
Computational and Applied Mathematics (2023) 42:42
https://doi.org/10.1007/s40314-023-02194-0

Probabilistic analysis of a cantilever beam subjected to
random loads via probability density functions

Juan-Carlos Cortés1 · Elena López-Navarro1 · José-Vicente Romero1 ·
María-Dolores Roselló1

Received: 14 September 2022 / Revised: 29 November 2022 / Accepted: 9 December 2022 /
Published online: 12 January 2023
© The Author(s) 2023

Abstract
This paper addresses the probabilistic analysis of the deflection of a cantilever beam by
means of a randomization of the classical governing fourth-order differential equation with
null boundary conditions. The probabilistic study is based on the calculation of the first
probability density function of the solution,which is a stochastic process, aswell as the density
function of further quantities of interest associated with this engineering problem such as the
maximumslope anddeflection at the free endof the cantilever beam, that are treated as random
variables. In addition, the probability density function of the bending moment and the shear
force will also be computed. The study takes extensive advantage of the so called Random
Variable Transformation method, also known as Probability Transformation Method, that
allows us to fully unify the probabilistic analysis in three relevant cases commonly studied
in the deterministic setting. All the theoretical findings are illustrated via detailed numerical
examples corresponding to each one of the three scenarios.

Keywords Random variable transformation method · Probability transformation method ·
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1 Introduction

Deterministic data models based on differential equations have been widely applied in Engi-
neering to design and analyse from simple to complex civil engineering structures. This
classical approach guarantees certain structural safety satisfying standard prescriptions. The
deterministic analysis involves quantifying the model parameters, which, in practice, are
determined after experimentation. The collected data required to set the values of model
parameters often contain errors coming from measuring devices (epistemic uncertainty).
Apart from this source of uncertainty, the heterogeneity of materials, the lack of knowledge
of complex physical phenomena affecting the surrounding medium of the structure including
the unknown flow of vehicles, people, etc., are also factors that should be considered to prop-
erly calibrate the model parameters (aleatoric uncertainty). These reasons motivate that over
the last decades numerous probabilistic-based methods had been proposed to better design
and analyse civil engineering structures. The probabilistic approach has crucial advantages
such as quantifying structural safety and reliability that cannot be assessed using the deter-
ministic methods. Probabilistic methods avoid the use of over-simplified rules of thumb and
permit better understanding the real risk of engineering structures.

The aim of this paper is to contribute to the development and application of stochastic
methods to study foundational problems in the realm of civil engineering structures. We
shall specifically deal with the stochastic analysis of the deflection (i.e., the amount of dis-
placement, or sag) experienced by a load-carrying beam. In our subsequent analysis we will
consider a horizontal beam on which a vertical force is acting. All loaded beams will deflect
to a greater or lesser degree, depending upon factors such as the size and placement of loads,
the manner of supporting the beam, the beam material and the stiffness of the beam. These
two latter factors are rarely known in a deterministic manner because of the heterogene-
ity of materials, so stochastic methods are more realistic to better analyse the deflection of
load-carrying beam.

In the case of analysis of the static deflection of a beam, it is well-known that this phe-
nomenon can bemathematically described bymeans of the following fourth-order differential
equation (Öchsner 2021, Entry 3 of Table 2.4)

d4Y (x)

dx4
= W (x)

Ei
, 0 < x < l, (1)

whereY (x) represents the deflection curve of the beam, E is theYoung’smodulus of elasticity
of the material of the beam, i denotes the moment of inertia of the cross section of the beam
around a horizontal line through the centroid of the cross section, l is the length of the beam
and W (x) represents the density of downward force acting vertically on the beam at the
spatial point x, which can be interpreted as load per unit length acting on the beam.

Despite model (1) is usually applied assuming a deterministic (nominal) value for the
Young’s modulus, E, it depends on the physical material properties with which the beam has
been built. Due to the heterogeneity of the material, the mathematical nature of the Young’s
modulus is random rather than deterministic as it has been reported in different investigations
(Khakurel et al. 2021; Soyarslan et al. 2019; Hien et al. 2020; Farsi et al. 2017). On the other
hand, the nature ofW (x) is also stochastic since, as it has been previously indicated, represents
the density of downward force acting perpendicularly on the beam. At every spatial point
x, the value of W (x) will depend on the heterogeneity of the material carried on the beam.
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Additionally, in practice the value of W (x) on the whole spatial domain is approximated via
measurements, so containing epistemic errors. All these considerations lead to rigorously
treat (1) as a random differential equation, where E is a random variable and W (x) is a
stochastic process defined in a common complete probability space (�,F,P). As it shall be
seen later, we will assume that E is an absolutely continuous random variable, so having a
probability density function (p.d.f.), while for W (x) we will consider both the case that is
a parametric stochastic process, which depends on absolutely continuous random variables,
and when it is a non-parametric process.

We point out that throughout the paper, and following the standard notation in Probability
Theory, we will distinguish random variables and their realizations (which are deterministic
quantities), by using in the notation capital and lowercase letters, respectively.

Assuming that the beam is fixed at the origin, i.e., Y (0) = Y ′(0) = 0, and adding adequate
endpoint values, model (1) allows us to study the deflection of beams with different supports:
simply supported (Y (l) = Y ′′(l) = 0), built-in or fixed end (Y (l) = Y ′(l) = 0) and free
end (Y ′′(l) = Y ′′′(l) = 0), for example. In this paper we deal with the stochastic analysis
of this latter case, which corresponds to a cantilever (a beam firmly fastened at the origin,
x = 0, but with no support at the end, x = l). The stochastic analysis of simply supported
or fixed end beams can also be done using the same probabilistic technique that we shall
present throughout the paper. Therefore, hereinafter the following boundary conditions will
be assumed

Y (0) = 0, Y ′(0) = 0, Y ′′(l) = 0, Y ′′′(l) = 0. (2)

Under our approach, the solution of the randomized boundary problem (1)–(2) is a stochas-
tic process, Y (x), and our goal will be to determine, under very general assumptions on the
model parameters, E and W (x), the so-called first p.d.f. (1-p.d.f.) of the solution, fY (x)(y)
(Soong 1973, Ch. 3). The calculation of this function is of great usefulness from a practical
standpoint since it permits determining the mean, μY (x), and the variance, σ 2

Y (x), of the
deflection at each spatial point x of the beam,

μY (x) = E[Y (x)] =
∫ ∞

−∞
y fY (x)(y) dy, (3)

and

σ 2
Y (x) = E[(Y (x) − μY (x))2] = E[(Y (x))2] − (μY (x))2, (4)

respectively.HereE[·]denotes the expectationoperator.Additionally, further one-dimensional
higher moments with respect to (w.r.t.) the origin and centred at the mean can also be calcu-
lated by means of the 1-p.d.f.,

E[(Y (x))m] =
∫ ∞

−∞
ym fY (x)(y) dy, m = 1, 2, . . .

and

E[(Y (x) − μY (x))m] =
∫ ∞

−∞
(y − μY (x))m fY (x)(y) dy, m = 1, 2, . . . ,

respectively. Fixed an arbitrary spatial point x, the 1-p.d.f. is also particularly relevant to
calculate the probability that the deflection, Y (x), lies on a certain interval of specific interest,
say [y1, y2],

P[y1 ≤ Y (x) ≤ y2] =
∫ y2

y1
fY (x)(y)dy, 0 < x < l.
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In the stochastic analysis of civil engineering structures this information is of paramount
importance since it permits evaluating the probability of breaking of a structure (like a
bridge, a balcony, a crane, etc.) that is carrying on distributed or uniform forces. Indeed, this
is done by calculating the probability that the deflection of a beam lies within a certain safety
interval.

Throughout this paper, wewill obtain an explicit expression of the 1-p.d.f., fY (x)(y), of the
random boundary problem (1)–(2) by considering different forms of the density downward
force, W (x). To tool to conduct our probabilistic analysis is the Random Variable Transfor-
mation (RVT) method, also called Probability Transformation Method (PTM) which allows
us to determine the p.d.f. of a random vector that results from transforming another random
vector whose p.d.f. is known.

