
Computational and Applied Mathematics (2022) 41:393
https://doi.org/10.1007/s40314-022-02101-z

Machine learning algorithms for dengue risk assessment: a
case study for São Luís do Maranhão

Fernanda Paula Rocha1 ·Mateus Giesbrecht1

Received: 2 August 2022 / Revised: 14 October 2022 / Accepted: 15 October 2022 /
Published online: 15 November 2022
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022

Abstract
This study aims to assess dengue fever risk using Machine Learning techniques, such as
logistic regressions, linear discriminant analyses, Naive Bayes, decision tree, and random
forest classifiers. This kind of approach to epidemiological problems has been developed to
detect risks for diseases occurrence and allows to create public policies based on mathemat-
ical models to prevent public health problems. In this study, the models were trained with
data from the municipality of São Luís doMaranhão, state ofMaranhão, Brazil. The majority
of related works analyze states, countries, or continental levels, with greater availability of
data. To apply the approach to such a small region, some oversampling techniques were used.
The number of cases per neighborhood from 2014 to and 2020 and climatic, territorial, and
environmental data was used as input variables to estimate the probability of dengue occur-
rence in the municipality. Due to the unbalanced database, we used the SMOTE, ADASYN,
and DBSMOTE oversampling techniques. The DBSMOTE-trained Random Forest classifier
achieved the best results with a 75.1% AUC, 75.43% sensitivity and a 60.53% specificity.

Keywords Dengue · Classification · Machine learning · Random forest · Logistic
regression · Naive bayes
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1 Introduction

Machine learning techniques have been applied to deal with many different diseases, from
diseases known for a long time, to more recent diseases, such as COVID-19 (Chumachenko
et al. 2022). In recent years, modeling the epidemiological dynamics of dengue has grown
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as a method to prevent and control future outbreaks, especially in endemic areas. Disease
models based on Machine learning techniques were recently introduced to assist decision-
making processes (Batista et al. 2021). Models start from information containing biological,
climatic, geographical, and other data. Then, classifier algorithms operate these data to obtain
a possible optimal model, which is tested on unused data to perform predictions.

This article analyzes dengue behavior in São Luís do Maranhão from 2014 to 2020 using
historical case data obtained from the Municipal Department of Health of São Luís, climate
data from the National Institute of Meteorology, and neighborhood locations and vegetation
indices from Google Earth Engine servers. Based on basic knowledge on the dynamics
of the disease, a database containing variables to train classification algorithms, obtains the
occurrence probability of dengue cases in certain locations, and analyzes the factors indicating
an increase in cases, was created.

This study compares five classic classification algorithms in the machine learning litera-
ture, i.e., Logistic Regression (LR) (James et al. 2013), Linear Discriminant Analysis (LDA)
(Xanthopoulos et al. 2013), Naive Bayes (NB) (Wongkar and Angdresey 2019), Decision
Tree (DT) (Myles et al. 2004), and Random Florest (Cutler et al. 2007). The main objective is
to analyze factors influencing the increase of dengue cases in São Luís/MA via quantitative
engineering methods applied to epidemiology. It also aims to explore how supervised clas-
sification algorithms, applied to monthly epidemiological data distributed by neighborhood,
perform to predict the future probability of cases occurrence.

1.1 Dengue fever in São Luís doMaranhão

Dengue has become a worldwide public health problem and is currently the insect-borne
arbovirus with the greatest mortality rate. According to the World Health Organization
(WHO), dengue incidence has increased eightfold in the last two decades, from 505,430
cases in 2000 to more than 2.4 million in 2010 and 5.2 million in 2019 (Organization 2022).

The study (Silva et al. 2016), analyzed the relation between temperature, rainfall, and
dengue occurrence in São Luís/MA, observing increases in cases after rain periods. In
addition to climate, behavioral and structural factors support the disease spread, despite
government surveillance to control it. The Brazilian Ministry of Health has implemented
strategies to struggle against dengue, such as the indices of building infestation—measured
via the sampling index survey (LIA)—and the larval index rapid assay for Aedes aegypti
(LIRAa)—obtained by collecting larvae in homes and wastelands—to identify predominant
breeding sites. Another measure is spraying insecticide in those sites.

According to Ministry of Health data, the state of Maranhão reported 80,150 cases of
the disease between 2001 and 2013 and 52,432 cases from 2014 to 2020. The state capital
reported 6,379 cases from 2014 to 2020.

Data in Fig. 1 indicate that most cases in 2016 occurred from January to July. According
to Brasil (2021), dengue shows a seasonal behavior, occurring mainly between October and
May, as seen from 2015 to 2016.

2 Machine learning applications in epidemiology

This section shows some applications of machine learning algorithms analyzing and predict-
ing the behavior of communicable diseases, such as, dengue, Zika virus, yellow fever, Ebola,
and Marburg disease.
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Fig. 1 Population data of positive cases obtained from the Municipal Health Department from 2014 to 2020

The dengue virus has rapidly expanded in recent years. It initially only inhabited tropical
climates, having since moved to subtropical and temperate climates. Of the many factors
affecting dengue virus transmission, temperature is the most frequently investigated factor
as it affects the survival of the female vector. Temperature analysis can determine when and
where viral transmission will persist or cease.

Aedes Aegypti and Aedes Albopictus are the two vectors which can transmit the virus. The
difference between speciesmay lie in their intestinal salivary glands (Lambrechts et al. 2010).
A study (Brady et al. 2014) defined the thermal limits of Aedes Aegypti and the persistence
of Aedes albopictus via a parameterized model considering the interaction between viral
incubation lengths - which depend on temperature and survival of the adult vector. That study
related temperature and viral transmission potential via vector capacity equations previously
used in Gething et al. (2011). It employed a generalized regression model with data obtained
from laboratory and field studies to analyze this relation. It formulated and adjusted the
incubation period of theAedes aegypti virus to a constant temperature, subsequently assessing
differences in viral behavior during this period in both vector species.

Results showed that Aedes Aegypti is better suited to warmer regions, whereas Aedes
Albopictus better inhabits regions with less pronounced temperatures, in which case it shows
a 42 times higher adequacy index. Still, Aedes Albopictus, can adapt to regions best suited
for Aedes Aegypti The obtained maps can restrict the extent to which transmission occurs
and its endemicity.

The analysis of the transmission of dengue virus in Kraemer et al. (2015) relates it to
spatial data, assuming that not every individual has the same chance of contacting any other
individual. Generally, hypotheses assume a constant contact likelihood. For this, the authors
collected temperature, water availability, and vegetation cover data, and daily case informa-
tion from a hospital in Punjab from 2011 to 2014. They entered the data into a regression
tree model to perform their analyses (Finkenstädt and Grenfell 2000).

