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Abstract
This research apparatuses an approximate spectral method for the nonlinear time-fractional
partial integro-differential equation with a weakly singular kernel (TFPIDE). The main idea
of this approach is to set up a new Hilbert space that satisfies the initial and boundary
conditions. The new spectral collocation approach is applied to obtain precise numerical
approximation using new basis functions based on shifted first-kind Chebyshev polynomials
(SCP1K). Furthermore, we support our study by a careful error analysis of the suggested
shifted first-kind Chebyshev expansion. The results show that the new approach is very
accurate and effective.

Keywords Nonlinear time-fractional partial integro-differential equation with a weakly
singular kernel · First-kind Chebyshev polynomials · Collocation method · Error analysis

Mathematics Subject Classification 65M70 · 45K05 · 33C45

1 Introduction

As we know, spectral methods have been applied for obtaining approximate solutions to
various differential equations. The philosophy of spectral methods is based on expressing
the approximate solution of the problem as a truncated series of polynomials, which are
often orthogonal. There are three known versions of spectral methods: Galerkin, tau, and
collocation. The Galerkin method, in which we choose a suitable basis satisfying the initial
and boundary conditions (Youssri et al. 2022; Atta et al. 2021, 2022a, b). On the other hand,
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when the basis functions do not satisfy the initial and boundary conditions, the tau method
is the best choice, see for example Azimi et al. (2022c), Atta et al. (2020, 2022d) and Lima
et al. (2022). The collocation method is the most popular technique and can be used for all
differential equations. For some articles that utilize collocation approach, see Mahdy et al.
(2022), Wu and Wang (2022), Taghipour and Aminikhah (2022a) and Atta et al. (2019).

Recently, the studies of fractional calculus have attracted the attention ofmanymathemati-
cians and physicists. This branch studies the possibility of taking the real number powers of
the differentiation and the integration operators. Many physical systems are modeled by frac-
tional partial differential equations, see Moghaddam and Machado (2017) and Mostaghim
et al. (2018). One of the biggest problems that contain fractional derivatives is the nonlin-
ear TFPIDE. This problem appears in the modeling heat transfer materials with memory,
population dynamics (Zheng et al. 2021), and nuclear reaction theory (Sanz-Serna 1988).
Moreover, it has been studied numerically in some papers. For example, the authors in Guo
et al. (2020) proposed a finite difference method for solving this problem. In Taghipour and
Aminikhah (2022b), the nonlinear TFPIDE is solved by using Pell collocation method.

Great attention has been paid to various versions of Chebyshev polynomials due to their
importance in analysis, especially in numerical analysis. There are six classes of Chebyshev
polynomials: first, second, third, fourth, fifth, and sixth kinds (Masjed-Jamei 2006). There
are many old and recent studies interested in these polynomials (Abd-Elhameed et al. 2016;
Türk and Codina 2019; Abd-Elhameed and Youssri 2018, 2019; Abd-Elhameed 2021; Abd-
Elhameed and Alkhamisi 2021; Atta et al. 2022a). In this paper, our main focus is on the
first type of Chebyshev polynomials and their shifted ones. These polynomials enjoy various
interesting and useful features, in addition to the high accuracy of the approximation and the
simplicity of numerical methods established based on these polynomials.

The main aims of this paper may be summarized as follows:

• By applying the spectral collocation method, we are developing a new technique for
solving the nonlinear TFPIDE via new basis functions based on the SCP1K.

• Discussion of the error analysis of the proposed method.
• We are presenting some examples to check the applicability and accuracy of the scheme.

The paper has the following structure: Section 2 reports a summary of theCaputo fractional
derivative and some definitions and formulas linked to the SCP1K. Section 3 is devoted to
presenting a numerical technique to solve the nonlinear TFPIDEusing the spectral collocation
method. Section 4 focuses on studying the error analysis of the proposed double expansion.
Section 5 gives some numerical examples to show the theoretical results. Finally, Sect. 6
reports conclusions.

2 Preliminaries and essential relations

The main objective of this study is to give a summary of the Caputo fractional derivative.
In addition, some properties and formulas related to the family of orthogonal polynomials,
namely, SCP1K.

2.1 Summary on the Caputo fractional derivative

Definition 1 (Podlubny 1998) The Caputo fractional derivative of order s is defined as:

Ds
zh(z) = 1

�(m − s)

∫ z

0
(z − t)m−s−1h(m)(t)dt, s > 0, z > 0,
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where m − 1 ≤ s < m, m ∈ N.