Theorem 1 (RVT method) (Soong 1973, page 25) Let us consider U = (U1, . . . ,Un) and
V = (V1, . . . , Vn) two n-dimensional continuous random vectors defined on a complete
probability space (�,F,P). Let r : Rn → R

n be a one-to-one deterministic transformation
of U into V, i.e., V = r(U). Assume that r is continuous in U and has continuous partial
derivatives w.r.t. each Ui , 1 ≤ i ≤ n. Then, if fU(u) denotes the joint p.d.f. of random vector
U, and s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn)) represents the inverse mapping of
r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un)), the joint p.d.f. of random vector V is given by

fV(v) = fU (s(v)) |J | ,
where |J | , which is assumed to be different from zero, is the absolute value of the Jacobian,
that is defined by the determinant

J = det

(
∂s
∂v

)
= det

⎛
⎜⎜⎝

∂s1(v1,...,vn)
∂v1

· · · ∂sn(v1,...,vn)
∂v1

...
. . .

...
∂s1(v1,...,vn)

∂vn
· · · ∂sn(v1,...,vn)

∂vn

⎞
⎟⎟⎠ .

As it shall be seen later, to apply this key probabilistic result, first we will take advantage
of the Laplace transform to explicitly obtain a solution of model (1)–(2) for three different
forms ofW (x), hereinafter identifiedwith cases I–III, that are often considered in the analysis
of beams in civil engineering.

The analysis of a cantilever beam has been extensively faced, mainly in the determinis-
tic context (see for example, Rizos et al. 1990; Zhang et al. 2022; Le and Ta 2021). In the
stochastic setting, the number of contributions is still limited with regard to the specific study
of a cantilever beam, although many other types of engineering structures have been stud-
ied taking into account uncertainties. Next, we concentrate on commenting the three main
approaches, namely, polynomial chaos expansions, Monte Carlo simulation and stochastic
finite elements method, that have been applied to analyse a cantilever beam subject to ran-
domness. The next discussion is presented in connectionwith the study performed throughout
this paper. In Pryse and Adhikari (2021), one combines polynomial chaos with Neumann
expansion method to obtain closed-form expressions for the first two response moments in
different engineering problems. Authors apply the theoretical results obtained to analyze a
cantilever beam, where the bending rigidity of the beam, E I , is assumed to be a station-
ary Gaussian random field with an exponential-type autocovariance kernel. In Reppel et al.
(2019), it is assumed that all parameters of the classical Euler–Bernoulli cantilever beam are
random variables. The study is performed in the case of a single loadwith constant (determin-
istic) value W . In that paper one also studies the case that the Young’s modulus is a discrete
random field modelled first, via simple randomwalk with stationary independent increments,
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and, secondly, via an adapted autoregressivemodel with normal distributed randomvariables.
In both cases, authors use Monte Carlo simulations to numerically compute the distribution
of the maximum deflection of a cantilever beam. In Korzeniowski and Weinberg (2019),
authors compare stochastic and data-driven finite element methods to study a cantilever by
assuming that the Young’s modulus is modelled via a the fluctuation of a nominal (mean)
value using a standard Gaussian random variable. In Blondeel et al. (2018), multilevel Monte
Carlo is combined with a finite element solver to compute the statistical quantities of the
static deflection and frequency response function for a cantilever beam with uncertainty in
Young’s modulus under a static and a dynamic load. Authors show that Multilevel Monte
Carlo method provides a significant computational cost reduction in comparison with the
standard (crude) Monte Carlo method. We also mention the use of Bayesian techniques to
better account for the deflection of a cantilever in the case that the spatially variable flexi-
bility is described via a random field represented by means of a Karhunen–Loève expansion
(Uribe et al. 2017; Lord et al. 2014). It is worthy to mention that in some contributions,
the cantilever beams subject to randomness factors have not been directly analysed, but as
specific examples to test new stochastic techniques. In this spirit, we here point out (Wu
et al. 2019), where authors propose a stochastic dynamic load identification algorithm to
analyse uncertain dynamic system with correlated random system parameters. The adopted
method is based on the approximation the Green’s function by the second-order perturbation
method and orthogonal polynomial chaos bases. Authors then apply the theoretical results
to perform numerical simulations and experimental studies with a cantilever beam under a
concentrate stochastic force to estimate the statistical characteristics of the stochastic load
from the stochastic structural response samples. To the best of our knowledge, there is still
important lack of information with regard the complete stochastic analysis of a cantilever
beam subject to uncertainties. This extended study should include the computation of the 1-
p.d.f. of the deflection in the case that the most important parameters of the Euler–Bernoulli
model (1) are random variables with arbitrary probability distributions and also when the
density of the downward force W (x) may randomly vary according to different realistic sit-
uations. This paper is aimed at face these aspects from a very general standpoint including
the computation of the p.d.f. of relevant quantities associated to the analysis of the cantilever
beam as the maximum deflection and the maximum slope at the free end of the beam.

The paper is organized as follows. In Sect. 2, we deal with the case I, corresponding to the
scenario that W (x) represents two uniform loads characterized by two independent random
variables covering the same span on the beam. In Sect. 3, we study the case II, where multiple
independent concentrated loads along the span of the beam are analysed. In this case, W (x)
will be represented by means of a train of Dirac delta functions whose intensities (loads) are
independent random variables. In Sect. 4, we study the third scenario, case III, where W (x)
models a distributed load with an uncertain value characterized by a constant (nominal) value
affected by fluctuating changes due to the heterogeneity of the material at every spacial point.
Spatial fluctuations are modelled via a stochastic process. In these three above-mentioned
sections, we will extensively apply the RVT technique to obtain an explicit expression of the
1-p.d.f. of the solution stochastic process of model (1)–(2). The theoretical results obtained
in Sects. 2–4, will be fully illustrated with examples in Sect. 5. In the examples, we will
also obtain the p.d.f. of other quantities of interest, such as the maximum deflection and
the maximum slope at the free end of the beam, since these quantities are of major interest
when analysing and designing cantilever beams in civil engineering satisfying specific preset
safety rules. To complete the information of interest in engineering applications, we will also
compute the p.d.f.’s of the bending moment and the shear force. Conclusions will be drawn
in Sect. 6.
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Fig. 1 Case I: Cantilever beam with two loads modelled via random variables

Finally, we point out that the results in the three aforementioned cases I–III are going
to be intentionally presented in an analogous manner for the ease of reading, but also to
show the generality of the RVT method despite each scenario is completely different from a
mathematical standpoint.

2 Case I: Two loadsmodelled via random variables

This section is addressed to compute the 1-p.d.f., fY (x)(y), of the stochastic solution of the
random model (1)–(2), where

W (x) =
{
W0, 0 < x ≤ l/2,
W1, l/2 < x ≤ l.

(5)

Thismodel represents the deflection of a cantilever beamwith two different loads, represented
byW0 andW1, that occupy the same space on the beam, which is fully loaded. As discussed
in the previous section, due to uncertainties associated to data, we will assume that model
parameters E,W0 andW1 are randomvariables.Hereinafter, fE,W0,W1(e, w0, w1)will denote
the joint p.d.f. of the random vector (E,W0,W1), that can be factorized as the product of the
corresponding marginal p.d.f., i.e. fE (e) fW0(w0) fW1(w1), in the particular, but important
case that E, W0 and W1 are mutually independent. In Fig. 1 we show a graphical scheme of
the model.

At this point, it is interesting to note that in our analysis arbitrary distributions have been
assumed for model parameters which will provide more generality to our study.

To obtain the 1-p.d.f., fY (x)(y), taking advantage of the RVT technique (see Theorem 1),
we first need to explicitly calculate the stochastic solution of Eq. (1) (see Appendix A)

Y (x) =
{
Y I(x; E,W0,W1), 0 < x ≤ l/2,

Y I(x; E,W0,W1) + W1 − W0

384Ei
(l − 2x)4, l/2 < x ≤ l,

(6)
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where

Y I(x; E,W0,W1) = W0 + 3W1

16Ei
l2x2 − W0 + W1

12Ei
lx3 + W0

24Ei
x4. (7)

Observe that the solution Y (x) is differentiable, and therefore continuous at x = l/2,
which is interesting from an engineering point of view, since it informs us that the deflection
varies smoothly at the spatial point, x = l/2, where the load changes.

Since Y (x) is a piecewise function, the calculation of the 1-p.d.f. of Y (x) will be done
separately in the two subdomains 0 < x ≤ l/2 and l/2 < x ≤ l.

