
Computational and Applied Mathematics (2023) 42:351
https://doi.org/10.1007/s40314-023-02485-6

Two-step inertial forward–reflected–anchored–backward
splitting algorithm for solving monotone inclusion problems

Chinedu Izuchukwu1 ·Maggie Aphane2 · Kazeem Olalekan Aremu2,3

Received: 26 April 2023 / Revised: 7 August 2023 / Accepted: 3 October 2023 /
Published online: 4 November 2023
© The Author(s) 2023

Abstract
The main purpose of this paper is to propose and study a two-step inertial anchored version
of the forward–reflected–backward splitting algorithm of Malitsky and Tam in a real Hilbert
space.Our proposed algorithmconverges strongly to a zero of the sumof a set-valuedmaximal
monotone operator and a single-valued monotone Lipschitz continuous operator. It involves
only one forward evaluation of the single-valued operator and one backward evaluation of the
set-valued operator at each iteration; a feature that is absent in many other available strongly
convergent splitting methods in the literature. Finally, we perform numerical experiments
involving image restoration problem and compare our algorithmwith known related strongly
convergent splitting algorithms in the literature.

Keywords Forward–reflected–backward method · Two-step inertial · Halpern’s iteration ·
Monotone inclusion · Strong convergence

Mathematics Subject Classification 47H09 · 47H10 · 49J20 · 49J40

Communicated by Justin Wan.

B Chinedu Izuchukwu
chinedu.izuchukwu@wits.ac.za

Maggie Aphane
maggie.aphane@smu.ac.za

Kazeem Olalekan Aremu
kazeem@udusok.edu.ng ; aremukazeemolalekan@gmail.com

1 School of Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South
Africa

2 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences
University, P.O. Box 60, Ga-Rankuwa, Pretoria 0204, South Africa

3 Department of Mathematics, Usmanu Danfodiyo University Sokoto, 2346 Sokoto, Nigeria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02485-6&domain=pdf
http://orcid.org/0000-0002-8262-8605

351 Page 2 of 20 C. Izuchukwu et al.

1 Introduction

Let H be a real Hilbert space, and let A : H → 2H and B : H → H be two monotone
operators. The problem of finding a zero of the sum of A and B also known as the monotone
inclusion problem is defined as

find x̂ ∈ H such that 0 ∈ (A + B)̂x . (1.1)

We denote the solution set of this problem by (A + B)−1(0).
The monotone inclusion is an important problem in optimization as well as in signal pro-
cessing, image recovery, and machine learning. For instance, consider the minimization
problem:

min
x̂∈H{ f (̂x) + g(̂x)}, (1.2)

where f : H → (−∞, +∞] is proper convex and lower semicontinuous, and g : H → R is
convex and continuously differentiable. The solutions to (1.2) are solutions to the problem:

find x̂ ∈ H such that 0 ∈ (∂ f + ∇g)̂x,

where ∂ f denotes the subdifferential of f and ∇g is the gradient of g. Thus, the mini-
mization problem of the sum of two convex functions is a special case of the monotone
inclusion problem (1.1). Problems of the form (1.1) are often solved by splitting algorithms
which involve evaluating A and B separately by means of a forward evaluation of B and a
backward evaluation of A rather than their sum (A + B). These algorithms have undergone
tremendous study which has been motivated by the desire to devise faster, computationally
inexpensive and much more applicable methods. Among these splitting algorithms is the
following forward–backward splitting algorithm (Lions and Mercier 1979; Passty 1979):

xn+1 = (IH + λA)−1(xn − λBxn), n ≥ 1, (1.3)

where IH is the identity operator on H and λ is a positive constant. This algorithm involves
only one forward evaluation of B and one backward evaluation of A per iteration, and it
is known to converge weakly to a solution of the inclusion problem (1.1) when B is L−1-
cocoercive (which is strict), λ ∈ (0, 2L−1), A is maximal monotone and (A + B)−1(0) is
nonempty. Strongly convergent variants of Algorithm (1.3) have been studied under the strict
cocoercive assumption on B in Takahashi et al. (2010); Wang and Wang (2018).
The strict cocoercive assumption on B in Algorithm (1.3) (and its strong convergent variants)
was removed in Tseng (2000), where the author proposed the following forward–backward–
forward splitting algorithm (also known as Tseng’s splitting method):

{

yn = (IH + λA)−1(xn − λBxn),

xn+1 = yn − λByn + λBxn, n ≥ 1.
(1.4)

The main advantage of this algorithm is that it converges weakly to a solution of (1.1) under
the much more weaker assumption that B is monotone and L-Lipschitz continuous, λ ∈
(0, L−1), A is maximal monotone and (A + B)−1(0) �= ∅. However, its main disadvantage
is that it involves two forward evaluations of B, and this might affect the efficiency of the
algorithm especially when this algorithm is applied to optimization arising from large-scale
problems and optimal control theory, where computations of pertinent operators are often
very expensive (see (Lions 1971)). Strongly convergent variants of Algorithm (1.4) were
studied in Gibali and Thong (2018); Thong and Cholamjiak (2019), and they also have the
disadvantage of requiring two forward evaluations of B.

123

Two-step inertial forward–reflected... Page 3 of 20 351

This disadvantage was recently overcome by Malitsky and Tam (2020); they proposed the
following forward–reflected–backward splitting algorithm:

xn+1 = (IH + λA)−1(xn − 2λBxn + λBxn−1), n ≥ 1, λ ∈
(

0,
1

2
L−1

)

. (1.5)

The main advantage of Algorithm (1.5) is that it requires only one forward evaluation of B
even when B is monotone and Lipschitz continuous. The reflexive Banach space variant of
Algorithm (1.5) was studied in Izuchukwu et al. (2022), andwhen B is linear, Algorithm (1.5)
has the same structure as the reflected–forward–backward splitting algorithm proposed and
studied in Cevher and Vũ (2021). However, due to the computational structure of Algorithm
(1.5) (unlike Algorithm (1.3) and Algorithm (1.4)), its strongly convergent variants are very
rare in the literature despite that in infinite-dimensional spaces, strong convergence results
are much more desirable than weak convergence results.
Recently, fast convergent algorithms for solving optimization problems have been of great
interest to many researchers. On one hand, the anchored extrapolation step is known to be
one of the most important ingredients for improving the convergence rate of optimization
algorithms (see (Qi and Xu 2021; Yoon and Ryu 2021) for details). On the other hand, the
inertial technique which is based upon a discrete analog of a second-order dissipative dynam-
ical system is also known for its efficiency in improving the convergence speed of iterative
algorithms. The one-step inertial extrapolation xn + ϑ(xn − xn−1) is the most commonly
used technique for this purpose. It originates from the heavy ball method of the second-order
dynamical system for minimizing a smooth convex function:

d2x

dt2
(t) + γ

dx

dt
(t) + ∇ f (x(t)) = 0,

where γ > 0 is a damping or friction parameter. Polyak (1964) was the first author to propose
the heavy ball method, Alvarez and Attouch (2001) extended it to the setting of a general
maximal monotone operator. In Bing and Cho (2021), the authors proposed the following
one-step inertial viscosity-type forward–backward–forward splitting algorithm (Bing and
Cho 2021, Algorithm 3.4):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wn = xn + ϑn(xn − xn−1),

yn = (IH + λA)−1(wn − λBwn),

zn = yn − λByn + λBxn,

xn+1 = αn f xn + (1 − αn)zn, n ≥ 1,

(1.6)

where f is a contraction mapping and ϑn is the inertial parameter. They proved that the
sequence {xn} generated by Algorithm (1.6) converges strongly to a solution of the mono-
tone inclusion problem (1.1) (see also (Bing and Cho (2021), Theorem 3.3), a version of
Algorithm (1.6) without the contraction mapping). In (Suparatulatorn and Chaichana (2022),
Algorithm 1), Suparatulatorn and Chaichana proposed a one-step inertial parallel shrinking-
type algorithm for solving a finite family of monotone inclusion problems. Also, in Alakoya
et al. (2022); Liu et al. (2021); Tan et al. (2022); Taiwo and Mewomo (2022), the authors
proposed and studied one-step inertial algorithms that tackle the particular case, where A is
the normal cone of some nonempty, closed and convex set (i.e., one-step inertial algorithms
that solve variational inequality problems).

