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Abstract
Broadly speaking, models are representations of something concrete or not. In science, mod-
els have always a purpose related to understanding and explaining phenomena. This requires
focus and selecting what to represent and what not to represent and how to represent, among
other things. Thus, a side effect of developing the scientific method is the development
of a well-structured modelling paradigm. Starting from phenomena and objects, I discuss
many decision-abstraction steps in the modelling process that leads to models of phenomena
expressed mathematically or computationally, highlighting underlining contexts and proce-
dures. This discourse is undertaken centred on a cross- and trans-disciplinary system science
perspective. It grounds on a personal perspective and may be considered as a model of the
modelling process.
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1 Preamble

This issue ofC&AMhonoursM.A.Raupp. I firstmet him in 1973.Hebecame chronologically
and cumulatively a: boss, friend, collaborator, advisor, antagonist (at least partially) and
agonist (completely) of mine. The last two terms are used with their biological/systemic
connotation of pursuing divergent directions while endowing pluses or minuses to associates
and relatives at certain moments. Retrospectively and ultimately, I must yield to some of his
visions about science with which I honestly was not comfortable with when he first moved
into them. Hence, the antagonist moves that enrich science so much.
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M.A. Raupp had an amazing gift: he was always, and quicker than most, able to identify
important issues, to find people willing and capable of handling each of these issues, and
unselfishly delegating to willing candidates the task of solving any subjacent problems asso-
ciated with them. Mine was modelling, although at the time we embraced it this term didn’t
yet exist in its actual meaning, which is described below.

Thus, this paper is about modelling—the process of building representations, mostly
abstract, for objects or phenomena, mostly real—mostly, but not a fortiori abstract or real.
Indeed, I may cover only some aspects of this process. However, our present stand does
not focus on building a specific model for a given class of objects or phenomena, rather the
contrary. In a sense, it is a partial and utterly personal review of this subject, with the aim of
supporting discussions about new avenues of thought—about new thinkflows.

2 Introduction

Models, in the sense of representations, allegories, or metaphors, have already been used
by greek philosophers and possibly before without being remarked nor named. Presently,
in the light of what we have learned from neurocognitive sciences, it looks like models are
necessary for and lay at the foundations of our mental processes. In science, at least, models
always highlight what modellers think is relevant or important in any given situation and for
any phenomenon.

They are present, crucial, and rather conspicuous in all intellectual developments since
scientific revolution, particularly when formalising empirical sciences (Béziau and Kritz
2010;Kritz andBéziau 2011;Badiou1969). For instance, each equation in physics embodies a
model, as much as any concept in physics and other sciences. Or, more correctly, an equation
is the expression of a model which resides mostly inside our minds. This is why no two
scientists read an equation exactly in the same way. The fact that most of what is expressed
by equations and other tokens is common sense among scientists is a result of the scientific
method but, nevertheless, amarvel.Words in a natural language embody amodel.Distinctions
in such models enligthen why texts may be interpreted in different ways.

This conscious and critical perception of models and their role was not needed before
the middle of last century because a phenomenon usually had just one model and rarely the
same model would represent more than one phenomenon. Even when this was the case, the
model often represented yet another phenomenon that instantiates in two different manners.
A classical example of this occurence is the harmonic oscillator with its mechanical and
electro-magnetic variants. The phenomenon is the harmonic oscillation that appears in distinct
contexts.

For this reason, models remained subjacent and unnamed till the middle of last century,
when quantum phenomena and the theory of generic systems (General Systems Theory, or
GST) unveiled the possibility of having several models representing a single phenomenon
fromdistinct standpoints andwith different details, enriching their understanding. Nowadays,
model multiplicity is believed to be indeed mandatory for taming the inherent complexity of
biological phenomena and of organised-complexity phenomena containing biological entities
as elements (von Bertalanffy 1971; Kritz 2010).