Their results show that regional variability directly affects estimates of the basic repro-
duction number (R0) by measuring viral transmissibility in the studied region and elsewhere.
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Those results also show the significant differences in the heterogenous mixture of urban and
rural configurations as human behavior directly influenced this distribution, and that the inter-
action between mixture parameters and infection strength has potentially large implications
to optimize targeted interventions.

Another study (MacCormack-Gelles et al. 2020) sought to understand whether the larval
index rapid assay for Aedes aegypti (LIRAa) helps to reduce mosquito-borne diseases. It
considered information from several years to analyze whether the index is a good predictor
of the risk of dengue transmission. The study was conducted in Fortaleza, capital of the state
of Ceará, Brazil. The authors obtained data on dengue cases reported between 2012 and
2015 from the Brazilian Notifiable Diseases Information System and on local precipitation
from Climate Hazards Group InfraRed Precipitation Station. As model outputs, the authors
calculated dengue incidence rates per neighborhood in intervals of one, two, and four weeks
after LIRAa, using two logistic models to analyze their data. They concluded that the LIRAa
schedule is inadequate and that its sampling fails to prioritize certain densely populated areas.

In 2015, Zika Virus (ZIKV) infections were confirmed in several Brazilian states; eight
months later, theWorld Health Organization (WHO) declared a ZIKV epidemic in the Amer-
icas. Immunologically inapt populations and a large number of Aedes aegypti mosquitoes in
favorable environments are two reasons for this spread.

The study (Rocklöv et al. 2016) aimed to analyze the entry and expansion of the ZIKV in
Europe, especially with the arrival of summer and the entry of travelers from the Americas.
The study developed mathematical models highly dependent on average temperatures and
daytime temperature variation. The models analyzed the monthly flows of air passengers
arriving in European cities from American cities affected by ZIKV. They also considered
monthly viral (R0) estimates in areas in which transmitting mosquitoes inhabit in Europe
and those in which humans reside in possible transmission areas. The authors developed
three models, selecting that which best fits the transmission dynamics in the Americas. They
then adapted the models to Europe using European climate data to estimate (R0), comparing
it with the (R0) of the same region, given by government agencies, to validate the estimated
R0. They found that predictions and observations agreed with each other.

The authors found that the periods in which travelers arrived in Europe coincide with the
peak of estimated vector capacity and that areas with climates more prone to the virus suffer
from the possible autochthonous ZIKV transmission, which can lead to outbreaks. Thus, the
authors suggest greater attention to authorities in the warmer periods of the year. They also
highlight that their study assesses the transmission potential of ZIKV in Europe rather than
the probability of a ZIKV epidemic.

The study (Bogoch et al. 2016) aimed to assess the spread of ZIKV in Africa and the Asian
Pacific. These regions have a large influx of travelers from the Americas, focus of cases. The
study aimed to evaluate the risks of importing the virus via travelers and its ecological
adequacy in new regions. In addition to analyzing the monthly flows of passengers from
the Americas, models of intra-mosquito dynamics of dengue virus also assessed climate
adequacy for ZIKV virus transmission and national health investments. The literature lacks
a specific ZIKV model due to data scarcity, but evidence suggests that the dengue and Zika
viruses share many common epidemiological features. Then the model was combined with
global temperature data and then travelers were mapped.

The study concluded that countries that invest more in health decrease the risk of an
epidemic, even with the large flow of travelers and with populations living in areas with
higher risks of autochthonous transmission. Countries with a moderately high volume of
travelers arriving from the Americas, but low investment in health, may be the most likely to
transmit these viruses. Finally, analyses emphasize how local populations could benefit from
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greater health investments. A similar approach was used in Rocklöv et al. (2016), but in that
work the authors ignored the financial analyses of health investments.

Another study (Messina et al. 2016) shows which regions of the world have the adequate
environmental conditions for Zika virus transmission. The authors used a species distribution
model and boosted regression trees, including places which reported the disease in humans
and places which did not, and environmental and socioeconomic variables. The study gen-
erated a database from information on ZIKV occurrence sites in the literature, and data on
Brazil came directly from its national Ministry of Health.

The authors averaged of 300 boosted regression trees, predicting that tropical and subtrop-
ical zones show a greater chance of ZIKV transmission and that most of the Americas have
adequate transmission environments. The models showed that annual accumulated precipi-
tation particularly influences the risk of ZIKV. The study used cross-validation to evaluate
the model.

Another virus that has been studied using Machine learning techniques is the Ebola. The
study (Pigott et al. 2014) assessed the zoonotic transmission of the Ebola virus in Africa due
to its high lethality rate. The adopted procedure resembles that in Pigott et al. (2015) to treat
the Marburg Virus, as we will discussed later. To develop their research, the authors used
BRT classification models to define the appropriate areas for an Ebola outbreak. To analyze
model results, they used data on the location of cases in humans and three bat and primate
species. They also used environmental variables collected from satellite information.

Although unprotected direct contact with infected individuals and cadavers can spread
the disease, the study focused on the viral transmission between animals and humans (called
zoonotic transmission) to predict a future outbreak based on the data cited above. The authors
adopted this approach because the health system at these sites is unable to control the spread
of the disease if the number of infected increases, raising the risk of a large outbreak.

The study classified countries into two sets, those which reported Ebola cases and those
which failed to do so. They used the area under the curve (AUC) to measure the performance
of the classification model (Prati et al. 2008). Their results predicted that 22.2 million people
live in areas suitable for the zoonotic transmission of the Ebola virus, approximately 97% of
which inhabit rural areas. Some 15.2 million people live in those areas, and the Democratic
Republic of the Congo, Guinea, and Uganda are the countries with the highest number of
reported cases. Moreover, seven million people live in areas with no recorded cases, with
high numbers in Cameroon, the Central African Republic, and Nigeria. The classifier also
found a relation between the Ebola virus and the environmental variables included in the
model. As a conclusion, zoonotic transmission is more likely to occur in regions dominated
by tropical forest.

From 2014 to 2016,West Africa suffered a geographically extensive outbreak of the Ebola
virus. Research raised the hypothesis that the interaction between increased urbanization and
human mobility contributed to the outbreak. To enable future response planning, works such
as Kraemer et al. (2017) seek to understand what causes the spread of the Ebola virus and
at what time the outbreak occurs. In total, three mathematical models aimed to analyze the
humanmovement described in Simini et al. (2012) inwhich datawere obtained from censuses
and cell phones. It found that analyzing human mobility via mobile phones can considerably
explain the dynamics of Ebola virus transmission at the studied site.

The authors of Kraemer et al. (2017) focused on the spread of yellow fever in Angola
and the Democratic Republic of the Congo from 2015 to 2016. Due to the limited stock
of vaccines in these countries, research needed to analyze how the virus spread during the
outbreak to prioritize districts with higher contamination potential. They needed tools for
this and, initially, a standard logistic model to infer infection risks. Moreover, the authors
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found correlations between high population density and early contamination in a district
via Pearson’s correlation. The authors used the Cox Model to analyze the most populated
districts, finding that transmission risks increased in these districts.