However, it was discussed in (Poon and Liang 2019, Section 3) that one-step inertial term
may fail to provide acceleration to ADMM. Let H1, H2 ⊂ R

2 be two subspaces such that

123

351 Page 4 of 20 C. Izuchukwu et al.

H1 ∩ H2 �= ∅. Consider the feasibility problem:

find x̂ ∈ R
2 such that x̂ ∈ H1 ∩ H2. (1.7)

Itwas shown in [25, Section 4] that for problem (1.7), the two-step inertial fixed point iteration

xn+1 = T (xn + θ(xn − xn−1) + δ(xn−1 − xn−2)),

where T := 1
2

(

I + (2PH1 − I)(2PH2 − I)
)

, converges faster in terms of both the number

of iterations and the CPU time, than the one-step inertial fixed point iteration

xn+1 = T (xn + θ(xn − xn−1)). (1.8)

Furthermore, it was shown, using problem (1.7), that the sequences generated by the one-
step inertial fixed point iteration (1.8) converge more slowly than those generated by its
non-inertial version. This shows that the one-step inertial fixed point iteration (1.8) may fail
to provide acceleration. But as discussed in (Liang 2016, Chapter 4), employing the multi-
step inertial, like the two-step inertial term xn + ϑ(xn − xn−1) + β(xn−1 − xn−2), ϑ > 0,
β < 0, could resolve the issue of not providing acceleration. Thus in Combettes and Glaudin
(2017); Dong et al. (2019); Iyiola and Shehu (2022); Li et al. (2022); Polyak (1987), the
authors recently studied multi-step inertial algorithms and showed that multi-step inertial
terms (e.g., the two-step inertial term) enhances the speed of optimization algorithms.
In this paper, we investigate the strong convergence of a two-step inertial anchored variant
of the forward-reflected-backward splitting algorithm (1.5). In other words, we propose a
two-step inertial forward–reflected–anchored–backward splitting algorithm and prove that it
converges strongly to a solution of Problem (1.1). The proposed algorithm involves only one
forward evaluation of the monotone Lipschitz continuous operator B and one backward eval-
uation of the maximal monotone operator A at each iteration; a feature that is absent in many
other available strongly convergent inertial splitting algorithms in the literature. Further-
more, we perform numerical experiments for problems emanating from image restoration,
and these experiments confirm that our proposed algorithm is efficient and faster than other
related strongly convergent splitting algorithms in the literature.

2 Preliminaries

The operator B : H → H is called L-cocoercive (or inverse strongly monotone) if there
exists L > 0 such that

〈Bx − By, x − y〉 ≥ L‖Bx − By‖2 ∀x, y ∈ H,

and monotone if

〈Bx − By, x − y〉 ≥ 0 ∀x, y ∈ H.

The operator B is called L-Lipschitz continuous if there exists L > 0 such that

‖Bx − By‖ ≤ L‖x − y‖ ∀x, y ∈ H.

Let A be a set-valued operator A : H → 2H, then A is said to be monotone if

〈̂x − ŷ, x − y〉 ≥ 0 ∀x, y ∈ H, x̂ ∈ Ay, ŷ ∈ Ay.

123

Two-step inertial forward–reflected... Page 5 of 20 351

The monotone operator A is called maximal if the graph G(A) of A, defined by

G(A) := {(x, x̂) ∈ H × H : x̂ ∈ Ax},
is not properly contained in the graph of any other monotone operator. In other words, A is
called a maximal monotone operator if for (x, x̂) ∈ H×H, we have that 〈̂x − ŷ, x − y〉 ≥ 0
for all (y, ŷ) ∈ G(A) implies x̂ ∈ Ax .
For a set-valued operator A, the resolvent associated with it is the mapping J A

λ : H → 2H
defined by

J A
λ (x) := (IH + λA)−1(x), x ∈ H, λ > 0.

If A is maximal monotone and B is single-valued, then both J A
λ and J A

λ (IH−λB) are single-
valued and everywhere defined on H. Furthermore, the resolvent J A

λ is nonexpansive.
The following hold in a real Hilbert space H:

2〈̂x, ŷ〉 = ‖x̂‖2 + ‖ŷ‖2 − ‖x̂ − ŷ‖2 = ‖x̂ + ŷ‖2 − ‖x̂‖2 − ‖ŷ‖2 ∀ x̂, ŷ ∈ H (2.1)

and

‖(1 + t)̂x − (t − s)ŷ − ŝz‖2 = (1 + t)‖x̂‖2 − (t − s)‖ŷ‖2 − s‖̂z‖2 + (1 + t)(t − s)‖x̂ − ŷ‖2
+s(1 + t)‖x̂ − ẑ‖2 − s(t − s)‖ŷ − ẑ‖2 ∀ x̂, ŷ, ẑ ∈ H, t, s ∈ R.

(2.2)

Lemma 2.1 Saejung and Yotkaew (2012) Suppose that {pn} is a sequence of nonnegative
real numbers, {αn} is a sequence of real numbers in (0, 1) satisfying

∑∞
n=1 αn = ∞, and

{qn} is a sequence of real numbers such that

pn+1 ≤ (1 − αn)pn + αnqn, n ≥ 1.

If lim sup
i→∞

qni ≤ 0 for each subsequence {pni } of {pn} satisfying lim inf
i→∞

(

pni+1 − pni
) ≥ 0,

then lim
n→∞ pn = 0.

Lemma 2.2 Lemaire (1997) Suppose that A : H → 2H is maximal monotone and B : H →
H is monotone Lipschitz continuous, then (A + B) : H → 2H is maximal monotone.

Lemma 2.3 Maingé (2007) Suppose that {pn} and {rn} are sequences of nonnegative real
numbers such that

pn+1 ≤ (1 − αn)pn + sn + rn, n ≥ 1,

where {αn} is a sequence in (0, 1) and {sn} is a real sequence. Let
∑∞

n=1 rn < ∞ and
sn ≤ αnM for some M ≥ 0. Then, {pn} is bounded.

3 Two-step inertial forward–reflected–anchored–backward splitting
algorithm

In this section, we first propose and then study the convergence analysis of the following
algorithm.