The identification of models as an important concept and intellectual tool fashioned mod-
elling and launched a flush of ad hoc activity where models were and still are build upon
demand, tailored to specific classes of phenomena and based on formalisms chosen in advance
for reasons not necessarily phenomenological. Modelling was initially called simulation and
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Fig. 1 Describing phenomena: milestones and roadmap. MVK, 2021

focused almost exclusively on (dynamic) behaviour. Nevertheless, these activities triggered
theoretical investigations about systems by themselves that yielded sound and valuable under-
standing about their generic properties, from both a formal (Mesarović and Takahara 1975,
1988; Klir 2001) and an epistemological (von Bertalanffy 1971; Weinberg 2001; Klir 2001)
stand. In the course of time, modelling widened and converged into an identifiable procedure
that remains in large measure implicit hiding important steps, choices and decisions intrinsic
to the process. This is the topic of this text, that aims to highlight what has become under-
currents along the years. The discourse follows the broad guidelines set by GST (Kalman
et al. 1969; Mesarović and Takahara 1975; Klir 2001), while preserving the unique flavour
of a personal perspective towards nature what eventually may lead to differences in notation
and meaning of certain concepts.

3 A roadmap

In scientific discurses, models are by and large symbolic, abstract, and linguistic objects,
having the purpose of explaining what is observed and enhancing knowledge about some
subject of interest (Kritz and Béziau 2011; Vieira Kritz 2020b). A model is always used
when investigating scientific subjects and is for the most part built upon demand.Modelling
is the process of creating models. Models are usually built by means of their expressions in
some language or formalism chosen in advance and without proper consideration of charac-
teristics or properties of what is being modelled. Due to the variety and unboundedness of
possibilities within this process, there is no well-delineated procedure to describe modelling.
Notwithstanding, the sketch of a feasible roadmap is available and presented in Fig. 1.

Somemilestones and actions displayed in Fig. 1 have been addressed elsewhere supporting
discussions about certain particularities of the scientific process (Kritz 2010; Kritz and dos
Santos 2011; Kritz et al. 2010; Vieira Kritz 2020a). They are compactly recalled bellow in a
more mathematical language where symbols, diagrams and (mathematical or programming)
formalisms are employed. Other elements in the roadmap will be visited not abiding to any
particular thread and their selection is moulded just by available space. It its worth noting,
though, that the general and pictorial descriptions previously presented are no less rigorous
than what follows. While modelling, it is utterly important to understand that rigour stems
from precise reasoning and careful argumentation, not from symbols nor from the language
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used. Of course, it may be easier to express something in a (formal) language than another;
as writing the same algorithm in different programming languages clearly illustrates.

Though symbolic and apparently abstract, the description below is not detached from
reality. It is indeed very close to it, as the interspersed examples indicate. For the sake of
communication, the examples will be simple and mostly drawn from physics and chemistry.
Notwithstanding, all actions and statements below are valid for any kind of phenomenon and
they are utterly relevant and important when addressing organised complexity phenomena
(Weaver 1948; Klir 2001; Vieira Kritz 2020b).

4 Phenomena and their description

4.1 Phenomena and objects

Every phenomenon subsumes change. Changes subsume (or induce) the perception of before
and after, leading to time. For the time being, time is anything that allows the recognition of
changes. Space is where things are situated.

The most conspicuous distinction between objects and phenomena is that in the latter one
something changes during the observation period, while all aspects of the former remain
immutable during observations. This dichotomy encompasses all that exists: anything we
perceive either appears to change or not. Hence, observers are needed to distinguish between
objects and phenomena, as well as to identify what changes, when it changes and how it
changes. Clearly, depending on characteristic times and time-scales, a phenomenon may be
perceived as an object and objects may show themselves as very slow phenomena (e.g., flows
of solids, glasses, and non-Newtonian fluids). By and large, it is assumed that changes result
exclusively from internal and external interactions of phenomenological components.

