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Abstract
In this paper, we focus on the numerical solution of the non-linear Volterra integral equa-
tion of the first kind. We start by converting its form to a second-kind Volterra equation
and we construct some assumptions to give a sufficient condition to ensure the solution’s
existence and uniqueness, this is on the one hand. On the other hand, to use it in the numer-
ical and analytical analysis computation which put the two analyses compatible. Then, by
applying block-by-block method, we transform our integral equation to a non-linear system.
This system gives us a discrete numerical solution converging to our analytical solution.
The approximate solution is computed using a Newton’s method and the numerical exam-
ples clearly demonstrate the efficiency of our proposed method compared with the Nystöm
method.

Keywords Volterra integral equation · Newton’s method · Non-linear integral equations

Mathematics Subject Classification 45D05 · 49M15 · 47H30

1 Introduction

Volterra integral equations have been considered as the core of appliedmathematics. Recently,
it has been noticed that the models presented to express the Corona virus using Volterra
equations are better than the existing models presented in the form of differential equations.
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Since, Volterra integral equations allow to monitor the initial reproduction number, thus
determining the incubation period of the virus and then adjusting the preventive measures
Fodor et al. (2020) and also due to the tremendous progress made in computer science,
and partly due to the complexity of synthetic computational models aided by integration
equations in modeling these various complexities. The so-called deep neural network, plays
a major role in various applications of artificial intelligence starting with applications of
faceprinting, self-driving cars and ending with automatic flight. What we have presented
earlier is the importance it has in a particular field, such as medicine and network. As well
as, the extent of this importance in other fields such as physics, nuclear energy, as well as
dynamics (Tricomi 1985; Wazwaz 2011).

There are different types of Volterra integral equations, like the non-linear weakly singular
equation of the second kind which is analyzed in Micula (1862). Also, we mention some of
the models that have emerged recently, such as Fredholm and Volterra integro-differential
equations, Fredholm integral equations and Volterra–Fredholm equations (Ghiat et al. 2020;
Ghiat and Guebbai 2018; Ghiat et al. 2021; Touati et al. 2019). But the important question
is how to search for a solution to these equations? In the first place, is there a solution to
find it ? Finding a way to get the right solution is difficult and sometimes impossible. Thus,
many mathematicians have resorted to the numerical process by innovating, inventing and
developing computational methods that allow them to find a solution which converges to the
exact solution (Karamov et al. 2021; Deepa et al. 2022; Dehbozorgi and Maleknejad 2021;
Fawze et al. 2021; Micula and Cattani 2018; Micula 2015).

In this paper, our objective is to focus on a specific numerical method, called block-
by-block, to find an approximate solution of u which is an unknown functions verified the
following integral equation:

∀x ∈ [0, X ],
∫ x

0
K(x, t, u(t)) dt = f (x), X < +∞, (1)

where f is a given function in theBanach spaceC1[0, X ] and the kernel K ∈ C1([a, b]2×R).
This equation is named the non-linear Volterra equation of the first kind.

In the article Brunner (1997) titled by ’100 years of Volterra equations’, it is noted that
the equation (1) first appeared in 1887 Jaëck (2018). It is the result of six papers presented
by Volterra and also appears in his book Volterra (2005). Many researchers have followed
its path, so we find that in 1959, it entered the world of economics Kantorovich and Gorkov
(1959) through Sloan, who developed a capital equation and received the Nobel Prize for it
Solow (1969). In 1960, it was used in the modeling of heat transfers between solids and gases
Levinson (1960), and in 1996 it was used in the dynamic systems of the economy (Hritonenko
and Yatsenko 1996; Muftahov et al. 2017), notably the life span of certain equipment. This
is related to the last decade, and recently we find other applications in areas such as: energy
(Karamov et al. 2021; Markova et al. 2021), engineering Solodusha and Bulatov (2021), in
studies of the evolution of the rapid spread and mutation of Corona virus (Gao et al. 2022;
Noeiaghdam et al. 2021; Giorno and Nobile 2022), biology (Brauer 1976; Halpea et al. 2021)
and neural network Jafarian et al. (2022).

We note that the analytical study was carried out by Linz in his book Linz (1987), and
therefore, we can say that the equation (1) has a unique solution under certain conditions.
There are several research papers that are interested in the numerical solution of (1). As
Petryshyn’s fixed point theoremDeepa et al. (2022), Taylor collocationmethodDeBonis et al.
(2022), Homotopy perturbation Fawze et al. (2021), direct operational scheme Dehbozorgi
and Maleknejad (2021), Hp-version collocation method Nedaiasl et al. (2019), wavelets
method Micula and Cattani (2018), iterative method Micula (2015), etc.
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In this article, the focus of our attention is on the numerical solution of (1) based on the
block-by-blockmethod. InKasumoandMoyo (2020), the others have constructed anumerical
method using this block-by-block method. They built it in two main steps: linearization of
the equation (1) and then descritisation by the block-by-block method fourth order. In this
manuscript, we start first with the discretization and then the linearization by the Newton
method. We pay attention to the comparison between this method and the classical method
based on the quadrature scheme described in the book of Linz (1987). Also, we prove that
the approximate solution proposed is convergent to the exact solution.