123

351 Page 6 of 20 C. Izuchukwu et al.

Algorithm 3.1 Let λ0, λ1 > 0, ϑ ∈ [0, 1), β ≤ 0, δ ∈
(

t, 1−2t
2

)

with t ∈ (0, 1
4), and

choose sequences {αn} in (0, 1) and {en} in [0,∞) such that
∑∞

n=1 en < ∞. For arbitrary
v̂, x−1, x0, x1 ∈ H, let the sequence {xn} be generated by

xn+1 = J A
λn

(

αn v̂ + (1 − αn)
[

xn + ϑ(xn − xn−1) + β(xn−1 − xn−2)
] − λn Bxn

−λn−1(1 − αn)(Bxn − Bxn−1)) ,

for all n ≥ 1, where

λn+1 =
{

min
{

δ‖xn−xn+1‖
‖Bxn−Bxn+1‖ , λn + en

}

, if Bxn �= Bxn+1,

λn + en, otherwise.
(3.1)

Algorithm 3.1 is called a two-step inertial forward–reflected–anchored–backward splitting
algorithms since it involves an anchor v̂, an anchoring coefficient αn , a two-step inertial term
and the forward–reflected–backward splitting algorithm (1.5). This algorithm can also be
viewed as a two-step inertial Halpern-type forward–reflected–backward method since it is
based on the Halpern iteration. For more information on the convergence of Halpern-type
methods for solving optimization problems, see, for example, Qi and Xu (2021); Yoon and
Ryu (2021).

Assumption 3.2

(a) A is maximal monotone,
(b) B is monotone and Lipschitz continuous with constant L > 0,
(c) (A + B)−1(0) is nonempty,
(d) ϑ and β satisfy 0 ≤ ϑ < 1

3

(

1 − 2(12 − t)
)

, 1
3+4ϑ

(

3ϑ − 1 + 2(12 − t)
)

< β ≤ 0.

Remark 3.3 By (3.1), limn→∞ λn = λ, where λ ∈ [min{δL−1, λ1}, λ1 + e] with e =
∑∞

n=1 en (see (Liu and Yang 2020)). If en = 0, then the step size λn in (3.1) is similar to
the one in Bing and Cho (2021), which is derived from the paper (Yang and Liu 2019) for
solving variational inequalities.

Lemma 3.4 Let {xn} be generated by Algorithm 3.1 when Assumption 3.2 holds. If lim
n→∞ αn =

0, then the sequence {xn} is bounded.
Proof Let x̂ ∈ (A+ B)−1(0) and un := αn v̂ + (1−αn)vn , where vn = xn +ϑ(xn − xn−1)+
β(xn−1 − xn−2). Then

− λn Bx̂ ∈ λn Ax̂ (3.2)

and

un − λn Bxn − λn−1(1 − αn)(Bxn − Bxn−1) − xn+1 ∈ λn Axn+1. (3.3)

Since A is monotone, we get from (3.2) and (3.3) that

〈un − λn Bxn − λn−1(1 − αn)(Bxn − Bxn−1) − xn+1 + λn Bx̂, xn+1 − x̂〉 ≥ 0.

This implies

0 ≤ 2 〈xn+1 − un + λn Bxn + λn−1(1 − αn)(Bxn − Bxn−1) − λn Bx̂, x̂ − xn+1〉
= 2〈xn+1 − un, x̂ − xn+1〉 + 2λn〈Bxn − Bx̂, x̂ − xn+1〉 + 2λn−1(1 − αn)

〈Bxn − Bxn−1, x̂ − xn〉 + 2λn−1(1 − αn)〈Bxn − Bxn−1, xn − xn+1〉

123

Two-step inertial forward–reflected... Page 7 of 20 351

= ‖un − x̂‖2 − ‖xn+1 − x̂‖2 − ‖xn+1 − un‖2 + 2λn〈Bxn − Bx̂, x̂ − xn+1〉
+2λn−1(1 − αn)〈Bxn − Bxn−1, x̂ − xn〉 + 2λn−1(1 − αn)〈Bxn − Bxn−1, xn − xn+1〉,

(3.4)

where the last equation follows from (2.1).
Now, using the monotonicity of B, we get

〈Bxn − Bx̂, x̂ − xn+1〉 ≤ 〈Bxn − Bxn+1, x̂ − xn+1〉. (3.5)

Also, using (3.1), we have

2λn−1〈Bxn − Bxn−1, xn − xn+1〉 ≤ 2λn−1‖Bxn − Bxn−1‖‖xn − xn+1‖
≤ 2λn−1

λn
δ‖xn − xn−1‖‖xn − xn+1‖

≤ λn−1

λn
δ
(

‖xn − xn−1‖2 + ‖xn+1 − xn‖2
)

.

Using Remark 3.3 and noting that δ ∈
(

t, 1−2t
2

)

, we see that limn→∞ λn−1
λn

δ = δ < 1
2 − t .

Hence, there exists n0 ≥ 1 such that λn−1
λn

δ < 1
2 − t ∀n ≥ n0. Thus, we obtain that

2λn−1〈Bxn − Bxn−1, xn − xn+1〉 ≤
(

1

2
− t

)

(

‖xn − xn−1‖2 + ‖xn+1 − xn‖2
)

. (3.6)

Putting (3.5) and (3.6) in (3.4), we obtain

‖xn+1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
≤ ‖un − x̂‖2 − ‖xn+1 − un‖2 + 2λn−1(1 − αn)〈Bxn − Bxn−1, x̂ − xn〉
+(1 − αn)

(1

2
− t

) (‖xn − xn−1‖2 + ‖xn+1 − xn‖2
) ∀n ≥ n0. (3.7)

From (2.1), we get

‖un − x̂‖2 = ‖(vn − x̂) − αn(vn − v̂)‖2
= ‖vn − x̂‖2 + α2

n‖vn − v̂‖2 − 2αn〈vn − x̂, vn − v̂〉
= ‖vn − x̂‖2 + α2

n‖vn − v̂‖2 − αn‖vn − v̂‖2 − αn‖vn − x̂‖2 + αn‖v̂ − x̂‖2.
(3.8)

Replacing x̂ by xn+1 in (3.8), we get

‖un − xn+1‖2 = ‖vn − xn+1‖2 + α2
n‖vn − v̂‖2 − αn‖vn − v̂‖2 − αn‖vn − xn+1‖2

+αn‖v̂ − xn+1‖2. (3.9)

Now, subtracting (3.9) from (3.8), we obtain

‖un − x̂‖2 − ‖un − xn+1‖2
= (1 − αn)‖vn − x̂‖2 + αn‖v̂ − x̂‖2 − (1 − αn)‖xn+1 − vn‖2 − αn‖xn+1 − v̂‖2.

(3.10)

Using (3.10) in (3.7), we obtain

‖xn+1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
≤ (1 − αn)‖vn − x̂‖2 + αn‖v̂ − x̂‖2 − (1 − αn)‖xn+1 − vn‖2 − αn‖xn+1 − v̂‖2

123

351 Page 8 of 20 C. Izuchukwu et al.

+2λn−1(1 − αn)〈Bxn − Bxn−1, x̂ − xn〉
+(1 − αn)

(1

2
− t

) (‖xn − xn−1‖2 + ‖xn+1 − xn‖2
) ∀n ≥ n0. (3.11)

From (2.2), we get

‖vn − x̂‖2 = ‖xn + ϑ(xn − xn−1) + β(xn−1 − xn−2) − x̂‖2
= ‖(1 + ϑ)(xn − x̂) − (ϑ − β)(xn−1 − x̂) − β(xn−2 − x̂)‖2
= (1 + ϑ)‖xn − x̂‖2 − (ϑ − β)‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2

+(1 + ϑ)(ϑ − β)‖xn − xn−1‖2 + β(1 + ϑ)‖xn − xn−2‖2
−β(ϑ − β)‖xn−1 − xn−2‖2. (3.12)