Definition 1 A Phenomenon, F, is a quintuple

{T,III, τ ,OOO, t},

where T is a set of things that are the interacting elements of F, III encompass all possible and
potential interactions that may provoke change,OOO is a collection of observers, τ is an account
of characteristic times of changes in F, and t is the minimum time needed for changes to be
perceived and acknowledged.

Note that τ is a characteristic of phenomena, while t relates to the conjunction of observers,
sensing apparatuses and observation methods. Put together, both attest a tensional situation
and comparing them inform the modeller about what can be safely modelled. This tension
is here denoted as [< τ , t >]. If both are numbers, the tension can be written as the boolean
operator τ ≤ t or its reverse.

In general, however, τ is a collection of values without any specific structure, the determi-
nation of t can be a rather complicated procedure involving dimensional and other analyses,
and [< τ , t >] is thus a complex object, either mathematical or computational. In certain
cases, this tension may have to do with parameters resulting from the modelling process itself
as is the case of discretisation parameters (see Sect. 6.1).
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4.2 Describing phenomena: things

The first step in studying or discoursing about any subject is the ability to refer to it, to its parts
and to all factors considered relevant. For phenomena, this is achieved by naming things,
interactions, and observers, the last ones only when needed. Phenomenological elements
without names do not exist or are not relevant for the modelling process.

Things are described by naming and enrolling them (indexing them) and by stating how
they should be seen. That is, by pointing out what is observed as well as how changes in
observations will be registered. Things in phenomena are never accessed in their entirety.
That is, not all their observable details will be recorded or studied. Instead a (finite) sub-
collection A of aspects (qualities) characterising them is selected to represent each object,
with its neatly defined form and volume, or each entity, otherwise.

That is, for each th ∈ T(F1), there is a finite set of selected aspects

th �→ A(th) = Ath = {A1, . . . , An(th)}, (1)

that are effectively and regularly observed. For most phenomena in physics, Ath1 =
Ath2 , for any th1, th2 ∈ T. However, this is not mandatory as wave-particle interactions
indicate. In chemistry, aspects may vary from one thing to another depending on substance
classes and chemical affinities. But, in the case of inorganic chemistry, aspects remain the
samewithin each categorical sort stemming from these classes and affinities. In bio-chemistry,
though, aspects of the same substancemay vary during observation due to conformal changes
in their molecules. For economic and social phenomena, Ath may vary wildly from a thing
to another and it is even possible that Ath1 ∩ Ath2 = ∅, when th1 �= th2. If Ath1 ⊂ Ath2 ,
th2 is seen in greater detail when compared with th1. Or else, more aspects are considered
important and observed in one thing than another.

From counting principles, the number of things composing phenomenon F1, #(T(F1)), is
either finite, enumerable or densely infinite. Hence, a good way to name things is through an
index function J −→ T, where J is either Jn = {1, . . . , n}, n ∈ N, N itself, or any convenient
non-denumerable set like Rn or D ⊂ R

n .
For material objects, a commonly considered aspect is where the object sits in space and

time. Due to the non inter-penetrability principle, this attribute uniquely identifies the object
(e.g., billiard balls on a table, cars in roads, particles suspended in fluids, or molecules in a
gas). That is, they can be used as names for these objects. For material entities, like fluids and
fields, localisation is not a value but a function from a region in space–time to {0, 1}, meaning
presence or absence of the entity at each point in the region. This description embodies other
aspects such as the entity’s form and boundary.

In science, everything needs to be done in a coherent manner. Aspects that uniquely
identify things are called identifying aspects. If they pervade all th ∈ T(F1), they can always
be used to construct naming schemes for F1, that is, to construct the index functions above.
Eventually, things in T may be completely bypassed by naming their aspects directly aided
by the multi-valued function:

N : J −→
⋃

th∈T
Ath, (2)

where N ( j) = Ath j . This results in a double index scheme with variable index-bounds in
the aspects’ space A = ⋃

th∈T Ath.
When J contains space–time positions in the usual sense, that is, when J ⊃ B, B ⊂

R
+ × R

n, n = 1, 2, 3 or J ⊃ B, B ⊂ R × R
n, n = 1, 2, 3, J is clearly a localisation space,

besides being an identification space. Hence, they can be used to identify and locate all
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attribute changes (events). This perception can be maintained whenever J is associated with
identifying aspects, even if these relate to space–time only indirectly. On that account, J will
be called the event space.