This article is organized as follows: In the first Sect. 2, we reformulate our equation to
another equivalent form which is of the second kind. Then, we construct hypotheses to verify
the solution’s existence and uniqueness. Afterwards, we move to the second Sect. 3 in which
we describe our digital processor and explain how it functioning to obtain a discretization
system. We present theorems that show the existence and uniqueness of the solution of the
new system and the convergence of the estimate solution. In the end of our manuscript 4, we
test our method in a numerical example and compare it with the Nystöm method.

2 Main problem

The direct numerical treatment of the above equation (1) can create a problem of non-
regularity. Because, the first kind version of the Volettra equation is an ill-posed problem.
For this reason, it cannot be treated in this form. The idea to deal with this form easily is to
find an equivalent equation of (1). For this, Linz in Linz (1987) proposed to derive it. So, we
assume that the kernel is derivable with respect to x. This allows us to reform our equation to
a new form. Hence, our new problem is given as: Search for u the solution of the following
Volterra equation of the second kind

∀x ∈ [0, X ], K(x, x, u(x)) = f ′(x) −
∫ x

0

∂K
∂x

(x, t, u(t)) dt, f (0) = 0, (2)

where f ′, f ∈ C0[0, X ] and K,
∂K
∂x

∈ C0
(

[0, X ]2 × R

)

So, we assume that the kernel verifies the below hypothesis.

(H)

(1) ∃ L > 0, ∀ x, t ∈ [0, X ],∀v,w ∈ R: | ∂K
∂x

(x, t, v) − ∂K
∂x

(x, t, v̄) |≤ L | v − w |,

(2) ∀ y ∈ R, ∃ ! v : K(x, x, v) = y,

(3) ∃ θ > 0,∀ x, t,∀v, v̄ ∈ R : | K(x, t, v) − K(x, t, v̄) |≥ θ | v − v̄ | .

The condition (1) is called Lipschitz condition and the condition (3) is called lower-
Lipschitz condition propose by Linz in the first time to ensure the solution uniqueness of (2)
(see Linz 1987).

Before moving to digital framework, we must ensure the existence and uniqueness of the
solution (1) in C0[0, X ]. For this reason, we present the next theorem without proof, because
it has already been shown in Linz (1987). Therefore, we recall hat C0[0, X ] is the Banach
space equipped with following norm

∀v ∈ C0[0, X ], ‖v‖C0[0,X ] = max
0≤x≤X

| u(x) | .
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Theorem 1 Under the hypothesis (H), the equation (1) has a unique solution in the Banach
space C0[0, X ].

Now, we can offer the numerical framework comfortably. Therefore, in the following
section, we are going to explain all the necessary and basic steps used in the construction of
our proposed numerical method.

3 Block-by-blockmethod

One of the most popular ways to solve this non-linear Volterra equation is Nystöm method.
But, it has a clear problem. Because, we cannot start and launch our calculation without
choosing u0. Which in most cases is arbitrament choice, i.e., is not the approximate solution
of u at the starting point 0. At the beginning, for n ≥ 1 we need to define �n the uniform
subdivision of the interval [0, X ] for all n ≥ 1 by

�n =
{
0 = x0 < x1 < · · · < xn−1 < xn = X , h = x j+1 − x j , 0 ≤ j ≤ n

}
.

Then, we propose to solve this problem using a new method which depends on the cal-
culation of the solution in the subdivision [xi , xi+1] for 0 ≤ i ≤ n interval by interval
at once separately. This method is good as block-by-block. Each subdivision [xi , xi+1], is
divided into three sub-intervals: [xi , xi1], [xi1, xi2] and [xi2, xi+1] such that xi1 = xi + h

3
and xi2 = xi + 2h

3 . Therefore, our goal is to find the approximate solution in the points xi1,
xi2 and xi+1.

The block-by-blockmethod is a generalization of the known implicit Runge–Kuttamethod
for ordinary differential equations. The idea is quite generalized, but it is more easily under-
stood. As we mentioned earlier, the approximate solution is calculated in the points x1i , x2i
and xi+1.
So, for x = xi1, we have

K(xi1, xi1, u(xi1)) = f (xi1) −
∫ x1i

0

∂K
∂x

(xi1, t, u(t)) dt

= f (xi1) −
∫ xi1

xi

∂K
∂x

(xi1, t, u(t)) dt

−
i−1∑
j=0

∫ x j+1

x j

∂K
∂x

(xi1, t, u(t)) dt, (3)

and for x = xi2, we obtain

K(xi2, xi2, u(xi2)) = f (xi2) −
∫ xi2

0

∂K
∂x

(xi2, t, u(t)) dt

= f (xi2) −
∫ xi2

xi

∂K
∂x

(xi2, t, u(t)) dt

−
i−1∑
j=0

∫ x j+1

x j

∂K
∂x

(xi2, t, u(t)) dt, (4)
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finally, for x = xi+1, we get