Also, from (2.1), we get

‖xn+1 − vn‖2 = ‖xn+1 − xn‖2 − 2〈xn+1 − xn, ϑ(xn − xn−1) + β(xn−1 − xn−2)〉
+‖ϑ(xn − xn−1) + β(xn−1 − xn−2)‖2
= ‖xn+1 − xn‖2 − 2ϑ〈xn+1 − xn, xn − xn−1〉
−2β〈xn+1 − xn, xn−1 − xn−2〉 + ϑ2‖xn − xn−1‖2
+2βϑ〈xn − xn−1, xn−1 − xn−2〉 + β2‖xn−1 − xn−2‖2. (3.13)

Now, observe that

− 2ϑ〈xn+1 − xn, xn − xn−1〉 ≥ −2ϑ‖xn+1 − xn‖‖xn − xn−1‖
≥ −ϑ‖xn+1 − xn‖2 − ϑ‖xn − xn−1‖2, (3.14)

−2β〈xn+1 − xn, xn−1 − xn−2〉 ≥ −2|β|‖xn+1 − xn‖‖xn−1 − xn−2‖
≥ −|β|‖xn+1 − xn‖2 − |β|‖xn−1 − xn−2‖2, (3.15)

2βϑ〈xn − xn−1, xn−1 − xn−2〉 ≥ −2|β|ϑ‖xn − xn−1‖‖xn−1 − xn−2‖
≥ −|β|ϑ‖xn − xn−1‖2 − |β|ϑ‖xn−1 − xn−2‖2.

(3.16)

Putting (3.14), (3.15) and (3.16) in (3.13), we obtain

‖xn+1 − vn‖2 ≥ ‖xn+1 − xn‖2 − ϑ‖xn+1 − xn‖2 − ϑ‖xn − xn−1‖2
−|β|‖xn+1 − xn‖2 − |β|‖xn−1 − xn−2‖2 + ϑ2‖xn − xn−1‖2
−|β|ϑ‖xn − xn−1‖2 − |β|ϑ‖xn−1 − xn−2‖2 + β2‖xn−1 − xn−2‖2
= (1 − ϑ − |β|)‖xn+1 − xn‖2 + (ϑ2 − ϑ − ϑ |β|)‖xn − xn−1‖2
+(β2 − |β| − ϑ |β|)‖xn−1 − xn−2‖2. (3.17)

Now, putting (3.12) and (3.17) in (3.11), we obtain

‖xn+1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
≤ (1 − αn)

[

(1 + ϑ)‖xn − x̂‖2 − (ϑ − β)‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2

+(1 + ϑ)(ϑ − β)‖xn − xn−1‖2 + β(1 + ϑ)‖xn − xn−2‖2 − β(ϑ − β)‖xn−1 − xn−2‖2
]

+αn‖v̂ − x̂‖2 − (1 − αn)
[

(1 − ϑ − |β|)‖xn+1 − xn‖2 + (ϑ2 − ϑ − ϑ |β|)‖xn − xn−1‖2

+(β2 − |β| − ϑ |β|)‖xn−1 − xn−2‖2
]

− αn‖xn+1 − v̂‖2 + 2λn−1(1 − αn)

123

Two-step inertial forward–reflected... Page 9 of 20 351

×〈Bxn − Bxn−1, x̂ − xn〉 + (1 − αn)

(

1

2
− t

)

(‖xn − xn−1‖2 + ‖xn+1 − xn‖2
)

≤ (1 − αn)
[

(1 + ϑ)‖xn − x̂‖2 − (ϑ − β)‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2

+(2ϑ − β − ϑβ + ϑ |β|)‖xn − xn−1‖2 + (|β| + |β|ϑ − βϑ)‖xn−1 − xn−2‖2
−(1 − ϑ − |β|)‖xn+1 − xn‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

]

+αn‖v̂ − x̂‖2 + (1 − αn)

(

1

2
− t

)

(‖xn − xn−1‖2 + ‖xn+1 − xn‖2
) ∀n ≥ n0.

This implies that

‖xn+1 − x̂‖2 − ϑ‖xn − x̂‖2 − β‖xn−1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
+(1 − |β| − ϑ − 1

2
+ t)‖xn+1 − xn‖2 ≤ (1 − αn)

[

‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2

−β‖xn−2 − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉
+(1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

]

+ αn‖v̂ − x̂‖2

+(1 − αn)

[

2(
1

2
− t) + 3ϑ − 1 + (1 + ϑ)(|β| − β)

]

‖xn − xn−1‖2

+(1 − αn) [|β| + |β|ϑ − βϑ] ‖xn−1 − xn−2‖2 = (1 − αn)

×
[

‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

+(1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

−
(

2(
1

2
− t) + 3ϑ − 1 + (1 + ϑ)(|β| − β)

)

(‖xn−1 − xn−2‖2 − ‖xn − xn−1‖2
)

]

+ αn‖v̂ − x̂‖2

−(1 − αn)

[

−
(

2(
1

2
− t) + 3ϑ − 1 + (1 + ϑ)(|β| − β)

)

− (|β| + |β|ϑ − βϑ)

]

‖xn−1

−xn−2‖2 ∀n ≥ n0. (3.18)

Set c1 := − (

2(12 − t) + 3ϑ − 1 + (1 + ϑ)(|β| − β)
)

, c2 := 1 − 3ϑ − 2(12 − t) − 2|β| −
2ϑ |β| + β + 2ϑβ and pn := ‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2 + 2λn−1〈Bxn −
Bxn−1, x̂ − xn〉 + (1 − |β| − ϑ − 1

2 + t)‖xn − xn−1‖2 + c1‖xn−1 − xn−2‖2. Then, (3.18)
becomes

pn+1 ≤ (1 − αn)pn + αn‖v̂ − x̂‖2 − (1 − αn)c2‖xn−1 − xn−2‖2 ∀n ≥ n0. (3.19)

Next, we show that c1, c2 are positive and pn is nonnegative. From Assumption 3.2 (d),
3ϑ −1+2(12 − t) < 0. Thus, 1

2+2ϑ

(

3ϑ − 1 + 2(12 − t)
)

< 1
3+4ϑ

(

3ϑ − 1 + 2(12 − t)
)

< β,

which implies that 3ϑ − 1 + 2
(1
2 − t

) − 2β − 2ϑβ < 0.
Since |β| = −β, we obtain

3ϑ − 1 + 2

(

1

2
− t

)

+ |β| − β + ϑ |β| − ϑβ < 0, (3.20)

which implies that c1 > 0.

123

351 Page 10 of 20 C. Izuchukwu et al.

Now, using 1
3+4ϑ

(

3ϑ − 1 + 2(12 − t)
)

< β, we obtain that 1−3ϑ−2(12−t)+3β+4βϑ > 0.
Since |β| = −β, we get

1 − 3ϑ − 2

(

1

2
− t

)

− 2|β| + β − 2|β|ϑ + 2βϑ > 0. (3.21)

Hence, c2 > 0.
On the other hand, since β ≤ 0 and c1 > 0, we get for all n ≥ n0, that

pn ≥ ‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉
+(1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

≥ ‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − λn−1

λn
δ
(‖xn − xn−1‖2 + ‖xn − x̂‖2) + (1 − |β| − ϑ

−1

2
+ t)‖xn − xn−1‖2

≥ ‖xn − x̂‖2 − ϑ
(

2‖xn − xn−1‖2 + 2‖xn − x̂‖2)

−
(

1

2
− t

)

(‖xn − xn−1‖2 + ‖xn − x̂‖2) + (1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

=
(

1 − 2ϑ −
(

1

2
− t

))

‖xn − x̂‖2 + (1 − |β| − 3ϑ − 2(
1

2
− t))‖xn − xn−1‖2

≥
(

1 − 3ϑ −
(

1

2
− t

))

‖xn − x̂‖2 +
(

1 − |β| − 3ϑ − 2

(

1

2
− t

))

‖xn − xn−1‖2.
(3.22)

Sinceϑ < 1
3

(

1 − 2(12 − t)
)

, we get 3ϑ−1+2(12 −t) < 0. This imply that 1−3ϑ−(12 −t) >

0, and 3ϑ−1+2(12−t) < 1
3+4θ (3ϑ−1+2(12−t)) < β. Hence,−|β|−3ϑ+1−2(12−t)) > 0.