In the first case, we fix 0 < x ≤ l/2 and then we apply the RVT method, i.e. Theorem 1
to U = (E,W0,W1) to obtain the p.d.f. of the random vector V = (V1, V2, V3) , defined by
the transformation r : R3 → R

3, whose components are conveniently defined as

v1 = r1(e, w0, w1) = Y I(x; e, w0, w1),

v2 = r2(e, w0, w1) = w0,

v3 = r3(e, w0, w1) = w1.

The inverse transformation of r, denoted by s : R3 → R
3, is given by

e = s1(v1, v2, v3) = Z I(x; v1, v2, v3),

w0 = s2(v1, v2, v3) = v2,

w1 = s3(v1, v2, v3) = v3,

where

Z I(x; v1, v2, v3) = 1

48v1i

(
3l2v2x

2 + 9l2v3x
2 − 4lv2x

3 − 4lv3x
3 + 2v2x

4) . (8)

To compute the p.d.f. of the random vector V, it is necessary to obtain the absolute value of
the Jacobian of s,

|J | =
∣∣∣∣∂s1(v1, v2, v3)∂v1

∣∣∣∣ =
∣∣∣∣ 1v1 Z

I(x; v1, v2, v3)

∣∣∣∣ ,
which is well-defined and different from zero with probability 1 (w.p. 1) since W0, W1 and
E (hence V1, V2 and V3) are continuous random variables and i �= 0. Applying the RVT
method, stated in Theorem 1, we obtain the p.d.f. of the random vector V = (V1, V2, V3),

fV1,V2,V3(v1, v2, v3) = fE,W0,W1(Z
I(x; v1, v2, v3), v2, v3)

∣∣∣∣ 1v1 Z
I(x; v1, v2, v3)

∣∣∣∣ .
In the particular and important case that E, W0 and W1 are independent random variables,
the above expression writes

fV1,V2,V3(v1, v2, v3) = fE (Z I(x; v1, v2, v3)) fW0(v2) fW1(v3)

∣∣∣∣ 1v1 Z
I(x; v1, v2, v3)

∣∣∣∣ .
Notice that, according to the previous transformation r : R3 → R

3, the solution of model
(1)–(2) corresponds to its first component v1, so marginalizing with respect to V2 = W0 and
V3 = W1, one obtains the 1-p.d.f. of Y (x),

fY (x)(y) =
∫
R2

fE

(
1

48yi

(
3l2w0x

2 + 9l2w1x
2 − 4lw0x

3 − 4lw1x
3 + 2w0x

4)) fW0 (w0)

· fW1 (w1)
1

48y2i

∣∣(3l2w0x
2 + 9l2w1x

2 − 4lw0x
3 − 4lw1x

3 + 2w0x
4)∣∣ dw0 dw1. (9)
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Remark 1 In the latter expression, it can be difficult to calculate the improper multi-integral
using quadrature rules. For this reason and from a computational standpoint, it is interesting
to express the above integral expression for the 1-p.d.f. in terms of the expectation operator
w.r.t. random variables (W0,W1) as follows

fY (x)(y) = EW0,W1

[
fE

(
1

48yi

(
3l2W0x

2 + 9l2W1x
2 − 4lW0x

3 − 4lW1x
3 + 2W0x

4
))

· 1

48y2i

∣∣∣
(
3l2W0x

2 + 9l2W1x
2 − 4lW0x

3 − 4lW1x
3 + 2W0x

4
)∣∣∣
]

, 0 < x ≤ l/2, (10)

since it permits applying Monte Carlo simulations to approximate the 1-p.d.f. We will use
this remark throughout the article.

The computation of the 1-p.d.f. on the second piece of the domain l/2 < x ≤ l, can be
calculated using a similar development as the one we have previously detailed step by step.
We omit the technical details that lead to the following explicit expression in terms of the
expectation operator

fY (x)(y) = EW0,W1

[
fE

(
1

384yi

(−l4W0 + l4W1 + 8l3W0x − 8l3W1x + 96l2W1x
2

−64lW1x
3 + 16W1x

4)) · 1

384y2i

∣∣(−l4W0 + l4W1 + 8l3W0x − 8l3W1x

+96l2W1x
2 − 64lW1x

3 + 16W1x
4)∣∣] , l/2 < x ≤ l. (11)

The maximum slope, S, and the maximum deflection, D, in a cantilever beam represent
key information to account for safety and control measures (Öchsner 2021; Strømmen 2013;
Mittelstedt 2021). In the case of a cantilever beam, it is clear they are calculated at the free end
of the beam, i.e., x = l. It is easy to check that they are given by the following expressions

S = Y ′(l) = l3

48Ei
(W0 + 7W1) , D = Y (l) = l4

384Ei
(7W0 + 41W1) . (12)

In our context, S and D are random variables, whose respective p.d.f.’s, fS(s) and fD(d),

provide important information about its probabilistic behaviour. As shown in Appendix B,
the RVT technique permits explicitly calculating them

fS(s) = l3

48s2i
EW0,W1

[
fE

(
l3

48si
(W0 + 7W1)

)
(W0 + 7W1)

]
, (13)

and

fD(d) = l4

384d2i
EW0,W1

[
fE

(
l4

384di
(7W0 + 41W1)

)
(7W0 + 41W1)

]
. (14)

From an engineering point of view, it is useful to represent the response of the cantilever
beam at each spatial point x in terms of static quantities as the bending moment, M(x), and
the shear force, V (x). These quantities can be obtained, respectively, in terms of the second
and third order derivatives of the deflection (Strømmen 2020)

M(x) = −EiY ′′(x), (15)

and

V (x) = −EiY ′′′(x). (16)
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In our setting problem, the following expressions for the bending moment and the shear
force are, respectively, obtained

M(x) =
{− 1

8 (W0 + 3W1)l2 + 1
2 (W0 + W1)lx − 1

2W0x2, 0 ≤ x ≤ l/2,(− 1
2 l

2 + lx − 1
2 x

2
)
W1, l/2 < x ≤ l,

(17)

V (x) =
{

1
2 (W0 + W1)l − W0x, 0 ≤ x ≤ l/2,

(l − x)W1, l/2 < x ≤ l.
(18)

We can observe that for x = l both the bending moment and the shear force are null
(M(l) = 0 and V (l) = 0). In addition, at x = 0 they reach their maximum value (positive
or negative).

Our goal again is to obtain the p.d.f. of (17) and (18). The RVT technique permits calcu-
lating the p.d.f. of the bending moment

fM(x)(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

EW0

⎡
⎣ fW1

⎛
⎝m −

(
− 1

8 l
2 + 1

2 lx − 1
2 x

2
)
W0

1
2 lx − 3

8 l
2

⎞
⎠ 1∣∣∣ 12 lx − 3

8 l
2
∣∣∣

⎤
⎦ , 0 ≤ x ≤ l/2,

fW1

(
m

− 1
2 l

2 + lx − 1
2 x

2

)
1∣∣∣− 1

2 l
2 + lx − 1

2 x
2
∣∣∣
, l/2 < x < l,

(19)

and the p.d.f. of the shear force

fV (x)(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EW0

[
fW1

(
v − ( 1

2 l − x
)
W0

1
2 l

)
2

l

]
, 0 ≤ x ≤ l/2,

fW1

(
v

l − x

)
1

l − x
, l/2 < x < l.

(20)

The development of expression (19) can be found in Appendix C. Expression (20) is obtained
in a similar way.

Finally, we point out that the results derived throughout this section can be extended,
using the same reasoning, to a finite number of loads including the case that the loads occupy
different lengths on the beam.