K(xi+1, xi+1, u(xi+1)) = f (xi+1) −
∫ xi+1

0

∂K
∂x

(xi+1, t, u(t)) dt

= f (xi+1) −
∫ xi+1

xi

∂K
∂x

(xi+1, t, u(t)) dt

−
i−1∑
j=0

∫ x j+1

x j

∂K
∂x

(xi+1, t, u(t)) dt . (5)

First of all, we recall the Pouzet-type numerical integration scheme given by (9.53)-(9.55)
page 154 in Linz (1987)

∀g ∈ C0[0, X ],
∫ xi+hλk

xi
g(x) dx 
 λk

h

4

[
3g

(
xi + λk

h

3

)
+ g(xi + λkh)

]
, (6)

where

λk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3 , k = 1,

2
3 , k = 2,

1, k = 3.

Now, we replace the integral in (5) by the integration scheme (6), to obtain for k=3

∫ xi+1

xi

∂K
∂x

(xi+1, t, u(t)) dt 
 h

4

[
3
∂K
∂x

(xi+1, xi1, u(xi1))

+∂K
∂x

(xi+1, xi+1, u(xi+1))

]
, (7)

for k=2

∫ xi+ 2h
3

xi

∂K
∂x

(xi2, t, u(t)) dt 
 h

6

[
3
∂K
∂x

(xi2, xi + 2h

9
, u(xi + 2h

9
))

+∂K
∂x

(xi2, xi + 2h

3
, u(xi + 2h

3
))

]
, (8)

and for k=1

∫ xi+ h
3

xi

∂K
∂x

(xi1, t, u(t)) dt 
 h

12

[
3
∂K
∂x

(
xi1, xi + h

9
, u

(
xi + h

9

))

+∂K
∂x

(
xi1, xi + 2h

3
, u

(
xi + h

3

)) ]
. (9)
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From the quadrature interpolation, we obtain

u

(
xi + h

9

)
= 1

9

[
20u

(
xi + h

3

)
− 16u

(
xi + 2h

3

)
+ 5u(xi )

]
, (10)

u

(
xi + 2h

9

)
= 1

9

[
14u

(
xi + h

3

)
− 7u

(
xi + 2h

3

)
+ 2u(xi )

]
. (11)

Finally, in each subdivision of the interval [xi , xi+1], we get the following non-linear system
of dimension 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(xi1, xi1, ui1) = −h

4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20ui1 − 16ui2 + 5ui+1]

)

− h

12

∂K
∂x

(xi1, xi1, ui1) − h
i−1∑
j=0

[
3

4

∂K
∂x

(xi1, x j1, u j1)

+1

4

∂K
∂x

(xi1, x j+1, u j+1)

]
+ f ′(xi1),

K(xi2, xi2, ui2) = −h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14ui1 − 7ui2 + 2ui+1]

)

−h

6

∂K
∂x

(xi2, xi2, ui2) − h
i−1∑
j=0

[
3

4

∂K
∂x

(xi2, x j1, u j1)

+1

4

∂K
∂x

(xi2, x j+1, u j+1)

]
+ f ′(xi2),

K(xi+1, xi+1, ui+1) = −3h

4

∂K
∂x

(xi+1, xi1, ui1) − h

4

∂K
∂x

(xi+1, xi+1, ui+1)

−h
i−1∑
j=0

[
3

4

∂K
∂x

(xi+1, x j1, u j1) + 1

4

∂K
∂x

(xi+1, x j+1, u j+1)

]

+ f ′(xi+1),

(12)
where ui1, ui2 and ui+1 are the approximation of u(xi1), u(xi2) and u(xi+1), respectively.
We write the last system in another form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(xi1, xi1, ui1) = −h

4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20ui1 − 16ui2 + 5ui+1]

)

− h

12

∂K
∂x

(xi1, xi1, ui1) + Si1,

Si1 = −h
i−1∑
j=0

[
3

4

∂K
∂x

(xi1, x j1, u j1) + 1

4

∂K
∂x

(xi1, x j+1, u j+1)

]

+ f ′(xi1),

K(xi2, xi2, ui2) = −h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14ui1 − 7ui2 + 2ui+1]

)

−h

6

∂K
∂x

(xi2, xi2, ui2) + Si2,

Si2 = −h
i−1∑
j=0

[
3

4

∂K
∂x

(xi2, x j1, u j1) + 1

4

∂K
∂x

(xi2, x j+1, u j+1)

]

+ f ′(xi2),

K(xi+1, xi+1, ui+1) = −3h

4

∂K
∂x

(xi+1, xi1, ui1) − h

4

∂K
∂x

(xi+1, xi+1, ui+1) + Si+1,

Si+1 = −h
i−1∑
j=0

[
3

4

∂K
∂x

(xi+1, x j1, u j1) + 1

4

∂K
∂x

(xi+1, x j+1, u j+1)

]

+ f ′(xi+1).

