
Computational and Applied Mathematics (2024) 43:67
https://doi.org/10.1007/s40314-023-02579-1

Power-series solutions of fractional-order compartmental
models

Marc Jornet1

Received: 11 October 2023 / Revised: 11 December 2023 / Accepted: 13 December 2023 /
Published online: 24 January 2024
© The Author(s) 2024

Abstract
Compartmental models based on coupled differential equations of fractional order have been
widely employed in the literature for modeling. An abstraction of these models is given
by a system with polynomial vector field. We investigate the use of power series for solving
generic polynomial differential equations in any dimension,withCaputo fractional derivative.
As is well known, power series convert a continuous formulation into a discrete system of
difference equations, which are easily solved by recursion. The novelty of this paper is that
we rigorously prove that the series converge on a neighborhood of the initial instant, which
is an analogue of the Cauchy–Kovalevskaya theorem. Besides, these series are proved to be
continuous with respect to the fractional index. For applications, a general-purpose symbolic
implementation of truncated power series is developed, and its execution is illustrated for the
fractional SIR epidemiological model.

Keywords Compartmental differential equation system · Caputo fractional derivative ·
Convergent power-series solution · Discrete equation · Symbolic computation · Fractional
SIR model

Mathematics Subject Classification 34A08 · 40A05 · 39A60 · 68W30

1 Introduction

When modeling the dynamics of a phenomenon in a population, the interaction between the
elements must be considered. For example, when an epidemic is happening in a region (flu,
COVID-19, etc.), contacts between susceptible and infected citizens are crucial, because they
cause the transmission of the virus (Lotfi et al. 2020). For social behaviors, such as market
choices, ideology, criminality, or health habits, contacts with peers are also important, due
to attitudes of imitation, stimulation, pressure, persuasion, etc. Harkins et al. (2017), Esiri
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(2016), and Blanchower et al. (2009). Elements in the population could be other than persons;
for example, for an ill patient undergoing a clinical follow-up, the dynamics of the disease in
the body and the interaction between the virus and uninfected cells are of relevance (Masenga
et al. 2023).

Compartmental models consider that a population is divided into different subgroups,
according to certain conditions. Elements interact and move between the compartments.
Since rates of flow need to be described, differential equations play a key role for com-
partmental modeling. Interactions are formulated by nonlinear terms, specifically products
(multiplications). Simulation of the differential equations, for certain input values, permits
understanding the dynamics of the phenomenon under investigation. Some examples of ordi-
nary differential equation models with division into compartments are Brauer et al. (2008),
Cooper et al. (2020), Santonja et al. (2010), Acedo et al. (2010a), Cervello et al. (2014),
Sánchez et al. (2011), andCalatayud and Jornet (2020). Theseworks deal with Epidemiology,
COVID-19, alcohol consumption, respiratory syncytial virus, mobile telecommunications,
cocaine use, and excess weight, respectively.

The word “ordinary” refers to the standard derivative. There are operators of fractional
order, that extend the integer-order derivative. The literature is vast and many definitions of
fractional derivatives have been given (De Oliveira and Tenreiro Machado 2014; Ortigueira
and Machado 2015). In general, the operators are based on a convolution with respect to
a kernel, so that history effects appear in the model. Some sort of continuous past delay
is incorporated. There are a lot of contributions in the literature on compartmental models
based on fractional differential equations; some examples areCarvalho et al. (2020), Carvalho
et al. (2018), Martinez et al. (2021), Pinto and Carvalho (2017), Biala and Khaliq (2021),
Alshomrani et al. (2021), Ndaïrou et al. (2021), and Area et al. (2015), for HIV, COVID-19
and Ebola dynamics, respectively.

Thus, this exposition motivates the study of fractional-order compartmental models, to
extend the integer-order counterpart. Specifically, in this paper, we aim at investigating sys-
tems of fractional differential equationswith polynomial vector field, in theCaputo-derivative
sense. The polynomial is multivariate and depends on the state variable (autonomous equa-
tion). Polynomial expressions arise in many compartmental models, because nonlinearities
are products (i.e., monomials) to account for contacts that occur homogeneously in the region.
Thus, the problem proposed in this article is an abstraction of usual compartmental systems.

A great deal of research work in applied mathematics consists in the investigation of
explicit, semi-explicit, and numerical solutions to physical models. Our research in this paper
is focused on power-series solutions (i.e., analytic solutions). Power series possess appealing
properties in terms of algebraic manipulations. When a power series is put into a fractional or
ordinary differential equation, one derives an associated discrete model for the coefficients
of the expansion. The difference equations can easily be solved by recursion, explicitly
or in the computer, so that a simple functional representation of the model’s response is
obtained. Although in practice the method works, a difficult issue is to establish convergence
theoretically, at least around the initial condition.

