
t − ∑n

t=1 Xt

n
, (3.3)

where p̂ML is theMLestimator of the parameter p used as the initial estimate of the parameter.
Thus, the p̂cls is given by

p̂cls =
∑n

t=2 Xt Xt−1 − 1
n−1

∑n
t=2 Xt

∑n
t=2 Xt−1

α̂cls

(∑n
t=2 X

2
t−1 − 1

n−1

(∑n
t=2 Xt−1

)2) .

Consequently, we get

φ̂cls = êλcls

(
1 −

(∑n
t=2 Xt − α̂cls p̂cls

∑n
t=2 Xt−1

(n − 1)̂λcls(1 − p̂clsα̂cls)

))
. (3.4)

The calculations for the expressions in Eqs. (3.2), (3.3), and (3.4) are provided in Appendix
A.2.

In the second step, the CLS estimator of the parameter ϑ is obtained using the method
introduced by Karlsen and TjøStheim (1988) by minimizing the function

Sn(ϑ) =
n∑

t=2

((Xt − E(Xt |Xt−1))
2 − Var(Xt |Xt−1))

2,
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where E(Xt |Xt−1) andVar(Xt |Xt−1) are given by (2.16) and (2.18), respectively. Therefore,
by solving the equation ∂Sn(ϑ)

∂ϑ
= 0, the estimator of ϑ is given by

ϑ̂cls =
∑n

t=2(X
2
t−1 − Xt−1 − λ2cls)(V̂t − Ĥt−1)

(1 − α̂cls) p̂cls
∑n

t=2(X
2
t−1 − Xt−1 − λ2cls)

2
,

where

V̂t = (Xt − p̂clsα̂clsXt−1 − (1 − p̂clsα̂cls)̂λcls(1 − φ̂clse
−̂λcls))2,

and

Ĥt−1 = [(2α̂cls − 1) p̂cls − p̂2clsα̂
2
cls]X2

t−1

+( p̂cls(1 − α̂cls) − 2α̂cls p̂cls(1 − p̂clsα̂cls)̂λcls(1 − φ̂clse
−̂λcls))Xt−1

+(1 − p̂clsα̂cls)̂λcls(1 − φ̂clse
−̂λcls)(1 − (1 − p̂clsα̂cls)̂λcls(1 − φ̂clse

−̂λcls))

+̂λ2cls(1 + p̂cls − 2 p̂clsα̂cls).

Remark 3.1 The OMP-EMPT(1) process is an irreducible Feller chain, stationary, strictly
stationary, and ergodic. The proof of these properties is similar to the ones in Khoo et al.
(2017), Shirozhan and Mohammadpour (2018), Nastić et al. (2012), and Schweer and Weiß
(2014).

3.4 Simulation

Some simulated trajectories of the OMP-EMPT(1) process for sample size n = 100 and
λ = 0.5, 1.5, 5 with α = 0.5;ϑ = 0.6; p = 0.2; p = 0.02;φ = 0.5, and α = 0.7;ϑ =
0.3; p = 0.1;φ = 0.7 are presented in Fig. 7. From these simulated series, one can conclude
that the proposed process is stationary, and for lower values of λ, the number of ones and
zeros increases. When λ is large, the number of zeros and ones decreases, resulting in larger
values for the sample path. The details of the simulations and how the innovation process ξt
has been simulated are shown by the R code for simulated series at n = 100; α = 0.5;ϑ =
0.6; p = 0.2; λ = 1.5;φ = 0.5; see Appendix A.3.

A Monte Carlo simulation study is performed for different parameter values and dif-
ferent sample sizes to evaluate the performance of the ML, MYW, and MCLS estimators.
The mean square errors (MSE) and empirical biases were calculated over 100 replications
with the sample sizes n = 100, 500, 1000, 5000 to evaluate the performance of the esti-
mates and check their properties. The true values of the parameters in the simulations are:
(α, ϑ, φ, λ, p) = (0.7, 0.3, 0.01, 1, 0.1), (0.4, 0.6, 0.1, 1, 0.1), (0.5, 0.6, 0.2, 0.5, 0.5), and
(0.5, 0.6, 0.2, 1, 0.5). Using this simulation, Tables 1 and 2 show the bias andMSE (in brack-
ets) of the estimates of different parameter values (α, ϑ, φ, λ, p) and through different sample
sizes. From these tables, we conclude that the MSEs and biases are reduced by increasing
the sample sizes for the three methods. The estimation using using the ML approach is better
than MYW and MCLS. The ML-estimated parameters converged to their true values faster.
Furthermore, we can conclude that the MLEs have the smallest MSE for all parameters and
thus give the best performance, as expected.
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Table 2 Simulated values of biases (MSEs within parentheses) of estimates of α, ϑ , φ, λ, and p based on
MYW

n ˆαyw ˆϑyw ˆφyw ˆλyw ˆpyw
(α, ϑ, φ, λ, p) = (0.7, 0.3, 0.01, 1, 0.1)