(13)
Before starting the convergence study of this new method, we need to verify that the

approximate system (13) has a unique solution. Therefore, we introduce the following theo-
rem.

Theorem 2 For h <
3θ

11L
small enough and under the hypothesis (H), the system (13) has

a unique solution in [xi , xi+1] for 0 ≤ i ≤ n.

Proof We fix i and let Ui = (ui1, ui2, ui+1) be a vector of R3, supposed R
3 equipped with

the next norm

∀ V = (v1, v2, v3) ∈ R
3, ‖V ‖R3 =

3∑
i=1

| vi | .

Also, we present this vector S(i) = (Si1, Si2, Si+1). We define two non-linear functional ψ
and ρ by

ψ : R3 −→ R
3,

Ui �−→ ψ(Ui ) =
⎛
⎝ K(xi1, xi1, ui1)

K(xi2, xi2, ui2)
K(xi+1, xi+1, ui+1)

⎞
⎠ , (14)
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ρ : R3 → R
3,

Ui �−→ ρ(Ui ) =

⎛
⎜⎜⎜⎜⎜⎝

−h

4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20ui1 − 16ui2 + 5ui+1]

)
− h

12

∂K
∂x

(xi1, xi1, ui1)

−h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14ui1 − 7ui2 + 2ui+1]

)
− h

6

∂K
∂x

(xi2, xi2, ui2)

−3h

4

∂K
∂x

(xi+1, xi1, ui1) − h

4

∂K
∂x

(xi+1, xi+1, ui+1)

⎞
⎟⎟⎟⎟⎟⎠

.

So, the system (13) is equivalent to

ψ(Ui ) = ρ(Ui ) + S(i). (15)

For any i fixed and for each subdivision [xi , xi+1] we define the sequences {U p
i }p∈N by

{
ψ(U 0

i ) = ρ(U p
i ) + S(i), p ≥ 1,

U 0
i = S(i).

(16)

Also, we define the sequences {σ p
i }p∈N by

{
σ
p+1
i = U p+1

i −U p
i , p ≥ 1,

σ 0
i = S(i).

(17)

It is clear that
p∑

q=0
σ
q
i = U p

i . Then, we prove that U
p
i converges to Ui .

For all p ≥ 1, we have

| K(xi1, xi1, u
k+1
i1 ) − K(x1i , x1i , u

k
1i |

≤
∣∣∣∣h4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20uki1 − 16uki2 + 5uki+1]

)
+ h

12

∂K
∂x

(xi1, xi1, u
k
i1)

−h

4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20uk−1

i1 − 16uk−1
i2 + 5uk−1

i+1 ]
)

− h

12

∂K
∂x

(xi1, xi1, u
k−1
i1 )

∣∣∣∣ ,
| K(xi2, xi2, u

k+1
i2 ) − K(xi2, xi2, u

k
i2 |

≤
∣∣∣∣−h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14uki1 − 7uki2 + 2uki+1]

)
+ h

6

∂K
∂x

(xi2, xi2, u
k
i2)

−h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14uk−1

i1 − 7uk−1
i2 + 2uk−1

i+1 ]
)

− h

6

∂K
∂x

(xi2, xi2, u
k−1
i2 )

∣∣∣∣ ,
| K(xi+1, xi+1, u

k+1
i+1 ) − K(xi+1, xi+1, u

k
i+1 |

≤
∣∣∣∣3h4

∂K
∂x

(xi+1, xi1, u
k
i1) + h

4

∂K
∂x

(xi+1, xi+1, u
k
i+1) − 3h

4

∂K
∂x

(xi+1, xi1, u
k−1
i1 )

−h

4

∂K
∂x

(xi+1, xi+1, u
k−1
i+1 )

∣∣∣∣ .
According to the hypothesis (H), (5) and (7), we get the following

θ | u p+1
i1 − u p

i1 | ≤ Lh

36

[
20 | u p

i1 − u p−1
i1 | +16 | u p

i2 − u p−1
i2 | +5 | u p

i+1 − u p−1
i+1 |

]

+ Lh

12
| u p

i1 − u p−1
i1 |, (18)
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θ | u p+1
i2 − u p

i2 | ≤ Lh

18

[
14 | u p

i1 − u p−1
i1 | +7 | u p

i2 − u p−1
i2 | +2 | u p

i+1 − u p−1
i+1 |

]

+ Lh

6
| u p

i2 − u p−1
i2 |, (19)

θ | u p+1
i+1 − u p

i+1 | ≤ Lh

4

[
3 | u p

i1 − u p−1
i1 | + | u p

i+1 − u p−1
i+1 |

]
. (20)

So, we obtain

θ‖U p+1
i −U p

i ‖R3 ≤ Lh

[
13

6
| u p

i1 − u p−1
i1 | + | u p

i2 − u p−1
i2 |

+1

2
| u p

i+1 − u p−1
i+1 |

]
. (21)

Consequently,

θ‖U p+1
i −U p

i ‖R3 ≤ 11Lh

3
‖U p

i −U p−1
i ‖R3 , (22)

which gives

‖σ p+1
i ‖R3 ≤ 11Lh

3θ
‖σ p

i ‖R3 . (23)

By recurrence, we obtain

‖σ p+1
i ‖R3 ≤

(
11Lh

3θ

)p+1

‖σ 0
i ‖R3 .