Of course, the use of power series for differential equations is not new (Teschl 2012,
Chapter 4). Many linear ordinary differential equations, such as Airy, Hermite, Legendre,
etc. in mathematical physics, have solutions expressed in terms of power series (Fröbenius
method) (Koekoek et al. 2010). Evenwhen stochastic effects are incorporated (CalatayudGre-
gori et al. 2020; Jornet 2021). Nonlinear ordinary differential equations may be solved with
power series too Srivastava et al. (2021). The old Cauchy–Kovalevskaya theorem (Himonas
and Petronilho 2020) ensures, essentially, that analytic inputs imply analytic output. This
theorem applies for a certain class of partial differential equations as well. For fractional
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differential equations, specific applications of power series are available in the literature;
for example, Area and Nieto (2021, 2023), Jornet (2023) for fractional logistic equations,
and Villafuerte (2023) for random linear equations.

To the best of my knowledge, the generic fractional model and the mathematical method-
ology of this paper have not previously been considered in the literature. Only particular
cases have been addressed before (Srivastava et al. 2021; Area and Nieto 2021, 2023; Jornet
2023), which are the bases for this submitted contribution. For systems of fractional differ-
ential equations with polynomial vector field, we rigorously investigate the convergence of
the power series. This provides a foundation for applications. Besides, the continuity of the
model with respect to the fractional order is studied. Finally, a general-purpose symbolic
implementation of the method is tackled.

The novelties of this work are the following:

– The mathematical proof of the convergence of the power series for generic Caputo frac-
tional differential equations with polynomial input function. This is an analogue of the
Cauchy–Kovalevskaya theorem. In the literature, only applications without a rigorous
analysis of convergence (Area and Nieto 2023), or specific models (such as logistic)
with an analysis of convergence (Area and Nieto 2021), have been addressed. Hence, the
present paper is an advance in the mathematical analysis of fractional systems.

– The generic implementation of the power-series solutions to compartmental models.
Hence, the present paper is an advance in the computational analysis of fractional systems.

The paper is organized as follows. In Sect. 2, the fractional system of study is introduced.
The notation is given and some examples provide the link with compartmental models. In
Sect. 3, the formal power-series solution of the system is derived, by obtaining the discrete
model for the expansion coefficients. These parts are a preparation (concepts, notation, etc.)
for Sect. 4, where convergence of the power series is proved. This is the main novelty of the
paper. Later, in Sect. 5, continuity with respect to the fractional index is proved. In Sect. 6,
a computer code for the methodology is implemented, with some examples of execution.
Finally, in Sect. 7, a summary with the main aspects of the article and possible extensions are
presented.

2 Context

We work with a fractional-order differential equation model of the form

Dαx = p(x). (1)

The state variable of the system (1) is x , which is a function of time t ≥ 0 over the
temporal range J = [0, T ], where T > 0 is a time horizon. Its image takes vector values,
on Rd , for dimension d ≥ 1. By components, it is expressed as x = (x1, . . . , xd). The scalar
case corresponds to d = 1.

The differential present in (1) is of fractional order, through the Caputo operator Dα

(Gerasimov 1948; De Oliveira and Tenreiro Machado 2014; Ortigueira and Machado 2015;
Caputo 1967). For order 0 < α < 1, it is defined as

Dα f (t) := 1

Γ (1 − α)

∫ t

0

f ′(τ )

(t − τ)α
dτ, (2)
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where f is an absolutely continuous function with the first-order derivative f ′ and Γ is the
gamma function. It extends classical differentiation, which is retrieved for α → 1−. The
convolution in (2) includes memory effects somehow, because f ′ depends on τ < t .

The autonomous vector field in (1), p, is of polynomial type, with multivariate evaluation,
from R

d to R
d . Its coordinates are p = (p1, . . . , pd). Componentwise, model (1) reads as

Dαx j = p j (x), ∀ j = 1, . . . , d. (3)

The data in (1) are the initial state, x(0), and the real coefficients of p. ForCaputo fractional
differential equations, initial conditions can be handled analogously to the classical integer-
order counterpart.

To express p, we use multi-index notation (Dunkl and Xu 2014). A multi-index is a vector
of the form I = (i1, . . . , id), formed by integer elements i1, . . . , id ≥ 0. Associated notation
is

v I =
d∏
j=1

v
i j
j , v ∈ R

d ,

to compactly denote monomials, and

|I | =
d∑
j=1

i j ,

to compute its degree. In consequence, each coordinate of p may be expressed as

p j (x) =
δ j∑

|I |=0

a j,I x
I , (4)

where a j,I ∈ R are the coefficients, x I are the monomials, δ j is the degree, and the sum runs
over all multi-indices I with associated degree from 0 to δ j . The number of multi-indices I

is
(d+δ j

d

) = (d + δ j )!/(d!δ j !). In vector notation, if aI = (a1,I , . . . , ad,I ), then

p(x) =
max j δ j∑
|I |=0

aI x
I .

Although clear in the formulation, the multi-index notation is cumbersome in practice.
For clarity, one may use the graded lexicographic order: given two multi-indices I and
L of length d , I > L if and only if |I | ≥ |L| and the first nonzero entry in the dif-
ference, I − L , is positive. For example, when d = 4, the multi-indices in ascending
order are (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, 2), (0, 0, 1, 1),
(0, 0, 2, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 2, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (2, 0, 0, 0),
etc. In terms of monomials, these multi-indices translate into 1, x4, x3, x2, x1, x24 , x3x4, x

2
3 ,

x2x4, x2x3, x22 , x1x4, x1x3, x1x2, x
2
1 , etc.

