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Abstract
Let G be a graph. We introduce the acyclic b-chromatic number of G as an analogue to the
b-chromatic number of G.An acyclic coloring of a graph G is a map c : V (G) → {1, . . . , k}
such that c(u) �= c(v) for any uv ∈ E(G) and the induced subgraph on vertices of any
two colors i, j ∈ {1, . . . , k} induces a forest. On the set of all acyclic colorings of G we
define a relation whose transitive closure is a strict partial order. The minimum cardinality
of its minimal element is then the acyclic chromatic number A(G) of G and the maximum
cardinality of its minimal element is the acyclic b-chromatic number Ab(G) ofG.We present
several properties of Ab(G). In particular, we derive Ab(G) for several known graph families,
derive some bounds for Ab(G), compare Ab(G) with some other parameters and generalize
some influential tools from b-colorings to acyclic b-colorings.
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1 Introduction

The computation of chromatic number χ(G) of a graph G is a well-known difficult problem
that is NP-hard. As such one often tries to find some approximate values for it. For this one
first needs a (proper) coloring of G. There are some simple approaches how to find such a
coloring. Let us recall two of them. First is the greedy approach, also sometimes called first-
fit, where one starts with a totally uncolored graph. Vertices are then colored in some arbitrary
order by the rule that an uncolored vertex receives the minimum color that is not present in
its neighborhood until that moment. At the end of this procedure, we obtain a coloring of G
and the number of colors is an upper bound for χ(G). The other approach starts at the other
end where all vertices are colored by a different color from {1, . . . , |V (G)|}. In what follows
we need to find at each step a color class that is without a vertex having neighbors of all the
remaining colors. Every vertex of such a class can then be recolored with some color, the one
that is missing in its neighborhood, and we obtain a new coloring with one color less than
before. We stop with this when every color class has a vertex with all the other colors in its
neighborhood. Again the number of the colors at the last stage is an upper bound for χ(G).

Both mentioned procedures can result in a coloring with the number of colors that are
close to χ(G) and if we are lucky, then even with χ(G) colors. However, the difference
between the obtained number of colors and χ(G) can also be arbitrarily large. For both a
wide range of studies deals with the worst case. In the greedy approach the worst number of
colors that can be obtained is called the Grundy chromatic number �(G) of G and the worst
case in the other presented procedure is called the b-chromatic number ϕ(G) of G.

The Grundy chromatic number was introduced by Christen and Selkow (1979) and then
investigated by numerous authors. Let us cite just a few results. Erdös et al. (1987) proved
that for every finite graph the Grundy chromatic number is equal to the ochromatic number
(the one corresponding to the parsimonious proper coloring). Telle and Proskurowski in Telle
and Proskurowski (1997) presented the first polynomial-time algorithm for computing the
Grundy number of partial k-trees. DeVilbiss et al. (2018) proved the values of this graph
invariant for the line graphs of the regular Turán graphs. The complexity of finding the
Grundy number was analyzed e.g. by Zaker (2006) and Bonnet et al. (2018).

The b-chromatic number was introduced by Irving andManlove (1999). They have shown
that determining the b-chromatic number of a graph is an NP-hard problem. The problem is
still NP-hard for connected bipartite graphs as shown by Kratochvíl et al. (2002). In contrast,
the exact result for ϕ(T ) for every tree T was presented already in Irving and Manlove
(1999). A similar approach was later transformed to cactus graphs (Campos et al. 2009), to
outerplanar graphs (Maffray and Silva 2012), and to graphs with large enough girth (Campos
et al. 2012, 2015; Kouider and Zamime 2017). For further reading about b-chromatic number
and related concepts we recommend survey (Jakovac and Peterin 2018).

There exist many variants of graph (vertex) colorings with some special extra condition(s).
They usually yield a special chromatic number like acyclic chromatic number, star chromatic
number, Thue chromatic number and many others. Their computational complexity is usu-
ally NP-hard and, similarly as in the case of chromatic number, we desire for some simple
procedures that yield an upper bound for the mentioned invariants. Again, the information
on how much can go wrong in such a case is an interesting question. Therefore we start in
this work with the analysis of acyclic b-chromatic number, that is the worst possible number
of colors obtained by the second mentioned procedure which is limited in our case only to
acyclic colorings of G.
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The paper is organized as follows. In the next section we present basic notations and
concepts, among others we recall two graph invariants: acyclic chromatic number and b-
chromatic number. This part is followed by the definition of the acyclic b-chromatic number
and some basic results about this parameter in Sect. 3. Then we generalize an upper bound
from the b-chromatic number to the acyclic b-chromatic number in Sect. 4. This allows us to
present an upper bound that is quadratic with respect to the maximum degree of the graph.
In Sect. 5 we present some results about the acyclic b-colorings of joins of graphs. The last
section contains some final remarks and open problems.

2 Preliminaries

In this work, we consider only graphs G = (V (G), E(G)) that are finite and simple, that
is without loops and multiple edges. We use nG for the order and mG for the size of G. As
usually, we denote by NG(v) the open neighborhood {u ∈ V (G) : uv ∈ E(G)} of v ∈ V (G)

and NG [v] = NG(v) ∪ {v} is the closed neighborhood of v. The degree of v ∈ V (G) is
denoted by dG(v) and is defined as dG(v) = |NG(v)|. By �(G) and δ(G) we denote the
maximum and the minimum degree of a vertex in G, respectively. The clique number of G
is denoted by ω(G). For S ⊆ V (G) we denote by G[S] the subgraph of G induced by S.

Graph G is the complement of G.We use [k] to denote the set {1, . . . , k} and [ j, k] to denote
the set { j, . . . , k} (so, in particular, [1, k] = [k]).

A graph G is a cactus graph if any two cycles intersect in at most one vertex. A graph
G is called an odd cycle graph if G does not contain any cycle of even length. To the best
of our knowledge, we are not aware of the existence of the following result in the literature.
Although it is quite simple, we present the proof for the sake of completeness.

Proposition 2.1 A graph G is an odd cycle graph if and only if G is a cactus graph with only
odd cycles.

Proof A cactus graph with only odd cycles is clearly an odd cycle graph by the definition.
Otherwise, suppose that two cycles C and C ′ intersect in at least two vertices u and v. We
wish to show that there exists a cycle of even length. If C or C ′ is an even cycle, then we
are done. So, we may assume that C and C ′ are odd cycles. We choose u and v in such a
way that a (u, v)-path P ⊆ C does not contain any vertex from C ′ other than u and v. Now
C ′ splits into two (u, v)-paths P1 and P2 having no vertices in common with P except their
ends u and v. Since C ′ is odd, P1 and P2 have different parity. If P1 has the same parity as
P, then P ∪ P1 is an even cycle. Otherwise, P2 has the same parity as P and P ∪ P2 form
an even cycle. So, G is not an odd cycle graph. �	

2.1 Acyclic chromatic number

A map c : V (G) → {1, . . . , k} is called proper vertex coloring with k colors if c(x) �= c(y)
for every edge xy ∈ E(G).We consider here only proper vertex colorings, therefore we omit
the terms “proper” and “vertex” and call c a coloring or a k-coloring of G in the remainder
of the paper. The trivial coloring of G is the coloring where every vertex obtains a different
color. The minimum number k, for which there exists a k-coloring, is called the chromatic
number of G and is denoted by χ(G). Every k-coloring c yields a partition of V (G) into
independent sets Vi = {u ∈ V (G) : c(u) = i}, for every i ∈ [k], called color classes
of c. We denote by Vi, j the union Vi ∪ Vj and by Vi, j,� the union Vi ∪ Vj ∪ V� for any
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i, j, � ∈ [k]. In particular we use Vi, j,�(v) for component of G[Vi, j,�] that contains vertex
v. By CNc(v) we denote the set of all the colors that are present in NG(v) under coloring c,
that is CNc(v) = {c(u) : u ∈ NG(v)}. In addition we have CNc[v] = CNc(v) ∪ {c(v)}.