4.3 Describing phenomena: changes and interactions

Summing the above up, some aspects do vary during observation of phenomena while others
do not and the change of any phenomenological aspect Ak associated with a th ∈ T is
called an event. Observed events induce an immediate sense of before–after that is generally
associated with time. Reversely, definitions of (linear) time establish a before–after relation
in any set of events associated with it. The (apparently) immutable aspects necessary for
explaining a phenomenon are called parameters. Aspects that change and affect behaviour
are called variables, a concept slightly different for mathematical and computational models.

However, in reference to usual time, the observation of event e1 before e2 does not entail
with certainty that e1 occurred before e2, as the following example shows. If st1 and st2
are two stars and st2 is three times more distant from Earth than st1, events occurring at
st1 planetary system will be perceivable on Earth three times earlier than those occurring
around st2, because the signals associated with both events travel at the same speed, that
of light. Hence, it is possible that an event in st1 system occurring later than another event
around st2 will be seen first and appear to precede the latter. Due to constrains in observation
methods and apparatuses, this mismatch can happen more often than not, even in controlled
laboratories on Earth surface or in contexts where signals do not travel with the same speed.
Nevertheless, anytime something changes one can identify moments before and after that
change, what induces a (subjective) sense of time.

To describe changes in general and start addressing dynamics, a special but simple artefact
that respects before–after relations is useful. Namely,

Definition 2 A timeline is any intellectual construct that allows to distinguish before and
after on observations of any kind, since perceptions are events inside observers.

Perceptions, observers and signals as defined in (Vieira Kritz 2017). For instance, a set BA
endowed with a reflexive linear order ≤ and a plain Hausdorf topology separating points is
a timeline.

Definition 3 Let O be a collection of observations where for any o1, o2 ∈ O it can be said
that o1 was observed concomitantly with o2, before it, o1 ≺ o2, or vice-versa. A chronicle
is any association between O and a timeline that preserves ≺ and identifies ≺ with ≤.

Statistical time series are chronicles. See Rosen (1991) for a different treatment of chroni-
cles and more examples. There are many situations, where all observations occur apparently
at the same time and other information is required to establish the precedence needed for a
chronicle, like in microbiology, for instance. When modelling, chronicles are tentative tem-
poral arrangements. Experimenting with them is part of the modelling process. The usual
time is the chronicle of a very special phenomenon—motion. Indeed, motion with constant
velocity. Moreover, if BA = R with its usual metric topology, we get the usual measurable
time.

Traditionally, interactions are accessed (named) indirectly through the things that take
part in each interaction. For instance, a chemical reaction R that transforms three substances
<| s1; s2; s3 |> into products <| p1; p2 |>:

<| s1; s2; s3 |> R−−−−→ <| p1; p2 |> (3)
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is named by a token derived from the tuple (s1, s2, s3; p1, p2). This token can be simply an
integer associated with the tuple bymeans of a table, the tuple itself, or any other arrangement
based on it.

Describing interactions to their full extent—what is exchanged (Kritz 2010) and how these
exchanges happen—is an ad hoc, involved, and surprising research work which is out of the
scope of this paper. For the most part such descriptions possess no general rules, can only
be achieved case by case, or within well-defined phenomenological classes. Building stable
and widely accepted descriptions often lasts for decades, eventually centuries. This step is
at the heart of modelling and explaining (natural) phenomena, i.e., why there are changes
at all. Notwithstanding, a certain number of steps and tools are common to all modelling of
interactions, no matter whether only implicitly used. They are described in the sequel.