3 Case II: Concentrated loads Pj spanned on the beam

In this section we obtain the 1-p.d.f. of the solution stochastic process of model (1)–(2) in
the important case that loads are applied at n different spatial points, x j , j = 1, . . . , n, along
the span of the beam. This case can be modelled taking

W (x) =
n∑
j=1

Pjδ
(
x − x j

)
, (21)

where δ(·) denotes the Dirac delta distribution.
Let us assume that E and Pj , j = 1, . . . , n, are mutually independent random variables,

being fE (e) and fPj (p j ), j = 1, . . . , n, their respective p.d.f.’s. In Fig. 2, we show a
graphical scheme of the model. In a similar way that in the previous section, using the
Laplace transform and its properties when computing the Laplace transform of the Dirac
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Fig. 2 Case II: Cantilever beam with concentrated random variables loads at different spatial points

delta distribution, we can obtain the stochastic solution of model (1)–(2), via the following
piecewise function

Y (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y II(x; E, P1, . . . , Pn), 0 < x ≤ x1,

Y II(x; E, P1, . . . , Pn) + 1

6Ei

∑ j
k=1 Pk (x − xk)3 , x j < x ≤ x j+1,

j = 1, . . . , n − 1,

Y II(x; E, P1, . . . , Pn) + 1

6Ei

∑n
k=1 Pk (x − xk)3 , xn < x ≤ l,

(22)

where

Y II(x; E, P1, . . . , Pn) = 1

2Ei
x2

n∑
j=1

x j Pj − 1

6Ei
x3

n∑
j=1

Pj . (23)

Once we have obtained the stochastic solution, we will obtain the 1-p.d.f. of (22)–(23)
taking advantage of the RVT method. As the solution is given by means of a piecewise
function, the 1-p.d.f. will be determined by applying this method to each piece.

To this end, we first fix 0 < x ≤ x1. Let us to define a mapping r : Rn+1 → R
n+1 that

transforms the random vector U = (E, P1, . . . , Pn) into V = (V1, . . . , Vn+1) being

v1 = r1(e, p1, . . . , pn) = Y II(x; e, p1, . . . , pn),
v2 = r2(e, p1, . . . , pn) = p1,
...

...
...

...
...

vn+1 = rn+1(e, p1, . . . , pn) = pn .
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The inverse mapping of r is given by the mapping s : Rn+1 → R
n+1 whose components are

e = s1(v1, v2, . . . , vn+1) = Z II(x; v1, v2, . . . , vn+1),

p1 = s2(v1, v2, . . . , vn+1) = v2,
...

...
...

...
...

pn = sn+1(v1, v2, . . . , vn+1) = vn+1,

where

Z II(x; v1, v2, . . . , vn+1) = − 1

6v1i

⎛
⎝−3x2

n∑
j=1

x jv j+1 + x3
n∑
j=1

v j+1

⎞
⎠ .

Note that the absolute value of the Jacobian of s is

|J | =
∣∣∣∣∂s1(v1, v2, . . . , vn+1)

∂v1

∣∣∣∣ =
∣∣∣∣ 1v1 Z

II(x; v1, v2, . . . , vn+1)

∣∣∣∣ �= 0, w.p. 1.

Then, according to Theorem 1, the p.d.f. of V is given by

fV1,...,Vn+1(v1, . . . , vn+1)

= fE
(
Z II(x; v1, v2, . . . , vn+1)

)
fP1 (v2) · · · fPn (vn+1)

·
∣∣∣∣ 1v1 Z

II(x; v1, v2, . . . , vn+1)

∣∣∣∣ .
Finally, the 1-p.d.f. of the stochastic solution (22)–(23), which is given by V1, is obtained

by marginalizing w.r.t. V2 = P1, . . . , Vn+1 = Pn,

fY (x)(y) =
∫
Rn

fE

⎛
⎝− 1

6yi

⎛
⎝−3x2

n∑
j=1

x j p j + x3
n∑
j=1

p j

⎞
⎠
⎞
⎠ fP1 (p1) · · · fPn (pn)

· 1

6y2i

∣∣∣∣∣∣−3x2
n∑
j=1

x j p j + x3
n∑
j=1

p j

∣∣∣∣∣∣ dp1 · · · dpn, 0 < x ≤ x1. (24)

The above expression involves a multidimensional integral that may be computationally
unaffordable in practice. To overcome this drawback, it is interesting to notice that this
expression can be rewritten using the operator expectation

fY (x)(y) = EP1,...,Pn

⎡
⎣ fE

⎛
⎝− 1

6yi

⎛
⎝−3x2

n∑
j=1

x j Pj + x3
n∑
j=1

Pj

⎞
⎠
⎞
⎠

· 1

6y2i

∣∣∣∣∣∣−3x2
n∑
j=1

x j Pj + x3
n∑
j=1

Pj

∣∣∣∣∣∣

⎤
⎦ , 0 < x ≤ x1. (25)

This expression is particularly useful when applyingMonte Carlo simulations to calculate
the 1-p.d.f.

The computation of the 1-p.d.f. on the other subdomains of the stochastic solution (see
(22)) can be calculated similarly. For simplicity in the presentation, we here skip the technical
details. Calculations lead to

fY (x)(y) = EP1,...,Pn

⎡
⎣ fE

⎛
⎝ 1

6yi

⎛
⎝3x2

n∑
k=1

xk Pk − x3
n∑

k=1

Pk +
j∑

k=1

(x − xk)
3 pk

⎞
⎠
⎞
⎠

123



42 Page 12 of 32 J.-C. Cortés et al.

· 1

6y2i

∣∣∣∣∣∣3x
2

n∑
k=1

xk Pk − x3
n∑

k=1

Pk +
j∑

k=1

(x − xk)
3 pk

∣∣∣∣∣∣

⎤
⎦ ,

x j < x ≤ x j+1, j = 1, . . . , n − 1, (26)

and

fY (x)(y) = EP1,...,Pn

⎡
⎣ fE

⎛
⎝ 1

6yi

⎛
⎝3x2

n∑
k=1

xk Pk − x3
n∑

k=1

Pk +
n∑

k=1

(x − xk )
3 Pj

⎞
⎠
⎞
⎠

· 1

6y2i

∣∣∣∣∣∣3x
2

n∑
k=1

xk Pk − x3
n∑

k=1

Pk +
n∑

k=1

(x − xk )
3 Pk

∣∣∣∣∣∣

⎤
⎦ , xn < x ≤ l. (27)

Now, we are going to compute the p.d.f. of the slope, S = Y ′(l), and themaximum deflection,
D = Y (l), at free end as we did in the previous section. From (22)–(23) , it is easy to see
that

S = 1

2Ei

n∑
j=1

x2j Pj , D = 1

6Ei

⎛
⎝3l

n∑
j=1

x2j Pj −
n∑
j=1

x3j Pj

⎞
⎠ , (28)

and applying the RVT technique with appropriate mappings, we can obtain the p.d.f.’s of S
and D in terms of the expectation operator

fS(s) = EP1,...,Pn

⎡
⎣ fE

⎛
⎝ 1

2si

⎛
⎝ n∑

j=1

x2j Pj

⎞
⎠
⎞
⎠ 1

2s2i

∣∣∣∣∣∣−
n∑
j=1

x2j Pj

∣∣∣∣∣∣

⎤
⎦ , (29)

and

fD(d) = EP1,...,Pn

⎡
⎣ fE

⎛
⎝ 1

6di

⎛
⎝3l

n∑
j=1

x2j Pj −
n∑
j=1

x3j Pj

⎞
⎠
⎞
⎠ 1

6d2i

∣∣∣∣∣∣3l
n∑
j=1

x2j Pj −
n∑
j=1

x3j Pj

∣∣∣∣∣∣

⎤
⎦ . (30)

For the sake of completeness, we finish this section by calculating the p.d.f. of the bending
moment and the shear force of the cantilever beam. Applying Eqs. (15) and (16) to (22)–(23),
we obtain the expressions of the bending moment

M(x) =

⎧⎪⎪⎨
⎪⎪⎩

∑n
k=1 Pk(x − xk), 0 ≤ x ≤ x1,∑n
k= j+1 Pk(x − xk), x j < x ≤ x j+1,

j = 1, . . . , n − 1,
0, xn < x ≤ l.

(31)

and the shear force

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

∑n
k=1 Pk, 0 ≤ x ≤ x1,∑n
k= j+1 Pk, x j < x ≤ x j+1,

j = 1, . . . , n − 1,
0, xn < x ≤ l.