A coloring c is an acyclic coloring of G if G[Vi, j ] is a forest for any i, j ∈ [k]. In other
words, the subgraph induced by any two color classes does not contain any cycle. Notice
that G[Vi,i ] is even edgeless since c is a coloring of G. The minimum number of colors
of an acyclic coloring of G is the acyclic chromatic number denoted by A(G). Clearly,
A(G) ≥ χ(G) as every acyclic coloring is also a coloring of G.

Acyclic colorings were introduced by Grünbaum (1973), who proved that the acyclic
chromatic number of any planar graph is not greater than 9 and conjectured that in fact this
bound is equal to 5. This was finally proved by Borodin (1979). Mondal et al. (2012) proved
that every triangulated plane graph G has an acyclically 3-colorable subdivision, where the
number of division vertices is not greater than 2.75nG − 6, and an acyclically 4-colorable
subdivision, where the number of division vertices is not greater than 2nG − 6. Alon et al.
(1991) showed that A(G) ≤ �50�4/3, where � = �(G), which proved the conjecture
attributed to Erdös (see Jensen and Toft 1995, p. 89), stating that A(G) = o(�2). Recently,
Gonçalves et al. (2020) used the entropy compression method to prove that for every graph
G, A(G) ≤ 3

2�
4/3 + O(�). Alon et al. (1991) proved also that there exist graphs for which

A(G) = 	(�4/3/(log�)1/3). Alon et al. (1996) showed that the acyclic chromatic number
of the projective plane is 7,while for everyG embeddable on a surface of Euler characteristic
χ = −γ, A(G) = O(γ 4/7). Moreover, for every γ > 0 there exist graphs embeddable on
surfaces of Euler characteristic −γ, for which A(G) = 	(γ 4/7/(log γ )1/7). This disproved
the conjecture due to Borodin (see Jensen and Toft 1995, p. 70) that acyclic chromatic number
is equal to the chromatic number for all surfaces other than a plane. Acyclic colorings of
graphs with a bounded degree were studied e.g. by Frtin and Raspaud (2008), Hocquard and
Montassier (2010) andYadav et al. (2011).Mondal et al. (2012) proved that deciding whether
a graph with � ≤ 6 is acyclically 4-colorable, is NP-complete.

2.2 b-Chromatic number

Let F(G) be the set of all colorings of G and let c ∈ F(G) be a k-coloring. A vertex v of G
with c(v) = i is a b-vertex (of color i), if v has all the colors of c in its closed neighborhood,
that is CNc[v] = [k]. If a vertex v with c(v) = i is not a b-vertex, then (at least) one color
is missing in NG [v], say j . We can recolor v with j and a slightly different coloring is
obtained. Hence, if there exists no b-vertex of color i, then we can recolor every vertex v

colored with i with some color not present in NG [v], say jv. This way we obtain a new
coloring ci : V (G) → [k]\{i} by

ci (v) =
{
c(v) : c(v) �= i
jv : c(v) = i

.

Clearly ci is a (k − 1)-coloring of G. We call the above procedure a recoloring step. By the
recoloring algorithm we mean an iterative performing of recoloring steps while it is possible
where we start with a trivial coloring of G. Notice that one could also start with any other
coloring from F(G).

Next we define the relation � on F(G) × F(G). We say that c′ ∈ F(G) is in relation �
with c ∈ F(G), c′ � c, if c′ can be obtained from c by a recoloring step of one fixed color
class of c. Clearly, � is asymmetric. The transitive closure ≺ of � is then a strict partial order
on F(G). Since there are finitely many different colorings of any graph G, this order has
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someminimal elements. The maximum number of colors of a minimal element of≺ is called
the b-chromatic number ofG and is denoted by ϕ(G), in contrast with the chromatic number
χ(G), which is the minimum number of colors of a minimal element of ≺ .

Every color class of every minimal element of ≺ needs to have a b-vertex. So, one can
use the following alternative definition, as already mentioned in Irving and Manlove (1999).
A coloring c of G is a b-coloring if every color class contains a b-vertex. The b-chromatic
number is then the maximum number of colors in a b-coloring of G. This definition was later
used in almost all publications on the b-chromatic number.

There exists a very natural upper bound for ϕ(G). Namely, every b-coloring with ϕ(G)

colors needs at least ϕ(G) vertices with dG(v) ≥ ϕ(G) − 1. The m-degree m(G) is defined
as

m(G) = max{i : i − 1 ≤ dG(vi )},

where v1, . . . , vnG are ordered by the degrees dG(v1) ≥ · · · ≥ dG(vnG ). It was shown already
in Irving and Manlove (1999) that ϕ(G) ≤ m(G).

Every runof the recoloring algorithmgives aminimal element of≺ and it is straightforward
to see that it consists of at most nG − χ(G) recoloring steps. In every recoloring step we
need to find which color classes are without a b-vertex. If we use � colors at some step of the
recoloring algorithm, then only vertices of degree at least �−1 can be b-vertices (of a certain
color). Hence we need to check only closed neighborhoods of such vertices and this can be
done in O(mG) time in the worst case. Let us also mention that if a vertex v with c(v) = i
is a b-vertex at some stage of the recoloring algorithm, then it remains a b-vertex of color i
after each recoloring step that still follows. Finally, when we have a color class j without a
b-vertex, we need to find for every vertex v satisfying c(v) = j a color that is not present
in NG(v) and this can be done in O(mG) time again. Altogether, recoloring algorithm is
polynomial algorithm and its time complexity is at most O

(
(nG − χ(G))(mG)2

)
.

With this we have a heuristic polynomial algorithm that produces a coloring of G and
gives an upper bound for χ(G). This way the study of ϕ(G) became the study of the worst
possible case that can happenwhile using the recoloring algorithm. A similar approach can be
applied to the Grundy number �(G), which corresponds with the study of the worst possible
performance of the greedy algorithm. A comparative study on the b-chromatic number and
the Grundy number was presented by Masih and Zaker (2021, 2022).

3 Definition and some basic results

Our goal in this part is to define the acyclic b-chromatic number of a graph G. For that
reason, we could be interested in colorings of G that are acyclic and b-colorings at the same
time. Unfortunately this is not possible for all graphs. Let us observe cycle C4. Notice that
ϕ(C4) = χ(C4) = 2 and the only b-coloring of C4 is the 2-coloring that is not acyclic. So,
both conditions, being an acyclic coloring and being a b-coloring, are not always fulfilled.
This is probably one of the reasons why this problem was not studied yet.