Therefore, we get from (3.22) that pn ≥ 0 for all n ≥ n0. Using these facts in (3.19), we
obtain that {pn} is bounded. It then follows from (3.22) that the sequence {xn} is indeed
bounded, as claimed. ��

We now state and prove the convergence theorem of this paper.

Theorem 3.5 Let {xn} be generated by Algorithm 3.1 when Assumption 3.2 holds. If
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞, then {xn} converges strongly to P(A+B)−1(0)v̂.

Proof Let x̂ = P(A+B)−1(0)v̂. Then by (2.1), we get

‖un − x̂‖2 = ‖αn(v̂ − x̂) + (1 − αn)(vn − x̂)‖2
= α2

n‖v̂ − x̂‖2 + (1 − αn)
2‖vn − x̂‖2 + 2αn(1 − αn)〈v̂ − x̂, vn − x̂〉

(3.23)

Again, using (2.1), we get

‖un − xn+1‖2 = α2
n‖v̂ − xn+1‖2 + (1 − αn)

2‖vn − xn+1‖2 + 2αn(1 − αn)〈v̂ − xn+1, vn − xn+1〉
≥ α2

n‖xn+1 − v̂‖2 + (1 − αn)
2‖xn+1 − vn‖2 − 2αn(1 − αn)‖xn+1 − v̂‖‖xn+1 − vn‖

≥ α2
n‖xn+1 − v̂‖2 + (1 − αn)

2‖xn+1 − vn‖2 − 2αn(1 − αn)M‖xn+1 − vn‖, (3.24)

where M := sup
n≥1

‖xn+1 − v̂‖ which exists due to the boundedness of {xn} proved in

Lemma 3.4.

123

Two-step inertial forward–reflected... Page 11 of 20 351

Now, using (3.23) and (3.24) in (3.7), we see that

‖xn+1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
≤ α2

n‖v̂ − x̂‖2 + (1 − αn)
2‖vn − x̂‖2 + 2αn(1 − αn)〈v̂ − x̂, vn − x̂〉

− (

α2
n‖xn+1 − v̂‖2 + (1 − αn)

2‖xn+1 − vn‖2 − 2αn(1 − αn)M‖xn+1 − vn‖
)

+2λn−1(1 − αn)〈Bxn − Bxn−1, x̂ − xn〉
+(1 − αn)

(1

2
− t

) (‖xn − xn−1‖2 + ‖xn+1 − xn‖2
)

≤ (1 − αn)
(‖vn − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

)

+αn
(

αn‖v̂ − x̂‖2 + 2(1 − αn)〈v̂ − x̂, vn − x̂〉 + 2(1 − αn)M‖xn+1 − vn‖
)

−(1 − αn)
2‖xn+1 − vn‖2 + (1 − αn)

(1

2
− t

) (‖xn − xn−1‖2 + ‖xn+1 − xn‖2
) ∀n ≥ n0.

(3.25)

Next, putting (3.12) and (3.17) in (3.25), we obtain

‖xn+1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
≤ (1 − αn)

[

(1 + ϑ)‖xn − x̂‖2 − (ϑ − β)‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2

+(1 + ϑ)(ϑ − β)‖xn − xn−1‖2 + β(1 + ϑ)‖xn − xn−2‖2
−β(ϑ − β)‖xn−1 − xn−2‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

]

+αn
(

αn‖v̂ − x̂‖2 + 2(1 − αn)〈v̂ − x̂, vn − x̂〉 + 2(1 − αn)M‖xn+1 − vn‖
)

−(1 − αn)
2
[

(1 − ϑ − |β|)‖xn+1 − xn‖2 + (ϑ2 − ϑ − ϑ |β|)‖xn − xn−1‖2

+(β2 − |β| − ϑ |β|)‖xn−1 − xn−2‖2
]

+(1 − αn)
(1

2
− t

) (‖xn − xn−1‖2 + ‖xn+1 − xn‖2
)

.

This implies that

‖xn+1 − x̂‖2 − ϑ‖xn − x̂‖2 − β‖xn−1 − x̂‖2 + 2λn〈Bxn+1 − Bxn, x̂ − xn+1〉
+(1 − |β| − ϑ − 1

2
+ t)‖xn+1 − xn‖2

≤ (1 − αn)
[

‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

+(1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

]

+αn

(

αn‖v̂ − x̂‖2 + 2(1 − αn)〈v̂ − x̂, vn − x̂〉 + 2(1 − αn)M‖xn+1 − vn‖
)

+(1 − αn)

[

2(
1

2
− t) + 2ϑ − β − ϑβ − 1 + |β| + ϑ2 − (1 − αn)(ϑ

2 − ϑ − ϑ |β|)
]

‖xn − xn−1‖2 + (1 − αn)
[

β2 − βϑ − (1 − αn)(β
2 − |β| − ϑ |β|

]

‖xn−1 − xn−2‖2

= (1 − αn)
[

‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2 + 2λn−1〈Bxn − Bxn−1, x̂ − xn〉

+(1 − |β| − ϑ − 1

2
+ t)‖xn − xn−1‖2

123

351 Page 12 of 20 C. Izuchukwu et al.

−
(

2(
1

2
− t) + 2ϑ − β − ϑβ − 1 + |β| + ϑ2 − (1 − αn)(ϑ

2 − ϑ − ϑ |β|)
)

(

‖xn−1 − xn−2‖2 − ‖xn − xn−1‖2
)]

+αn

(

αn‖v̂ − x̂‖2 + 2(1 − αn)〈v̂ − x̂, vn − x̂〉 + 2(1 − αn)M‖xn+1 − vn‖
)

−(1 − αn)
[

1 − 2ϑ − 2(
1

2
− t) + β + 2ϑβ − |β| − β2 − ϑ2 + (1 − αn)(ϑ

2 − ϑ − ϑ |β|)
+(1 − αn)(β

2 − |β| − ϑ |β|)
]

‖xn−1 − xn−2‖2 ∀n ≥ n0.

That is,

tn+1 ≤ (1 − αn)tn + αnqn − (1 − αn)dn‖xn−1 − xn−2‖2 ∀n ≥ n0, (3.26)

where dn = 1 − 2ϑ − 2(12 − t) + β + 2ϑβ − |β| − β2 − ϑ2 + (1 − αn)(ϑ
2 − ϑ −

ϑ |β|) + (1 − αn)(β
2 − |β| − ϑ |β|), tn = ‖xn − x̂‖2 − ϑ‖xn−1 − x̂‖2 − β‖xn−2 − x̂‖2 +

2λn−1〈Bxn − Bxn−1, x̂ − xn〉 + (1− |β| − ϑ − 1
2 + t)‖xn − xn−1‖2 + cn‖xn−1 − xn−2‖2,

cn = − [

2(12 − t) + 2ϑ − β − ϑβ − 1 + |β| + ϑ2 − (1 − αn)(ϑ
2 − ϑ − ϑ |β|)] and qn =

αn‖v̂ − x̂‖2 + 2(1 − αn)〈v̂ − x̂, vn − x̂〉 + 2(1 − αn)M‖xn+1 − vn‖.
From (3.20), we have 1− 3ϑ − 2(12 − t) − |β| + β − ϑ |β| + ϑβ > 0, which implies that

lim
n→∞ cn = lim

n→∞−
[

2

(

1

2
− t

)

+ 2ϑ − β − ϑβ − 1 + |β| + ϑ2 − (1 − αn)(ϑ
2 − ϑ − ϑ |β|)

]

= 1 − 3ϑ − 2

(

1

2
− t

)

− |β| + β − ϑ |β| + ϑβ > 0.