An initial description of interactions is often much humbler. For phenomena in the organ-
ised complexity class, it is common to start studying interactions by enrollingwho can interact
with whom and how each interaction does occur, that is, enrolling interaction possibilities
and channels. In general, these elements are of immediate observation or inferable with little
effort and scarce observations. Typical examples of this kind of description are the trophic
webs of ecosystems, process enchainment in biochemistry, and biochemical networks in
micro-biology. The latter are indeed hyper-graphs (Klamt et al. 2009).

If there is no natural law that forbids two things, th1, th2 ∈ T, to interact we say that
th1 and th2 are connected (or connectable). The collection of all pairs of things that can
eventually interact forms an important connection-structure in T. Thus,

Definition 4 The InteractionGraph ofF is a graph g(F) = {N , I ⊂ N×N } or a hyper-graph
h(F) = {N , I ⊂ P(N )}, such that N = T(F), P(N ) is the collection of all subsets of N , and
whenever th1 and th2 may interact phenomenologically, either (th1, th2) ∨ (th2, th1) ∈ I,
for graphs, or {th1, th2} ⊂ a ∈ I, for hyper-graphs.

For phenomena of classical mechanics (billiard balls on a table, planetary systems, fluids,
cars in roads etc), interaction graphs are always undirected complete graphs Kn , where n =
#(N ) is the cardinality of N , because every thing can interact with every other thing as long as
they become “in contact”. Physical interactions exchange momentum and energy changing
aspects of motion (Schiller 2013-2019). Interaction graphs in these cases are also immutable
for the phenomenon’s duration and do not provide interesting or useful information.

In the case of electro-magnetic circuits, there are elements that restrain electric current
flows in certain directions. For thatmatter, the circuit wiring confines all electric andmagnetic
fields around it. That is, the circuit itself constrains the flow of electrons and conducts the
electric currents. Considering that circuit elements interact with each other exchanging elec-
trical charge, the circuit itself, the connections between the electrical elements, is a concrete
instance of interaction graphs of this kind of phenomenon.

For chemical phenomena, interactions are restrained by chemical affinities. For instance,
molecules of substances that are acids and basesmay cross-interact butmolecules of two basic
or two acidic substances cannot in general react chemically, although they still can interact
physically exchanging momenta, energy, and changing their motion patterns. Thus, forming
mixtures. Usually, when basic and acidic substances react, their affinities are complementary
and the product is saline. Therefore, g(F) or h(F) lose some arcs being endowedwith a richer,
non-trivial, connection structure. We can paint the nodes of N with colours that depend on
whether the substance is acidic, basic or neutral (salt), or on other chemical characteristic to
help unveiling the structure of the interaction graph. This shows that even in simple chemical
reactions interaction graphs for chemical phenomena are bi-, tri-, or pluri-partite, besides
having arcs directed from substrates to products.
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Scaling further up into organisational complexity, the structure of interaction graphs
becomes ever richer in possibilities requiring an analysis of their own (Ulanowicz 1983;
Kritz et al. 2010). In biochemistry grounded phenomena, for instance, interaction graphs
may even vary (Mohler and Ruberti 1978) along a phenomenon’s evolution which requires
the insertion of interaction graphs in any sensible description of their behaviour (Kritz 2010).
Interaction graphs carry a lot of information about a phenomenon and have been used for
a long time in certain scientific domains without any further modelling. This is the case of
biochemical networks and trophic webs that have stood as “the” description of phenomena in
micro-biology and ecology for decades. Both have the advantage of being directly observable
and of becoming first order approximations of dynamical behaviour whenever their arcs are
labeled with information about fluxes of matter or energy. This is straightforwardly achieved
in micro-biology and ecology, for instance. Notwithstanding, the deeper information to be
found in interaction graphs come from themissing arcs, that informwhereto the phenomenon
cannot evolve (Kritz and dos Santos 2011).