The investigation of (1) relies on its widespread use in the literature for modeling. Many
models have polynomial vector fields, to account for interactions between a finite number of
dynamic subgroups.

Example 1 The fractional logistic equation (Area and Nieto 2021)

Dαx = x(1 − x) = x − x2
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is a particular case of (1), for dimension d = 1 and p(x) = x − x2. The degree is δ = 2,
and the coefficients are a0 = 0, a1 = 1 and a2 = −1. Logistic growth can be generalized by
incorporating the Allee effect (Area and Nieto 2023)

Dαx = x(1 − x)(θ − x) = −x3 + (θ + 1)x2 − θx,

where θ ∈ (0, 1). The parameters are d = 1, δ = 3, a0 = 0, a1 = −θ , a2 = θ + 1, and
a3 = −1.

Example 2 The fractional SIR (susceptible-infected-recovered) model (Alshomrani et al.
2021; Area et al. 2015)

DαS(t) = − βαS(t)I (t),

Dα I (t) = βαS(t)I (t) − γ α I (t),

DαR(t) = γ α I (t).

The parameters are positive and are raised to the power of α for dimensional consistency (the
units are time−α). Another approach to be consistent with dimensionality would consist in
introducing an artificial constant, d/dt → (1/σ 1−α)Dα (Gómez-Aguilar et al. 2014; Popović
et al. 2010). The written SIR model is a particular case of (1) for dimension d = 3

x = (x1, x2, x3) = (S, I , R)

and

p(x1, x2, x3) = (−βαx1x2, β
αx1x2 − γ αx3, γ

αx3).

The degrees are δ1 = 2, δ2 = 2 and δ3 = 1, and the nonzero coefficients are a1,(1,1,0) = −βα ,
a2,(1,1,0) = βα , a2,(0,0,1) = −γ α and a3,(0,0,1) = γ α . The first subscript denotes j ∈ {1, 2, 3}
and the second subscript is the multi-index I = (i1, i2, i3).

Example 3 A fractional model for HIV (human immunodeficiency virus) is Pinto and Car-
valho (2017)

DαU (t) = sα − μα
UU − kα

1 VU ,

DαL(t) = kα
1 ηVU − aα

L L − μα
L L,

DαF(t) = kα
1 (1 − η)VU + aα

L L − δα
F F − kα

2 FZ ,

DαM(t) = sα
M − kα

MMV − δα
MM,

DαMF (t) = kα
MMV − δα

MMF − kα
3 MF Z ,

DαV (t) = qαF + qα
MMF − cαV ,

DαZ(t) = sα
C + kα

4 FZ + kα
5 MF Z − δα

C Z .

Except η ∈ (0, 1), the parameters are positive and are raised to the power ofα for dimensional
consistency (the units are time−α). For the details on the formulation, there reader is referred
to Pinto and Carvalho (2017). Essentially, there are seven compartments for a patient under
clinical follow-up: the uninfected CD 4+ T cells, the latently infected CD 4+ T cells, the
productively infected CD 4+ T cells, the uninfected macrophages, the infected macrophages,
the virus, and the CTLs. In our notation

x = (x1, x2, x3, x4, x5, x6, x7) = (U , L, F, M, MF , V , Z)
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and

p(x1, x2, x3, x4, x5, x6, x7) = (sα − μα
U x1 − kα

1 x1x6,

kα
1 ηx1x6 − aα

L x2 − μα
L x2,

kα
1 (1 − η)x1x6 + aα

L x2 − δα
F x3 − kα

2 x3x7,

sα
M − kα

Mx4x6 − δα
Mx4,

kα
Mx4x6 − δα

Mx5 − kα
3 x5x7,

qαx3 + qα
Mx5 − cαx6,

sα
C + kα

4 x3x7 + kα
5 x5x7 − δα

C x7).

The degrees are δ1 = 2, δ2 = 2, δ3 = 2, δ4 = 2, δ5 = 2, δ6 = 1, and δ7 = 2. The nonzero
coefficients are a1,(0,0,0,0,0,0,0) = sα , a1,(1,0,0,0,0,0,0) = −μα

U , a1,(1,0,0,0,0,1,0) = −kα
1 ,

a2,(1,0,0,0,0,1,0) = kα
1 η, a2,(0,1,0,0,0,0,0) = −aα

L − μα
L , a3,(1,0,0,0,0,1,0) = kα

1 (1 − η),
a3,(0,1,0,0,0,0,0) = aα

L , a3,(0,0,1,0,0,0,0) = −δα
F , etc. The first subscript denotes j ∈

{1, 2, 3, 4, 5, 6, 7} and the second subscript is the multi-index I = (i1, i2, i3, i4, i5, i6, i7).

3 Formal power series: from continuous to discrete

As widely studied in the literature, to solve (1), a power series at tα is proposed

x(t) =
∞∑
n=0

bn(t
α)n =

∞∑
n=0

bnt
αn, (5)

where t ∈ J and bn ∈ R
d . If we denote bn = (b1,n, . . . , bd,n), then (5) is given by

components as

x j (t) =
∞∑
n=0

b j,nt
αn . (6)

For now, the series (5) is formal, meaning that one uses the operations associated with power
series, but ignoring whether convergence holds on an interval [0, ε) ⊆ J , for some ε > 0.
See Area and Nieto (2021, 2023) for the algebra associated with fractional power series. The
aim of this paper is to show that (5), indeed, converges on a relative neighborhood of 0 in
J . To solve (1) and analyze the convergence of (5), we need to see how the coefficients bn
behave.