We can avoid this problem if we focus more strictly on the original definition of ϕ(G). For
this letAF(G) be the set of all acyclic colorings of G.A recoloring step for c ∈ AF(G) that
produces coloring c′ is an acyclic recoloring step if c′ ∈ AF(G). This means that we can
reduce some color of c only when a new coloring c′ is also acyclic. The acyclic recoloring
algorithm is the use of an acyclic recoloring step until this is possible when starting with a
trivial coloring of G. Also the acyclic recoloring algorithm has polynomial time complexity,

123



21 Page 6 of 20 M. Anholcer et al.

because we need, in addition to the recoloring algorithm, after each acyclic recoloring step
to check whether the new coloring is still acyclic. This can clearly be done in polynomial
time since there are at most O(n2G) pairs of different colors.

We define relation �a ⊆ AF(G) × AF(G) by c′ �a c when c′ can be obtained by an
acyclic recoloring step from c ∈ AF(G). Similarly as �, �a is also asymmetric. Let ≺a be
its transitive closure. Hence, ≺a is a strict partial order ofAF(G). The trivial coloring is the
greatest element of ≺a (sometimes also called the maximum element). Again, as G is finite,
also AF(G) is finite and at least one minimal element of ≺a exists.

Proposition 3.1 Let G be a graph and t ∈ AF(G) be a trivial coloring. If c ∈ AF(G), then
there exists a chain

c �a c1 �a c2 �a · · · �a c�−1 �a t .
Proof Let c be any k-coloring from AF(G). Let � = nG − k, c� = t and c0 = c. We may
assume that the k colors from c are the first k colors from t . Let v1, . . . , vk, vk+1, . . . , vnG be
vertices of G ordered in such a way that c(vi ) = i for every i ∈ [k], the rest of the ordering
being arbitrary. For every i ∈ [�] we define coloring ci from ci−1 by

ci (v) =
{
ci−1(v) if v �= vk+i ,

k + i if v = vk+i .

In other words, if we reverse the order of colorings, then we obtain c from t by recoloring
every vertex at most once. Clearly, ci ∈ AF(G) for every i ∈ [�] because c ∈ AF(G).

Moreover, we can obtain ci−1 from ci by a recoloring of vertex vk+i . By the construction of
ci from ci−1 it is clear that vk+i is not a b-vertex for ci because the color ci−1(vk+i ) is not
in the closed neighborhood of vk+i in coloring ci . Hence we have an acyclic recoloring step
from ci to ci−1 and ci−1 �a ci follows for every i ∈ [�]. �	

With this the following definition is justified. The acyclic b-chromatic number Ab(G) is
the maximum number of colors in a minimal element of ≺a :

Ab(G) = max{|c| : c ∈ AF(G) is a minimal element of ≺a}.
The acyclic b-chromatic number of a graph G describes the worst case to appear while using
the acyclic recoloring algorithm to estimate A(G). An acyclic coloring of G with Ab(G)

colors that arise from a minimal element of ≺a is called an Ab(G)-coloring. We have the
following inequality chain

ω(G) ≤ χ(G) ≤ A(G) ≤ Ab(G) ≤ nG , (1)

where the fact that every acyclic b-coloring is also an acyclic coloring implies A(G) ≤ Ab(G).

Next we characterize the graphs for which Ab(G) = nG .

Proposition 3.2 We have Ab(G) = nG if and only if G ∼= KnG .

Proof If G ∼= Kn, then Ab(G) = n = nG by (1). Conversely, if G � Kn, then there exist
different and nonadjacent u, w ∈ V (G). For a trivial coloring t of G,

c(v) =
{
t(v) : if v �= u,

t(w) : if v = u,

is a coloring obtained by an acyclic recoloring step. Hence t is not a minimal element of ≺a

and Ab(G) < nG . �	
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Fig. 1 Colorings without weak acyclic b-vertices of all colors that can sometimes be acyclic recolored and
sometimes not

The b-chromatic number ϕ(G) has an elegant description as a maximum number of colors
for which b-vertex exists in every color class. For the acyclic b-chromatic number this is not
enough as already shown forC4.Namely, arbitrary recoloring can also trigger a bi-chromatic
cycles and we need to avoid this. To formulate appropriate condition, we define the concept
of a weak acyclic b-vertex.

Definition 3.3 Let G be a graph with an acyclic coloring c : V (G) → [k]. A vertex v ∈ Vi ,
i ∈ [k], is a weak acyclic b-vertex if it satisfies

∀� ∈ [k] − CNc[v], ∃ j ∈ CNc(v) : G[Vj,� ∪ {v}] contains a cycle. (2)

Note that every b-vertex v is also weak acyclic b-vertex, since [k] − CNc[v] = ∅ in
this case. If v is a weak acyclic b-vertex and � ∈ [k] − CNc[v], then there exists a bi-
colored path of even length between two neighbors of v (both colored by j). For two colors
�,m ∈ [k]−CNc[v] such two paths can have a common inner vertex of color j if both paths
start (and end) with the same color j .

As already suggested by “weak”, the notion of weak acyclic b-vertex does not generalize
b-vertices to acyclic b-vertices in all the cases. For this observe Fig. 1. On the left, we have a
colored 8-cycle where only color 1 has a weak acyclic b-vertex (that is actually a b-vertex),
while colors 2 and 3 have no weak acyclic b-vertex. However, the presented coloring cannot
be reduced with an acyclic recoloring step. Even more tricky is the example on the right
graph G of Fig. 1. There are two similar colorings of this graph with only a difference in
vertex z. In the first coloring z is colored by 2 and in the second coloring by 4.Vertices a, b, c
are b-vertices for colors 1, 2, 4, respectively, so only color 3, which is without weak acyclic
b-vertex, can be recolored. In the first coloring, this is possible as w and v can be recolored
with 4, and u and t with 2 and we get an acyclic coloring. On the other hand, an acyclic
recoloring of G is not possible for the second coloring (i.e. the one in which c(z) = 4),
because u and v can be recolored only with 2 and this yields a bi-chromatic cycle.

Both colorings of G in Fig. 1 show that sometimes also an even cycle C can prevent the
acyclic recoloring step for a color i and not a weak acyclic b-vertex. This is possible only if
C is colored with exactly three colors, say i, j, k, and i appears at least twice on C . Further,
one of the other two colors, say j, must be on every second vertex. We call such a cycle an
i-critical cycle or i-CC for short. Note, that color k can appear only once, say on vertex v, on
C and in such a case v cannot be recolored with i by condition (2) (when v is a weak b-acyclic
vertex). However, if also k appears at least twice on C, then C is k-CC as well and we say
that C is i, k-critical cycle or i, k-CC for short. Color i of i-CC is called principal while in
i, k-CC we have two principal colors i and k. Clearly, i-CC is of the length at least six and
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Fig. 2 Cycles C and C ′ form a
critical cycle system
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i, k-CC of the length at least eight. Note that C8 from Fig. 1 is 2, 3-CC and the 8-cycle from
G on the same figure is 2, 3-CC as well. Further, in Fig. 2 C is 1-CC and C ′ is 1, 5-CC.