The study concluded that ecological and demographic factors significantly contributed to
the continuous spread of yellow fever. Estimates provide regions which should be prioritized
for population vaccination. Although these analyses always have limitations, such as the
future inclusion of vaccine supply and delivery, public policies require such research.

A study (Pigott et al. 2015) on a new virus which emerged in 1967—named Marburg
Virus—assessed the symptoms of the disease, finding high fever, hemorrhage, and organ
failure. The Democratic Republic of the Congo suffered an outbreak in 1998, the source of
which was bat colonies in local gold mines, and another in 2004, in the province of Uige,
which caused interpersonal contamination. The authors found that non-human primates are
susceptible to the disease and that human contamination had occurred in laboratories.

The authors set up their database by analyzing references which reported the disease and
its contamination sites. They aimed to define the areas in which the zoonotic transmission
of the Marburg Virus could occur, identify the number of people in at-risk locations, better
understand the transmission of the virus, and raise awareness about the risk of outbreaks,
which may arise from a delay in finding initial cases. For this, the study employed boosted
regression trees, better detailed in Elith et al. (2008). The model builds a set of trees based
on binary decisions, given a database, environmental variables, and areas with similar envi-
ronments. The authors used four information components, the database in which the virus
was transmitted from animals to humans, infections reported only in animals, environmental
variables, and data from places in which the disease was unreported.

Then, the authors used driven regression trees to define environmentally appropriate areas
for zoonotic transmission. Themodel requires present and past information for its predictions.
Thus, the authors generated a dataset by randomly sampling 10,000 locations across Africa.
In total, they used 500 submodels to compare factors influencing the sites with new viral
occurrences. After training the model in the dataset, the authors created a prediction map
indicating the most likely locations for the virus.

The study proposed two model variations as a result of the small amount of available data.
Thus, the first model found geological characteristics, distances from infection sites, Karst
formations—a terrain in which rock corrosion generates caves, relevant information since
bats (an infection source) usually reside in these sites—and finally, vegetation indices. The
second model considered a larger territorial area and some environmental factors.

Both models showed similar predictions of high zoonotic transmission in countries which
reported cases of Marburg Virus. The second model predicted that 27 countries were among
those who reported the disease or not and 105 million people lived in these areas. The first
model predicted 19 countries, with 75 million people in risk areas, and that these people were
also at-risk areas according to the second model.

Both models showed similar predictions of high zoonotic transmission in countries which
reported cases of Marburg Virus. The first model predicted 19 countries, with 75 million peo-
ple in risk areas. The second model predicted 27 countries, including those who reported the
disease or not, and 105 million people living in those areas. Analysis found that temperature
and vegetation determined the spatial distribution of the virus and that geological character-
istics influence the risk level of an area. Finally, the maps obtained in the research can be
used for clinical recommendations to diagnose cases with characteristics of this disease.

In this paper, the epidemiological dynamic of dengue fever in São Luiz do Maranhão will
be assessed using machine learning techniques. The main contributions to the current state-
of-the-art, besides the analysis of a new region itself, are the analyses per neighborhoodwithin
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the same city, allowing an adequate planning of resources application by the municipality
government, the application of oversampling techniques, necessary due to the data imbalance
and the comparison of different machine learning algorithms. The methods applied in this
work are discussed in the following section.

3 Methodology

3.1 Data collection and processing

Over the years, a huge amount of data is generated from financial transactions, internet
browsing, environmental monitoring, among others. Thus, data present different formats,
e.g., graphs, time series, images, audios, and videos, sometimes making impossible the direct
application of data on machine learning algorithms. In such cases, preprocessing techniques
are suggested to make data more suitable for such algorithms. Some of these techniques were
applied in this study to improve its applicability and results.

Thedatawere obtained through the request protocol 00001.000235/2021-24on thewebsite
(União CGU 2021). The data availability is guaranteed by law 12.527/2011 and is subject
to the elaboration of a project adressed to the Municipal Health Secretariat of São Luís do
Maranhãodescribing the purpose of the use of the requested information. Separateworksheets
were sent by year with information on neighborhoods, the number of dengue cases in each,
notification period, and deaths. Initially, the data received were in more than one data set,
which led to the need to integrate them, generating a single dataset. In this group, 219
neighborhoods in the municipality of São Luís which had some confirmed case of the disease
from 2014 to 2020 were catalogued. However, when we conducted a confirmation study
of these sites via Google Maps, we noticed duplicate locations, nominal and rational data
combination, and condominiums with duplicate locations. In these cases, these attributes
were manually eliminated, totalizing 123 neighborhoods to be included in our model.

In addition to the time series of dengue cases at São Luís, climate variables were included
in the model since those are directly related to the number of cases, as shown by Xavier
et al. (2021). The monthly data collected from the National Institute of Meteorology were
average temperature, precipitation, and humidity at the municipality of São Luís, obtained
at Instituto Nacional de Meteorologia do Brasil - INMET (2021) in worksheets separated by
years. This data are not split by neighborhood. Then, those climate variables were applied to
all neighborhoods due to the small territorial extension of the assessed municipality.

Environmental variables such as the enhanced vegetation index (EVI) and the normal-
ized difference vegetation index (NDVI) were also analyzed in this study, and collected via
Google Earth Engine (GEE), available at GEE (2021). Both quantify the green vegetation of
a location, but EVI was included in the model since it can correct data for atmospheric influ-
ences and canopy background signals, shows greater sensitivity in densely vegetated areas,
and is used in several epidemiological studies, such as Pigott et al. (2015). These variables
were obtained by the Landsat 8 satellite. Operating since 2013, it belongs to the Landsat
series which began in 1972 and remains active until the date of this study. The series was
developed by a project of the National Aeronautics and Space Administration and the United
States Geological Survey to observe the natural resources of the Earth.

In addition to environmental variables, neighborhood locations were obtained by central-
izing a point in each location, which generated a time series with EVI and NDVI monthly
values and the latitude and longitude of each point.
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3.2 Data unbalance processing

Classifiers often face unbalance problems with real data sets since they tend to classify
majority classes. In our dataset, 78% of its cases were associated with sites with unconfirmed
dengue cases, whereas 22% of dataset cases were related to sites with confirmed instances
of the disease over the analyzed period.