(32)
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Then, applyingRVT technique to expressions (31) and (32) in a similarway to the previous
section, we can obtain the p.d.f. of the bending moment

fM(x)(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EP1,...,Pn−1

[
fPn

(
m−∑n−1

k=1 Pk (x−xk )
x−xn

)
1

|x − xn |
]

, 0 ≤ x ≤ x1,

EPj+1,...,Pn−1

[
fPn

(
m−∑n−1

k= j+1 Pk (x−xk )

x−xn

)
1

|x − xn |

]
, x j ≤ x ≤ x j+1,

j = 1, . . . , n − 2,

fPn

(
m

x − xn

)
1

|x − xn | , xn−1 < x ≤ xn ,

0, xn < x ≤ l,

(33)

and the p.d.f. of the shear force

fV (x)(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

EP2,...,Pn

[
fP1

(
v −∑n

k=2 Pk
)]

, 0 ≤ x ≤ x1,

EPj+1,...,Pn−1

[
fPn

(
v −∑n−1

k= j+1 Pk
)]

, x j < x ≤ x j+1,

j = 1, . . . , n − 2,
fPn (v) , xn−1 < x ≤ xn,
0, xn < x ≤ l.

(34)

4 Case III: A loadmodelled via Brownianmotion

In this section we assume that the density downward force, W (x), is given by the sum of a
deterministic value, w0 (nominal value) and a certain random quantity that depends on the
spatial point x on the beam. This latter quantity models the uncertainties due to heterogeneity
of the beam.As for cantilever beams the key point is clearly located at the free end (in our case
on the right end), then to mathematically analyse the problem we have chosen a stochastic
process whose variance increases with its independent parameter (in our case the space x)
and whose distribution is Gaussian. Specifically, we have selected a standardWiener process
(also termed Brownian motion), B(x), to perform our mathematical analysis, although our
subsequent approach also permits considering other stochastic processes to play the role of
B(x). Therefore, we shall assume that

W (x) = w0 + B(x), 0 < x ≤ l, (35)

being B(x) = B(x, ω) the standard Wiener process. Recall that, μB(x) = E[B(x)] = 0 and
V[B(x)] = x, ∀x > 0,Kloeden and Platen (1992). Figure 3 shows a graphical representation
of the problem.

To perform the stochastic analysis by computing the 1-p.d.f. of the solution stochastic
process in this case,wewill take advantageof theKarhunen–Loève expansionof theBrownian
motion (Lord et al. 2014, Ch. 5)

B(x) = μB(x) +
∞∑
j=1

√
ν jφ j (x)ξ j (ω), ω ∈ �, 0 < x ≤ l, (36)

where μB(x) = 0, ξ j (ω) are independent and identically distributed standard Gaussian
random variables, ξ j (ω) ∼ N(0, 1), j = 1, 2, . . . , and {ν j , φ j (x)} are the eigenpairs (eigen-
values and eigenfunctions) obtained when solving the following homogeneous Fredholm
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Fig. 3 Case III: Cantilever beam with w0 + B(x) as varying load, being B(x) the Brownian motion

integral equation of second kind

∫ l

0
cB(x1, x2) φ j (x2) dx2 = ν j φ j (x1).

Here, cB(x1, x2) is the covariance function of the Brownian motion, B(x). It can be seen that
(Lord et al. 2014, p. 216)

cB(x1, x2) = min(x1, x2), (x1, x2) ∈ [0, l] × [0, l],
and

ν j = 4l2

π2(2 j − 1)2
, φ j (x) =

√
2

l
sin

(
(2 j − 1)π

2l
x

)
, j = 1, 2, . . .

To obtain an approximation of the 1-p.d.f. of the solution stochastic process of model
(1)–(2) with W (x) given by (35), we will consider the approximation of B(x) obtained
by truncating its Karhunen–Loève expansion at a finite order, say N . Then, the model is
approximated via the differential equation

d4Y (x)

dx4
= 1

Ei

⎛
⎝w0 +

N∑
j=1

√
ν jφ j (x)ξ j (ω)

⎞
⎠ , 0 < x < l. (37)

The solution stochastic process of model (37) together with the boundary conditions (2)
can be obtained using the Laplace transform. After somewhat technical computations, we
obtain

Y (x) = 1

Ei

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
−
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

⎞
⎠

123



Probabilistic analysis of a cantilever beam… Page 15 of 32 42

+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

⎞
⎠+ w0

24
x4

+
√
2

l

N∑
j=1

ξ j
−6b j x + b3j x

3 + 6 sin (b j x)

6b5j

⎞
⎠ , 0 < x ≤ l, (38)

where b j = (2 j − 1)π

2l
.

We fix 0 < x < l and we assume that E and ξ j , j = 1 . . . , N are independent continuous
random variables with p.d.f.’s given by fE (e), fξ j (ξ j ), j = 1 . . . , N , respectively. Now,
we will apply the RVT method taking in Theorem 1 as U = (E, ξ1, . . . , ξN ) to obtain
the p.d.f. of the random vector V = (V1, V2, . . . , VN+1) , defined by the transformation
r : RN+1 → R

N+1, whose components are defined by

v1 = r1(e, ξ1, . . . , ξN ) = 1

ei

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

−
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

⎞
⎠+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

⎞
⎠

+w0

24
x4 +

√
2

l

N∑
j=1

ξ j
−6b j x + b3j x

3 + 6 sin (b j x)

6b5j

⎞
⎠ ,

v2 = r2(e, ξ1, . . . , ξN ) = ξ1,

...

vN+1 = rN+1(e, ξ1, . . . , ξN ) = ξN .

The inverse transformation of r, s : RN+1 → R
N+1, is given by

e = s1(v1, v2, . . . , vN+1) = 1

v1i

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

v j+1
1 − cos (b j l)

b2j

−
√
2

l

N∑
j=1

v j+1
b j l − sin (b j l)

b3j

⎞
⎠+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

v j+1
1 − cos (b j l)

b2j

⎞
⎠

+w0

24
x4 +

√
2

l

N∑
j=1

v j+1
−6b j x + b3j x

3 + 6 sin (b j x)

6b5j

⎞
⎠ ,

ξ1 = s2(v1, v2, . . . , vN+1) = v2,

...

ξN = sN+1(v1, v2, . . . , vN+1) = vN+1.

The absolute value of the Jacobian of the inverse mapping s writes

|J | =
∣∣∣∣∂s1(v1, v2, . . . , vN+1)

∂v1

∣∣∣∣ =
∣∣∣∣∣∣−

1

v21 i

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

v j+1
1 − cos (b j l)

b2j
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−
√
2

l

N∑
j=1

v j+1
b j l − sin (b j l)

b3j

⎞
⎠+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

v j+1
1 − cos (b j l)

b2j

⎞
⎠

+w0

24
x4 +

√
2

l

N∑
j=1

v j+1
−6b j x + b3j x

3 + 6 sin (b j x)

6b5j

⎞
⎠
∣∣∣∣∣∣ �= 0, w.p. 1.

Similarly as developed in cases I and II, the following expression for the 1-p.d.f. of the
solution stochastic process is obtained

fY (x)(y) = Eξ1,...,ξN

⎡
⎣ fE

⎛
⎝ 1

Ei

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

−
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

⎞
⎠+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

⎞
⎠

+w0

24
x4 +

√
2

l

N∑
j=1

ξ j

−6b j x + b3j x
3 + 6 sin (b j x)

6b5j

⎞
⎠
⎞
⎠

·
∣∣∣∣∣∣−

1

E2i

⎛
⎝ x2

2

⎛
⎝w0

2
l2 + l

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
−
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

⎞
⎠

+ x3

6

⎛
⎝−w0l −

√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

⎞
⎠+ w0

24
x4

+
√
2

l

N∑
j=1

ξ j

−6b j x + b3j x
3 + 6 sin (b j x)

6b5j

⎞
⎠
∣∣∣∣∣∣

⎤
⎦ , 0 < x ≤ l. (39)

To complete this case III with same information as the one presented in cases I and II,
now, we compute the p.d.f.’s of the maximum slope and deflection at the free end of the beam
and the p.d.f.’s of the bending moment and the shear force. For the sake of simplicity, we
directly present the obtained results. For the maximum slope

S = Y ′(l) = 1

Ei

⎛
⎝w0

8
l3 + 1

2
l2
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
− l

√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

+
√
2

l

N∑
j=1

ξ j
−2 + b2j l

2 + 2 cos (b j l)

2b4j

⎞
⎠ , (40)

its p.d.f. is given by

fS(s) = Eξ1,...,ξN

⎡
⎣ fE

⎛
⎝ 1

si

⎛
⎝w0

8
l3 + 1

2
l2
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

−l

√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

+
√
2

l

N∑
j=1

ξ j

−2 + b2j l
2 + 2 cos (b j l)