The following properties are satisfied by the operator Ds
z for m − 1 ≤ s < m, m ∈ N,

Ds
zb = 0, (b is a constant)

Ds
z z

m =
{
0, if m ∈ N0 and m < �s�,

(m)!
(m−s)! z

m−s, if m ∈ N0 and m ≥ �s�,
where N = {1, 2, 3, . . .}, N0 = {0} ∪ N and the notation �α� denotes the ceiling function.

2.2 Some properties and formulas of the SCP1K

The SCP1K T ∗
m(x) are defined as:

T ∗
m(x) := Tm

(
2 x

�
− 1

)
, m ≥ 0, x ∈ [0, �],

and satisfying this orthogonality relation (Abd-Elhameed et al. 2016)
∫ �

0

1√
x (� − x)

T ∗
m(x) T ∗

n (x) dx = h�,m δm,n,

where

h�,m =
{

π, if m = 0,
π
2 , if m > 0,

(1)

and

δm,n =
{
1, if m = n,

0, if m 
= n.

Moreover, T ∗
m(x) can be generated using the recurrence formula shown below

T ∗
m+1(x) = 2

(
2 x

�
− 1

)
T ∗
m(x) − T ∗

m−1(x),

where T ∗
0 (x) = 1, T ∗

1 (x) = 2 x
�

− 1.
One of the most important formulas of T ∗

m(x) is the power form representation and its
inversion formula (Abd-Elhameed and Youssri 2018)

T ∗
m(x) = m

m∑
k=0

(−1)m−k 22 k (m + k − 1)!
�k (m − k)! (2 k)! xk, m > 0,

x j = 21−2 j (2 j)! � j
j∑

p=0

εp

( j − p)!( j + p)! T
∗
p (x), j ≥ 0,

where

εm =
{

1
2 , if m = 0,

1, if m > 0.
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3 Collocation technique for handling the nonlinear TFPIDE

Herein, a numerical technique is presented to solve the nonlinear TFPIDE using the spectral
collocation method.

Consider the following nonlinear TFPIDE:

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,(2)

assuming that the initial and boundary conditions are as follows:

χ(x, 0) = 0, 0 < x ≤ �,

χ(0, t) = 0, χ(�, t) = 0, 0 < t ≤ τ,

where g(x, t) is the source term.

3.1 Basis functions

Suppose that

φm(t) =t T ∗
m(t),

ψn(x) =x (� − x) T ∗
n (x).

Then the orthogonality relations of the last basis functions are given by:
∫ τ

0

1

t
5
2 (τ − t)

1
2

φp(t) φq(t) dt = hτ,p δp,q ,

and
∫ �

0

1

x
5
2 (� − x)

5
2

ψp(x) ψq(x) dx = h�,p δp,q ,

where h�,p is as given in (1).
Now, define

PN = span{ψp(x) φq(t) : p, q = 0, 1 . . . , N },
P̃N = {y ∈ PN : y(0, t) = y(�, t) = y(x, 0) = 0, 0 < x ≤ �, 0 < t ≤ τ },

then, any function χN (x, t) ∈ P̃N can be expanded as

χN (x, t) =
N∑
i=0

N∑
j=0

νi j ψi (x) φ j (t) = �T(t) ν̂ ψ(x), (3)

where

�(x) = [ψ0(x), ψ1(x), . . . , ψN (x)]T,

�(t) = [φ0(t), φ1(t), . . . , φN (t)]T,

and ν̂ = (νi, j )0≤i, j≤N is the matrix of unknowns coefficients of order (N + 1) × (N + 1).
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3.2 Some formulas concerned with the basis functions

Lemma 1 (Abd-Elhameed et al. 2016) The first-derivative of ψr (x) is

dψr (x)

d x
= 4

�

r−1∑
m=0

(r+m) odd

εm (3 r − 2m) ψm(x) + ζr (x), (4)

where

ζr (x) =
{

� − 2 x, if r even,

−�, if r odd.

Theorem 1 The second-derivative of ψ j (x) is

d2 ψ j (x)

d x2
= 4

�2

j−2∑
m=0

( j+m) even

εm ( j − m)
(
5 j2 − 3m j + 4

)
ψm(x) + o j (x),

where

o j (x) = −2
(
2 j2 + 1

) {
1, if j even,
2 x
�

− 1, if j odd.