A possible solution for some of these cases is to balance the current dataset by including
new data. However, this approach is unfeasible in most practical applications, such as the
one studied in this paper. Thus, some techniques to artificially balance the dataset are used,
such as adding artificially created data to minority classes, which incurs the risk of these
data failing to represent actual situations. In the present study, that would mean assigning
confirmed cases to neighborhoods without notifications, inducing an inadequate data model.
Another possible problem is the increased possibility of overfitting, in which the model
is overadjusted, i.e., the artificial repetitions of minority class samples make the model fit
the training data set so well that it is rendered ineffective for a new dataset. Data can also
be excluded from the majority class, though this can delete important model data or cause
underfitting, in which the model fails to fit the training dataset. To overcome these problems,
some oversampling techniques reported in literature are discussed in the following section.
Those techniques are applied to the training and validation datasets, after they are separated
from the test dataset

3.2.1 Oversampling techniques

Some oversampling techniques consist of synthetically creating new minority class obser-
vations to match category proportion, ensuring the inclusion of all information at higher
computational costs. In this case, random minority class data are replicated, which may lead
to overfitting since the process duplicates existing data. To try to correct for overfitting, a
more sophisticated technique was proposed, known as SMOTE, which generates synthetic
minority class data from neighbors, thus avoiding duplicating data (Chawla et al. 2002). The
method consists in calculating which are the closest neighbors and their characteristics, from
which new data will be created.

Some variations of SMOTE are used in this work, such as the density-based synthetic
minority over-sampling technique (DBSMOTE) introduced inBunkhumpornpat et al. (2011).
The method is based on cluster density, which groups a point set based on a distance measure
(a Euclidean one, for example), creating minority class clusters which are then used to
enlarge the minority class. According to the results in Bunkhumpornpat et al. (2011), this is,
in practice, a more efficient method than SMOTE.

A variation of SMOTE is the adaptive synthetic sampling approach for imbalanced learn-
ing (ADASYN), elaborated by He et al. (2008). The method initially behaves as SMOTE,
though it creates synthetic data based on data density, generating more synthetic data in
regions with low minority data density and ignoring (or creating few minority data) in high-
density spaces.

In Rana et al. (2022), two classifier models are generated with four oversampling tech-
niques, included SMOTE and ADASYN, on an unbalanced dengue data set. The models,
trained using synthetic samples generated by the ADASYN technique, provided higher accu-
racy by creating synthetic samples based on the density of the data. TheDBSMOTE technique
related to classification models used in epidemiological problems is uncommon, so we chose
to apply it in this work, as performed in Kotb and Ming (2021). In that paper, a compar-
ison between different oversampling techniques of the SMOTE family was performed on
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an unbalanced dataset from the insurance industry. The results confirm that the techniques
improve the accuracy of the models.

3.3 Principal component analysis

Principal component analysis (PCA) can be applied to data to reduce the size of the variable
space and obtain a set of orthogonal (uncorrelated) axes that capture much of the original
data variability. Though many variables may be correlated, this fails to contribute to discrim-
ination, such as individuals’ income and educational attainment. In our case, a high number
of variables can lead to the curse of dimensionality. This term describes what happens when
a region in space is divided into regular cells. Cell numbers will exponentially grow with
the size of the space, exponentially raising the number of samples to ensure that all cells are
filled, thus implying higher computational costs to solve the problem.

Simplifying data without losing important information helps processing by reducing com-
putational time and algorithm complexity. Moreover, PCA enables data transformation to
eliminate redundancies and preserve important information.

PCA projects data into a new space to reduce variable correlation. The first projection
axis is the one showing the greatest variation, the second, the second largest variation per-
pendicular to the first, and so on.

Considering that the dataset has p observations with n attributes, and each observation is
represented by a column vector X1, X2 . . . , X p , a n × p matrix X can be defined as:

X = [X1, X2, . . . , X p] =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 x13 · · · x1p
x21 x22 x23 · · · x2p
x31 x32 x33 · · · x3p
...

...
...

. . .
...

xn1 xn2 xn3 · · · xnp

⎤
⎥⎥⎥⎥⎥⎦

. (1)

Then amatrix A = XT X containing variances and covariances can be obtained as follows

A =

⎡
⎢⎢⎢⎢⎢⎣

Var (X1) Cov (X1X2) Cov (X1X3) · · · Cov (
X1X p

)
Cov (X2X1) Var (X2) Cov (X2X3) · · · Cov (

X2X p
)

Cov (X3X1) Cov (X3X2) Var (X3) · · · Cov (
X3X p

)
...

...
...

. . .
...

Cov
(
X pX1

)
Cov

(
X pX2

)
Cov

(
X pX3

) · · · Var
(
X p

)

⎤
⎥⎥⎥⎥⎥⎦

(2)

whose size depends on its attributes. If Cov
(
Xi , X j

)
, i, j = 1, . . . , p and i �= j are

non-null, there will be a correlation between the variables. If the original variables are all
uncorrelated, the main components will be the original variables themselves.

Original variable correlation indicates redundant dimensions. Thus, the new uncorrelated
variables are combinations of the original variables, reducing database size.

After obtaining covariance matrix A, its eigenvalues and eigenvectors are calculated by
singular value decomposition of X , so that:

A = Q�Q−1 (3)

in which Qn×n contains the eigenvectors of matrix A and �n×p the diagonal eigenvalues
λ1 ≥ . . . ≥ λp . Then, eigenvectors are ordered according to the eigenvalues and the original
data is multiplied by the main eigenvectors, obtaining the main components.
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In Ramachandran et al. (2022), PCA is used to select the most relevant attributes for the
models, with neural networks being used to evaluate the performance of models for dengue
diagnosis predictions. The results in that reference were improved using the PCA and, for
this reason, we chose this technique as the feature selection method in this study.

3.4 K-fold technique

One of the steps in predictive learning is the random division of the original data set into a
training set and a testing set. The training set is used to train the model and the test set is used
to evaluate how well the model is learning with new input data.

Separating data into only two disjoint parts can bring divergent results depending on the
information contained in each set, and K-fold cross-validation approach minimizes these
problems. The technique basically involves partitioning the training data and readjusting the
competing models for each subsample to obtain additional information about the model fit.

The method consists of dividing the data into K equal parts, fitting the model using K −1
parts, and the remaining part is for validation. This process is repeatedK times (at each time a
different partition will be the validation), then the results are combined to obtain the average
of the errors obtained.

3.5 Classifiers

For some problems, model response variables are non-quantitative and often defined as
categorical. Classifiers are algorithms which can predict qualitative responses.

By predicting a qualitative response to an observation, we can understand how to classify
that observation by assigning it to a category or class. Many classification methods are based
on calculating the probability that a sample belongs to each qualitative variable category or
class and assigning the class with the highest probability to the sample.

In this study, the following five classification techniques are used: Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Naive Bayes (NB), Decision Tree (DT), and
Random Forest (RF). A brief description of each is presented in sequel.

3.5.1 Multiple logistic regression

The variable which answers our research hypothesis is qualitative, i.e., Yes for the sites
which reported dengue cases and No, otherwise. Binary logistic regression is widely used
for this type of problem. Our case contains multiple predictors, i.e., temperature, vegetation
index, humidity, precipitation, altitude, and longitude. We should emphasize that the logistic
regression model output is a real value indicating the probability of an event occurring in a
given location. This is possible thanks to the separation of classes established for a probability
value indicating that a class is positive, i.e., dengue cases either occurred or did not. This
probability value is empirically defined from the collected data.