2b4j

⎞
⎠
⎞
⎠
∣∣∣∣∣∣−

1

θ2i

⎛
⎝w0

8
l3 + 1

2
l2
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
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−l

√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j
+
√
2

l

N∑
j=1

ξ j

−2 + b2j l
2 + 2 cos (b j l)

2b4j

⎞
⎠
∣∣∣∣∣∣

⎤
⎦ , (41)

and, for the maximum deflection

D = Y (l) = 1

Ei

⎛
⎝w0

8
l4 + 1

3
l3
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
− 1

2
l2
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

+
√
2

l

N∑
j=1

ξ j
−6b j l + b3j l

3 + 6 sin (b j l)

6b5j

⎞
⎠ , (42)

its p.d.f. is given by

fD(d) = Eξ1,...,ξN

⎡
⎣ fE

⎛
⎝ 1

di

⎛
⎝w0

8
l4 + 1

3
l3
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

− 1

2
l2
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j

+
√
2

l

N∑
j=1

ξ j

−6b j l + b3j l
3 + 6 sin (b j l)

6b5j

⎞
⎠
⎞
⎠
∣∣∣∣∣∣−

1

δ2i

⎛
⎝w0

8
l4 + 1

3
l3
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j

− 1

2
l2
√
2

l

N∑
j=1

ξ j
b j l − sin (b j l)

b3j
+
√
2

l

N∑
j=1

ξ j

−6b j l + b3j l
3 + 6 sin (b j l)

6b5j

⎞
⎠
∣∣∣∣∣∣

⎤
⎦ . (43)

Applying Eqs. (15) and (16) to (38), the following expressions are, respectively, obtained
for the bending moment

M(x) = −w0

2

(
l2 + x2 − 2xl

)−
√
2

l

N∑
j=1

ξ j
1 − cos (b j l)

b2j
(l − x)

−
√
2

l

N∑
j=1

ξ j
b j (x − l) + sin (b j l) − sin (b j x)

b3j
, (44)

and the shear force

V (x) = −w0(x − l) −
√
2

l

N∑
j=1

ξ j
cos (b j l) − cos (b j x)

b2j
. (45)

Its p.d.f.’s are given by

fM(x)(m) = Eξ2,...,ξN

[
fξ1
((

m + w0

2

(
l2 + x2 − 2xl

)

+
√
2

l

N∑
j=2

ξ j

(
1 − cos(b j l)

b2j
(l − x) + b j (x − l) + sin(b j l) − sin(b j x)

b3j

)⎞
⎠

·
(

−
√
2

l

(
1 − cos(b1l)

b21
(l − x) + b1(x − l) + sin(b1l) − sin(b1x)

b31

))−1
⎞
⎠
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·
∣∣∣∣∣−
√
2

l

(
1 − cos(b1l)

b21
(l − x) + b1(x − l) + sin(b1l) − sin(b1x)

b31

)∣∣∣∣∣
−1
⎤
⎦ ,

(46)

and

fV (x)(v) = Eξ2,...,ξN

⎡
⎣ fξ1

⎛
⎝
⎛
⎝v + w0(x − l) +

√
2

l

N∑
j=2

ξ j
cos(b j l) − cos(b j x)

b2j

⎞
⎠

·
(

−
√
2

l

(
cos(b1l) − cos(b1x)

b21

))−1
⎞
⎠
∣∣∣∣∣−
√
2

l

(
cos(b1l) − cos(b1x)

b21

)∣∣∣∣∣
−1
⎤
⎦ , (47)

respectively.

Remark 2 In the previous analysis we have calculated the 1-p.d.f. of several quantities of
interest (deflection, shear force and bending moment) of the beam thanks to the application
of the RVT method. It is worthwhile to point out that this technique could also be applied to
determine the second probability density function (2-p.d.f.) of the abovementioned quantities
(Soong 1973). This would allow us to quantify further statistical properties, as for instance,
the correlation of the deflection at two different spatial points. Here, we omit this analysis
since is very similar but involving cumbersome mathematical expressions.

5 Numerical examples

This section is devoted to illustrate the above theoretical findings. We show three different
examples corresponding to the theoretical results obtained in cases I–III developed in each
one of the previous Sects. 2–4, respectively. We take the following data for the deterministic
parameters of themodel (1): l = 10m and i = 722 cm4,while for the random parameters, we
will assume that the Young’s modulus of elasticity, E, has a truncated Gaussian distribution
with mean μE = 210 × 109 Pa (Pascals) and variance σ 2

E = 420 × 107 Pa2, i.e. E ∼
NT (μE ; σ 2

E ) where T = [μE − kσE , μE + kσE ] = [209.9993 × 109, 210.0006 × 109],
taking k = 10. The particular form of stochastic process W (x) will be specified below in
each example.

Example 1 (Case I) This example corresponds to Sect. 2, where the cantilever beam supports
two different loads.We assume that the loads are defined by random variables whose distribu-

tions are Gaussian,W0 ∼ N
(
μW0 = 40; σ 2

W0
= 0.4

)
andW1 ∼ N

(
μW1 = 20; σ 2

W1
= 0.2

)
.

Figure 4 shows the graphical representation of the 1-p.d.f. given by expressions (10) and
(11) at different spatial points x ∈ {1, . . . , 10}. As it is expected, we can observe that the
variance increases as x does.

In Fig. 5, we show the plots of the p.d.f.’s of the maximum slope, fS(s) and the maximum
deflection, fD(d), at free end of the cantilever beam. Computations have been carried out by
expressions (13) and (14), respectively. In Table 1, we include the numerical results for the
mean and the standard deviation of random variables S and D.

In Figs. 6 and 7 we show a graphical representation of the p.d.f.’s of the bending moment,
fM(x)(m) and the shear force, fV (x)(v), respectively, at different spatial points x ∈ {0, . . . , 9}.
Recall that at the end of the beam (l = 10), M(l) = 0 and V (l) = 0. We can observe in both
figures that the variance decreases as the position increases.
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Fig. 4 1-p.d.f., fY (x)(y), of the solution stochastic process (6), computed by (10) and (11), at different spatial
points x ∈ {1, . . . , 10}. Example 1

Fig. 5 Left: P.d.f. of themaximum slope, fS(s), at free end using expression (13). Right: P.d.f. of themaximum
deflection, fD(d), at free end using (14). Example 1

Table 1 Mean and standard
deviation of the maximum slope
and the maximum deflection of
Y (x) at the free end of the beam

Mean Standard deviation

Slope at free end 0.0024742 0.00005343

Max. deflection 0.0189006 0.00040673

Example 1

Finally, in Fig. 8 we show a graphical representation of the mean and standard deviation
functions of the solution stochastic process, Y (x). They have been calculated by expressions
(3) and (4), where fY (x)(y) is given by (10)–(11).

Example 2 (Case II) Here we illustrate the theoretical results for a cantilever beam subject to
concentrated loads at specific spatial points. More specifically, we assume that four random
loads are located at x j = 2, 5, 7, 9, j = 1, 2, 3, 4, respectively. We will assume that all the
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Fig. 6 P.d.f. of the bendingmoment, fM(x)(m), using expression (19) at different spatial points x ∈ {0, . . . , 9}.
Example 1

Fig. 7 P.d.f. of the shear force, fV (x)(v), using expression (20) at different spatial points x ∈ {0, . . . , 9}.
Example 1
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Fig. 8 Mean (μ) plus/minus 2 standard deviations (σ ) of the solution stochastic process, Y (x). Example 1

Fig. 9 1-p.d.f., fY (x)(y), of the solution stochastic process (22), computed by (25)–(27), at the different spatial
points x = j, j = 1, 2, . . . , 10. Example 2

loads are characterized by a commonGaussian distribution, Pj ∼ N(μPj = 20; σ 2
Pj

= 0.02),
j = 1, . . . , 4.

In Fig. 9 we have graphically represented the 1-p.d.f., fY (x)(y), computed by (25)–(27),
at the spatial positions x = j, j = 1, . . . , 10.