With the fractional differentiation of powers

Dαtγ = Γ (γ + 1)

Γ (γ − α + 1)
tγ−α, γ > −1,

the power series is differentiated, term by term, as

Dαx(t) =
∞∑
n=0

bnDα(tαn) =
∞∑
n=0

bn+1
Γ ((n + 1)α + 1)

Γ (nα + 1)
tαn . (7)

When (5) converges on [0, ε), the identity (7) is notmerely formal, but holdswith convergence
on [0, ε) too.

On the other hand, the power series of p(x) is required. Taking the form (4) into account,

we calculate x
i j
j (t) and x I (t). Recall the expression of the Cauchy product, defined by a
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discrete convolution. Some examples are the following:

x2j (t) =
∞∑
n=0

(
n∑

m=0

b j,mb j,n−m

)
tαn,

x3j (t) =
∞∑
n=0

[
n∑

m=0

(
m∑

k=0

b j,kb j,m−k

)
b j,n−m

]
tαn,

etc. For an arbitrary power i j , we have

x
i j
j (t) =

∞∑
n=0

⎛
⎜⎝

n∑
n2=0

n2∑
n3=0

· · ·
ni j−1∑
ni j =0

b j,ni j
b j,ni j−1−ni j

· · · b j,n2−n3b j,n−n2

⎞
⎟⎠ tαn . (8)

We employ the shorthand notation

C j,i j (b j,0, . . . , b j,n) =
n∑

n2=0

n2∑
n3=0

· · ·
ni j−1∑
ni j =0

b j,ni j
b j,ni j−1−ni j

· · · b j,n2−n3b j,n−n2 , (9)

so that (8) becomes

x
i j
j (t) =

∞∑
n=0

C j,i j (b j,0, . . . , b j,n)t
αn . (10)

For a multi-index power, by applying (10)

x I (t) = xi11 (t) · · · xidd (t)

=
∞∑
n=0

⎡
⎣ n∑
n2=0

n2∑
n3=0

· · ·
nd−1∑
nd=0

Cd,id (bd,0, . . . , bd,nd )

· Cd−1,id−1(bd−1,0, . . . , bd−1,nd−1−nd )

· · · C2,i2(b2,0, . . . , b2,n2−n3)C1,i1(b1,0, . . . , b1,n−n2)
]
tαn . (11)

If

CI (b1,0, . . . , bd,n) =
n∑

n2=0

n2∑
n3=0

· · ·
nd−1∑
nd=0

Cd,id (bd,0, . . . , bd,nd )

· Cd−1,id−1(bd−1,0, . . . , bd−1,nd−1−nd )

· · ·C2,i2(b2,0, . . . , b2,n2−n3)C1,i1(b1,0, . . . , b1,n−n2), (12)

we can express (11) as

x I (t) =
∞∑
n=0

CI (b1,0, . . . , bd,n)t
αn . (13)

If (5) converges on [0, ε), it is well known that the Cauchy product (13) converges on [0, ε),
as well.
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With (7) and (13), we equate

∞∑
n=0

b j,n+1
Γ ((n + 1)α + 1)

Γ (nα + 1)
tαn =

δ j∑
|I |=0

a j,I

∞∑
n=0

CI (b1,0, . . . , bd,n)t
αn

=
∞∑
n=0

⎡
⎣

δ j∑
|I |=0

a j,I CI (b1,0, . . . , bd,n)

⎤
⎦ tαn .

Then, the coefficients of the power series must be equal. After isolating b j,n+1, we arrive at
the following scalar recursive equations:

b j,n+1 = Γ (nα + 1)

Γ ((n + 1)α + 1)

δ j∑
|I |=0

a j,I CI (b1,0, . . . , bd,n), (14)

for j = 1, . . . , d and n = 0, 1, 2, . . ., with initial data b j,0 = x j (0). For each n, one runs (14)
for all j = 1, . . . , d , before moving to n + 1. That is, the loop over j is nested in the loop
over n. Recall thatCI is defined by (12) and (9). Given (14), the main question is whether (5)
converges around 0. Under convergence, the previous series manipulations are rigorous and
we obtain the proper solution to (1).

4 Convergence of the power series

The aim is to prove that (5) converges around 0. We first need to upper bound the absolute
value of the coefficients, |b j,n+1|, given by (14). These depend on (12) and (9).