Assuming that h is small enough such that
11 Lh

3θ
< 1, then

∑
q≥1

(
11 hW

3θ

)q

is convergent.

Therefore,
∑p

q=0 σ
q
i is convergent. So, lim

p→+∞U p
i = Ui .

It remains to be seen whether this limit checks our system.
From the system (16), we have

lim
p→+∞ρ(U p+1

i ) = lim
p→+∞ψ(U p

i ) + S,

since, K and
∂K
∂x

are continuous, so ρ and φ are continuous functional.

ψ( lim
p→+∞U p+1

i ) = ρ( lim
p→+∞U p

i ) + S(i),

which gives that

ψ(Ui ) = ρ(Ui ) + S(i).

Now, let us prove that the system has a unique solution.
Let {Ui }0≤i≤n and {Vi }0≤i≤n to solutions of the system (16). For i fixed and according the
hypothesis (H), we get

‖ψ(Ui ) − ψ(Vi )‖R3 ≥ θ‖Ui − Vi‖R3 .
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From calculations and simplifications, we obtain

‖Ui − Vi‖R3 ≤ 11Lh

3θ
‖Ui − Vi‖R3 ,

since,
11Lh

3θ
< 1, we get the result. �

The system (16) is non-linear system of the size 3 in each subdivision [xi , xi+1] and to
solve it, we apply the principle the newton method which it convergence shown in the book
of Argyros (2004).

3.1 Convergence of method

In this section, we study the convergence of the approximate solution obtained from the
bloc-by-block method. Since, we define the continuity module ω0(h, .) as

∀v ∈ C0[a, b], ω0(h, v) = sup
|x−y|≤h

| v(x) − v(y) | .

and the local consistency error in each [xi , xi+1] by

δi (h, xi1) =
∫ xi1

xi

∂K
∂x

(xi1, t, u(t)) dt − h

4

∂K
∂x

(
xi1, xi + h

9
,
1

9
[20u(xi1)

−16u(xi2) + 5u(xi+1)]
)

− h

12

∂K
∂x

(xi1, xi1, u(xi1)), (24)

δi (h, xi2) =
∫ xi2

xi

∂K
∂x

(xi2, t, u(t)) dt − h

2

∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14u(xi1)

−7u(xi2) + 2u(xi+1)]
)

− h

6

∂K
∂x

(xi2, xi2, u(xi2)), (25)

δi (h, xi+1) =
∫ xi+1

xi

∂K
∂x

(xi+1, t, u(t)) dt − 3h

4

∂K
∂x

(xi+1, xi1, ui1)

−h

4

∂K
∂x

(xi+1, xi+1, u(xi+1)). (26)

Our numerical method is consistent if

lim
n→+∞

(
max
0≤i≤n

max
1≤k≤3

| δi (h, xik) |
)

= 0, where xik = xi + kh

3
, for, k = 1, 2, 3.

Let define the following errors for 0 ≤ i ≤ n,

εi1 = ui1 − u(xi1), εi2 = ui2 − u(xi2), εi+1 = ui+1 − u(xi+1),

and

ε̄i = 3

4
| εi1 | +1

4
| εi+1 | .

Theorem 3 Let θ >
11Lh

3
and L̃ = min

(
1

h(3 + 4c1)
,

1

h(1 + 4c2)

)
. Then,

lim
n→+∞

(
max
0≤i≤n

| ε̄i |
)

= 0.
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Therefore,

lim
n→+∞

(
max
0≤i≤n

| εi2 |
)

= 0.

Proof For n large enough and 0 ≤ i ≤ n, we have

|K(xi1, xi1, ui1) − K(xi1, xi1, u(xi1))|
≤ h

12

∣∣∣∣∂K∂x (xi1, xi1, ui1) − ∂K
∂x

(xi1, xi1, u(xi1))

∣∣∣∣
+h

4

∣∣∣∣∂K∂x
(
xi1, xi + h

9
,
1

9
[20ui1 − 16ui2 + 5ui+1]

)

−∂K
∂x

(
xi1, xi + h

9
,
1

9
[20u(xi1) − 16u(xi2) + 5u(xi+1)]

)∣∣∣∣

+3h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi1, x j1, u j1) − ∂K
∂x

(xi1, x j1, u(x j1))

∣∣∣∣

+h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi1, x j+1, u j+1) − ∂K
∂x

(xi1, x j+1, u(x j+1))

∣∣∣∣ + | δi (h, xi1) | .