100 −0.37002 −0.046511 0.084134 −0.008885 0.017038

(0.158232) (0.022348) (0.010251) (0.01017) (0.000293)

500 −0.240772 −0.027209 0.064304 −0.010018 0.000752

(0.072056) (0.019636) (0.007122) (0.003196) (0.000001)

1000 −0.234799 −0.014381 0.042265 −0.021483 0.000678

(0.062821) (0.020029) (0.003366) (0.001805) (0.000000465)

5000 −0.181715 0.068443 0.021291 −0.025767 0.000613

(0.035806) (0.013168) (0.0009997) (0.0009548) (0.000000379)

(α, ϑ, φ, λ, p) = (0.4, 0.6, 0.1, 1, 0.1)

100 −0.138074 −0.243424 0.032166 −0.039507 0.038457

(0.050377) (0.105396) (0.00858) (0.012214) (0.001494)

500 −0.064423 −0.18819 0.015093 −0.053533 −0.002084

(0.01896) (0.085177) (0.005456) (0.006025) (0.000004)

1000 −0.0238 −0.114106 0.003074 −0.061914 0.010067

(0.012097) (0.047538) (0.002638) (0.005368) (0.000102)

5000 0.00118 −0.011227 −0.005158 −0.06654 0.00386

(0.00607) (0.014182) (0.000997) (0.004828) (0.000015)

(α, ϑ, φ, λ, p) = (0.5, 0.6, 0.2, 0.5, 0.5)

100 0.005104 −0.25892 0.025346 −0.114516 −0.04035

(0.010113) (0.113075) (0.011025) (0.020216) (0.001645)

500 0.051259 −0.175498 0.008877 −0.133832 0.000518

(0.007659) (0.067743) (0.00966) (0.019732) (2.704×10−7)

1000 0.042842 −0.144442 0.02978 −0.131905 −0.006217

(0.005217) (0.041903) (0.008159) (0.018605) (0.000039)

5000 0.025393 −0.056939 0.035407 −0.132658 −0.003559

(0.001301) (0.011009) (0.00278) (0.017994) (0.000013)

(α, ϑ, φ, λ, p) = (0.5, 0.6, 0.2, 1, 0.5)

100 −0.085317 −0.112745 0.002839 −0.323747 0.030847

(0.014727) (0.047759) (0.011621) (0.114894) (0.000961)

500 −0.020441 −0.0261532 0.0810343 −0.3034194 0.0082843

(0.0035852) (0.0142071) (0.0106941) (0.0962788) (0.0000693)

1000 −0.0237843 −0.0110103 0.0696525 −0.3020769 0.0058964

(0.0026129) (0.0104978) (0.0063613) (0.0936337) (0.0000351)

5000 0.0032367 −0.0038256 0.0868606 −0.2997216 −0.0136095

(0.0009141) (0.0042571) (0.0077478) (0.0910393) (0.0001871)
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Fig. 7 Sample paths of OMP-EMPT(1) process

4 Real-life data analysis, model selection, diagnostic tools, and
forecasting

In this section, the usefulness and applicability of theOMP-EMPT(1) process are shownusing
two real-life data sets. The assessment of the adequacy of the models proposed and fitted
to the data under analysis is a critical step in any statistical investigation. In the literature,
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several methods for model validation and diagnostics in discrete-valued time series have
been proposed. These methods are broadly classified as follows: model comparisons using
information criteria and scores; residual-based methods; and predictive distribution-based
methods.

4.1 Data andmodel selection based on information criteria

The application of the proposed process is investigated using economic and crime data sets:

• The first data set represents n = 242 weekly sales of a particular soap product in a
supermarket, obtained from a database provided by the Kilts Center for Marketing,
Graduate School of Business of the University of Chicago (available at http://research.
chicagobooth.edu/marketing/databases/dominicks/categories/soa.aspx; the product is
‘Zest White Water 15 oz’, with code 3700031165), or data can also be accessed from
https://drive.google.com/drive/folders/165XirSF7gKiACX-Mg0Ho16QZ0J0KlqIe?usp
=sharing.

• The second data set represents n = 142 monthly counts of liquor law violations, reported
in the 12th police car beat in Pittsburgh Plus, reported in a period from January 1990 to
October 2001, and obtained from the Crime data section of the Forecasting Principles
site http://www.forecastingprinciples.com or it can be obtained by https://drive.google.
com/drive/folders/1b4a1Z2y9MPSFl1e3uMMmWc8zC-kjYVxU?usp=sharing. Table 3
displays some descriptive statistics for the two data sets. The time series, sample autocor-
relation, partial autocorrelation functions (SACFandSPACF, respectively), and empirical
p.m.f. for the weekly sales counts and monthly counts of liquor law violations are dis-
played in Figs. 8 and 9, respectively. From these plots, we conclude that a first-order
autoregressive model may be appropriate for the two data sets, as the first autocorrelation
is more significant than the other and the SPACF cuts off after lag one. Moreover, the
behavior of the two data sets indicates that they may be stationary, and we confirm that
result using the test of stationarity. The stationarity of the data is justified throughout
the Augmented Dickey–Fuller (ADF) test based on the p-value of the ADF test; the
stationarity of the data is supported, and the null hypothesis (non-stationary) is rejected.