Thus, there exists n1 ≥ n0 such that cn > 0 for all n ≥ n1. Also, from (3.21), we have
1 − 3ϑ − 2

(1
2 − t

) − 2|β| + β − 2|β|ϑ + 2βϑ > 0, which implies

lim
n→∞ dn = lim

n→∞
[

1 − 2ϑ − 2

(

1

2
− t

)

+ β + 2ϑβ − |β| − β2 − ϑ2

+(1 − αn)(ϑ
2 − ϑ − ϑ |β|) + (1 − αn)(β

2 − |β| − ϑ |β|)
]

= 1 − 3ϑ − 2

(

1

2
− t

)

− 2|β| + β − 2|β|ϑ + 2βϑ > 0.

There exists n2 ≥ n0 such that dn > 0 for all n ≥ n2. Therefore,

tn+1 ≤ (1 − αn)tn + αnqn, ∀n ≥ n2. (3.27)

Let {tni } be a subsequence of {tn} such that lim inf i→∞
(

tni+1 − tni
) ≥ 0. Then, it follows

from (3.26) that

lim sup
i→∞

[

(1 − αni)dni ‖xni−1 − xni−2‖2
]

≤ lim sup
i→∞

[

(tni − tni+1) + αni (qni − tni)
]

≤ − lim inf
i→∞ (tni+1 − tni) ≤ 0.

Since limi→∞(1 − αni)dni > 0, we get

lim
i→∞ ‖xni−1 − xni−2‖ = 0 = lim

i→∞ ‖xni+1 − xni ‖. (3.28)

123

Two-step inertial forward–reflected... Page 13 of 20 351

Thus,

lim
i→∞ ‖vni − xni ‖ = lim

i→∞ ‖ϑ(xni − xni−1) + β(xni−1 − xni−2)‖ = 0. (3.29)

Using (3.28) and (3.29), we obtain

lim
i→∞ ‖xni+1 − vni ‖ = 0. (3.30)

Since limn→∞ αn = 0, we get

lim
i→∞ ‖uni − vni ‖ = lim

i→∞ αni ‖v̂ − vni ‖ = 0. (3.31)

Using (3.30) and (3.31), we obtain

lim
i→∞ ‖uni − xni+1‖ = 0. (3.32)

From (3.28) and the Lipschitz continuity of B, we find that

lim
i→∞ ‖Bxni+1 − Bxni ‖ = 0. (3.33)

In the light of Lemma 3.4, we see that {xni } is bounded. Thus, we can choose a subsequence
{xni j } of {xni } such that {xni j } converges weakly to some x∗ ∈ H, and

lim sup
i→∞

〈v̂ − x̂, xni − x̂〉 = lim
j→∞〈v̂ − x̂, xni j − x̂〉 = 〈v̂ − x̂, x∗ − x̂〉. (3.34)

Now, consider (u, v) ∈ G(A + B). Then λni j
(v − Bu) ∈ λni j

Au. Using this, (3.3) and the
monotonicity of A, we find that

〈λni j (v − Bu) −uni j + λni j
Bxni j + λni j −1(1 − αni j

)(Bxni j − Bxni j −1) + xni j +1, u

−xni j +1〉 ≥ 0.

Thus, using the monotonicity of B, we obtain

〈v, u − xni j +1〉 ≥ 1

λni j

〈λni j Bu + uni j − λni j
Bxni j − λni j −1(1 − αni j

)

(Bxni j − Bxni j −1) − xni j +1, u − xn j+1〉
= 〈Bu − Bxni j +1, u − xni j +1〉 + 〈Bxni j +1 − Bxni j , u − xni j +1〉

+
λni j −1

λni j

(1 − αni j
)〈Bxni j −1 − Bxni j , u − xni j +1〉 + 1

λni j

〈uni j − xni j +1, u − xni j +1〉

≥ 〈Bxni j +1 − Bxni j , u − xni j +1〉 +
λni j −1

λni j

(1 − αni j
)〈Bxni j −1 − Bxni j , u − xni j +1〉

+ 1

λni j

〈uni j − xni j +1, u − xni j +1〉. (3.35)

As j → ∞ in (3.35), we obtain, using (3.32) and (3.33), that 〈v, u − x∗〉 ≥ 0. By Lemma
2.2, A + B is maximal monotone. Hence, we get that x∗ ∈ (A + B)−1(0).

Since x̂ = P(A+B)−1(0)v̂, it follows from (3.34) and the characterization of the metric
projection that

lim sup
i→∞

〈v̂ − x̂, xni − x̂〉 = 〈v̂ − x̂, x∗ − x̂〉 ≤ 0. (3.36)

123

351 Page 14 of 20 C. Izuchukwu et al.

Using (3.29), (3.30) and (3.36), we obtain that lim supi→∞ qni ≤ 0. Thus, in view of the
condition

∑∞
n=1 αn = ∞, Lemma 2.1 and (3.27), we see that limn→∞ tn = 0. This together

with (3.22) imply that {xn} converges strongly to x̂ = P(A+B)−1(0)v̂, as asserted. ��
The step size defined in (3.1) makes it possible for Algorithm 3.1 to be applied in practice
even when the Lipschitz constant L of B is not known. However, when this constant is known
or can be calculated, we simply adopt the following variant of Algorithm 3.1:

Algorithm 3.6 Let λ ∈
(

0, 1
2 L

)

, ϑ ∈ [0, 1), β ≤ 0, and choose the sequence {αn} in (0, 1).

For arbitrary v̂, x−1, x0, x1 ∈ H, let the sequence {xn} be generated by

xn+1 = J A
λ

(

αn v̂ + (1 − αn)
[

xn + ϑ(xn − xn−1) + β(xn−1 − xn−2)
]

−λBxn − λ(1 − αn)(Bxn − Bxn−1)
)

, n ≥ 1.

Remark 3.7 Using arguments similar to those in Lemma 3.4 and Theorem 3.5, we can estab-
lish that the sequence {xn} generated by Algorithm 3.6 converges strongly to P(A+B)−1(0)v̂.

Remark 3.8 (a) We obtained strong convergence results for Algorithm 3.1 without assuming
that either A or B is strongly monotone (a condition that is quite restrictive). Rather,
we modified the forward–reflected–backward splitting algorithm in Malitsky and Tam
(2020) appropriately to obtain our strong convergent results.

(b) Compared to Izuchukwu et al. (2023), we proved the strong convergence ofAlgorithm3.1
using the double inertial technique.

Remark 3.9 A more careful examination of Algorithm 3.1 and it convergence analysis can
help us to relax the Lipschitz continuity on B to uniform continuity (see, for example (Thong
et al. (2023), page 1114). In a finite-dimensional space, B can even be continuous (see
(Izuchukwu and Shehu 2021, Section 3)). However, as seen in these papers, this relaxation
may be achieved with the cost of having strict restrictions on the stepsize {λn} (e.g., through
some linesearch techniques). Therefore, we intend to investigate these restrictions in detail
in a different project in the future.