The hypothesis (H) implies that

θ | εi1 | ≤ Lh

[
23

36
| εi1 | +4 | εi2 | +5

4
| εi+1 | +

i−1∑
j=0

[
3

4
| ε j1 | +1

4
| ε j+1 |

] ]

+ | δi (h, xi1) | . (27)

From the second equation of the system (13)

|K(xi2, xi2, ui2) − K(xi2, xi2, u(xi2))|
≤ h

6

∣∣∣∣∂K∂x (xi2, xi2, ui2) − ∂K
∂x

(xi2, xi2, u(xi2))

∣∣∣∣
+h

4

∣∣∣∣∂K∂x
(
xi2, xi + 2h

9
,
1

9
[14ui1 − 7ui2 + 2ui+1]

)

−∂K
∂x

(
xi2, xi + 2h

9
,
1

9
[14u(xi1) − 7u(xi2) + 2u(xi+1)]

)∣∣∣∣

+3h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi2, x j1, u j1) − ∂K
∂x

(xi2, x j1, u(x j1))

∣∣∣∣

+h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi2, x j+1, u j+1) − ∂K
∂x

(xi2, x j+1, u(x j+1))

∣∣∣∣ + | δi (h, xi2) | .

From hypothesis (H), we get

θ | εi2 | ≤ Lh

[
14

18
| εi1 | +5

9
| εi2 | +1

9
| εi+1 | +

i−1∑
j=0

[
3

4
| ε j1 | +1

4
| ε j+1 |

] ]

+ | δi (h, xi2) | . (28)
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Using the fact
11Lh

3
< θ , which implies that

5 Lh

9
< θ , we obtain

| εi2 | ≤ 9Lh

9θ − 5Lh

[
14

18
| εi1 | +1

9
| εi+1 | +

i−1∑
j=0

[
3

4
| ε j1 | +1

4
| ε j+1 |

] ]

+ | δi (h, xi2) | . (29)

Substituting (29) in (27), we get

| εi1 | ≤ Lh

[
c1 | εi1 | +c2 | εi+1 | +c3

i−1∑
j=0

3

4
| ε j1 | +1

4
| ε j+1 |

]

+ | δi (h, xi1) | + 9Lh

9θ − 5Lh
| δi (h, xi2) |, (30)

where c2 = 5

4
+ 36Lh

91θ − 45Lh
, c1 = 23

8
+ 56Lh

18θ − Lh10
and c3 = 1 + 9Lh

9θ − 5Lh
.

From the third equation of the system (13)

|K(xi+1, xi+1, ui+1) − K(xi+1, xi+1, u(xi+1))|
≤ h

4

∣∣∣∣∂K∂x (xi+1, xi+1, ui+1) − ∂K
∂x

(xi+1, xi+1, u(xi+1))

∣∣∣∣
+3h

4

∣∣∣∣∂K∂x (xi+1, xi1, ui1) − ∂K
∂x

(xi+1, xi1, u(xi1)

∣∣∣∣

+3h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi+1, x j1, u j1) − ∂K
∂x

(xi+1, x j1, u(x j1))

∣∣∣∣

+h

4

i−1∑
j=0

∣∣∣∣∂K∂x (xi+1, x j+1, u j+1) − ∂K
∂x

(xi+1, x j+1, u(x j+1))

∣∣∣∣ + | δi (h, xi+1) |,

then,

θ | εi+1 |≤ Lh

[
3

4
| εi1 | +1

4
| εi+1 | +

i−1∑
j=0

3

4
| ε j1 | +1

4
| ε j+1 |

]
+ | δi (h, xi+1) | . (31)

By summation (30) and (31)

θ

[
| εi1 | + | εi+1 |

]
≤ Lh

[
(
3

4
+ c1) | εi1 | +(

1

4
+ c2) | εi+1 |

+(c3 + 1)
i−1∑
j=0

3

4
| ε j1 | +1

4
| ε j+1 |

]
+ | δi (h, xi1) |

+ 9Lh

9θ − 5Lh
| δi (h, xi2) | + | δi (h, xi+1) | . (32)
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So, we get

θ

[(
1 − Lh(

3

4
+ c1)

)
| εi1 | +

(
1 − Lh(

1

4
+ c2)

)
| εi+1 |

]
, (33)

≤ (c3 + 1)
i−1∑
j=0

3

4
| ε j1 | +1

4
| ε j+1 |

+ | δi (h, xi1) | + 9Lh

9θ − 5Lh
| δi (h, xi2) | + | δi (h, xi+1) | . (34)

We have L̃ = min

(
1

h(3 + 4c1)
,

1

h(1 + 4c2)

)
. We get L̃ ≤ 1

h(3 + 4c1)
which gives 1 −

L̃h(
3

4
+ c1) ≥ 3

4
. Also, L̃ ≤ 1

h(1 + 4c2)
which gives 1 − L̃h(c2 + 1

4
) ≥ 1

4
. So, we get

[
3

4
| εi1 | +1

4
| εi+1 |

]
≤ (c3 + 1)