Critical cycles that have a common vertex of principal color can further influence on each
other. For this observe a simple example in Fig. 2. Here C is 1-CC and C ′ is 1, 5-CC and
they have a common vertex d of principal color 1. Notice that b, c, g are b-vertices of colors
2, 4, 5, respectively. In addition, e is a weak acyclic b-vertex. So the only candidate for
acyclic recoloring is color 1. In this case, notice that f can be recolored only with 5. Now, d
can be recolored with 3 or 5, but we cannot recolor both d and f with 5, because then C ′ is
bi-colored. So, d must receive color 3. Finally, a can be recolored only with 3, which yields
bi-colored cycle C . Hence, acyclic recoloring of this coloring is not possible.

Let c be an acyclic coloring of G. Let C be a collection of all critical cycles for c. A
critical cycle system for color i or CCS(i) for short is a subcollection of i-CC from C that
form a maximal connected subgraph of G and where different critical cycles intersect only
in vertices of color i (there can be more than one CCS(i) in one coloring of G). The color
that is not principal on a critical cycle C appears exactly once on C or on half of vertices of
C . If it appears only once, then the condition (2) prevents the recoloring with i if necessary.
The other color, say j, can be always recolored on C (if there is no weak acyclic b-vertex of
this color or some other CCS( j)). In Fig. 2 {C,C ′} is the collection of all 1-CC as well as
the only CCS(1) for the presented coloring. On the other hand, C ′ is the only 5-CC and with
this also CCS(5).

Let i be a principal color without any weak acyclic b-vertex in a coloring of a graphG. Let
v be a vertex of color i in a CCS(i). An available color for v is every color that is not in the
neighborhood of v and is not on a bi-colored path of even length between two neighbors of v.

By Av we denote the set of all available colors of v. In Fig. 2 we have Aa = {3}, Ad = {3, 5}
and A f = {5} for CCS(1). On the same figure for CCS(5), both sets of available colors are
empty, because there exists a weak acyclic b-vertex g of color 5.

Let D ⊆ C be a CCS(i) for an acyclic coloring of graph G. If there exists a principal
color i among the colors used on D such that for every vertex v from D colored with i there
exists a color jv ∈ Av, such that recoloring all such v with jv results in an acyclic coloring,
then D is recolorable. Otherwise, D is not recolorable. CCS(1) {C,C ′} from Fig. 2 is not
recolorable. As we have already observed, the recoloring of color 1 leads to a bi-chromatic
cycle. Vertices of color 5 could be recolored in CCS(5), however, vertex g is a b-vertex of
color 5 and with this also a weak acyclic b-vertex and color 5 cannot be recolored. It is also
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easy to see that the critical cycle C8 from Fig. 1 is not recolorable as well as the second
coloring of G on the same figure. However, the first coloring of this graph is recolorable.
Now everything is settled for the definition of acyclic b-vertices.

Definition 3.4 Let G be a graph with an acyclic coloring c : V (G) → [k]. A vertex v ∈ Vi ,
i ∈ [k], is an acyclic b-vertex if it satisfies

∀� ∈ [k] − CNc[v], ∃ j ∈ CNc(v) : (G[Vj,� ∪ {v}] contains a cycle ∨
there exists a CCS (i) of G that contains v and is not recolorable). (3)

Now we can describe minimal elements of ≺a of graph G as follows.

Theorem 3.5 An acyclic k-coloring c is a minimal element of ≺a if and only if every color
class Vi , i ∈ [k], contains an acyclic b-vertex.

Proof Let an acyclic k-coloring c be a minimal element of ≺a of a graph G. This means
that we cannot present an acyclic recoloring step for c. There are two possible reasons for
that for any color class Vi , i ∈ [k]. Firstly, Vi has a b-vertex or secondly, by any recoloring
of Vi we get a bi-chromatic cycle of colors, say j and �, different than i . Let v1v2 . . . vqv1
be such a cycle C where v1 ∈ Vi and c(v2) = c(vq) = j . Clearly, C can be different after
different recolorings. Since the recoloring is arbitrary, we may assume that � /∈ CNc[v1] is
arbitrary. If v1 is the only vertex of color i onC, then path v2 . . . vq is bi-colored by c.Hence,
G[Vj,� ∪{v} contains a cycle and the first part of condition (3) holds. Otherwise, there exists
more vertices of color i on C . Then there exists CCS(i) that contains v1, because C contains
more than one vertex of color i and some i-CC from the mentioned CCS(i) is bi-chromatic
after any recoloring. So, there exists CCS(i) that is not recolorable and the second part of
condition (3) is fulfilled. In both cases, we have an acyclic b-vertex for every color i ∈ [k].

Conversely, if c is not a minimal element of≺a, then we can perform an acyclic recoloring
step for some color i . This means that for every v ∈ Vi there exists a color �v /∈ CNc[v]
such that for every j ∈ CNc(v) there is no cycle in G[Vj,�v ∪ {v}] and every CCS(i) (if it
exists) is acyclic recolorable. But then condition (3) is not fulfilled and Vi is without acyclic
b-vertex and we are done. �	
Corollary 3.6 The acyclic b-chromatic number Ab(G) of a graph G is the largest integer k,
such that there exists an acyclic k-coloring, where every color class Vi , i ∈ [k], contains an
acyclic b-vertex.

Corollary 3.7 Let G be a graph with all even cycles being 4-cycles. The acyclic b-chromatic
number Ab(G) of G is the largest integer k, such that there exists an acyclic k-coloring,
where every color class Vi , i ∈ [k], contains a weak acyclic b-vertex.

Let us observe some simple facts.

Corollary 3.8 For every positive integers n, k, �, where k ≥ 3 and � ≥ 5, we have

• Ab(Kn) = 1.
• Ab(P�) = 3.
• Ab(Ck) = 3.

Proof Ab(Kn) ≥ 1 and Ab(Ck) ≥ 3 follow from (1), while the coloring c : V (P�) → [3]
guaranteeing Ab(P�) ≥ 3 can be defined as c(vi ) = (i (mod 3)) + 1, i ∈ [�] (every internal
vertex is a b-vertex and thus there is an acyclic b-vertex in each color class). On the other
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hand, if Kn is colored with p ≥ 2 colors, then every color is without an acyclic b-vertex and
this coloring is not a minimal element of ≺a by Theorem 3.5. Similar is with Ck and P�. If
they are colored by p ≥ 4 colors, then no color class contains an acyclic b-vertex and such a
coloring in not a minimal element of ≺a by Theorem 3.5. The desired equalities now follow.