By the triangular inequality on (9)

|C j,i j (b j,0, . . . , b j,n)| =

∣∣∣∣∣∣∣
n∑

n2=0

n2∑
n3=0

· · ·
ni j−1∑
ni j =0

b j,ni j
b j,ni j−1−ni j

· · · b j,n2−n3b j,n−n2

∣∣∣∣∣∣∣

≤
n∑

n2=0

n2∑
n3=0

· · ·
ni j−1∑
ni j =0

|b j,ni j
||b j,ni j−1−ni j

| · · · |b j,n2−n3 ||b j,n−n2 |

= C j,i j (|b j,0|, . . . , |b j,n |).
As a consequence, by the triangular inequality on (12)

|CI (b1,0, . . . , bd,n)|

=
∣∣∣∣∣∣

n∑
n2=0

n2∑
n3=0

· · ·
nd−1∑
nd=0

Cd,id (bd,0, . . . , bd,nd )Cd−1,id−1(bd−1,0, . . . , bd−1,nd−1−nd )

· · ·C2,i2(b2,0, . . . , b2,n2−n3)C1,i1(b1,0, . . . , b1,n−n2)
∣∣

≤
n∑

n2=0

n2∑
n3=0

· · ·
nd−1∑
nd=0

|Cd,id (bd,0, . . . , bd,nd )||Cd−1,id−1(bd−1,0, . . . , bd−1,nd−1−nd )|

· · · |C2,i2(b2,0, . . . , b2,n2−n3)||C1,i1(b1,0, . . . , b1,n−n2)|
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≤
n∑

n2=0

n2∑
n3=0

· · ·
nd−1∑
nd=0

Cd,id (|bd,0|, . . . , |bd,nd |)

· Cd−1,id−1(|bd−1,0|, . . . , |bd−1,nd−1−nd |)
· · ·C2,i2(|b2,0|, . . . , |b2,n2−n3 |)C1,i1(|b1,0|, . . . , |b1,n−n2 |)

∣∣
= CI (|b1,0|, . . . , |bd,n |). (15)

On the other hand, from a certain n ≥ 0 (no need to specify it for easiness of notation),
the monotone condition

Γ (nα + 1) ≤ Γ ((n + 1)α + 1) (16)

holds (Kershaw 1983). In fact

Γ (nα + 1)

Γ ((n + 1)α + 1)
∼ 1

(nα + 1)α
n→∞−→ 0,

because it is well known that Γ (y + α) ∼ Γ (y)yα when y → ∞.
By (15) and (16), the coefficients in (14) are upper bounded as follows:

|b j,n+1| ≤
δ j∑

|I |=0

|a j,I |CI (|b1,0|, . . . , |bd,n |). (17)

From (17), we build a “majorizing” series for
∑∞

n=0 |b j,n |tαn . Let
h j,0 = |b j,0|

and

h j,n+1 =
δ j∑

|I |=0

|a j,I |CI (h1,0, . . . , hd,n) (18)

be new coefficients, for j = 1, . . . , d and n ≥ 0. Again, for each n, one runs (18) for all
j = 1, . . . , d , before advancing to n + 1. By induction on n, it is trivially justified that

|b j,n| ≤ h j,n (19)

for all subscripts. Let

ψ j (z) =
∞∑
n=0

h j,nz
n, (20)

and with vector notation

ψ(z) =
∞∑
n=0

hnz
n, (21)

where ψ = (ψ1, . . . , ψd), z ∈ R and hn = (h1,n, . . . , hd,n) ∈ R
d . For now, the power

series (20) is formal. We need to check its convergence on a neighborhood of 0. In such a
case, the power series (5), with coefficients (14), will be well defined around 0, by (19), as
wanted.
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Notice that, by (20), (18) and the Cauchy product for multi-indices [as in (13)], it holds

ψ j (z) = h j,0 + z
∞∑
n=0

h j,n+1z
n

= h j,0 + z
∞∑
n=0

⎡
⎣

δ j∑
|I |=0

|a j,I |CI (h1,0, . . . , hd,n)

⎤
⎦ zn

= h j,0 + z

δ j∑
|I |=0

|a j,I |
[ ∞∑
n=0

CI (h1,0, . . . , hd,n)z
n

]

= h j,0 + z

δ j∑
|I |=0

|a j,I |ψ(z)I . (22)

Viewing this identity (22) for ψ as a functional root, we consider the maps

φ j (z, w) = w j − h j,0 − z

δ j∑
|I |=0

|a j,I |w I ,

for j = 1, . . . , d , which are the coordinates of a map

φ = (φ1, . . . , φd):R × R
d → R

d .

By (22),ψ in (21) and its coefficients (18) are characterized byψ(0) = h0 and φ(z, ψ(z)) =
0. We have

φ(0, h0) = 0

and the Jacobian

Jwφ(z, w) = det

⎛
⎜⎜⎜⎜⎝

∂φ1
∂w1

(z, w)
∂φ2
∂w1

(z, w) . . .
∂φd
∂w1

(z, w)
∂φ1
∂w2

(z, w)
∂φ2
∂w2

(z, w) . . .
∂φd
∂w2

(z, w)

...
...

. . .
...

∂φ1
∂wd

(z, w)
∂φ2
∂wd

(z, w) . . .
∂φd
∂wd

(z, w)

⎞
⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎝

1 − z · ∗ −z · ∗ . . . −z · ∗
−z · ∗ 1 − z · ∗ . . . −z · ∗

...
...

. . .
...

−z · ∗ −z · ∗ . . . 1 − z · ∗

⎞
⎟⎟⎟⎠ ,

with

Jwψ(0, h0) = det(Idd) = 1 �= 0.