The empirical p.m.f. displayed in black in Figs. 8d and 9d, while gray bars refer to the
fitted OMP distribution below. From these figures, the empirical p.m.f. and the estimated
OMP p.m.f. are close to each other.

As can seen inTable 3, the sample variance is greater than the samplemean for the data sets;
therefore, they are over-dispersed. Schweer andWeiß (2014) proposed an over-dispersion test
that is used to check this assumption, with a test statistic based on the empirical dispersion

index Îx = S2

X
, where S2 and X are, respectively, the sample variance and mean. The null

hypothesis H0 : x1, . . . , xn is derived from an equi-dispersed PINAR(1) process (Al-Osh and
Alzaid 1987), while the alternative H1 : x1, . . . , xn stems from an over-dispersed INAR(1)
process, with a level of significance of β0 = 0.05. If the observed value of Îx exceeds

the critical value 1 + z1−β0

√
2(1+α2)

n(1−α2)
, or if the p-value 1 − �

(√
n(1−α2)

2(1+α2)
× ( Îx − 1)

)
falls

below β0, the null hypothesis is rejected, where z1−β0 and �(.) represents the (1 − β0)−
quantile and the distribution function of the standard normal distribution, respectively, and
α = ρ̂(1). The considered data sets are empirically over-dispersed, with dispersion indices,
Îx given in Table 3. By applying the over-dispersion test, the critical values and the p-values
for the weekly sales and monthly liquor law violations counts are (1.165164, 1.232448) and

123

http://research.chicagobooth.edu/marketing/databases/dominicks/categories/soa.aspx
http://research.chicagobooth.edu/marketing/databases/dominicks/categories/soa.aspx
https://drive.google.com/drive/folders/165XirSF7gKiACX-Mg0Ho16QZ0J0KlqIe?usp=sharing
https://drive.google.com/drive/folders/165XirSF7gKiACX-Mg0Ho16QZ0J0KlqIe?usp=sharing
http://www.forecastingprinciples.com
https://drive.google.com/drive/folders/1b4a1Z2y9MPSFl1e3uMMmWc8zC-kjYVxU?usp=sharing
https://drive.google.com/drive/folders/1b4a1Z2y9MPSFl1e3uMMmWc8zC-kjYVxU?usp=sharing


One-misrecorded Poisson INAR(1) model via two... Page 27 of 41   206 

Table 3 Descriptive statistics of weekly sales and monthly liquor law violations counts

data sets n Min Q1 Q2 Mean ρ̂(1) Q3 Max Var p-value (ADF) ÎX

Weekly
sales

242 0.0000 3.0000 4.000 5.4421 0.3924 7.000 22.000 15.4012 0.01 2.818292

liquor
law
violations

142 0.000 0.000 0.000 0.6549 0.50726 1.000 11.000 2.185 0.01 3.312812

(0.000,0.000), respectively. Therefore, the data sets stem from an over-dispersed INAR(1)
process.

For comparison purposes, the two data sets are used to compare the proposed process,
OMP-EMPT(1), with the following relevant INAR(1)models: PINAR(1) (Al-Osh andAlzaid
1987), PegramAR(1)modelwith Poissonmarginal (Biswas andSong2009), PoissonMPT(1)
(Khoo et al. 2017), MPDBPINAR(1) (Shirozhan and Mohammadpour 2018). We use the
following goodness-of-fit statistics: the Akaike information criterion (AIC), the Hannan–
Quinn information criterion (HQIC), and the corrected Akaike information criterion (AICc),
where the best model has the ones with the lowest values. The results of these goodness-of-fit
statistics and ML estimates with their standard error (S.E.) are displayed in Tables 4 and 5.
These tables show that the values of the AIC, HQIC, and AICc are the smallest for the OMP-
EMPT(1) process. Hence, we conclude that the proposed model works well for the two data
sets. Also, we can conclude that the OMP-EMPT(1) model is significantly better than the
Poisson-MPT(1)model for explaining both data sets, aswe have φ̂ = 0.3185468, 0.6040971,
i.e., the proportion of ones that were misclassified as zeros in the process does not equal zero
for the considereddata sets.When φ̂ = 0.6040971, thismeans thatmost ones aremisclassified
and reported as zeros, and this implies a zero inflation as seen in Fig. 9d. This means that
when determining the number of weekly sales or liquor violations per unit, an inspector may
make an error by reporting units that actually contain one item or one person as having no
item or no one, respectively. The R script that was used to fit the data to the OMP-EMPT(1)
model is included in the Appendix A.4.

4.2 Diagnostic tools andmodel adequacy

In this subsection, we check the model’s adequacy throughout the logarithmic scoring rule,
non-randomized probability integral transform (PIT), and benchmark chart.