�	
We end this section with a brief discussion of graphs where F(G) = AF(G), or in other

words, where every coloring ofG is acyclic. Among such graphs are clearly odd cycle graphs
described in Proposition 2.1, some cactus graphs and in particular trees. For such graphs we
have Ab(G) = ϕ(G). In particular, b-chromatic number of trees and cactus graphs was
studied in Irving and Manlove (1999) and Campos et al. (2009), respectively. In both cases,
it was shown that

m(G) − 1 ≤ ϕ(G) ≤ m(G),

where the above holds for cactus graphs when m(G) ≥ 7. Moreover, the lower bound is
achieved if and only if G is a pivoted graph. Notice that pivoted tree (see Irving and Manlove
1999) is defined differently than a pivoted cactus graph (see Campos et al. 2009) and that for
pivoted trees we do not have a restriction thatm(G) ≥ 7. It is also important to mention, that
the authors of Campos et al. (2009) used an alternative definition of cacti, where two cycles
can have arbitrarily many vertices in common, provided that they do not have a common
edge. For that reason, their results are not consistent with the definitions used in our paper.
However, we still can formulate the following.

Corollary 3.9 Let T be a tree. If T is a pivoted tree, then Ab(T ) = m(T ) − 1 and otherwise
Ab(T ) = m(T ).

Corollary 3.9 implies in particular that the difference between Ab(G) and A(G) can be
arbitrarily large.

Corollary 3.10 There exists an infinite family of graphs G1,G2, . . . such that (Ab(Gn) −
A(Gn)) → ∞ as n → ∞.

Proof For n ≥ 1, let Gn be a graph consisting of a star K1,n+1 with n pendant edges attached
to each of its leaves. GraphGn has exactly n+2 vertices of degree n+1 and n(n+1) vertices
of degree 1, som(Gn) = n+2.Also,Gn is not a pivoted tree, so Ab(Gn) = m(Gn) = n+2.
On the other hand, any proper coloring of Gn is its acyclic coloring, so A(G) = 2. Thus
Ab(Gn) − A(Gn) = n for every n ≥ 1 and (Ab(Gn) − A(Gn)) → ∞ as n → ∞. �	

4 An upper bound on Ab(G) analogous tom(G) for'(G)

Let c be an acyclic k-coloring of a graph G that is minimal with respect to order ≺a . Recall
that according to the Theorem 3.5 every color class Vi contains an acyclic b-vertex. While
for b-vertices, high enough degree is necessary, for acyclic b-vertices we need a high enough
degree or sufficient number of even-vertex internally (or EVI for short) disjoint (u, w)-paths
of odd order (that is, of even length) between some of its neighbors u �= w or a combination
of both (by even-vertex internally disjoint we mean that two such paths can have odd vertices
of such a path in common, but not the even vertices). In particular, if for u, w ∈ NG(v) there
are k different EVI disjoint (u, w)-paths P1, . . . , Pk of even length, where Pk = uvw, in the
worst case these paths can yield k different colors into which v cannot be recolored. Indeed,
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Fig. 3 Graph G with the optimal

weak partition AP
0 = {u, z11, y

2
1 },

AP
1 = {x11 , x12 }, implying

|AP
0 | = 3, |P| − 1 = 1,

elpG (v, P) = 3 and daG (y11 ) = 7

x1
1

x1
2

y13y14 y12
y11

z11

y21

u

on every path Pi , i ∈ [k − 1], there can exist ai ∈ V (Pi ) with c(ai ) /∈ {c(v), c(u)} and we
can have alternating colors c(u) = c(w) and c(ai ) or Pk ∪ Pi is c(v)-CC that contains colors
c(v), c(u) and c(ai ) and belongs to a CCS(c(v)) that is not recolorable. Hence, in the worst
case, u, a1, . . . , ak−1 are colored differently and v cannot receive any of their colors in an
acyclic recoloring step.

This can be generalized to a bigger number of neighbors in the following way. Consider a
weak partition P = {AP

0 , AP
1 , . . . , AP

k } of NG(v) into k + 1 disjoint sets such that |AP
0 | ≥ 0

and |AP
i | ≥ 2 for i ∈ [k] (the mentioned partition is weak because AP

0 can be empty).
Without loss of generality assume that v is colored with color 1, the vertices of AP

0 with
distinct colors from the set [2, |AP

0 | + 1] and all the vertices of AP
i , i ∈ [k], with color

|AP
0 | + i + 1. Now, let elpG(v, P) be the maximum number of pairwise EVI disjoint paths

disjoint with v having odd number of vertices (i.e., of even length), with both ends in one
of the sets AP

i , i ∈ [k]. Observe that given a partition with color classes defined as above,
in the worst case one cannot recolor v to exactly (|AP

0 | + k + elpG(v, P)) colors different
than c(v): (|AP

0 | + k) colors are blocked by the neighbors and elpG(v, P) by the alternately
colored bi-chromatic EVI disjoint paths that could appear in the coloring. This encourages
us to define the acyclic degree of v as

daG(v) = max
P∈P(v)

{(|AP
0 | + (|P| − 1) + elpG(v, P))},

where P(v) is the family of all the weak partitions P of NG(v) defined as above.
See Fig. 3 with the only optimal weak partition of NG(y11 ) defined as P =

{AP
0 , AP

1 }, AP
0 = {u, z11, y

2
1 }, AP

1 = {x11 , x12 }. Clearly, |AP
0 | = 3, |P| − 1 = 1 and

elpG(v, P) = 3 (the paths being x11 y
1
2 x

1
2 , x

1
1 y

1
3 x

1
2 , x

1
1 y

1
4 x

1
2 ), thus d

a
G(y11 ) = 7.

Since we traverse over all weak partitions in P(v), notice that daG(v) represents the max-
imum number of colors in NG(v) and on EVI disjoint paths of even length between vertices
of NG(v) into which v cannot be recolored in a recoloring step. This gives an analogy to the
relation between degree dG(v) and ϕ(G),where we needed a sufficient number of vertices of
high degree to expect ϕ(G) to be large. Hence, we are encouraged to define an ma-degree of
a graph G denoted byma(G). First we order the vertices v1, . . . , vnG of G by non-increasing
acyclic degree. The value of ma(G) is then the maximum position i in this order such that
daG(vi ) ≥ i − 1, that is

ma(G) = max{i : i − 1 ≤ daG(vi )}.
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Theorem 4.1 For any graph G we have Ab(G) ≤ ma(G).

Proof On the way to a contradiction suppose that there exists a graph G for which k =
Ab(G) > ma(G) and that c : V (G) → [k] is an appropriate acyclic b-coloring of G. We
may assume that v1, . . . , vnG are ordered by non-increasing acyclic degree. Clearly, not all
colors from [k] are present on the vertices v1, . . . , vk−1 and we may assume that c(vi ) �= k
for every i ∈ [k − 1]. This means that daG(v) < k − 1 for every vertex v of color k. Hence,
for every vertex v of color k, (3) does not hold, a contradiction with Theorem 3.5. �	

In general case, it seems to be hard to compute ma(G) because we need to derive acyclic
degrees for every vertex v of G. This is further connected with all the weak partitions from
P(v). Moreover, for every such weak partition we need to get the maximum number of EVI
disjoint paths of even length.