Here, ∗ denotes any expression and Idd is the identity matrix of size d × d . By the analytic
version of the implicit-function theorem (Kaup and Kaup 2011, Section 8, Chapter 0), there
exists a unique analytic function w ≡ w(z) on a neighborhood (−μ,μ) of zero, μ > 0,
w : (−μ,μ) → R

d , such that w(0) = d0 and φ(z, w(z)) = 0. Then, ψ = w is convergent
on (−μ,μ). By (19)

∞∑
n=0

|b j,n|tαn ≤
∞∑
n=0

h j,nt
αn = ψ(tα) < ∞
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for t ∈ [0, μ1/α). In conclusion, the power series (5), with coefficients (14), is well defined
around 0 and defines a suitable solution to (1).

5 Consistency with the integer-order model

When α = 1, problem (1) is no more fractional, since D1x(t) = x ′(t). Let us denote the
coefficients in (5) and (14) as b j,n |α , that is, we make the fractional-order explicit. The aim
is to prove consistency, namely

lim
α→1−

∞∑
n=0

b j,n |αtαn =
∞∑
n=0

[
lim

α→1− b j,n |α
]
tn

=
∞∑
n=0

b j,n|α=1t
n . (23)

This last series is the classical integer-order power-series solution.
We distinguish two situations, taking into account the role of α:

Case 1 The coefficients a j,I of p j , see (4) for j = 1, . . . , d , do not depend on α; that is,
they do not change with variations of α.

The coefficients b j,n |α satisfy (19), i.e., |b j,n |α| ≤ h j,n , where the terms h j,n are defined
by (18) and are independent of α. Independence holds due to (16).

On the other hand, tαn ≤ tn if t ≥ 1, and tαn ≤ (
√
t)n if t < 1 and α > 1/2.

In consequence, if (21) converges on (−μ,μ) and t,
√
t ∈ (−μ,μ), then |bn ||t |αn is

upper bounded by summable α-independent terms. By the dominated convergence theorem
(Rudin 1976, result 11.32, page 321), which permits interchanging limα→1− and

∑∞
n=0, (23)

holds.

Case 2 The coefficients a j,I of p j , see (4) for j = 1, . . . , d , depend on α, as a j,I = aα
j,I ;

this is often the case when dimensional consistency is sought, where a j,I > 0 is
independent of α.

The proof is very similar to Case 1. Actually, we proceed to reduce Case 2 to Case 1.
We start by |b j,n |α| ≤ h j,n , see (19), but now the terms h j,n defined by (18) are functions

of α.We bound |a j,I | ≤ ã j,I for all subindices, where the coefficients ã j,I are independent of
α. This can be done by setting ã j,I = max{a j,I ,

√
a j,I }, considering α > 1/2 and whether

a j,I ≤ 1 or a j,I > 1. Define new h̃ j,n (independent of α), as (18) but with ã j,I instead

h̃ j,0 = |b j,0|,

h̃ j,n+1 =
δ j∑

|I |=0

ã j,I CI (h̃1,0, . . . , h̃d,n).

The inequalities |b j,n|α| ≤ h j,n ≤ h̃ j,n hold, by induction on n. The previous case and
calculations then apply, with the “majorizing” series ψ̃ j (z) = ∑∞

n=0 h̃ j,nzn (i.e., with tildes).
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6 Symbolic implementation

We implement the computation of a truncated sum of (5)

x [N ](t) =
N∑

n=0

bnt
αn . (24)

We use computer algebra to obtain the function t �→ x [N ](t), where the variable t is symbolic.
If a numerical value is required, then t is substituted accordingly.

Symbolic or algebraic computation is concerned with exact operations and expressions,
with variables that have no given value (symbols) or are fractions (no decimal numbers).

A general-purpose algorithm is developed in Mathematica® (Wolfram Research, Inc.
2020) and illustrated here. The function isexpansionFractionalCompartmentODE,
with inputs:

– d: The dimension d ≥ 1 of the system. It has to be a number.
– NN: The truncation index N , which is repeated in writing to distinguish from a built-in

command N of the software. It has to be a number.
– p: Thepolynomial p, as a functionof vectors inRd , defined throughp[v_]:=...,...,....

In the dots, one writes the equations of the compartments, in terms of the components
v[[1]], v[[2]], etc. The coefficients in p can be symbolic or numeric.

– alpha: The fractional order α ∈ (0, 1]. It can be symbolic or numeric.
– x0: The initial condition x(0) ∈ R

d . It can be symbolic or numeric.