A probability value was established as standard for all classifiers used in this study. Its
choice was indicated by 120 simulations with different predictor, training set, and test com-
binations. The linear regression models are given by

Y = β0 + β1X1 + β2X2 + · · · + βd Xd = βT x (4)

in which, XT = [X1, X2, . . . , Xd ] is the set of regressors and β = [β1, β2, . . . , βd ], the
parameter vector. If Y is considered a categorical variable, regression models can classify
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data. So, the probability of dengue occurrence is defined by

p(y = 1 | x) e p(y = 0 | x), (5)

indicating the probability of Y belonging to a particular category.
But since probabilities vary from 0 to 1, a logarithmic transformation of event occurrence

probabilities is necessary. Mathematically,

odds = P

1 − P
�⇒ ln

(
P

1 − P

)
, (6)

and that of non-occurrence by

p(y = 1 | x) = eβT x

1 + eβT x
, (7)

and that of non-occurrence by

p(y = 0 | x) = 1 − p(y = 1x) = 1

1 + eβT x
. (8)

To estimate model parameters, the training set T = (xi , yi )Ni=1 is used and estimation
used the maximum likelihood method β̂ = argmaxβ p(y | X;β).

A literature review is performed in Hoyos et al. (2021), indicating the most used dengue
models based on machine learning techniques. In the results, logistic models are the most
widely used, with 59.1% being used in modeling for dengue diagnosis. For this reason, this
technique is tested in this paper.

3.5.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is an alternative and less direct approach to estimating
the probabilities of belonging to a given class. LDA is very similar to PCA, but it not only
finds component axes that maximize data variance, but also assesses the axes maximizing
multiple class separation.

Comparing it with logistic regression, LDA performs well when classes are well
separated—despite having some deficiencies, such as its incapacity to efficiently separate
nonlinearly separable classes and to find a smaller space in which to project. LDA assumes
that the data shows Gaussian distributions, and each class has identical covariance matrices.

We wish to classify a random variable X into a class k, in which k ≥ 2, with density

fk(X) = Pr(X = x | Y = k). (9)

Discriminant analysis aims to divide the data space into k regions representing the classes to
assign x to class k, if in the k region.

It assumes that X = (X1, X2, . . . , X p) is extracted from a multivariate Gaussian distribu-
tion in which X ∼ N (μ,�). The occurrence probabilities π1, . . . , πk of each obtained class
and the allocation of x to each class k will occur if k = argmaxπi fi (x), following Bayes’
theorem.

This study used LDA given the limitations of logistic regression (such as well-separated
class instability) and its capacity to address each point as a linear method for multiclass
classification problems.
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3.5.3 Naive Bayes

The Naive Bayes classifier is derived from Bayesian decision theory, which ranks objects
according to the highest possible likelihood. The highest conditional probability indicates
the chance of objects belonging to Yes or No classes. If the conditional probability is known
for each class, the error obtained is as small as possible (optimal classifier). However, in most
cases, joint probability distribution is unknownand estimating it is quite complicated. To solve
this problem, variables are assumed to be independent. This implies that the joint probability
distribution is equal to the product ofmarginal distributions.Mathematically, givenM classes
ω1, ω2, . . . , ωM and a random variable x , the conditional probability p(ωi | x) of the random
variable x belonging to each class i is indicated by

P(ωi | x) = P(x | ωi )P(ωi )

P(x)
. (10)

Bayesian decision theory ranks objects according to their highest likelihood, i.e., the
chance of an object belonging to classes one, two or three, for example, is defined by its
highest probability. Considering that each attribute is independent of each other,

P(ωi | x) =
n∏

i=1

P(ωi | x) and P(x) =
n∏

i=1

P(x). (11)

The algorithm rates the most likely class as

ŷ = argmax
i∈{1,...,M}

p (ωi | x) . (12)

Despite the limitation of the attribute independence hypothesis, the Naive Bayes classifier
is robust and performs well for many real data. One of its advantages is that all required
probabilities can be calculated from the training data in a single step. i.e., just looking at the
training set it is possible to estimate all probabilities, which is relatively efficient if compared
to other methods.

InOzer et al. (2021), a predictionmodel based onmachine learning algorithms is proposed.
The model uses medical records related to dengue (chikungunya and zika) arbovirus data to
help physicians evaluate whether or not a patient with a suspected arboviral virus should be
hospitalized. Among the models, LDA achieved a high of 96.43%. Due to its success in a
classification problem, this technique was applied in this paper.

3.5.4 Decision tree

Tree-based methods divide variable spaces into simple regions, in which training observation
averages or modes in the region to which they belong are typically used to predict a given
observation. The rules for dividing space can be summarized in a decision tree. These can
be used in classification and regression problems.

In a tree structure, leaf nodes (response) contain the predictions, and internal nodes,
attribute tests. Each possible attribute value has a branch to another subtree. The root node
is usually the most important attribute since it is at the top and indicates the most relevant
attribute to split the tree. After the tree is built, classification is done by “navigating” the tree
until a leaf node is reached. A tree with combinations of numerical and categorical variables
can be built, which makes data normalization unnecessary.

In this work, the Gini index was the metric used to find branches, choose nodes, and
analyze how purely separated classes were in a tree.
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A decision tree was used because it employs simple understanding and interpretation,
since we know how variables relate to each other and can thus understand how decisions are
made. Another advantage of the method is that it does not need data normalization, since it
only compares attributes and branches rather than calculating distances to assess similarity.
The algorithm can be simultaneously used with numerical and categorical data and is robust
to outliers, since it only cares about how many elements are in each class. It can also be used
in large volumes of data. Another advantage is that it is a nonparametric method.

In Sarma et al. (2020), a new approach is proposed by for dengue prediction on a dataset
with patients medical history, based on Decision Tree and Random Forest. The models were
evaluated using the ROC curve, demonstrating greater predictive ability of the Decision Tree
model, with 79% accuracy.

3.5.5 Random forest

Random forests produce multiple trees to produce a single consensus prediction, improving
predictive accuracy.

In random forests, each partition randomly selects X predictors out of an n total, in which
X ≈ √

n, according to Gareth et al. (2013).
Data is sampled to produce several trees which then relate observations to attributes.

Attribute sampling generates trees which are not dominated by a highly discriminating
attribute, as occurs in decision trees.

In some cases, an attribute completely separates two classes, tending to be at the top of
the tree as its root node. Thus, the tree is always constructed from it. When attributes are
sampled, that one with high discriminatory power may not be at the top of the tree. Thus,
other attributes may be used for this purpose, allowing forests with greater variability.

Random Forests are a very important method but the number of required trees must be
defined. This number of trees ends up being a hyperparameter of the model.

In Sarma et al. (2020), the Random Forest model is used compared to the Decision Tree
model. The model achieved 70% of accuracy on the training set and 68% of accuracy on
the test set. Although the Random forest was not the most successful model in Sarma et al.
(2020), we decided to test the model in this paper to compare its results with other methods.