Scoring rules can be used to assess a model’s relative performance within a given group
of competing models. In decision analysis, scoring rules are frequently used to evaluate the
accuracy of probabilistic predictions by assigning a numerical score based on the predictive
distribution and observed data. To compare the observation xt realized at time t with the
conditional distribution p.|xt−1 based on the previous observation, typical scoring rules are
of the form s(p.|xt−1 , xt ), with smaller score values indicating better agreement. The mean
score 1

T−1

∑T
t=2 s(p.|xt−1 , xt ) is used to evaluate the model’s overall predictive performance

with respect to the time series x1, · · · , xT . There are many scoring rules, such as quadratic,
logarithmic, ranked probability, and spherical scores, to select the model with the smallest
value of its mean. For the two data sets, we compute the logarithmic score defined as

sls(p(.|xt−1), xt ) = − ln pxt |xt−1 , (4.1)
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Table 4 ML estimates with their corresponding standard error (S.E.) in brackets and some goodness-of-fit
statistics for weekly sales

Model ML estimates (S.E.) AIC HQIC AICc

i.i.d Poisson λ̂ = 5.460581(0.1505257) 1418.0350 1419.4405 1418.0852

Poisson INAR(1) λ̂ = 4.1669088(0.21054858) 1371.320 1374.131 1371.421

α̂ = 0.2332869(0.03230576)

Poisson Pegram’s AR(1) λ̂ = 5.43232677(0.15655427) 1407.4598 1410.2708 1407.5607

φ̂ = 0.05120388(0.02061672)

Poisson MPT(1) α̂ = 0.8541167(0.04089583) 1373.2362 1377.4526 1373.4049

λ̂ = 5.2793810(0.16848405)

φ̂ = 0.1287824(0.03365876)

MPDBPINAR(1) λ̂ = 5.2734328(0.16828282) 1373.8812 1379.5031 1374.1354

α̂ = 0.8503549(0.03970675)

θ̂ = 0.2068880(0.12359867)

φ̂ = 0.1307891(0.03295645)

OMP-EMPT(1) α̂ = 0.8269426(0.0395708) 1366.1007 1373.1281 1366.4582

ϑ̂ = 0.2100749(0.0447467)

p̂ = 0.1490073(0.0343505)

λ̂ = 5.3034063(0.1705476)

φ̂ = 0.3185468(0.1263267)

Table 5 ML estimates with their corresponding standard error (S.E.) and some goodness-of-fit statistics for
monthly liquor law violations counts

Model ML estimate(S.E.) AIC HQIC AICc

i.i.d Poisson λ̂ = 0.6312058(0.06690768) 377.2913 378.4925 377.3777

Poisson INAR(1) λ̂ = 0.4539531(0.06079951) 346.2811 348.6834 346.4551

α̂ = 0.3159473(0.06051378)

Poisson Pegram’s AR(1) λ̂ = 0.8951231(0.14007193) 364.1458 366.5480 364.3197

φ̂ = 0.3438248(0.08675592)

Poisson MPT(1) α̂ = 0.6149809(0.10692628) 350.8832 354.4866 351.1752

λ̂ = 0.7885890(0.11757260)

φ̂ = 0.5023093(0.09847041)

MPDBPINAR(1) λ̂ = 0.7901840(0.1190384) 352.6239 357.4284 353.0650

α̂ = 0.6006368(0.1328089)

θ̂ = 0.2555253(0.2953373)

φ̂ = 0.5185557(0.1142482)

OMP-EMPT(1) α̂ = 0.5626468(0.17990509) 327.6184 333.6240 328.2406

ϑ̂ = 0.5636788(0.14690364)

p̂ = 0.3142644(0.14164205)

λ̂ = 0.8869830(0.10475618)

φ̂ = 0.6040971(0.09361425)
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Fig. 8 Sample path, SPACF, SACF, and PMF of the number of weekly sales

which corresponds to the conditional log-likelihood calculation defined by Eq. (2.13). Table
6 shows the mean logarithmic score (Sls) for the proposed fitted process and the competing
models of the two data series. Themean score recommends theOMP-EMPT(1)model among
the competitive INAR models.

The adequacy of the proposed fitted model is checked using the jumps Jt = Xt − Xt−1,

for t = 2, 3, · · · , n, E(Jt ), and Var(Jt ), which are given by Eq.(2.29) and Eq.(2.30),
respectively. Figures10 and 11a represent the jumps against time (Shewhart control chart)
of the two data sets with ±3σJ limits chosen as the benchmark chart as proposed by Weiß
(2009), where σJ = √

Var(Jt ) = 3.072668, and 1.288924, respectively. The Shewhart
control chart for the two considered data sets indicates that there is no particular point causing
a huge impact in the model and implies that the proposed model fits the two data sets well.
If a model is suitable for the data series, the non-randomized probability integral transform
(PIT) histogram, Czado et al. (2009), should be uniform. Figures10 and 11b show the PIT for
the two data sets, indicating that the PIT histogram is close to uniform and that the proposed
model fits the two data sets well, i.e., the model is adequate for these data series.
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Fig. 9 Sample path, SACF, SPACF, and PMF of the number of monthly liquor law violations counts