5 Idealised phenomena and systems

The previous steps bring us a great deal into the modelling avenue.
However, previous knowledge affects how we perceive and think about what we ‘see’ and

study. Hence, we never start an inquiry into nature ab initio. Instead, we start from a simpler,
idealised version of the phenomenon where things are chosen from a collection of cherished
objects developed since long—the thing-types.

When approaching a phenomenon, modellers almost always see it already in such
simplified form,where the things th ∈ T(F) come from this relatively small collection of stan-
dardised components. For instance, interacting things in Nature may be sub-atomic particles,
grains, molecules, atoms, waves, celestial bodies, fluids, organelles, macro-molecules, organ-
isms, artefacts, reactants, substrates, products, populations, collectivities, firms, industries,
environments and so on.

Par contre, in science and modelling we refer to particles, fields, bodies, substances,
individuals, populations, systems, organisations, or institutions. The second list above may
be as long as the first but it is finite while the first is potentially unbounded and limited solely
by Nature’s creativity. Some words or things appearing in both lists have slightly different
meanings. In models, we refer to the particles of a fluid or body; never to their molecules,
macro-molecules or aggregates. Also, we talk about the individuals in a population; never
about persons in a collectivity. Not to say, about a “population of molecules”.

A complete enrolment of both lists and a deeper discussion of their distinctions falls
outside the scope of this paper. Objects in the second list is what is called here thing-types.

Definition 5 A thing-type is a typical exemplar of a class of things commonly encountered
in scientific studies of natural phenomena. Each type is characterised by a small set of
type-specific attributes which never change.

Nevertheless, these attribute-sets can be decorated in a ad hoc basis with other attributes
relevant to understand a phenomenon.

Consider, for instance, billard balls on a table. Idealised particles have only position
and no volume as type-specific attributes. Parameters like mass are required to understand
and explain their motion. Other parameters, the decorations, may or may not be necessary,
depending on how sophisticated their interaction descriptions will be. Knowing the radius of
the balls allows for a better description of interaction results.
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Fig. 2 Modelling relation of Rosen (1991)

An idealised phenomenon is described solely in terms of thing-types and their interactions.
Thing-types unveil some amazing facts about nature—for instance, individuals are particles
that decide. Idealised phenomena aremore than half-way from establishing a system to study.

Interaction graphs stem directly from phenomena and Definition 4 above refers to and
is centred on things. Considering that mathematical relations, graphs and (hyper-)graphs
are tightly related (Schmidt and Ströhlein 1993) and also invoking the systems science def-
inition of a system (Klir 2001), we can say that interaction graphs and systems are the
same concept whenever just thing-types are considered as things and the interaction graph is
expressed solely in terms of the minimal attribute-set (variables) of its thing-type instances.
One important thing to note, though, is that these variables are not constrained to be numeric,
quantitative, or measurable.

6 Modelling

There is no language nor knowledge that allows for a general and encompassing description
of the modelling process. Nature’s creativity is mesmerising and so is human creativity while
inventing formalisms and formal systems. The best way to summarise what comes after
thing-types and systems in the roadmap of Fig 1 is Rosen’s modelling relation (Rosen 1991),
sketched in Fig 2.

Clearly, N represents a portion of nature and FM a formal model. That is, a model
described in a formal system or language. Cause is a particular case of enchainment while
inference is a particular type of reasoning. The differences about elements on the left are:
cause requires a temporal alignment while enchainment doesn’t. If a causesb, a occurs before
b and directly provokes the occurrence of the latter. On the right side, inference strictly abides
to the inference rules of FM while reasoning allow for creating hypotheses and deducting
consequences to be tested against observation.

All previously described modelling steps belong to the codification procedure. Neverthe-
less, they do not exhaust it. De-codification is even harder to describe and encompasses the
ontological interpretation of whatever a model outputs. In principle this diagram commutes.
Roughly speaking, inference emulates cause and reasoning emulates enchainements.