3.6 Model validation

The choice of the best model involves reducing variance and bias. Variance must be reduced
so that the model presents a proper performance for unseen data and errors must be as small
as possible, reducing the bias. Unfortunately, there is no standard scientificmethod to achieve
these objectives, which will thus depend on the choice of evaluative metrics and the problem
in question.

Training errors are a poor estimate of test set errors, since large test sets can present
small training errors, indicating overfitting. Overfitting occurs when a model fits previously
observed datasets very well, but proves ineffective in predicting new results. Generally,
complex models show low biases and high variances (overfitting).

In this study, K-fold cross-validation was used to reduce the relation between model
bias and variance. In this technique, K is the number of equal subdivisions, or folds, of the
training set. Different data are used to train and validate each subdivision. i.e., results will
differ according to each K iteration. Training errors are calculated by applying the statistical
method in the training data, whereas validation errors are the average of errors resulting from
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the prediction of a new observation (which was not part of the training data). For example,
if the training set is divided into 10 equal folds and the process starts with K − 1 parts to
train the model, the tenth part is intended for predictions, checking the error, until all possible
subdivision variations are completed. This cross-validation reduces variance and can select
the best model. In this work, applications of the method for K = 3, K = 5, and K = 10
were simulated.

Many machine learning algorithms include one or more hyper parameters, which enable
the algorithm to adapt its behavior to a specific dataset. Then, optimization must be used to
find out a set of hyperparameters which perform better for a given dataset. In cross-validation,
all labeled data is used, but there may be variations in the results of each classification, and
the average of all classifications may reduce the variance of the entire process. Validation
not only determines model accuracy but also choose attributes and models. This evinces that
K-fold cross-validation is used to select both model hyperparameters and configured models.
After validation, the entire training set is used to fit the classification model to be applied to
the test set.

Since actual data sets are usually unbalanced, stratified cross-validation is one way to
validate algorithms so each fold contains proportional class distributions. Stratified cross-
validation keeps the proportion of the original dataset at each fold, which is extremely
important. If the database shows 20% of positive classes and 80% otherwise, this valida-
tion distributes this proportionality across each fold. If stratified validation is ignored and the
set has more negative cases, folds may contain only negative cases, producing poor results
in model tests with folds containing only positive cases, since the model learned only from
negative classes.

Even after the oversampling techniques mentioned in Sect. 3.2, stratified cross-validation
is still useful to guarantee that each fold contains a balanced dataset.

3.7 Model validationmetrics

Even if a single algorithm is chosen, parameter variations produce different models. For
example, to evaluate decision tree models, the Gini index was used in this study to assess the
purity of the separation of each tree. However, when using another criterion, such as entropy,
other trees are generated. Thus, varying parameters for each classifier will obtain different
results.

This study used metrics adequate to the problem of dengue prediction in São Luís/MA
based on its occurrence probability. Sensitivity is obtained by dividing TP by the sum of TP
and false negatives (FN). Thismetric is used to evaluate the ability of themodel to successfully
detect results classified as positive. It especially assesses how well models classify sites with
dengue cases, even in the presence of false positives. Specificity is obtained by dividing
true negatives (TN) by the sum of FP and TN. This metric evaluates the number of places
classified as where dengue does not occur in relation to the total number of places where
dengue indeed does not occur. A high specificity indicates that the majority of true negative
classifications are correct, providing more confidence for not intervening in that places to
reduce the dengue contamination risk.

Another metric used in this work is the receiver operating characteristic curve. This is a
popular diagnostic tool for classifiers in balanced and unbalanced binary prediction problems,
since it is unbiased to majority or minority classes (Weiss 2013). To evaluate this metric, the
performance of each classifier is represented by a curve in a space defined by the number of
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false positives (horizontal axis) and true positives (vertical axis). Each point from this curve
is obtained by evaluating the classifier for a given threshold.

4 Results

4.1 Exploratory analysis

This subsection will address an exploratory analysis of our dataset to quantitatively summa-
rize the main data characteristics via summary statistics. This stage is incapable of definitive
conclusions without inferential statistics. Thus, we will describe the relevant aspects and
outline hypotheses. Table 1 briefly describes the used summarized statistics.

Mode estimates the frequency of each attribute in our dataset. The Cases attribute shows
a 0.67 average number of dengue cases in the entire dataset, with a 0 median and a 312-
maximum count. Average rainfall during the studied period was 177.8 mm. However, as
values show a greatly heterogeneous distribution, we deemed reasonable working with the
median, 106.5 mm, as large values affect it less and data distribution is asymmetric.

Temperature showed a 26.75 ◦Cmedian in this period, a valid value since the municipality
shows a tropical climate throughout the year. Moreover, the most frequent values found were
0, i.e., the National Institute ofMeteorology was unable to evaluate the temperature in certain
periods. Thus, we assigned the value 0 for each missing value, treating precipitation in the
same way.

EVI show a 0.28 average and a 0.95 maximum value. Since values vary between −1 and
1 (in which the closer to 1 a value is, the denser the vegetation), these values indicate densely
vegetated areas.

Humidity was the attribute with the most missing data, and we obtained some metrics
with null results. Although it is a climatic variable which can influence cases, it may perform
poorly in the results due to its missing data.

To assess variables and their level of importance for subsequent models, we applied PCA.

4.2 PCA processing

To extract the most important variables from the dataset responsible for the best model
performance, we applied PCA. By analyzing the results in Fig. 2, we obtained six main
principal components (PC), each of which explained the percentage of total dataset variation.
PC1 explains 28.67% of the total variance, whereas PC2, 19.28%. Together, they explained
almost half of the set variation. PC6 explains only 4% of variation, indicating a low variance
which PCA treated as noise. PC6 is related to humidity data due to its scarce information as
the National Institute of Meteorology dataset excluded it in most months. Thus, the modeling
process will not take this variable into account.

4.3 Predictive model performance

This subsection will show model results for both the original dataset and the oversampled
ones, as described in previous sections. In summary,we appliedfive classifiers to four different
sets, resulting in an analysis comparing 20 different results.
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The models used stratified K-fold cross-validation, in which the number of samples of
each class in each fold is proportional to that of the original training set. We randomly tested
the strategy for K = 3, 5, and 10, finding that 10 groups resulted in better performance.