Table 6 The mean logarithmic score for the considered data sets

Model Sls (weekly sales) Sls (liquor law violations)

Poisson INAR(1) 2.821237 1.174885

Pegram’s AR(1) Poisson 2.896224 1.245082

Poisson MPT(1) 2.821587 1.18812

MPDBPINAR(1) 2.818796 1.187246

OMP-EMPT(1) 2.796812 1.094074

4.3 Forecasting

The minimum mean square error is one of the most common procedures for optimally fore-
casting future values of a model. The conditional mean finds a forecast, X̂t+k of Xt+k that
minimizes the expected squared error given a sample. Using Eqs. (2.16) and (2.17), the one-
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Fig. 10 Jumps against time and PIT of fitted OMP-EMPT(1) for weekly sales

Fig. 11 Jumps against time and PIT of fitted OMP-EMPT(1) for monthly liquor law violations counts

and k-step-ahead forecasts of Xt+1 and Xt+k are, respectively, given by

X̂t+1 = E(Xt+1|Xt ) = (pα)Xt + (1 − (pα))λ(1 − φe−λ),

where X̂1 = (1 − (pα))λ(1 − φe−λ) and

X̂t+k = E(Xt+k |Xt ) = (pα)k Xt + (1 − (pα)k)λ(1 − φe−λ), k ≥ 1.

In practice, the parameters p, α, λ, and φ are replaced by their ML estimates. Therefore

X̂t+1 = E(Xt+1|Xt ) = ( p̂α̂)Xt + (1 − ( p̂α̂))λ̂(1 − φ̂e−λ̂), (4.2)

and

X̂t+k = E(Xt+k |Xt ) = ( p̂α̂)k Xt + (1 − ( p̂α̂)k)λ̂(1 − φ̂e−λ̂), k ≥ 1. (4.3)
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Fig. 12 Actual and predicted values of weekly sales

Fig. 13 Actual and predicted values of monthly liquor law violations counts
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The two actual data sets and their predicted values in the classical way using Eq. (4.2) are
displayed and plotted in Figs. 12 and 13 to show the predictive ability of the OMP-EMPT(1)
process, where α̂, φ̂, p̂, and λ̂ are presented in Tables 4 and 5. From these figures, we observe
that the predicted values are close to the original ones in the data sets, indicating that the
OMP-EMPT(1) process can provide a good forecast for these data sets.
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A Appendix

A.1 Proof of Proposition 2.2

Proof 1. The one-step-ahead conditional expectation is calculated as

E(Xt+1|Xt ) = pE(α�ϑ Xt |Xt ) + (1 − p)E(ξt+1|Xt )

= pαXt + (1 − p)μξt .

2. By using mathematical induction, the k−step-ahead conditional expectation is given as
follows: For k = 1, as determined by Eq. (2.16); similarly, k = 2

E(Xt+2|Xt ) = EXt+1|Xt (E(Xt+2|Xt+1))

= EXt+1|Xt ((pαXt+1 + (1 − p)μξt+2)|Xt+1)

= pαE(Xt+1|Xt ) + (1 − p)μξt

= (pα)2Xt + (1 − p)μξt (1 + pα),

where μξt is given by Eq. (2.9).
Now, suppose that the (k − 1)−step-ahead conditional expectation is

E(Xt+k−1|Xt ) = (pα)k−1Xt + (1 − p)μξt

1 − (pα)k−1

1 − pα
.

Hence, the k−step-ahead conditional expectation is obtained as follows:

E(Xt+k |Xt ) = EXt+1|Xt (E(Xt+k |Xt+1))
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= E

[(
(pα)k−1Xt+1 + (1 − p)μξt+1

1 − (pα)k−1

1 − pα

)
|Xt

]

= (pα)k−1[pαXt + (1 − p)μξt ] + (1 − p)
1 − (pα)k−1

1 − pα
μξt+1

= (pα)k Xt + (1 − p)μξt

[
(pα)k−1 + 1 − (pα)k−1

1 − pα

]
.

3. The one-step-ahead conditional variance is computed as follows:

Var(Xt+1|Xt ) = E(X2
t+1|Xt ) − (E(Xt+1|Xt ))

2.

Thus, the expression for E(X2
t+1|Xt ) is calculated to get Var(Xt+1|Xt )

E(X2
t+1|Xt ) = pE((α�ϑ Xt )

2|Xt ) + (1 − p)E(ξ2t+1|Xt )

= p[(2α − αϑ + ϑ − 1)X2
t + (1 − α)(1 − ϑ)Xt ] + (1 − p)E(ξ2t ).