The output is x [N ](t), in terms of the symbolic variable t .
The code is the following:

expansionFractionalCompartmentODE[d_, NN_, p_, alpha_, x0_] :=
Module[{coeffList, b, x, list, field, j, n, value, expansion},
Clear@t;
coeffList[y_] := If[SameQ[y, 0], {0}, CoefficientList[y, t]];
b = ConstantArray[0, {d, NN + 1}];
Do[b[[j, 1]] = x0[[j]], {j, d}];
Do[
x[t_] = Table[Total[b[[j, 1 ;; n]]*tˆRange[0, n - 1]], {j, d}];
field[t_] = p[x[t]];
Do[
list = coeffList[field[t][[j]] // Expand];
If[Length@list < n, value = 0, value = list[[n]]];
b[[j, n + 1]] = Gamma[(n - 1)*alpha + 1]/Gamma[n*alpha + 1]*value,
{j, 1, d}
],

{n, 1, NN}
];

expansion =
Table[Total[b[[j, 1 ;; NN + 1]]*tˆ(alpha*Range[0, NN])], {j, d}];

Return[expansion];
];

We show some executions for the SIR model of Example 2. This is a very important
compartmental system, originated in the work (Kermack andMcKendrick 1927), and closed-
form solutions are being investigated for it and its extensions (Srivastava et al. 2021; Harko
et al. 2014; Heng and Althaus 2020; Acedo et al. 2010b).

Example 4 Set the following variables:
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d = 3; NN = 5; beta = 1/2; gamma = 1/3; s0 = 99/100; i0 =
1/100; r0 = 0; alpha = 1;

p[v_] := {-betaˆalpha*v[[1]]*v[[2]],
betaˆalpha*v[[1]]*v[[2]] - gammaˆalpha*v[[2]],
gammaˆalpha*v[[2]]}

x0 = {s0, i0, r0};

We have

x [5]
1 (t) = S[5](t) = 8257447t5

864000000000000
− 266717t4

720000000000

− 42097t3

2400000000
− 1551t2

4000000
− 99t

20000
+ 99

100
,

x [5]
2 (t) = I [5](t) = − 229421789t5

23328000000000000
+ 20221t4

4860000000000
+ 284819t3

64800000000

+ 4259t2

36000000
+ 97t

60000
+ 1

100
,

x [5]
3 (t) = R[5](t) = 20221t5

72900000000000
+ 284819t4

777600000000
+ 4259t3

324000000

+ 97t2

360000
+ t

300
.

This example for integer order was conducted in Srivastava et al. (2021) too.

Example 5 Set the following variables:

d = 3; NN = 5; beta = 1/2; gamma = 1/9; s0 = 99/100; i0 =
1/100; r0 = 0; alpha = 1/2;

p[v_] := {-betaˆalpha*v[[1]]*v[[2]],
betaˆalpha*v[[1]]*v[[2]] - gammaˆalpha*v[[2]],
gammaˆalpha*v[[2]]}

x0 = {s0, i0, r0};

We have

x [5]
1 (t) = S[5](t) = 16

15
√

π

(
150170999

80000000000
− 48963666719

18000000000000
√
2

+ 3267

1250000000π2 − 1080299

187500000000
√
2π2

− 30614837

180000000000π

+ 405649211

1500000000000
√
2π

)
t5/2

+ 3

8

√
π

(
160083

1250000000π3/2 − 539

6250000
√
2π3/2

− 77378257

15000000000
√

π

+ 6066269

900000000
√
2π

)
t2

+
4

(
6501

2000000 − 292699
50000000

√
2

− 33
500000π + 9801

50000000
√
2π

)
t3/2

3
√

π

+ 1

2

√
π

(
33

5000
√
2π

− 4851

500000
√

π

)
t − 99

√
t

5000
√
2π

+ 99

100
,

x [5]
2 (t) = I [5](t) = 16

15
√

π

(
− 54683730391

19440000000000
+ 72183319219

18000000000000
√
2
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− 3267

1250000000π2 + 1080299

187500000000
√
2π2

+ 34156331

180000000000π

− 438154211

1500000000000
√
2π

)
t5/2

+ 3

8

√
π

(
− 590249

3750000000π3/2 + 2167

12500000
√
2π3/2

+ 9096088817

1215000000000
√

π
− 9287861

900000000
√
2π

)
t2

+
4

(
− 56569

10800000 + 402699
50000000

√
2

+ 33
500000π − 9801

50000000
√
2π

)
t3/2

3
√

π

+ 1

2

√
π

(
53659

4500000
√

π
− 33

2500
√
2π

)
t +

2
(

99
10000

√
2

− 1
300

)√
t

√
π

+ 1

100
,

x [5]
3 (t) = R[5](t) = 16

15
√

π

(
9096088817

9720000000000
− 9287861

7200000000
√
2

− 590249

30000000000π
+ 2167

100000000
√
2π

)
t5/2 + 3

8

√
π

(
11

375000π3/2

− 1089

12500000
√
2π3/2

− 56569

24300000
√

π
+ 134233

37500000
√
2π

)
t2

+
4

(
53659

27000000 − 11
5000

√
2

)
t3/2

3
√

π
+ 1

2

√
π

(
33

5000
√
2π

− 1

450
√

π

)
t

+
√
t

150
√

π
.

We report some timings. The computer is an Intel® CoreTM i7 CPU 2.9 GHz, in Win-
dows 10. For order N = 20, if beta = 1/2, gamma = 1/9, s0 = 99/100, i0 =
1/100, r0 = 0 and alpha = 1/2 are specified with symbolic fractions, then 4.5 s are
required to calculate the three-coordinates function x [20](t). However, if those parameters
are specified with decimals, numerically, then the time is 0.02 s. With decimal numbers,
other timings are 0.08 s for N = 50, 0.35 s for N = 100, 2.2 s for N = 200, and 4.5 s for
N = 250. Once the symbolic expression x [250](t) is computed, the evaluation at a specific
numerical value of t lasts around 0.0005 s.