We used area under the curve (AUC), sensitivity (true positive rate), and specificity (true
negative rate) to evaluate test dataset models.We selected the finalmodel based on its receiver
operating characteristic (ROC), considering sensitivity and specificity with different classi-
fication thresholds. AUC simplifies ROC by a single value, relating all its thresholds and
calculating its area, remaining invariant to scales, since it processes classification accuracy
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Fig. 3 Comparison of the ROC curve for the different models and sets
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rather than absolute values. Figure 3 shows our graphical results. RF was the only model to
perform comparatively well, with AUC scores above 70%, regardless of the test set. This
method obtained higher values in balanced datasets. The largest 75.1% AUC stems from
the DBSMOTE-balanced model. Naive Bayes showed the second-best performance in all
test sets, though with a relatively high difference, compared to RF. LR and LDA performed
similarly in all test sets. The worst performing algorithm, DT, obtained its best AUC (61.8%)
with the unbalanced set—the worst results among balanced-trained models—and the lowest
AUC (41%) with the SMOTE set, worse than the random result.

The RF model with DBSMOTE achieved the better AUC. This happens since the other
models classified a greater number of false positives, unlike RF, which classified a greater
number of false negatives and a higher number of True Positives, absent in the other models.
By observing the sensitivity, we can quantify the true positives, i.e. the percentage of places
where dengue occurs and that are classified as where it indeed occurs. Therefore, classifiers
with high sensitivity make it possible to implement control policies through sanitary surveil-
lance teams and insecticide application. Implying a reduction in spending on hospitalization
and medication for the treatment of patients. The specificity quantifies the true negatives, i.e.,
the places where dengue does not occur and that are correctly classified, and a high specificity
is important to avoid financial investment in places not prone to outbreaks. Table 2 shows the
sensitivity results for the training set for different probability thresholds. The values in bold
are the highest performing.

Performing the isolated sensitivity analysis, to only minimize the locations that the model
classifies as not having possible outbreaks and that have the potential for them to occur, that
is, to reduce the False Negative results, the best models with sensitivity higher than 90%
are obtained at thresholds 0.2, 0.3 and 0.4, trained on the SMOTE, ADASYN, DBSMOTE
sets. The results using the original data are poor, as expected, due to the unbalance between
classes.

Specificity is also used as a tool to evaluate models. It is calculated as the number of
correct negative predictions divided by the total negative numbers, measuring how well the
model can detect negative events. The numerical results on the training set are in Table 3.

Analyzing only the specificity, aiming to reduce the false positives, minimizing the costs
of investments in dengue control in places classified as possible outbreaks, it was obtained
the best models with specificity greater than 90% in the thresholds 0.6 to 0.9, trained on
the sets Original, SMOTE, ADASYN and DBSMOTE. Note that, from threshold 0.3 on, the
specificity is higher than 90% in theOriginal set, but that can be justified by the predominance
of negative values in the set, with the model being trained on the unbalanced data set.

In summary, if the AUC and specificity criteria are considered, the RF trained with data
balanced by DBSMOTE is the adequate classifier to predict the occurrence of dengue in a
neighborhood given the climatic and EVI conditions, with greater specificities for thresholds
above 0.7. On the other hand, if sensitivity is considered, the other classifiers also achieved
values better than 90% for thresholds smaller than 0.3.

In Tables 4 and 5, the sensitivities and the specificities for the test set are shown for
the different classifiers, trained with the different balancing techniques. Surprisingly, the
sensitivity is low for the RF, while the other classifiers achieve better results for thresholds
smaller than 0.3. As a conclusion, if the choice of the classifier was based on AUC, the result
is a model with poor results on the test set. For this reason, it is fundamental to establish the
metrics correctly to choose the classifiers for a given problem.

In Fig. 4, the DBSMOTE-trained RF classifier showed that Aedes aegypti adapts better
to warmer regions with some rain volume. Especially in those with precipitations greater
than 200 mm, the probability of dengue occurrence exceeds 80%—though low volumes still
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Table 2 Model sensitivity in the training set

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.2

DT 64.36 100 100 99.07

NB 78.96 99.89 100 99.91

LDA 65.04 100 100 99.95

LR 66.03 100 100 99.95

RF 100 100 100 100

Threshold 0.3

DT 11.13 96.57 92.43 60

NB 51.18 98.14 99.82 99.48

LDA 11.01 97.64 100 96.86

LR 11.01 97.62 100 96.81

RF 100 99.96 99.98 99.95

Threshold 0.4

DT 9 61.14 92.43 60.06

NB 28.65 93.13 98.97 97.45

LDA 3 89.73 97.30 65.68

LR 14 90.97 97.30 66.74

RF 99.75 99.83 99.84 99.74

Threshold 0.5

DT 9 61.14 65.86 60

NB 4 88.14 92.63 94.03

LDA 0 36.74 48.85 31.70

LR 0 36.86 48.97 31.82

RF 98.33 99.38 99.40 99.23

Threshold 0.6

DT 0 0 65.86 60

NB 1 79.08 85.47 88.99

LDA 0 7 9 6

LR 0 7 9 6

RF 88.24 97.88 97.98 96.52

Threshold 0.7

DT 0 0 0 7

NB 0 58.54 70.85 80

LDA 0 0 0 0

LR 0 0 0 0

RF 56.25 90.82 92.24 87.02

Threshold 0.8

DT 0 0 6 7

NB 0 27.02 35.72 62.15

LDA 0 0 0 0

LR 0 0 0 0

RF 0 0 0 0
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Table 2 continued

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.9

DT 0 0 6 7.90

NB 0 1 1 23.18

LDA 0 0 0 0

LR 0 0 0 0

RF 4 59.61 66.11 58.62

Table 3 Model specificity in the training set

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.2

DT 54.99 0 0 0

NB 42.69 2 0 2

LDA 53.50 0 0 0

LR 50.83 0 0 0

RF 91.26 87.80 87.64 89.71

Threshold 0.3

DT 97.16 7 26.88 77.19

NB 68.88 9 2 6

LDA 91.61 3 0 6

LR 91.65 3 0 6

RF 97.67 96.47 96.65 97.63

Threshold 0.4

DT 98 61.85 26.88 77.14

NB 88 23.07 7 13.19

LDA 97.34 16.13 3 49.92

LR 98.52 14.71 3 48.85

RF 99.29 99.06 99.22 99.48

Threshold 0.5

DT 98 61.85 64.16 77.19

NB 98.73 33.01 22.25 24.51

LDA 99.99 78.58 65.16 82.89

LR 99.94 78.44 65.07 82.86

RF 99.84 99.82 99.95 99.95

Threshold 0.6

DT 100 100 65.86 77.19

NB 99.75 46.29 34.36 35.37

LDA 99.96 94.55 93.07 98.49

LR 99.98 94.55 93 95.54

RF 100 99.96 99.98 100
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Table 3 continued

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.7

DT 100 100 100 100

NB 99.72 67.22 51.93 47.39

LDA 100 99.53 99.48 99.51

LR 100 99.66 99.32 99.53

RF 100 99.98 100 100

Threshold 0.8

DT 100 100 100 100

NB 99.98 89.89 81.98 66.58

LDA 100 9.99 100 100

LR 100 9.99 100 100

RF 100 100 100 100

Threshold 0.9

DT 100 100 100 100

NB 100 99.96 99.85 93.47

LDA 100 100 100 100

LR 100 100 100 100

RF 100 100 100 100

show some occurrences. These places show an average temperature of 27 ◦C. The EVI scale
ranges from − 1 and 1, in which negative values correspond to places with significant water
accumulation, whereas values between 0 and 1 refer to local vegetation. Our results shows
that areas with denser vegetation present higher case occurrence probabilities.