(A.1)

Hence

Var(Xt+1|Xt ) = p[(2α − αϑ + ϑ − 1)X2
t + (1 − α)(1 − ϑ)Xt ]

+(1 − p)E(ξ2t ) − (pαXt + (1 − p)μξt )
2,

using Eqs. (2.16), (2.9), and (2.11) for E(Xt+1|Xt ), μξ , and E(ξ2), respectively, then

Var(Xt+1|Xt ) = p[(2α − αϑ + ϑ − 1) − pα2]X2
t

+p

[
(1 − α)(1 − ϑ) − 2α(1 − p)

λ(1 − pα)(1 − φe−λ)

1 − p

]
Xt

+(1 − p)

(
(1 − pα)λ(1 − φe−λ) + λ2(1 + p + pα(−2 + ϑ) − pϑ)

1 − p

)

−(1 − p)2
(

λ(1 − pα)(1 − φe−λ)

1 − p

)2

.

After some simplification, the one-step conditional variance in Eq. (2.18) is derived.
4. To compute the k-step conditional variance, Var(Xt+k |Xt ), first compute the expression

E(X2
t+k |Xt ). The first-step of the conditional second moment that is given by Eq. (A.1)

can be written as follows: by settingA0 = (2α −αϑ +ϑ − 1) and B0 = (1−α)(1−ϑ):

E(X2
t+1|Xt ) = pA0X

2
t + pB0Xt + (1 − p)E(ξ2t ).

For k = 2:

E(X2
t+2|Xt ) = E(E(X2

t+2|Xt+1)|Xt )

= pE((α�ϑ Xt+1)
2|Xt ) + (1 − p)E(ξ2t )

= p[E((A0X
2
t+1 + B0Xt+1)|Xt )] + (1 − p)E(ξ2t )

= (pA0)
2X2

t + p2B0(A0 + α)Xt + (1 − p)(1 + pA0)E(ξ2t ) + (1 − p)pB0μξt .

For k = 3:

E(X2
t+3|Xt ) = E(E(X2

t+3|Xt+1)|Xt )

= E([(pA0)
2X2

t+1 + p2B0(A0 + α)Xt+1]|Xt )

+(1 − p)(1 + pA0)E(ξ2t ) + (1 − p)pB0μξt
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= (pA0)
3X2

t + p3B0Xt

(
A3
0 − α3

A0 − α

)
+ (1 − p)E(ξ2t )

(
(pA0)

3 − 1

(pA0) − 1

)

+ (1 − p)B0μξt

(A0 − α)

(
(pA0)

3 − 1

pA0 − 1
− (pα)3 − 1

pα − 1

)
.

Hence, by continuing the procedure and observing the obtained formulas, it can be con-
cluded that the conditional second moment for k−step, E(X2

t+k |Xt ), is

E(X2
t+k |Xt ) = (pA0)

k X2
t + pkB0Xt

(
Ak
0 − αk

A0 − α

)
+ (1 − p)E(ξ2t )

(
(pA0)

k − 1

(pA0) − 1

)

+ (1 − p)B0μξt

(A0 − α)

(
(pA0)

k − 1

pA0 − 1
− (pα)k − 1

pα − 1

)
. (A.2)

Therefore, usingEqs. (A.2) and (2.17) and the expressionVar(Xt+k |Xt ) = E(X2
t+k |Xt )−

(E(Xt+k |Xt ))
2, the conditional variance for k−step is obtained as

Var(Xt+k |Xt )

= (pA0)
k X2

t + pkB0Xt

(
Ak
0 − αk

A0 − α

)
+ (1 − p)E(ξ2t )

(
(pA0)

k − 1

(pA0) − 1

)

+ (1 − p)B0μξt

(A0 − α)

(
(pA0)

k − 1

pA0 − 1
− (pα)k − 1

pα − 1

)

−((pα)k Xt + (1 − p)μξt

(pα)k − 1

pα − 1
)2

= ((pA0)
k − (pα)2k)X2

t + (pkB0

(
Ak
0 − αk

A0 − α

)
− 2(pα)kμX (1 − (pα)k))Xt

+
[
(1 − p)E(ξ2t )

(
(pA0)

k − 1

(pA0) − 1

)
+ (1 − pα)B0μX

(A0 − α)

(
(pA0)

k − 1

pA0 − 1
− (pα)k − 1

pα − 1

)

−(μX (1 − (pα)k))2
]
,

using E(ξ2t ) that is given by Eq. (2.11) and μX = λ(1 − φe−λ), the k−step conditional
variance for the process is obtained.

�	

A.2 Derivations of the CLS estimators for˛,�, and �

Proof TheCLS estimators given by the expressions in Eqs. (3.2), (3.4), and (3.3) are obtained
as follows.

Recall that

Qn(�) =
n∑

t=2

(Xt − E(Xt |Xt−1))
2

=
n∑

t=2

(Xt − pαXt−1 − (1 − pα)μX )2,
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with μX = λ(1 − φe−λ), then

∂Qn(�)

∂α
= 2p

n∑
t=2

(Xt − pαXt−1 − (1 − pα)μX )(−Xt−1 + μX ),

and

∂Qn(�)

∂μX
= −2(1 − pα)

n∑
t=2

(Xt − pαXt−1 − (1 − pα)μX ).