The problem of finding a maximum cardinality set of disjoint paths between two fixed
vertices is obviously related to the connectivity of graph and Menger’s Theorem (Menger
1927) and has been studied for many years. It was proved to be polynomially solvable already
by Even and Tarjan (1975) with network flow algorithms and no spectacular progress has
been made since then, although some papers may be found giving better results in special
cases (see e.g. Grossi et al. 2018 or Preißer and Schmidt 2020 for some recent results).
Unfortunately, when the path lengths are somehow restricted, the problem was proved to be
NP-complete already by Itai et al. (1982). Bley (2003) proved its APX-completeness. Also
the version of the problem of finding k disjoint paths between k disjoint pairs of terminals
has been studied, see e.g. (Fleszar et al. 2018) for some recent results. We do not know any
results about the problem of finding maximum cardinality set of EVI disjoint paths between
arbitrary vertices, even if they are members of one fixed set.

Nevertheless, one can expect some success with ma(G) for certain graph classes, mainly
the ones with low connectivity which are not too dense or with low maximum degree. In the
next part of this section, we demonstrate this approach on a family of graphs. It will allow
us to show that there is no linear relationship between Ab(G) and �(G) in general case.
This underlines another difference between Ab(G) and ϕ(G). Recall that ϕ(G) ≤ m(G) ≤
�(G) + 1, however, as we are going to show, Ab(G) can be arbitrarily larger than �(G).

Theorem 4.2 There exists an infinite family of graphs G1,G2, . . . such that (Ab(Gn) −
�(Gn)) → ∞ as n → ∞.

Proof For n ≥ 1, let Hi
n, i ∈ [2n + 4], be isomorphic graphs with

V (Hi
n) = {yi1, . . . , yin+2} ∪ {xi1, xi2} ∪ {zi1, . . . , zin−1}

and

E(Hi
n) = {xij yi� : j ∈ [2], � ∈ [n + 2]} ∪ {yi1zij : j ∈ [n − 1]}.

Notice that in Fig. 3 a graph H1
2 is presented with two additional leaves u and y21 . Using

graphs Hi
n, i ∈ [2n + 4], we construct graph Gn with

V (Gn) = {u, v} ∪
2n+4⋃
i=1

V (Hi
n)

and

E(Gn) = {uy11 , vy2n+4
1 , yi1y

i+1
1 : i ∈ [2n + 3]} ∪

2n+4⋃
i=1

E(Hi
n).
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7 8 1 2 3 4 5 6

6 7 8 1 2 3 4 5

5 6 7 8 1 2 3 4

4 5 6 7 8 1 2 34 5 6 7 8 1 2 3

3 4 5 6 7 8 1 2

8
1 2 3 4 5 6 7 8

1

Fig. 4 Graph G2 with �(G2) = 5 < 8 = Ab(G2)

Observe G2 in Fig. 4, while the first part H1
2 together with the neighbors u and y21 of y11 in

G2 is presented in Fig. 3.
Notice that dGn (y

i
1) = n + 3, dGn (x

i
j ) = n + 2, j ∈ [2], and that the degree of the

other vertices of Gn is at most 2. Hence, �(Gn) = n + 3 and m(Gn) = n + 4 (actually, we
have also ϕ(Gn) = n + 4, the appropriate b-coloring is easy to obtain). Next we show that
Ab(Gn) = 2n+4. For given i ∈ [2n+4], observe the partition P = {Ai

0 = {yi−1
1 , yi+1

1 , zij :
j ∈ [n − 1]}, Ai

1 = {xi1, xi2}} of NGn (y
i
1), where y01 = u when i = 1 and y2n+5

1 = v when
i = 2n + 4. First notice that elpGn

(yi1, P) = n + 1 as {xi1yij xi2 : j ∈ [2, n + 2]} are EVI
disjoint (xi1, x

i
2)-paths of even length. Thus, daGn

(yi1) = (n + 1) + 1 + (n + 1) = 2n + 3,
i ∈ [2n + 4], which gives ma(Gn) = 2n + 4, as there are exactly 2n + 4 vertices of this
acyclic degree. By Theorem 4.1 we have Ab(Gn) ≤ 2n + 4.

To show the equality we construct an acyclic b-coloring c : V (Gn) → [2n + 4] with an
acyclic b-vertex in every color class. For that purpose, let

Ai = {c(xi1) = c(xi2), c(y
i
2), . . . , c(y

i
n+2), c(z

i
1), . . . , c(z

i
n−1)}

and

Bi = ([2n + 4] − [i − 1, i + 1]) − {−2n − 4 + i + 1, 2n + 4 + i − 1}
for i ∈ [2n+4]. Notice that |Ai | = |Bi | = 2n+1. If c satisfies c(yi1) = i and c(xi1) = c(xi2)
for every i ∈ [2n+4], Ai = Bi for every i ∈ [2n+4], c(u) = 2n+4 and c(v) = 1, then every
vertex yi1, i ∈ [2n + 4], is an acyclic b-vertex. Hence, Ab(Gn) ≥ 2n + 4. One such coloring
for G2 is presented in Fig. 4. With this Ab(Gn) = 2n + 4 and Ab(Gn) − �(Gn) = n + 1 for
every n ≥ 1 and finally (Ab(Gn) − �(Gn)) → ∞ as n → ∞. �	

In the remainder of this section, we will prove that there is a nonlinear bound on Ab(G)

with respect to �(G) and present an infinite family of extremal graphs for this bound. The
following upper bound on Ab(G) can be deduced from Theorem 4.1.

Corollary 4.3 For any graph G with �(G) ≥ 2 we have Ab(G) ≤ 1
2 (�(G))2 + 1.
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vi vi vi

xi
1 xi

2 xi
1 xi

2 xi
3 xi

4 xi
1 xi

2 xi
3 xi

4 xi
5 xi

6

yi1 yi1 yi2 yi3 yi4 yi5 yi6 yi1 y
i
2 y

i
3 y

i
4 y

i
5 yi6 y

i
7 y

i
8 y

i
9 y

i
10 yi11y

i
12y

i
13y

i
14y

i
15

Fig. 5 Graphs H1,i = C4, H2,i and H3,i

Proof Observe that for any weak partition P = {AP
0 , AP

1 , . . . , AP
k } of NG(v) there is

(|P| − 1) ≤
⌊
dG(v) − |Ap

0 |
2

⌋
and elpG(v, P) ≤

⌊
dG(v) − |Ap

0 |
2

⌋
(�(G) − 1).

This implies

daG(v) ≤ |AP
0 | + dG(v) − |Ap

0 |
2

+ dG(v) − |Ap
0 |

2
(�(G) − 1) ≤ 1

2
(�(G))2.

In consequence

ma(G) ≤ 1

2
(�(G))2 + 1.

�	
The above bound is tight, as the example of C4 shows. Moreover, it belongs to an infinite

family of graphs satisfying the condition with equality.

Theorem 4.4 There exists an infinite family of graphs G1,G2, . . . such that Ab(Gn) =
ma(Gn) = 1

2 (�(Gn))
2 + 1.

Proof For any positive integer n, we define a graph Hn . Then, by combining some number
of copies Hn,i of Hn, we will define graph Gn being a member of the desired family. The
vertices and edges of Hn,i are defined as follows:

V (Hn,i ) = {vi } ∪ {xij : j ∈ [2n]} ∪ {yik : k ∈ [n(2n − 1)]},
E(Hn,i ) = {vi x ij : j ∈ [2n]}

∪ {xij yik : j ∈ {2� − 1, 2�}, k ∈ [(2n − 1)(� − 1) + 1, (2n − 1)�], � ∈ [n]}.
Graphs H1,i = C4, H2,i and H3,i are presented in Fig. 5.