4 Numerical illustrations

In this section, using test exampleswhich originate from image restoration problem, aswell as
an academic example, we compare Algorithm 3.1 with other strongly convergent algorithms
(Alakoya et al. 2022, Algorithm 3.2), (Bing and Cho (2021), Algorithm 3.3 and Algorithm
3.4) and (Tan et al. 2022, Algorithm 3.4).

Example 4.1 We consider the image restoration problem:

min
x̂∈Rm

{||Dx̂ − ĉ||22 + λ||x̂ ||1}, (4.1)

where λ > 0 (we take λ = 1), x̂ ∈ R
m is the original image to be restored, ĉ ∈ R

N is the
observed image and D : R

m → R
N is the blurring operator. The quality of the restored

image is measured by

SNR = 20 × log10

(‖x̂‖2
‖x̂ − x∗‖2

)

,

where SNR means signal-to-noise ratio, and x∗ is the recovered image.

123

Two-step inertial forward–reflected... Page 15 of 20 351

Table 1 Numerical results for Example 4.1

Algorithms Tire Cameraman MRI

CPU SNR CPU SNR CPU SNR

Algorithm 3.1(β = 0) 2.1539 23.8161 3.5081 27.1814 1.2041 22.2532

Algorithm 3.1(β < 0) 2.0619 24.9034 3.3771 28.2117 1.0834 23.4239

Alakoya et al. (2022) (Alg. 3.2) 2.9932 22.6727 3.7837 23.9715 1.5632 21.1304

Bing and Cho (2021) (Alg. 3.3) 3.0416 21.4362 3.7878 23.8642 1.5637 20.5384

Bing and Cho (2021) (Alg. 3.4) 3.1237 21.5359 3.8655 22.0838 1.4766 21.9832

Tan et al. (2022) (Alg. 3.4) 3.0428 22.2126 3.9859 23.0429 1.4453 20.6924

Table 2 Numerical results for Example 4.2 with ε = 10−7

Algorithms Case 1 Case 2 Case 3 Case 4

CPU Iter CPU Iter CPU Iter CPU Iter

Algorithm 3.1(β = 0) 0.1112 19 0.1190 21 0.1121 20 0.2221 18

Algorithm 3.1(β < 0) 0.0117 14 0.0113 16 0.0122 15 0.1164 13

Alakoya et al. (2022) (Alg. 3.2) 1.0159 74 1.0153 82 1.0152 78 1.1153 70

Bing and Cho (2021) (Alg. 3.3) 1.0137 66 1.0143 73 1.0151 70 1.1138 63

Bing and Cho (2021) (Alg. 3.4) 1.0118 31 1.0124 35 1.0118 33 1.1117 30

Tan et al. (2022) (Alg. 3.4) 1.0149 88 1.0168 101 1.0146 95 1.1150 85

For the implementation, we take x0 = 0 ∈ R
m×m and x−1 = x1 = 1 ∈ R

m×N , and use
the following image found in the MATLAB Image Processing Toolbox:

(a) Tire Image of size 205 × 232. To create the blurred and noisy image (observed image),
we use the Gaussian blur of size 9 × 9 and standard deviation σ = 4.

(b) Cameraman Image of size 256×256.We use the Gaussian blur of size 7×7 and standard
deviation σ = 4.

(c) Medical Resonance Imaging (MRI) of size 128× 128. We use the Gaussian blur of size
7 × 7 and standard deviation σ = 4.

Example 4.2 Let H = l2(R) := {x = (x1, x2, ..., xi , ...), xi ∈ R : ∑∞
i=1 |xi |2 < ∞} and

||x ||l2 := (∑∞
i=1 |xi |2

) 1
2 ∀x ∈ l2(R).

Define A, B : l2 → l2 by

Ax := (2x1, 2x2, ..., 2xi , ...) , ∀x ∈ l2

and

Bx :=
(

x1 + |x1|
2

,
x2 + |x2|

2
, ...,

xi + |xi |
2

, ...

)

, ∀x ∈ l2.

Then, A is maximal monotone and B is Lipschitz continuous and monotone with Lipschitz
constant L = 1.
For the implementation, we take the starting points:

123

351 Page 16 of 20 C. Izuchukwu et al.

Fig. 1 Numerical results for Tire

Fig. 2 Numerical results for Cameraman

Case 1: x0 = (23 ,
4
9 ,

8
27 , · · ·), x−1 = x1 = (23 ,

4
9 ,

8
27 , · · ·).

Case 2: x0 = (23 ,
4
9 ,

8
27 , · · ·), x−1 = x1 = (12 ,

1
4 ,

1
8 , · · ·).

Case 3: x0 = (1, 1
2 ,

1
4 , · · ·), x−1 = x1 = (45 ,

16
25 ,

64
125 , · · ·).

Case 4: x0 = (1, 1
4 ,

1
9 , · · ·), x−1 = x1 = (34 ,

9
16 ,

27
64 , · · ·).

During the implementation, we make use of the following:

• Algorithm 3.1: λ0 = 0.1, λ1 = 0.3, δ = 0.25, αn = 0.005
3n+25000 , en = 16

(n+1)1.1
, t =

0.2, ϑ = 0.12, β = {0,−0.01}.
• Alakoya et al. (2022) (Alg. 3.2): θ = 0.12, λ1 = 0.3, μ = 0.25, αn = 0.005

3n+25000 , ρn =
16

(n+1)1.1
, ξn = 1

(2n+1)4
, f (x) = 1

3 x .

• Bing and Cho (2021) (Alg. 3.3): θ = 0.12, λ1 = 0.3, μ = 0.25, αn = 0.005
3n+25000 , βn =

0.5(1 − αn), εn = 1
(2n+1)4

.

123

Two-step inertial forward–reflected... Page 17 of 20 351

Fig. 3 Numerical results for MRI

Fig. 4 The behavior of TOLn for Example 4.2 with ε = 10−7: Top Left: Case 1; Top Right: Case 2; Bottom
left: Case 3; Bottom Right: Case 4

123

351 Page 18 of 20 C. Izuchukwu et al.

• Bing and Cho (2021) (Alg. 3.4): θ = 0.12, λ1 = 0.3, μ = 0.25, αn = 0.005
3n+25000 , εn =

1
(2n+1)4

, f (x) = 1
3 x .

• Tan et al. (2022) (Alg. 3.4): τ = 0.12, μ = 0.25, ϑ1 = 0.3, θ = 1.5, σn =
0.005

3n+25000 , ϕn = 0.5(1 − σn), εn = 100
(n+1)2

, ξn = 16
(n+1)1.1

.

We then use the stopping criterion; TOLn := 0.5‖xn−J A(xn−Bxn)‖2 < ε for all algorithms,
where ε is the predetermined error.
All the computations are performed using Matlab 2016 (b) which is running on a personal
computer with an Intel(R) Core(TM) i5-2600 CPU at 2.30GHz and 8.00 Gb-RAM.

In Tables 1 and 2, “Iter” and “CPU” mean the CPU time in seconds and the number of
iterations, respectively.

Remark 4.3 Figures1, 2, 3 can be seen clearly (or understood better) by looking at the graphs
of “SNR” vs “Iteration number (n)”, and Table 1. Note that the larger the SNR, the better the
quality of the restored image.