5 Discussion

In Brady et al. (2014), the thermal limits of Aedes Aegypti are analyzed, relating temperature
and the potential for virus transmission. The results revealed that the Aedes Aegypti adapts
better to warmer regions, as predicted by the Random Forest machine learning model devel-
oped in this study. Its predictive efficiency obtained an AUC of 75.1% with a threshold of
0.2. Its sensitivity and specificity on the training set reached 100% and 89.1%, respectively.
In the test set, the model reached sensitivity and specificity values of 75.43% and 60.53%,
respectively.

There is also a strong influence of temperature in the studies performed by Kraemer
et al. (2015), and vegetation cover. In this study, the results related to EVI indicate that
the sites with the highest probability of dengue occurrence present a dense vegetation. This
index is important because some locations have mosquito-producing containers filled with
rainwater, and the shading caused by the vegetation prevents water evaporation, facilitating
mosquito reproduction. The precipitation has an influence on mosquito reproduction, and its
combination with high temperatures and places with water accumulation generates favorable
environments for the increase of cases.
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Table 4 Model sensitivity in the test set

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.2

DT 67 100 100 98.98

NB 80.78 99.71 99.85 99.56

LDA 68.93 100 100 99.85

LR 70 100 100 99.71

RF 70.52 76.88 78.18 75.43

Threshold 0.3

DT 9 95.92 83.38 35.69

NB 53.61 97.25 99.56 98.55

LDA 10.69 98.12 100 96.67

LR 10.54 98.12 100 96.53

RF 50.34 65.17 64.74 61.27

Threshold 0.4

DT 7 60.26 83.38 35.69

NB 28.46 92.34 98.55 96.53

LDA 2 91.62 98.12 66.62

LR 1 93.21 98.12 67.34

RF 41 51.59 51.16 50.14

Threshold 0.5

DT 7 60.26 48.84 35.69

NB 3 88.29 93.79 91.62

LDA 0 38.15 54.19 29.33

LR 0 38.72 54.19 29.48

RF 27.31 39.16 39.01 36.27

Threshold 0.6

DT 0 0 48.84 35.69

NB 1 78.18 87.57 85.98

LDA 0 6 8 4

LR 0 6 8 4

RF 17.48 28.61 29.19 25.72

Threshold 0.7

DT 0 0 0 0

NB 0 55.06 72.54 74.25

LDA 0 0 0 0

LR 0 0 0 0

RF 8 18.93 18.06 15.46
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Table 4 continued

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.8

DT 0 0 0 0

NB 0 22.68 36.12 49.42

LDA 0 0 0 0

LR 0 0 0 0

RF 2 9 9 8

Threshold 0.9

DT 0 0 0 0

NB 0 0 0 13.72

LDA 0 0 0 0

LR 0 0 0 0

RF 0 3 2 2.45

Table 5 Model specificity in the test set

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.2

DT 53.64 0 0 0

NB 41.75 1 0 1

LDA 52.72 0 0 0

LR 50.31 0 0 0

RF 63.27 56.96 55.17 60.53

Threshold 0.3

DT 97.25 7 26.38 76.94

NB 68.26 9 1 5

LDA 90.44 3 0 6

LR 90.52 3 0 6

RF 78.40 72.21 72.46 75.78

Threshold 0.4

DT 98.33 60.91 26.38 76.94

NB 88 20.98 6 12.59

LDA 97.17 16.04 3 50.02

LR 98.58 14.37 3 48.61

RF 87.91 81.89 82.55 85

Threshold 0.5

DT 98.33 60.91 65.43 76.94

NB 98.42 32.28 20.86 23.18

LDA 98.91 77.73 63.98 82.05

LR 99.95 77.56 63.98 81.96

RF 93.81 89.90 89.32 91.35
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Table 5 continued

Original (%) SMOTE (%) ADASYN (%) DBSMOTE (%)

Threshold 0.6

DT 100 100 65.43 76.94

NB 94.37 45.37 33.49 33.53

LDA 100 94.26 92.60 95.38

LR 100 94.26 92.56 95.47

RF 97.17 94.26 94.26 95.30

Threshold 0.7

DT 100 100 100 100

NB 99.79 66.42 51.56 46.82

LDA 100 99.66 99.58 99.58

LR 100 99.75 99.37 99.62

RF 98.50 96.92 97.17 97.79

Threshold 0.8

DT 100 100 100 100

NB 99.95 89.94 80.93 66.35

LDA 100 100 100 100

LR 100 100 100 100

RF 99.62 98.58 98.63 98.87

Threshold 0.9

DT 100 100 100 100

NB 100 100 99.91 92.89

LDA 100 100 100 100

LR 100 100 100 100

RF 99.91 99.70 99.87 99.75

In Kraemer et al. (2015), transmission analysis was done using spatial data with assump-
tions about individuals and their influence on dengue transmission. The analysis occurred
using a boosted regression tree model, with the same variables used in this study. In addition
to human behavior influencing virus transmission, climate and environmental variables also
contribute to an increase in transmission, as identified by the best model presented here.

When observing the results obtained through PCA, we have that the first principal compo-
nent has large positive associations with the climatic variables (temperature and humidity).
The second principal component has large negative association with the vegetation cover
variable. The third component has positive association with the temperature variable.

Although the conclusions are in agreement with other studies, machine learning meth-
ods allow us to quantify the factors and give numerical answers and predictions for the
phenomenon.

6 Conclusion

This study applied machine learning to predict the probability of dengue occurring in a given
location and the main ambient factors related to the disease occurrence. Using government
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(a) Precipitation in relation to the class

with probability greater than or equal to

80%

(b) Temperature in relation to the class

with probability greater than or equal to

80%

(c) EVI in relation to the class with prob-

ability greater than or equal to 80%

Fig. 4 Results of precipitation, temperature, and EVI if the probability of interest class is greater than or equal
to 80%

data, we could assess which of five machine learning classifier algorithms developed the
ideal predictive model. Our choice included assessments other than AUC results since this
score alone fails to necessarily guarantee the best classifier. Since this study aimed to predict
the probability of the occurrence of positive dengue cases, we expect that the chosen model
will optimally classify positive cases, even if it includes false positives, as our priority was
minimizing prevention costs.

Estimates enable the creation of effective public control policies, concentrating insecticide
spraying in places of higher expected dengue incidence and optimizing the use of public
financial resources. Moreover, the technique allows the definition of policies able to define
the possible spatial distribution of vectors, geographically recognize areas of interest, and
concentrate the building infestation index to these locations.
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