θ

i−1∑
j=0

[
3

4
| ε j1 | +1

4
| ε j+1 |

]

+1

θ
| δi (h, xi1) | + 9Lh

9θ2 − 5Lh
| δi (h, xi2) |

+ | δi (h, xi+1) | . (35)

Applying Gronwel’s lemma Linz (1987), we get

ε̄i ≤
(
1 + c3 + 1

θ

)i−1[1
θ

| δi (h, xi1) | + 9Lh

9θ2 − 5Lh
| δi (h, xi2) |

+ | δi (h, xi+1) | +c3 + 1

θ
ε̄0

]
, (36)

and we have for 0 ≤ i ≤ n,
(
1 + c3 + 1

θ

)n−1

< +∞.

So,

lim
n→+∞

(
max
0≤i≤n

ε̄i

)
= 0.

As a result,

lim
n→+∞

(
max
0≤i≤n

| εi1 |
)

= 0, (37)

lim
n→+∞

(
max
0≤i≤n

| εi+1 |
)

= 0. (38)

Substituting (37) and (38) in (29), we get

lim
n→∞

(
max
0≤i≤n

| εi2 |
)

= 0.

�
Now, we give the theorem which prove the order of convergence of our numerical technique
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Theorem 4

1. If
∂K

∂x
∈ C0([0, X ]2 × R,R) and u ∈ C1[0, X ], we have

ε̄i ≤ h

4
ρ

(
1 + c3 + 1

θ

)i

, 0 ≤ i ≤ n.

2. If
∂K

∂x
∈ C2([0, X ]2 × R,R) and u ∈ C3[0, X ], we obtain

ε̄i ≤ h3

3
ρ̄

(
1 + c3 + 1

θ

)i

, 0 ≤ i ≤ n,

where ρ and ρ̄ are positive constants.

Proof For n ≥ 1, we define πn,1 and πn,2 two piecewise linear interpolation of orders 1 and

2, respectively. So, for all x ∈ [xi + λk
h

3
, xi + λkh]

πn,1(g(x)) = 3

2 λkh

[
(xi + λkh − x)g

(
xi + λk

h

3

)
+

(
x − xi − λk

h

3

)
g(xi + λkh)

]
,

and for all x ∈ [xi , xi+1]

πn,2(g(t)) = 9

2h2

(
x − xi − h

3

) (
x − xi − 2h

3

)
g(xi )

+ 9

h2
(x − xi )

(
x − xi − 2h

3

)
g

(
xi + h

3

)

+ 9

2h2
(x − xi )

(
x − xi − h

3

)
g

(
xi + 2h

3

)
.

Therefore, the consistence errors (24)-(26) are equivalent

δi (h, xi + λkh) =
∫ xi+λkh

xi

∂K

∂x
(xi + λkh, t, u(t)) − πn,1

(
∂K

∂x
(xi + λkh, t, u(t)

)
dt

+h

4

[
∂K

∂x

(
xi + λkh, xi + λk

h

3
, u

(
xi + λk

h

3

))

−∂K

∂x

(
xi + λkh, xi + λk

h

3
, πn,2

(
u

(
xi + λk

h

3

))) ]
. (39)

Then,

1. If
∂K

∂x
∈ C0([0, X ]2 × R,R) and u ∈ C1[0, X ] the consistence error (39) have this

markup

| δi (h, xi + λkh) | ≤ h

4
ῡk, (40)

where

ῡk = λk ω0

(
∂K

∂x
(xi + λkh, ., u)

)
+ Lω0(u, h).
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So, using (40), the estimation (36) is given as

ε̄i ≤
(
1 + c3 + 1

θ

)i−1[h
4
� + c3 + 1

θ
ε̄0

]
,

where � = 1

θ
ῡ1+ 9 Lh

9θ2 − 5 Lh
ῡ2+ ῡ3. Furthermore, by applying (40) and the definitions

of error consistence (24)-(26)

ε̄0 ≤ h

4
ρ.

We obtain

ε̄i ≤ h

4
ρ

(
1 + c3 + 1

θ

)i

.

2. If
∂K

∂x
∈ C2([0, X ]2 × R,R) and u ∈ C3[0, X ] by the error interpolation theorem (see

Endre and David 2003, page 287) the consistence error (39) have the following markup

max
1≤k≤3

| δi (h, xi + λkh) |

≤ �λ3k
h3

3
+ Lh

4

∣∣∣∣u
(
xi + λk

h

3

)
− πn,2

(
u

(
xi + λk + h

3

))∣∣∣∣
≤ h3

3
υk, (41)

where

� = max
0≤x,t≤X

∣∣∣∣ ∂3K

∂2t∂x
(x, t, u(t))

∣∣∣∣ ,
and

υk = �λ3k + Lλk(1 − λk)(2 − λk)h

12

∣∣∣∣u(3)
(
xi + λk

h

3

)∣∣∣∣ .
Then, (36) has the following estimation

ε̄i ≤
(
1 + c3 + 1

θ

)i−1[h3
3

�̄ + c3 + 1

θ
ε̄0

]
,

where �̄ = 1

θ
υ1 + 9 Lh

9θ2 − 5 Lh
υ2 + υ3. Also, we have

ε̄0 ≤ h3

3
ρ̄.