Now let G1 = H1,1 = C4. Recall that Ab(G1) = 3 = 1
2 (�(G1))

2 + 1 and, since
for every v ∈ V (G1) we have daG1

(v) = 2, also ma(G1) = 3. For n ≥ 2, in order to

obtain Gn we take 2n2 + 1 graphs Hn,i , i ∈ [0, 2n2], and identify yi−1
n(2n−1) with yi1 for

i ∈ [2n2]. Note that Gn has 2n2 + 1 vertices vi , i ∈ [0, 2n2] of degree 2n, (2n2 + 1)2n
vertices xij , i ∈ [0, 2n2], j ∈ [2n] of degree 2n, 2n2 vertices yi−1

n(2n−1) = yi1, i ∈ [2n2], of
degree 4 ≤ 2n and n(2n − 1)(2n2 + 1) − 4n2 = (2n2 + 1)(n(2n − 1) − 2) + 1 vertices
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yik, (i, k) ∈ ([0, 2n2] × [2, n(2n − 1) − 1]) ∪ {(0, 1), (2n2, n(2n − 1))} of degree 2. Thus
�(G) = 2n.

For every vertex vi , i ∈ [0, 2n2], we have daGn
(vi ) = 2n2. Indeed, for the weak partition

P of its neighborhood A0 = ∅, A� = {xi2�−1, x
i
2�} for � ∈ [n], we have |AP

0 | = 0,
|P| − 1 = n and elpGn

(v, P) = n(2n − 1) is the number of EVI disjoint paths of the form
xi2�−1y

i
k x

i
2�,where (�, k) ∈ [n]×[(2n−1)(�−1)+1, (2n−1)�].This implies that daGn

(vi ) ≥
0+n+n(2n−1) = 2n2 = 1

2 (�(Gn))
2. The inequality daGn

(vi ) ≤ 1
2 (�(Gn))

2 follows from
the proof of Corollary 4.3. Obviously, no other vertex can have a higher acyclic degree. Since
there are 2n2 + 1 vertices vi , from Theorem 4.1 we obtain Ab(Gn) ≤ ma(Gn) = 2n2 + 1.

To finish the proof we define the following coloring c, using the elements of additive
group Z2n2+1 as colors (with addition modulo (2n2 + 1) in the formulae):

c(yi1) = i, i ∈ [0, 2n2],
c(yin(2n−1) = i + 1, i ∈ [0, 2n2],

c(yik) = i + k, i ∈ [0, 2n2], k ∈ [2, n(2n − 1) − 1],
c(xi2�−1) = c(xi2�) = i + n(2n − 1) − 1 + �, i ∈ [0, 2n2], � ∈ [n],

c(vi ) = i + 2n2, i ∈ [0, 2n2].
Note that c is an acyclic coloring of Gn (only the colors of xij are used twice in every part

Hn,i ). Moreover, every vi is an acyclic b-vertex: n colors are blocked by its neighbors xij
and n(2n − 1) other colors because of the cycles vi x i2�−1y

i
k x

i
2�v

i , which makes any of the
potential 2n2 recolorings impossible. Since there is a vertex vi in every color class, c is an
acyclic b-coloring and Ab(Gn) ≥ 2n2 + 1. �	
Remark 4.5 Note that the family defined in the proof of Theorem4.4 is another family proving
Theorem 4.2.

5 Acyclic b-chromatic number of joins

For more exact results we recall that the join of graphs G and H is the graph G∨ H obtained
from disjoint copies ofG and H joined with all the possible edges between V (G) and V (H).

More formally, V (G ∨ H) = V (G) 	 V (H) and E(G ∨ H) = E(G) 	 E(H) 	 {uv : u ∈
V (G) ∧ v ∈ V (H)} where 	 denotes the disjoint union.

Theorem 5.1 For two non-complete graphs G and H we have

Ab(G ∨ H) = max{Ab(G) + nH , Ab(H) + nG}.
If H ∼= Kq , then Ab(G ∨ H) = Ab(G) + q.

Proof Let G and H be two non-complete graphs. Let cG be an Ab(G)-coloring of G and let
V (H) = {v1, . . . , vnH }. The map

c(v) =
{
cG(v) if v ∈ V (G),

Ab(G) + i if v = vi ∈ V (H),
(4)

is an acyclic coloring ofG∨H , because cG is an acyclic coloring and all vertices of H receive
different colors. Suppose that we can present a recoloring step for color i of c in G ∨ H to
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obtain coloring c′. If i > Ab(G), then vertex vi−Ab(G) ∈ V (H) is the only vertex of color i .
Since vi−Ab(G) is adjacent to all vertices of G, i is recolored in c′ by some color j > Ab(G)

where j �= i . Again, v j−Ab(G) ∈ V (H) is the only vertex from H with color j in coloring c.
SinceG is not complete,wehave Ab(G) < nG byProposition 3.2 and there exist x, y ∈ V (G)

with c(x) = c(y). But now xvi−Ab(G)yv j−Ab(G)x is a bi-chromatic 4-cycle under coloring
c′, a contradiction. So we may assume that i ≤ Ab(G) and that all the vertices of color i are
from V (G). Every vertex of color i is adjacent to all vertices of H and they can therefore
be recolored only with colors already used in G. But this is not possible because cG is an
Ab(G)-coloring. Hence Ab(G ∨ H) ≥ Ab(G) + nH . By symmetric arguments we can show
that Ab(G∨H) ≥ Ab(H)+nG which yields Ab(G∨H) ≥ max{Ab(G)+nH , Ab(H)+nG}.

We prove the opposite inequality by a contradiction. Indeed, suppose that Ab(G ∨ H) >

max{Ab(G) + nH , Ab(H) + nG} for some graphs G and H that are not complete. Let c be
an Ab(G ∨ H)-coloring and let cG and cH be colorings of G and H , respectively, induced
by c, that is cG(v) = c(v) for every v ∈ V (G) and cH (u) = c(u) for every u ∈ V (H).

Clearly colors of cG are different than colors of cH . If cG has less than nG colors and cH
less than nH colors, then cG(u) = cG(v) and cH (x) = cH (y) for some u, v ∈ V (G) and
x, y ∈ V (H). But then we have a bi-colored four cycle uxvyu, a contradiction. So, cG has
nG colors or cH has nH colors. Without loss of generality we can assume that cG has nG
colors. But then cH has more than Ab(H) colors in H and does not yield a minimal element
with respect to ≺a in AF(H). So, there exists c′

H such that c′
H �a cH and the coloring

c′(v) =
{
c(v) if v ∈ V (G),

c′
H (v) if v ∈ V (H),

is obtained from c by an acyclic recoloring step, a contradiction with c being an Ab(G ∨
H)-coloring. This yields the desired equality and we are done with the first part.