Example 6 Set the following variables:

d = 3; NN = 2;
p[v_] := {-betaˆalpha*v[[1]]*v[[2]],

betaˆalpha*v[[1]]*v[[2]] - gammaˆalpha*v[[2]],
gammaˆalpha*v[[2]]}

x0 = {s0, i0, r0};
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We have

x [2]
1 (t) = S[2](t) =

t2αΓ (α + 1)

(
γ α I0S0βα

Γ (α+1) + I 20 S0β
2α

Γ (α+1) − I0S20β2α

Γ (α+1)

)

Γ (2α + 1)

− I0S0βαtα

Γ (α + 1)
+ S0,

x [2]
2 (t) = I [2](t) =

t2αΓ (α + 1)

(
− 2γ α I0S0βα

Γ (α+1) − I 20 S0β
2α

Γ (α+1) + I0S20β2α

Γ (α+1) + γ 2α I0
Γ (α+1)

)

Γ (2α + 1)

+ tα (I0S0βα − γ α I0)

Γ (α + 1)
+ I0,

x [2]
3 (t) = R[2](t) =

t2αΓ (α + 1)
(

γ α I0S0βα

Γ (α+1) − γ 2α I0
Γ (α+1)

)

Γ (2α + 1)
+ γ α I0tα

Γ (α + 1)
+ R0.

We report some timings, with the previous computer’s specifications. Compared to the
earlier example, the calculations are more costly, because all of the variables are symbolic.
For N = 8, the code runs in 25 s; for N = 7, in 2.6 s; and for N = 6, in 0.5 s.

7 Conclusions

Compartmental models, based on coupled differential equations, have been used in a lot
of contributions for dynamical modeling. The fields of application include Epidemiology,
Ecology and Sociology, for example, because individuals or species interact (nonlinear terms)
and transmit diseases, behaviors, etc. This paper is a contribution to the study of this type of
models, with fractional derivatives incorporated. We used the Caputo definition.

We investigated the use of power-series expansions to find closed-form expressions for the
solution. Of course, the applications of power series for differential equations, even nonlinear,
are well known. However, to my knowledge, there is no study in the literature that conducts
the presented mathematical treatment for a generic fractional model of the form (1), in any
state dimensionality.

The coefficients of the formal power series, for the candidate solution, satisfy difference
equations. This process may be viewed as a conversion from a continuous into a discrete
model, as is well known in the literature. After introducing the necessary concepts and nota-
tion, we rigorously proved that the power series converge on a neighborhood of the initial
instant zero. We based on “majorizing” series and the analytic implicit-function theorem,
dealing with the cumbersome notation from the Cauchy products. Key facts were the mono-
tone condition of the gamma function and the absolute-value inequality met by the Cauchy
products. On the other hand, continuitywith respect to the fractional orderwas established, by
applying the dominated convergence theorem. Two scenarios were distinguished, depending
on whether the coefficients of the polynomial were related to the fractional parameter or not.
This result showed consistency between the fractional- and the integer-order formulations.

The series, which must be truncated sums for applications, were implemented in a
computer-algebra software. The code was explicitly given in the article. The output of our
developed function depends on the symbolic time variable. Some executions were exhib-
ited and commented for the SIR epidemiological model of fractional order, with different
symbolic and numeric parameters (force of infection, recovery rate, initial conditions, and
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fractional index). Explicit sums and CPU times were reported. Other examples, with other
inputs, would be analogous.

Some extensions of this paper could be the following:

– The estimation of the radius of convergence for the power-series solution (5). The analytic
version of the implicit-function theorem only provides the existence of a neighborhood
of analyticity. The estimation would likely require obtaining more information about the
“majorizing” series ψ , through the identity (22). For example, the scalar case d = 1 of
polynomial degree δ = 2, which corresponds to a logistic equation, gives an explicit
root ψ(z) in (22), and the largest interval of convergence for ψ could be calculated or
estimated.

– The estimation of the rate of convergence for the power-series solution (5). Also, the
rate of convergence as the fractional order tends to integer-order one. Both the implicit-
function theorem and the dominated convergence theorem do not give that information.
Probably, a proof with specific inequalities would be required.

– A more efficient implementation of the symbolic code presented for the truncated power
series (24).

– The analysis of other problems (1) with a general fractional order α ∈ (0,∞) or with
alternative fractional derivatives.

– The analysis of problems Dαx = f (x), where f is any analytic function. If f is not a
polynomial, then one could use a polynomial approximation f ≈ p and solve Dα x̃ =
p(x̃), by truncating the Taylor series, but the new analytic solution x̃ would be biased.
The methodology of the paper does not directly apply to Dαx = f (x).

– The investigation of the corresponding stochastic problem,where x(0) and/or coefficients
of the polynomial p are randomvariables. The power seriesmay be of use for uncertainty-
propagation computations, but mean-square convergence should be established to ensure
convergence for the second-order statistics.
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