In addition,

ε̄i ≤ h3

3
ρ̄

(
1 + c3 + 1

θ

)i

.

�
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4 Numerical examples

Wegive twonumerical examples to prove the efficiency and accuracyof themethodpresented.
In the following examples, we calculate ui according the scheme (16). First, we define the
discrete error as

errn = max
0≤i≤n

| u(xi ) − uν
i |,

where uν
i is a solution of the system (16) by Newton method. In the both examples, we

choose the initial point of the Newton method u00 = f (0).
Let give the next equation

∀x ∈ [0, 1],
∫ x

0

1

x + t + 9 + exp(u(t))
dx = 1

2
log

(
3x + 10

x + 10

)
, (42)

where the exact solution is u(x) = log(x + 1).

In addition, we have the lower-Lipschitz coefficient θ = 1

11 + log(2)
and the Lipschitz

coefficient L = 1

9
. So, the condition of convergence θ >

11 Lh

3
is verified.

We give another equation

∀x ∈ [0, 3],
∫ x

0

exp(x)t2 + 1

cos(t)2 + 1 + u(t)2
dt = x

2
+ x3 exp(x)

6
, (43)

and the exact solution u(x) = sin(x). In addition, we have the lower-Lipschitz coefficient

θ = 1

3
and the Lipschitz coefficient L = 1 + 9e1 + 1. So, the condition of convergence

θ >
11Lh

3
is verified.

Let introduce tables, which explain the error between the numerical and exact solutions
in all points xi . In these following tables, we will calculate the error between the numerical
solution and the correct solution using the MATLAB program, where we will apply the
method proposed in this article and compare the results obtained with Nystöm method.
In each row of the table, we will choose n, which is the number of divisions of the interval
[a, b]. Then, we will choose in each column a number of iterations ν, where we notice that
the more we increase n and ν, the error using the block-by-block method gets closer to zero
faster than Nystöm method. Therefore, this table is the best proof that shows the efficiency
of the method proposed in this paper.

To further clarify the difference between the error using the two mentioned methods, we
have drawn the error statement, where the first statement refers to the equation (42) and the
second refers to the equation (43). We, can see from the two statements the great difference
between the twomethods.We see that the error of the block-by-block method applies to zero.

In both graphs, the x-axis is the discretization nodes. The error graph of the block-by-block
method is colored in blue. It applies completely to the x-axis. Indicating that, the error of our
method compared by the Nyström error is very close or equal to zero.
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Fig. 1 Block-by-block and Nyström error of Eq. (42) with n = 10
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Fig. 2 Block-by-block and Nyström error of Eq. (43) with n = 10

5 Conclusion

In this paper, we have concentrated and focused on finding a numerical solution to the non-
linear Volterra integral equation of the first kind. We did not focus on the analytical study
because it has already been verified in the Linz book Linz (1987).

First, we define a condition on the kernel, so that we can convert the first kind equation
to a second-kind equation, because dealing directly with the first equation can lead us to the
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next problem: A small change in the input leads to a huge change in the results, and this is
what we call ill-posed problems. We also built some assumptions which then allowed us to
be consistent in the numerical and analytical study.

As for the numerical solution, we apply the block-by-block method, which is the opposite
of what is done to solve this type of equation. One of the advantages of this method is that it is
not necessary to know the value of the solution at the initial point i.e we can choose the initial
point only in iteration i = 0 by u00 = f (0). Then, in every iteration i we put uν+1

i0 = uν
(i−1)0,

uν+1
i1 = uν

(i−1)1 and uν+1
i = uν

(i−1). Moreover, the performance of this method depends on
transforming the equation of each division [xi , xi+1] into a non-linear system of dimension
three, and thus finding the solution at three different points xi1, xi2 and xi+1in each division
[xi , xi+1]. To solve this system, we apply the Newton’s method Wazwaz (2011). Because,
in the literature of the numerical processes of the non-linear Volterra equations there are two
essential steps: linearization and discretization. The numerical treatment that starts with the
discretization of the equation its consequence is a non-linear algebraic system. It is necessary
to solve this system by Newton’s method and the best choice of initial point is u0 = f (0)
(see Ghiat et al. 2021; Ghiat and Guebbai 2018; Ghiat et al. 2020; Touati et al. 2019; Deepa
et al. 2022; Linz 1987).

We have presented some theorems that explain the convergence of the numerical solution
to the exact solution. We could see that this method is considered as the best one compared
to the established method, which is the quadrature method as the numerical examples well
illustrate it.
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