This said, to model behaviour, we need to wisely choose a formal system or language,
FS , where to build a formal model FM . This is commonly done inertially by choosing the FS
with which we are better acquainted. This approach frequently leads to poorer descriptions
and inferences as compared to what is obtained by experimenting and looking around to
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other possibilities. As an aperitif, I list some of the mathematical and computational formal
systems available, which are nevertheless related (Kalman et al. 1969).

Eachmathematical discipline entails a formalism that is for themost part an enriched form
of formal system. Laying on the shelf, one finds many options that interrelate swiftly and
in interesting manners (Mac Lane 1986; Kritz and dos Santos 2011): differential equations,
ordinary and partial, functional equations and inequations, algebraic structures, graphs and
hyper-graphs, iterative equations, topological structures, differential geometry, games and
differential games, to cite a few. Most have been used to model one thing or another.

It is possible, but not wise, to say that each programming language stands for the
same. There are far too many programming languages designed with certain questions in
mind. To list some modelling possibilities, it is better to consider programming paradigms:
functional, procedural, object-oriented, event-driven, declarative, adaptative agents, program-
specification and so on. Still a lot butmuch better. Each paradigmencompasses a large number
of programming languages but the way of thinking and dividing the tasks within each does
not change much. That is why they are considered paradigms and why it is wise to start your
choice of programming language examining them. Paradigms are also much closer to the
many intermediate models that appear along the modelling workflow.

6.1 Mathematical and computational modelling

Both mathematical and computational models can be constructed along the lines unveiled by
Rosen’s modelling relation when adequate mathematical or computational formal systems,
languages and contextes as above are chosen. This approach, not widely used, provides
computational models encoded directly from phenomena. However, more often then not a
mathematical model is established first, being later transformed into a computational model
through the application of a plethora of existing, well-tested, techniques. The following
diagram summarises this workflow.

Nat
T1−−−−→ MM ⊂ Mod

T2−−−−→ MM(�)
re-write−−−−→≡ Alg

[LP,Org(C)]
⇓−−−−−−−→ P (4)

In diagram 4, Nat represents all natural phenomena,Mod is the category of all models, MM
is the sub-category of mathematical models, MM(�) is a sub-category of Mod consisting
of potentially computable models, Ti , i = 1, 2, are justification theories (Kritz and Béziau
2011), Alg is the category of algorithms, and P the class of all computer programs writable
in the programming language LP for a chosen computer architecture Org(C).

This is the preferred approach for modelling physical and chemical phenomena, where
robust and widely tested mathematical models exist since long; an approach that started
to be developed even short before computers appeared in the middle of last century. (The
calculations were made by hand with mechanical calculation machines.) A reasonably solid
treatment of this workflow transcend by far this article goals. Indeed, it is the subject of
several books that address the manyfold possibilities concealed in the workflow suggested
by diagram (4).

The number and variety of these possibilities correlate tightly with the combinations of
mathematical disciplines, algorithmic formal systems, and programming paradigms. The
important thing to retain is that T1 unveils phenomenological parameters, while T2 introduces
parameters that connect the various intermediate models of diagram (4) production line and
that do not relate to the phenomenon itself. Last but not least, it is worth noting that parameters
need not to be numbers, as exemplified by the parameters [LP,Org(C)].
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7 Conclusion

M.A. Raupp was a skilful mathematician, who moved to the politico-administrative side of
science (Vieira Kritz 2022). JimDouglas Jr., his advisor, told me in early 2000s that the result
he obtained in his thesis was only superseded 25 years later. Few can claim such a record in
their vitae. But he enjoyed mathematics through all scientific disciplines. My thesis resulted
from rather new at that time, non-iterative, fixed point algorithm that were being developed
within the economical sciences milieu. I wish to publicly express my gratitude to him, first,
for having convinced me to undertake doctoral work and, secondly, for accepting to advise
this work and introduce me to the scientific inner workings.