In Fig. 10, we have plotted the p.d.f. of the maximum slope, fS(s), and of the maximum
deflection, fD(d), at the end of the cantilever beam. These two densities are given by (29)
and (30), respectively. In Table 2, we present the numerical results of the mean and standard
deviation of these two random variables.
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Fig. 10 Left: P.d.f., fS(s), of the maximum slope at free end. Right: P.d.f., fD(d), of the maximum deflection
at the free end. Example 2

Table 2 Mean and standard
deviation of the maximum slope
and the maximum deflection of
Y (x)

Mean Standard deviation

Slope at free end 0.00104897 0.000022371

Max. deflection 0.00783446 0.000163552

They have been obtained via the p.d.f.’s (29) and (30), respectively.
Example 2

In Fig. 11 we show a graphical representation of the p.d.f. of the bending moment,
fM(x)(m) at different spatial points x ∈ {0, . . . , 8}. Due to expression (31) at instants
x ∈ {9, 10}, the value of the p.d.f. computed by (33) is zero. Figure 12 shows the plot
of the p.d.f.’s of the shear force, fV (x)(v). Notice in this graphical representation that several
p.d.f.’s match, namely, fV (0)(v) = fV (1)(v) = fV (2)(v), fV (3)(v) = fV (4)(v) = fV (5)(v),

fV (6)(v) = fV (7)(v) and fV (8)(v) = fV (9)(v). This is a consequence of the definition of
the shear force (see Eq. (32)) and the spatial points, x j = 2, 5, 7, 9 (meters), j = 1, 2, 3, 4,
where the loads have been placed. We can observe in Figs. 11 and 12 that the variance
decreases as the position increases.

Finally, in Fig. 13 we show the mean plus/minus 2 standard deviations of the solution
stochastic process, Y (x).

Example 3 (Case III) To illustrate the findings obtained in Sect. 4, we will consider that the
density of downward force acting perpendicularly on the beam of length l = 10m is given
by W (x) = w0 + B(x), 0 < x < l, w0 = 20, and we will consider a Karhunen–Loève
expansion truncated at order N to approximate the Brownian motion, B(x).

In Fig. 14, we show a graphical representation of the 1-p.d.f., fY (x)(x), given by (39)
for different spatial points x ∈ {1, . . . , 10} considering as truncating order N = 1 (later
we justify this approximation is enough to achieve reliable results). We can notice that the
higher the position, the higher the variability as expected, since the variability of theBrownian
motion, B(x), increases with x .

In Fig. 15, we show the p.d.f. of the maximum slope and maximum deflection at the end
of the cantilever beam. From both p.d.f.’s, we have calculated, in Table 3, approximations of
the mean and standard deviation of these two random variables.

In Figs. 16 and 17, we show, respectively, a graphical representation of the p.d.f.’s of the
bending moment, fM(x)(m), and the p.d.f.’s of the shear force, fV (x)(v), at different spatial
points x ∈ {0, . . . , 9}. Recall that at x = 0 reach their maximum value (positive or negative)
and at x = l = 10, M(l) = 0 and V (l) = 0. To compute these p.d.f.’s we have considered
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Fig. 11 P.d.f. of the bending moment, fM(x)(m), using expression (33) at different spatial points x ∈
{0, . . . , 8}. Example 2

Fig. 12 P.d.f. of the shear force, fV (x)(v), using expression (34) at different spatial points x ∈ {0, . . . , 9}.
Example 2
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Fig. 13 Mean (μ) plus/minus 2 standard deviations (σ ) of the solution stochastic process, Y (x). Example 2

Fig. 14 1-p.d.f., fY (x)(y), of the solution stochastic process (38), computed by (39), at different spatial
position x ∈ {1, . . . , 10} of the cantilever beam considering an approximation of the Brownian motion, B(x),
via a Karhunen–Loève expansion truncated at order N = 1. Example 3

again the truncating order N = 1. This causes expressions (46) and (47) to change their
structure a slight bit. So, the p.d.f. of the bending moment for N = 1 is given by

fM(x)(m) = fξ1

((
m + w0

2

(
l2 + x2 − 2xl

))(−
√
2

l

(
1 − cos(b1l)

b21
(l − x)

+b1(x − l) + sin(b1l) − sin(b1x)

b31

))−1
⎞
⎠
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Fig. 15 Left: P.d.f., fS(s), of the maximum slope at free end. Right: P.d.f., fD(d), of the maximum deflection
at the free end. Example 3

Table 3 Mean and standard
deviation of the maximum slope
and deflection at free end of the
cantilever beam, obtained via the
p.d.f. (41) and (43), respectively

Mean Standard deviation

Slope at free end 0.0016496 0.00027951

Max. deflection 0.0164908 0.0020746

Example 3

·
∣∣∣∣∣−
√
2

l

(
1 − cos(b1l)

b21
(l − x) + b1(x − l) + sin(b1l) − sin(b1x)

b31

)∣∣∣∣∣
−1

,

(48)

and the p.d.f. of the shear force is given by

fV (x)(v) = fξ1

⎛
⎝(v + w0(x − l))

(
−
√
2

l

(
cos(b1l) − cos(b1x)

b21

))−1
⎞
⎠

·
∣∣∣∣∣−
√
2

l

(
cos(b1l) − cos(b1x)

b21

)∣∣∣∣∣
−1

. (49)

Again, we can observe in both figures that the variance decreases as the position increases.
In Fig. 18, we show themean (μ) plus/minus 2 standard deviations of the solution stochas-

tic process, Y (x), on the whole spatial domain.
Finally, in Table 4, we show a comparison of the values of the mean and standard devi-

ation of the maximum deflection of the cantilever beam, D, considering different orders of
truncation, N ∈ {1, 2, 3, 10, 50}, of B(x) via a Karhunen–Loève expansion. We can observe
that approximations are very similar with N = 1. This justifies that our previous calculations
have been carried out computations with this order. Similar conclusions are derived from the
p.d.f.’s as we can observe from Fig. 19.

6 Conclusions

Throughout the paper, we have studied, from a probabilistic standpoint, a foundational model
to describe the deflection of a cantilever beam subject to different types of loads, which are
relevant in the civil engineering literature. Our analysis has several advantages, first, it permits
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Fig. 16 P.d.f. of the bending moment, fM(x)(m), using expression (46) at different spatial points x ∈
{0, . . . , 8}. Example 3

Fig. 17 P.d.f. of the shear force, fV (x)(v), using expression (47) at different spatial points x ∈ {0, . . . , 9}.
Example 3
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Fig. 18 Mean (μ) plus/minus 2 standard deviations of the solution stochastic process, Y (x). Example 3

Table 4 Mean and standard deviation of the maximum deflection, D, at free end, obtained via the p.d.f. (43)
for different values of the truncation order, N , to approximate the Brownian motion by its Karhunen–Loève
expansion, N ∈ {1, 2, 3, 10, 50}

N = 1 N = 2 N = 3 N = 10 N = 50

Mean 0.0164908 0.0164886 0.0164946 0.0164893 0.016493

Standard deviation 0.0020746 0.0020860 0.0020821 0.0020854 0.0020879

Example 3

Fig. 19 P.d.f. of the maximum deflection at free end, fD(d), for different values of the truncation order, N ,

to approximate the Brownian motion by its Karhunen–Loève expansion N ∈ {1, 2, 3, 10, 50}. Example 3
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computing not only the mean and the standard deviation of deflection, but its probability den-
sity function that provides a fuller description. Secondly, our theoretical findings have been
obtained under very general hypotheses since we have considered a complete randomization
of model parameters (the density of downward force acting perpendicularly on the beam and
the Young’s modulus, denoted byW (x) and E, respectively). Evenmore, the results obtained
in every of the three cases analysed in the paper have been established assuming arbitrary
probability density functions for the random parameters involved in the model. This gives
a great generality to our results. Besides, we have probabilistically characterized, via the
corresponding densities, important quantities of interest as the slope, maximum deflection,
bending moment and shear force of the cantilever beam under mild hypotheses. Furthermore,
we have shown that the Random Variable Transformation technique provides a comprehen-
sive, systematic and unifying tool to obtain the mathematical results in a variety of scenarios,
allowing us to obtain general formulas that are very useful to carry out computations as shown
in the examples. We think that this approach can be promising to deal with, in future works,
the stochastic analysis of the deflection of other kinds of beams than cantilevers.
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Appendix A: Solution stochastic process: case I