5 Conclusion

We have proposed a two-step inertial forward–reflected–anchored–backward splitting algo-
rithm for solving the monotone inclusion problem (1.1) in a real Hilbert space. We have also
proved that the sequence generated by this algorithm converges strongly to a solution of the
monotone inclusion problem. This algorithm inherits the attractive features of the forward–
reflected–backward splitting algorithm (1.5), namely it involves only one forward evaluation
of B even when B is not required to be cocoercive. However, unlike the forward–reflected–
backward splitting algorithm (1.5), our algorithm converges strongly. Numerical results show
that the proposed algorithm is efficient and faster than other related strongly convergent split-
ting algorithms in the literature. We remark that our proposed algorithm involves a restrictive
condition on {en}; for example, the sequence { 1n } does not satisfy this condition. Therefore,
we intend to relax the restriction on {en} in our ongoing projects.

Acknowledgements We thank the referees sincerely for their valuable comments and suggestions that help
to improve our manuscript.

Funding Open access funding provided by University of the Witwatersrand.

Availability of supporting data Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval and consent to participate All the authors gave the ethical approval and consent to participate
in this article.

Consent for publication All the authors gave consent for the publication of identifiable details to be published
in the journal and article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the

123

Two-step inertial forward–reflected... Page 19 of 20 351

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alakoya TO,MewomoOT, ShehuY (2022) Strong convergence results for quasimonotone variational inequal-
ities. Math Meth Oper Res 95:249–279

Alvarez F, Attouch H (2001) An Inertial proximal method for maximal monotone operators via discretization
of a nonlinear oscillator with damping. Set-Valued Anal 9:3–11

Bing T, Cho SY (2021) Strong convergence of inertial forward-backward methods for solving monotone
inclusions. Appl Anal. https://doi.org/10.1080/00036811.2021.1892080

Cevher V, Vũ BC (2021) A reflected forward-backward splitting method for monotone inclusions involving
Lipschitzian operators. Set-Valued Var Anal 29:163–174

Combettes PL, Glaudin LE (2017) Quasi-nonexpansive iterations on the affine hull of orbits: from Mann’s
mean value algorithm to inertial methods. SIAM J Optim 27:2356–2380

Dong QL, Huang JZ, Li XH, Cho YJ, Rassias TM (2019) MiKM: multi-step inertial Krasnosel’skii-Mann
algorithm and its applications. J Global Optim 73:801–824

Gibali A, Thong DV (2018) Tseng type methods for solving inclusion problems and its applications, Calcolo,
55. https://doi.org/10.1007/s10092-018-0292-1

Iyiola OS, Shehu Y (2022) Convergence results of two-step inertial proximal point algorithm. Appl Numer
Math 182:57–75

Izuchukwu C, Shehu Y (2021) New inertial projection methods for solving multivalued variational inequality
problems beyond monotonicity. Netw Spat Econ 21:291–323

Izuchukwu C, Reich S, Shehu Y, Taiwo A (2023) Strong convergence of forward-reflected-backward splitting
methods for solving monotone inclusions with applications to image restoration and optimal control. J
Sci Comput 94:1–31

Izuchukwu C, Reich S, Shehu Y (2022) Convergence of two simple methods for solving monotone inclusion
problems in reflexive Banach spaces, Results Math., 77, https://doi.org/10.1007/s00025-022-01694-5

Lemaire B (1997)Which fixed point does the iteration method select? Recent advances in optimization. Spring
Berlin, Germany 452:154–157

Liang J (2016) Convergence rates of first-order operator splitting methods. PhD thesis, Normandie Université;
GREYC CNRS UMR 6072

Li X, Dong Q.L, Gibali A (2022) PMiCA - Parallel multi-step inertial contracting algorithm for solving
common variational inclusions. J Nonlinear Funct Anal 2022

Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, Berlin
Lions PL, Mercier B (1979) Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal

16:964–979
Liu H, Yang J (2020) Weak convergence of iterative methods for solving quasimonotone variational inequal-

ities. Comput Optim Appl 77(2):491–508
Liu L, Cho SY, Yao JC (2021) Convergence analysis of an inertial Tseng’s extragradient algorithm for solving

pseudomonotone variational inequalities and applications. J Nonlinear Var Anal 5:627–644
Maingé PE (2007) Approximation methods for common fixed points of nonexpansive mappings in Hilbert

spaces. J Math Anal Appl 325(1):469–479
Malitsky Y, Tam MK (2020) A forward-backward splitting method for monotone inclusions without cocoer-

civity. SIAM J Optim 30:1451–1472
Passty GB (1979) Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces. J Math

Anal Appl 72:383–390
Polyak BT (1964) Some methods of speeding up the convergence of iterates methods. USSR Comput Math

Phys 4(5):1–17
Polyak BT (1987) Introduction to Optimization. Optimization Software, Publications Division, New York
Poon C, Liang J (2019) Trajectory of alternating direction method of multipliers and adaptive acceleration. In

Advances In Neural Information Processing Systems
Poon C, Liang J, Geometry of First-Order Methods and Adaptive Acceleration. arXiv:2003.03910
Qi H, Xu HK (2021) Convergence of Halpern’s iteration method with applications in optimization. Numer

Funct Anal Optim. https://doi.org/10.1080/01630563.2021.2001826
Saejung S, Yotkaew P (2012) Approximation of zeros of inverse strongly monotone operators in Banach

spaces. Nonlinear Anal 75:742–750

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/00036811.2021.1892080
https://doi.org/10.1007/s10092-018-0292-1
https://doi.org/10.1007/s00025-022-01694-5
http://arxiv.org/abs/2003.03910
https://doi.org/10.1080/01630563.2021.2001826

351 Page 20 of 20 C. Izuchukwu et al.

Suparatulatorn R, Chaichana K (2022) A strongly convergent algorithm for solving common variational
inclusion with application to image recovery problems. Appl Numer Math 173:239–248

Taiwo A, Mewomo OT (2022) Inertial viscosity with alternative regularization for certain optimization and
fixed point problems. J Appl Numer Optim 4:405–423

Takahashi S, Takahashi W, Toyoda M (2010) Strong convergence theorems for maximal monotone operators
with nonlinear mappings in Hilbert spaces. J Optim Theory Appl 147:27–41

Tan B, Qin X, Yao JC (2022) Strong convergence of inertial projection and contraction methods for pseu-
domonotone variational inequalities with applications to optimal control problems. J Glob Optim
82:523–557

Thong DV, Cholamjiak P (2019) Strong convergence of a forward–backward splitting method with a new step
size for solving monotone inclusions. Comput Appl Math38. https://doi.org/10.1007/s40314-019-0855-
z

Thong DV, Reich S, Shehu Y, Iyiola OS (2023) Novel projection methods for solving variational inequality
problems and applications. Numer Algorithms 93:1105–1135

Tseng P (2000) A modified forward-backward splitting method for maximal monotone mappings. SIAM J
Control Optim 38:431–446

Wang Y, Wang F (2018) Strong convergence of the forward-backward splitting method with multiple param-
eters in Hilbert spaces. Optimization 67:493–505

Yang J, Liu H (2019) Strong convergence result for solving monotone variational inequalities in Hilbert space.
Numer Algorithms 80:741–752

YoonTH,RyuEK(2021)Accelerated algorithms for smooth convex-concaveminimaxproblemswithO(1/k2)
rate on squared gradient norm, arXiv preprint arXiv:2102.07922

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s40314-019-0855-z
https://doi.org/10.1007/s40314-019-0855-z
http://arxiv.org/abs/2102.07922

	Two-step inertial forward–reflected–anchored–backward splitting algorithm for solving monotone inclusion problems
	Abstract
	1 Introduction
	2 Preliminaries
	3 Two-step inertial forward–reflected–anchored–backward splitting algorithm
	4 Numerical illustrations
	5 Conclusion
	Acknowledgements
	References