However, my involvement with modelling didn’t spring directly from my thesis but from
the adventure he threwme in when he sent me toManaus, capital of Amazon state and central
to the region, to discuss the modelling of artificial lakes that were being planned in the Ama-
zon landscape to produce electrical power. The aim was to access their ecological impact and
sustainability. Notwithstanding, the Amazon landscape is extreme in ecological terms: the
soil has no nutrients, the biodiversity is high, biotic factors are strongly coupled and interde-
pendent. Moreover, the landscape provokes variations in the interaction possibilities due to
the annual floods and other factors, which means that interaction graphs vary. Furthermore,
field research unveiled non-trivial couplings between the forest and atmospheric phenomena
by the end of 1980s (Kritz et al. 2008).

Studying the Amazons has immersed me deep in trans-disciplinary subjects and tought
me about aspects of the modelling process not generally addressed, indeed nor generally
needed at all in physical and chemical phenomena. These aspects of the modelling process
are nevertheless vital for modelling any phenomena in Weaver’s organised complexity class
(Weaver 1948), particularly those where the presuppositions underlying existing models fail.
Although constrained by space, they lay at the core of this text. I acknowledge the fact that
some statements above are not completely supported by the arguments presented, due to
space constrains, relying too much on readers’ background. I will be glad to further explain
them individually or in future work.

Acknowledgements I would like also to thank the editors of C&AM and of this special issue in honour of
M.A. Raupp for the kind invitation to contribute to it submitting a paper. The truth is that I owe this text,
or one similar to it, both to M.A. Raupp and the editors of C&AM at least since the early 1990s. This is
a quite appropriate moment to pay my debt. Honestly, I started writing this text as soon as I promised it.
Notwithstanding, it took me a whole working life to achieve something that satisfies me. It is my hope that
it will be useful to others. The material and methods contained or implied by it have been tested in a course
about computational modelling delivered regularly and almost yearly at LNCC graduate program. Finally, I
would like to express my gratitude to Prof. J. Karam Filho for helping me in the review process.

Declarations

Conflict of interest The author declares no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


198 Page 12 of 12 M. V. Kritz

References

Badiou A (1969) Le Concept de Modèle: introduction à Une Épistémologie Matérialiste de Mathématiques.
Théorie–Recherches, vol 6. François Maspero, Paris

Béziau J-Y, Kritz MV (2010) Théorie et modèle I: point de vue général et abstrait. Cad UFS Filos 8(Fasc.
XIII):9–17

Kalman RE, Falb PL, Arbib MA (1969) Topics in mathematical system theory. McGraw-Hill Book Co. Inc.,
New York, NY

Klamt S, Haus U-U, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol 5(5):1000385
Klir GJ (2001) Facets of systems science, 2nd edn. Plenum Press, New York, NY
Kritz MV (2010) Boundaries, interactions and environmental systems. Mecán Comput XXIX:2673–2687
Kritz MV, Béziau J-Y (2011) Théorie et modéle II. Cad UFS Filos 10(Fasc. XIV):7–16
Kritz MV, dos Santos MT (2011) Dynamics, systems, dynamical systems and interaction graphs. In: Peixoto

MM, Rand D, Pinto AA (eds) Dynamics, games and science II, vol 2. Springer proceedings in
mathematics. Springer, Berlin, pp 507–541

Kritz MV, Dias CM, da Silva JM (2008) Models and sustainability in Amazon flooded landscapes. Notas em
Matemática Aplicada. SBMAC—Sociedade Brasileira de Matemática Aplicada e Computacional, São
Carlos, SP (in Portuguese)

Kritz MV, dos Santos MT, Urrutia S, Schwartz J-M (2010) Organizing metabolic networks: cycles in flux
distribution. J Theor Biol 265(3):250–260

Mac Lane S (1986) Mathematics form and function. Springer, New York, NY
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