If G ∼= Kp and H ∼= Kq , then G ∨ H ∼= Kp+q and equality holds by Corollary 3.2. If
only one of G and H is complete, say H ∼= Kq , then we can use the coloring c defined in
(4) for an Ab(G)-coloring cG of G. Following the same reasoning after (4), this time only
for i ≤ Ab(G), we obtain that Ab(G ∨ Kq) ≥ Ab(G) + q (notice that i > Ab(G) yields a
contradiction since H ∼= Kq now).

Conversely, suppose that Ab(G ∨ Kq) > Ab(G)+q and let c be an Ab(G ∨ H)-coloring.
Again we can follow the above steps and see that cG , that is the restriction of c toG, contains
more than Ab(G) colors and one can perform an acyclic recoloring step in G. This yields an
acycling recoloring step inG∨Kq and c is not aminimal element of≺a, a final contradiction.

�	
Recall that complete bipartite graph Km,n = Kn ∨ Km, wheel Wn = K1 ∨ Cn−1, fan

Fn = K1 ∨ Pn−1 and complete split graph Kn ∨ Km are all joins of two graphs. Hence the
following corollary follows directly from Theorem 5.1 and Corollaries 3.2 and 3.8.

Corollary 5.2 For every positive integers k, �,m, n, where k, � ≥ 5, we have

• Ab(Kn,m) = 1 + max{n,m};
• Ab(Wk) = 4;
• Ab(Fk) = 4;
• Ab(Kn ∨ Km) = n + 1;
• Ab(Pk ∨ P�) = Ab(Pk ∨ C�) = Ab(Ck ∨ C�) = 3 + max{k, �}.
Corollary 5.2 implies in particular that the difference between Ab(G) and ϕ(G) can be

arbitrarily large.
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Corollary 5.3 There exists an infinite family of graphs G1,G2, . . . such that (Ab(Gn) −
ϕ(Gn)) → ∞ as n → ∞.

Proof For n ≥ 1, let Gn = Kn,n . Since the proper 2-coloring of Kn,n is its b-coloring, we
have ϕ(Kn,n) = 2, while Ab(Kn,n) = 1+ n, so Ab(Kn,n) − ϕ(Kn,n) = n − 1 for n ≥ 1 and
(Ab(Gn) − ϕ(Gn)) → ∞ as n → ∞. �	

Notice also that the family {Gn} defined in the proof of Theorem 4.2 is another family of
graphs for which (Ab(Gn) − ϕ(Gn)) → ∞ when n → ∞.

6 Final remarks

In the paper, we introduced a new graph invariant, the b-acyclic chromatic number Ab(G)

and proved some of its properties. Some problems, however, remain still open.
Although the construction of a b-acyclic coloring seems very similar to one of b-colorings

(one considers only acyclic colorings instead of all colorings), we observed some interesting
differences between them. In particular, Ab(G) can be arbitrarily larger than the acyclic
chromatic number A(G), maximum degree �(G) and b-chromatic number ϕ(G). The last
result is consistent with the intuition that Ab(G) should be not less than ϕ(G), since the
strictly partial ordered set of acyclic colorings is obviously a subset of the strictly partial
ordered set of all proper colorings. However, we can neither prove nor disprove it.

On the other hand, we proved the theorem allowing to verify whether a coloring is a
minimal element of the strictly partial ordered set of acyclic colorings, using the criterion
of the existence of a b-acyclic vertex in every color class (where the concept of b-acyclic
vertex is a natural generalization of the notion of a b-vertex). We also proved an inequality
analogous to ϕ(G) ≤ m(G). To this end, we introduced a new vertex measure, the acyclic
degree daG(v) ≥ dG(v) and resulting graph invariant ma(G) ≥ m(G) allowing to define
the upper bound Ab(G) ≤ ma(G). But these results still do not help to prove any relation
between Ab(G) and ϕ(G).

One of the causes of the difficulties in proving any relationship between these two param-
eters is the fact that a minimal element of the poset of proper colorings does not need to be
an acyclic coloring and vice versa. A simple example is presented in Fig. 6(the graph was
originally presented in a different context in Tuite et al. 2022).

Indeed, one can easily check that the coloring c in which c(x) = 6 is the only (up to
obvious rotations) b-coloring of G with b-vertices u and the five ones marked with black
circles. However, this coloring is not acyclic, due to the cycle xx ′y′yx . On the other hand,
in the acyclic coloring c′ defined as c′(x) = 3 and c′(w) = c(w) for w ∈ V (G) − {x}, we
have five b-vertices (being by definition b-acyclic vertices) marked with black circles and the
sixth b-acyclic vertex v, that cannot be recolored with neither 1, 3, 4 nor 6 because they are
the colors of its neighbors, but also color 5 is forbidden because of the 4-cycle vzyxv.On the
other hand, there is no b-vertex in color class 2. This means in particular, that c′ is minimal
in the poset of acyclic colorings, but not in the strictly partial ordered set of proper colorings.
Moreover, since c and c′ use the same number of colors, there is no sequence of recoloring
steps leading from one to the other, so they are incomparable in the poset of proper colorings.

Taking into account the above considerations, we formulate the first open problem.

Problem 6.1 Prove or disprove the inequality Ab(G) ≥ ϕ(G).
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Fig. 6 Graph G from Tuite et al. (2022) for which 6 = ϕ(G) ≤ Ab(G) and the minimal colorings are
incomparable

If the inequality comes out to be false (i.e., if there is a counterexample), it would be
interesting to know, for which graphs it is true. This leads us to a relaxed version of the last
problem.

Problem 6.2 Characterize the graphs, for which Ab(G) ≥ ϕ(G).

Another interesting question refers to the results about φ(G) presented in Irving and
Manlove (1999) and Campos et al. (2009).

Problem 6.3 Characterize the graphs, for which Ab(G) ≥ ma(G) − c for some constant c.
In particular, characterize the graphs, for which Ab(G) = ma(G).

We have seen some examples, see Figs. 1 and 2, of Ab(G)-colorings that contain not
recolorable critical cycle systems or, in other words, some colors have a acyclic b-vertex that
is not a weak acyclic b-vertex. However, all such examples also have Ab(G)-coloring where
every color has its weak acyclic b-vertex. So, we ask if weak acyclic vertices are enough to
describe acyclic b-chromatic number of a graph in the meaning of Corollary 3.6?

Problem 6.4 Is it true that the acyclic b-chromatic number Ab(G) of a graph G is the largest
integer k, such that there exists an acyclic k-coloring, where every color class Vi , i ∈ [k],
contains a weak acyclic b-vertex?

The next problem refers to the complexity of finding Ab(G), which is expected to be at
least NP-hard in general.

Problem 6.5 Find the complexity of deriving Ab(G).
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We do expect that there are some special families of graphs, for which polynomial time
is enough for solving Ab(G) (see Corollary 3.9 for trees).

Problem 6.6 Find polynomial algorithms for finding daG(v), ma(G) and Ab(G) for chosen
families of graphs.

In particular some exact values or estimates for Ab(G) for families of graphs other than
analyzed in this paper would be a valuable contribution.

Problem 6.7 Find explicit formulae or tight lower and upper bounds on daG(v), ma(G) and
Ab(G) for chosen families of graphs.
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