Consequently, ∂Qn(�)
∂�

= 0, which implies

n∑
t=2

Xt − pα
n∑

t=2

Xt−1 − (n − 1)(1 − pα)μX = 0,

n∑
t=2

(Xt − pαXt−1 − (1 − pα)μX )μX =
n∑

t=2

(Xt − pαXt−1 − (1 − pα)μX )Xt−1;

as a result, we have

μ̂X =
∑n

t=2 Xt − pα̂
∑n

t=2 Xt−1

(n − 1)(1 − pα̂)
,

n∑
t=2

(Xt − pαXt−1 − (1 − pα)μX )μX

︸ ︷︷ ︸
(I )

=
n∑

t=2

(Xt − pαXt−1 − (1 − pα)μX )Xt−1

︸ ︷︷ ︸
(I I )

.

We obtain that (I ) = 0 by rearranging it and substituting μ̂X inside the brackets as follows:

(I ) = μ̂X

{
n∑

t=2

Xt − pα̂
n∑

t=2

Xt−1 − (n − 1)(1 − pα̂)μ̂X

}

= μ̂X

{
n∑

t=2

Xt − pα̂
n∑

t=2

Xt−1 −
(

n∑
t=2

Xt − pα̂
n∑

t=2

Xt−1

)}

= 0.

Using (I I ) and replacing μ̂X , we obtain the estimator for α as follows:

(I I ) =
n∑

t=2

Xt Xt−1 − pα̂
n∑

t=2

X2
t−1 −

n∑
t=2

Xt−1

×
(∑n

t=2 Xt − pα̂
∑n

t=2 Xt−1

(n − 1)

)

Therefore, as (II)=(I)=0;

α̂ p

(
n∑

t=2

X2
t−1 −

(∑n
t=2 Xt−1

)2
(n − 1)

)
=

n∑
t=2

Xt Xt−1 −
∑n

t=2 Xt−1
∑n

t=2 Xt

(n − 1)
.

α̂cls =
∑n

t=2 Xt Xt−1 − 1
(n−1)

∑n
t=2 Xt−1

∑n
t=2 Xt

p
(∑n

t=2 X
2
t−1 − 1

(n−1)

(∑n
t=2 Xt−1

)2) ,
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by replacing p by some consistent estimators, p̂ML, as an initial value, we obtain Eq. (3.2).
Hence, the CLS estimator for p is given by

p̂cls =
∑n

t=2 Xt Xt−1 − 1
(n−1)

∑n
t=2 Xt−1

∑n
t=2 Xt

α̂cls

(∑n
t=2 X

2
t−1 − 1

(n−1)

(∑n
t=2 Xt−1

)2) .

The parameter λ is estimated using the method of moments based on the following statistics:

E(Xt ) = λ(1 − φe−λ)

E(X2
t ) = λ2 + λ(1 − φe−λ).

Therefore, using the first and second sample means, we obtain the estimator of λ from the
expression

X2 − X̄ = λ̂2.

Therefore, the expression in Eq. (3.3) is obtained as follows:

λ̂ =
√
X2 − X̄ =

√∑n
t=1 X

2
t − ∑n

t=1 Xt

n
.

The estimator for φ is obtained as

λ̂(1 − φ̂e−̂λ) = μ̂X =
∑n

t=2 Xt − p̂α̂
∑n

t=2 Xt−1

(n − 1)(1 − p̂α̂)
.

As a result, φ̂ is provided as

φ̂cls = λ̂cls

(
1 −

∑n
t=2 Xt − p̂cls

∑n
t=2 Xt−1

λ̂cls(n − 1)(1 − p̂cls α̂cls)

)
.

�	

A.3 R code for simulated series at n = 100;˛ = 0.5;# = 0.6; p = 0.2;� = 1.5;
� = 0.5

rm(list=ls(all=TRUE))
n=100;alpha=0.5;theta=0.6;p=0.2;lambda=1.5;phi=0.5
error.MRPinar < − function(n,alpha,theta,p,lambda,phi){
epsilonmr < − rep(NA, times = n)
for (i in 1:n){
u=runif(1,0,1)
if(u < (1/(1-p))*(lambda*phi*exp(-lambda)*(1-p*alpha))){
epsilonmr[i]=0
}else if (u>= (1/(1-p))*(lambda*phi*exp(-lambda)*(1-p*alpha)) &
u < ((1/(1-p))*(lambda*phi*exp(-lambda)*(1-p*alpha))
+((1/(1-p))*(1-(p*(alpha+theta-1)/theta))))){
epsilonmr[i]=rpois(1,lambda)}else if(u >=((1/(1-p))*(lambda*phi*exp(-lambda)
*(1-p*alpha)))
+((1/(1-p))*(1-(p*(alpha+theta-1)/theta)))
& u <((1/(1-p))*(lambda*phi*exp(-lambda)*(1-p*alpha))
+((1/(1-p))*(1-(p*(alpha+theta-1)/theta)))-(p/(1-p))*((1-alpha)/theta))){
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epsilonmr [i]=rpois(1,(1-theta)*lambda)}else{
epsilonmr[i]=1}}
return(epsilonmr)}
xt < − rep(NA, times = n)
epsilonmr < − error.MRPinar(n,alpha,theta,p,lambda,phi)
xt[1] = round(lambda*(1-phi*exp(-lambda)))
for (t in 2:n){
u< −runif(1,0,1)
if(u< p*((1-alpha)/theta)){
xt[t]< −rbinom(1,xt[t-1],(1-theta))}
else if(u>=p*((1-alpha)/theta)&u<p){xt[t]=xt[t-1]}
else {xt[t]=epsilonmr[t]}
}
windows()
plot(xt, type="b", pch=19, cex=0.5, xlab = "t", ylab = expression("Simulated OMP-EMPT(1)
counts X\t"[t]), cex.axis=0.85)