As we have seen in Sect. 2, to obtain the 1-p.d.f., fY (x)(y), we need to explicitly calculate
the stochastic solution of Eq. (1)–(2). To this end several techniques can be applied, here
we shall apply the Laplace transform because of the well-known advantages of this integral
transform to compactly obtain the solution Y (x) whenW (x) is defined via a piecewise func-
tion representing the loads spanned on the beam (Iwiński 1967). Furthermore, the resulting
expression of the solution is particularly useful to apply the RVT technique, as it will be
apparent throughout our subsequent development. To apply the Laplace transform, we first
need to extend the definition of (5) as

W (x) =
⎧⎨
⎩
W0, 0 < x ≤ l/2,
W1, l/2 < x ≤ l,
0, x > l.
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The above expression can be written in terms of a unitary Heaviside function, U(x),

W (x) = W0 (U(x) − U(x − l/2)) + W1 (U(x − l/2) − U(x − l)) . (A1)

Now, applying the Laplace transform, y(s) = L{Y (x)}(s) = ∫∞
0 e−sxY (x) dx to (1)–(2)

with W (x) given by (A1), using the well-known properties of this integral transform (Schiff
1999, Ch. 2) and isolating y(s), one obtains

y(s) = 1

s4

(
sc1 + c2 + 1

Ei

(
W0

s
− W0

s
e− ls

2 + W1

s
e− ls

2 − W1

s
e−ls

))
, (A2)

where c1 = Y ′′(0) and c2 = Y ′′′(0). The next step is to apply the inverse Laplace transform
to (A2)

L−1{y(s)} = L−1
{
1

s3
c1 + 1

s4
c2 + 1

Ei

(
W0

1

s5
+ (W1 − W0)

1

s5
e− ls

2 − W1
1

s5
e−ls

)}
.

Then, using the inverse Laplace properties (Schiff 1999), and applying the boundary con-
ditions Y ′′(l) = 0 and Y ′′′(l) = 0 to obtain the values of c1 and c2, we obtain the solution
stochastic process of model (1)–(2)

Y (x) =
{
Y I(x; E,W0,W1), 0 < x ≤ l/2,

Y I(x; E,W0,W1) + W1 − W0

384Ei
(l − 2x)4, l/2 < x ≤ l,

where

Y I(x; E,W0,W1) = l2W0 + 3l2W1

16Ei
x2 − lW0 + lW1

12Ei
x3 + W0

24Ei
x4.

Appendix B: P.d.f. of themaximum slope at free end: case I

As we have seen in Sect. 2, the expression of the maximum slope at the free end in the
cantilever beam is given by

S = l3

48Ei
(W0 + 7W1) , (B3)

whereW0,W1 and E are independent continuous randomvariableswhose p.d.f.’s are denoted
by fE (e), fW0(w0) and fW1(w1), respectively.

To obtain the p.d.f. of S, we apply the RVT method stated in Theorem 1 taking U =
(E,W0,W1) to obtain the p.d.f. of the random vector V = (V1, V2, V3) , defined by the
transformation r : R3 → R

3, whose components are given by

v1 = r1(e, w0, w1) = l3

48ei
(w0 + 7w1) ,

v2 = r2(e, w0, w1) = w0,

v3 = r3(e, w0, w1) = w1.

The inverse transformation of r, s : R3 → R
3, writes

e = s1(v1, v2, v3) = l3

48v1i
(v2 + 7v3) ,

w0 = s2(v1, v2, v3) = v2,
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w1 = s3(v1, v2, v3) = v3.

The absolute value of the Jacobian of the inverse transformation is

|J | =
∣∣∣∣∂s1(v1, v2, v3)∂v1

∣∣∣∣ = l3

48v21 i
(v2 + 7v3) �= 0, w.p. 1.

So, the p.d.f. of V is given by

fV1,V2,V3(v1, v2, v3) = fE

(
l3

48v1i
(v2 + 7v3)

)
fW0(v2) fW1(v3)

l3

48v21 i
(v2 + 7v3) .

To obtain the p.d.f. of (B3), which is given by V1, we marginalize w.r.t. V2 = W0 and
V3 = W1, turning out

fS(s) = l3

48s2i

∫
R2

fE

(
l3

48si
(w0 + 7w1)

)
fW0(w0) fW1(w1) (w0 + 7w1) dw0 dw1.

This p.d.f. can be expressed by the expectation of the random vector (W0,W1) as

fS(s) = l3

48s2i
EW0,W1

[
fE

(
l3

48si
(W0 + 7W1)

)
(W0 + 7W1)

]
.

Appendix C: P.d.f. of the bendingmoment: case I

Aswe have seen in Sect. 2, the bendingmoment in the cantilever beam subject to two random
loads is given by the following expression

M(x) =
{

− 1
8 (W0 + 3W1)l2 + 1

2 (W0 + W1)lx − 1
2W0x2, 0 ≤ x ≤ l/2,(− 1

2 l
2 + lx − 1

2 x
2
)
W1, l/2 < x ≤ l,

(C4)

where W0, W1 are independent continuous random variables whose p.d.f.’s are known and
they are denoted by fW0(w0) and fW1(w1), respectively. We can observe that at x = l,
M(l) = 0.

To obtain the p.d.f. of (C4) and taking into account that it is a piecewise function we need
to calculate the p.d.f. separately in the two subdomains.

We fix x : 0 ≤ x ≤ l/2. Now we apply Theorem 1 taking U = (W1,W0) to obtain
the p.d.f. of the random vector V = (V1, V2) , defined by the transformation r : R2 → R

2,

whose components are given by

v1 = r1(w1, w0) = −1

8
(w0 + 3w1)l

2 + 1

2
(w0 + w1)lx − 1

2
w0x

2,

v2 = r2(w1, w0) = w0.

The inverse transformation s : R2 → R
2 of r is given by

w1 = s1(v1, v2) = v1 − v2
(− 1

8 l
2 + 1

2 lx − 1
2 x

2
)

1
2 lx − 3

8 l
2

,

w0 = s2(v1, v2) = v2.

123



Probabilistic analysis of a cantilever beam… Page 31 of 32 42

Now, we need to calculate the absolute value of the Jacobian of the previous inverse
transformation,

|J | =
∣∣∣∣∂s1(v1, v2)∂v1

∣∣∣∣ = 1∣∣ 1
2 lx − 3

8 l
2
∣∣ �= 0.

Then, applying the RVT method and taking advantage of the expectation operator we
obtain the p.d.f. on the domain 0 ≤ x ≤ l/2,

fM(x)(m) = EW0

[
fW1

(
m − (− 1

8 l
2 + 1

2 lx − 1
2 x

2
)
W0

1
2 lx − 3

8 l
2

)
1∣∣ 1

2 lx − 3
8 l

2
∣∣
]

, 0 ≤ x ≤ l/2.

Now, we fix x : l/2 < x < l. In this subdomain, only one random variable appears, so in
this case we use the one-dimensional version of the RVT method. Using the same notation
as above, we take U = W1 to obtain the p.d.f. of the random variable V = V1, defined by
the transformation r : R → R such that

v1 = r(w1) =
(

−1

2
l2 + lx − 1

2
x2
)

w1.

The inverse transformation of r is determined by

s(v1) := r−1(v1) = v1

− 1
2 l

2 + lx − 1
2 x

2
.

Finally, we need to calculate the derivative of r−1 that is given by

d s

d v1
= 1

− 1
2 l

2 + lx − 1
2 x

2
.

Then applying RVT method, the p.d.f. on l/2 < x < l is

fM(x)(m) = fW1

(
m

− 1
2 l

2 + lx − 1
2 x

2

)
1∣∣− 1

2 l
2 + lx − 1

2 x
2
∣∣ , l/2 < x < l.

In summary, the p.d.f. of the bending moment is given by

fM(x)(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EW0

[
fW1

(
m − (− 1

8 l
2 + 1

2 lx − 1
2 x

2
)
W0

1
2 lx − 3

8 l
2

)
1∣∣ 1

2 lx − 3
8 l

2
∣∣
]

, 0 ≤ x ≤ l/2,

fW1

(
m

− 1
2 l

2 + lx − 1
2 x

2

)
1∣∣− 1

2 l
2 + lx − 1

2 x
2
∣∣ , l/2 < x < l.
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