A.4 R code that was used to fit the data to the OMP-EMPT(1) model

rm(list=ls(all=TRUE))

library(tseries)

fx.p< − function(k,lambda,phi){

if(k==0){

fx.p< − exp(-lambda)*(1+lambda*phi)

}else if(k==1){fx.p< − lambda*exp(-lambda)*(1-phi)}

else {fx.p< − (exp(-lambda)*lambdak )/factorial(k)}

}

xt < − scan(file.choose())

adf.test(xt)

windows()

acf(xt,main=" ")

windows()

pacf(xt,main=" ")

rho1 < − acf(xt, plot=FALSE)[[1]][2]

rho1

Xlen <- length(xt) barX < - mean(xt)

barX

sX < − var(xt)

sX

ID < − (Xlen-1)/Xlen*sX/barX

ID

meanID < − 1-1/Xlen*((1+rho1)/(1-rho1))

meanID

sdID < − sqrt(2/Xlen ∗ ((1 + rho12)/(1 − rho12)))

sdID

meanID+qnorm(0.95)*sdID

round(1-pnorm(ID, mean=meanID, sd=sdID),6)
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probEpsm < − function(i,alpha,theta,p,lambda,phi) {

if(i==0){

probEpsm < − (((1-p*alpha)*lambda*phi*exp(-lambda)-(p*((1-alpha)/theta))*exp(-lambda*(1-theta))

+(1-(p*(1-((1-alpha)/theta))))*exp(-lambda)))/(1-p)

}

else if (i==1) {

probEpsm < − (((p*alpha-1)*lambda*phi*exp(-lambda)-(p*((1-alpha)/theta))*lambda*(1-theta)

*exp(-lambda*(1-theta))

+(1-(p*(1-((1-alpha)/theta))))*lambda*exp(-lambda)))/(1-p)

}

else {

probEpsm < − ((p*((alpha-1)/theta))*dpois(i,lambda*(1-theta))+(1-(p*(1-((1-alpha)/theta))))

*dpois(i,lambda))/(1-p)

}

}

conditionalPomis < − function(i,j,alpha,theta,p,lambda,phi){

I < − ifelse(j==i,1,0)

(p*((1-alpha)/theta))*dbinom(i,j,1-theta)+(p*(1-((1-alpha)/theta)))*I+(1-p)

*probEpsm(i,alpha,theta,p,lambda,phi)

}

loglimsrp< − function(par,xt) {

alpha< − par[1];theta< − par[2];p< − par[3];lambda< − par[4];phi< − par[5]

T< −length(xt);

value< − -log(fx.p(xt[1],lambda,phi))

for (t in c(2:T)) {

value< − value-log(conditionalPomis(xt[t],xt[t-1],alpha,theta,p,lambda,phi))}

value}

estmsrpo< − suppressWarnings(optim(par= c(0.4,0.7,0.2,0.2,0.2),loglimsrp,xt=xt,method= "BFGS",hessian

= TRUE))

alphaestml < − estmsrpo$par[[1]]

thetaestml < − estmsrpo$par[[2]]

pestml < − estmsrpo$par[[3]]

lambdaestml < − estmsrpo$par[[4]]

phiestml < − estmsrpo$ par[[5]]

ofiest < − estmsrpo$hessian

neglmax < − estmsrpo$value

estcov < − solve(ofiest)

c(alphaestml,thetaestml,pestml,lambdaestml,phiestml)

c(sqrt(diag(estcov)))

k=5

AIC < − 2*neglmax+2*k

HQIC< − 2*neglmax+2*k*log(log(Xlen))

AICc< − AIC+2*(((k+1)*(k+2))/(Xlen-k-2))

c(neglmax, AIC,HQIC,AICc)
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Nastić AS,RistićMM, Ilić AVM(2017)Ageometric time-seriesmodelwith an alternative dependent Bernoulli

counting series. Commun Stat Theory Methods 46(2):770–785
Pegram G (1980) An autoregressive model for multilag Markov chains. J Appl Probab 17(2):350–362
Puig P, Valero J (2006) Count data distributions: some characterizations with applications. J Am Stat Assoc

101(473):332–340
Qi X, Li Q, Zhu F (2019) Modeling time series of count with excess zeros and ones based on INAR (1) model

with zero-and-one inflated Poisson innovations. J Comput Appl Math 346:572–590
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