Proof Differentiating Eq. (4) with respect to the variable x, one has

d2 ψ j (x)

d x2
= 4

�

j−1∑
m=0

( j+m) odd

εm (3 j − 2m)
dψm(x)

d x
+ d ζ j (x)

d x

= 16

�2

j−1∑
m=0

( j+m) odd

m−1∑
k=0

(m+k) odd

εm εk (3 j − 2m) (3m − 2 k) ψk(x)

+4

�

j−1∑
m=0

( j+m) odd

εm (3 j − 2m) ζm(x) + ζ̄ j , (5)

where

ζ̄m =
{

−2 if m even,

0, if m odd.

Expanding the right-hand side of formula (5) and rearranging the similar terms lead to the
following relation

d2 ψ j (x)

d x2
= 4

�2

j−2∑
m=0

( j+m) even

εm Ym, j ψm(x) + 4

�

j−1∑
m=0

( j+m) odd

εm (3 j − 2m) ζm(x) + ζ̄ j ,

where

Ym, j =

⎧⎪⎪⎨
⎪⎪⎩

∑⌊
j−1
2

⌋

k=�m
2 � 4(3 j − 4 k − 2) (6 k − 2m + 3) if j even,

∑⌊
j−2
2

⌋

k=�m
2 � 4 (3 j − 4 k − 4) (6 k − 2m + 6), if j odd.
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Now, with the aid of Maple program, the following relations can be summed to give the
following reduced forms

Ym, j = ( j − m)
(
5 j2 − 3m j + 4

)
,

and

4

�

j−1∑
m=0

( j+m) odd

εm (3 j − 2m) ζm(x) =
{
2 − 2

(
2 j2 + 1

)
, if j even,

−2
(
2 j2 + 1

)
( 2 x

�
− 1), if j odd,

and therefore, the following formula can be obtained

d2 ψ j (x)

d x2
= 4

�2

j−2∑
m=0

( j+m) even

εm ( j − m)
(
5 j2 − 3m j + 4

)
ψm(x) + o j (x),

where

o j (x) = −2
(
2 j2 + 1

) {
1, if j even,
2 x
�

− 1, if j odd.

�
Remark 1 Lemma 1 and Theorem 1 can be written in matrix form as:

dψ(x)

d x
= Qψ(x) + ζ (x),

d2 ψ(x)

d x2
= Mψ(x) + o(x),

where Q = (q j,m) and M = (m j,m) are matrices of order (N + 1) × (N + 1). In addition,
ζ (x) = [ζ0(x), ζ1(x), . . . , ζN (x)]T, o(x) = [o0(x), o1(x), . . . , oN (x)]T, and

q j,m = 4 εm (3 j − 2m)

�
, j > m, ( j + m) odd,

m j,m = 4 εm ( j − m)
(
5 j2 − 3m j + 4

)
�2

, j > m, ( j + m) even.

Theorem 2 For 0 < β < 1, the following approximation relation holds

∫ t

0
(t − s)β−1 φi (s) ds ≈

N∑
r=0

Ci,r φr (t), i = 1, . . . , N ,

where

Ci,r =
i∑

k=0

(−1)r
√

π τ k+β (k + 1)!�(β) λk,i �
(
β + k + 1

2

)
� (r − k − β)

hτ,r (k + 1 + β)!� (−k − β) � (r + 1 + k + β)
.

Proof Using the power form representation of φi (t), we obtain

∫ t

0
(t − s)β−1 φi (s) ds =

i∑
k=0

λk,i

∫ t

0
(t − s)β−1 sk+1 ds
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=
i∑

k=0

λk,i
�(β) �(k + 2)

�(k + β + 2)
tk+β+1, (6)

where

λk,i = (−1)i−k 22 k i (i + k − 1)!
τ k (i − k)! (2 k)! , (7)

we can approximate tk+β+1 in the form

tk+β+1 ≈
N∑

r=0

gk,βr φr (t), (8)

where

gk,βr = 1

hτ,r

∫ τ

0

tk+β+1

t
5
2 (τ − t)

1
2

φr (t) dt . (9)

Using the power form representation of φi (t), and integrating the right hand side of Eq. (9),
yields

gk,βr =
√

π τ k+β r

hτ,r

r∑
n=0

22 n (−1)r−n(n + r − 1)!� (
k + n + β + 1

2

)
(2 n)! (r − n)! (k + n + β)! . (10)

Now, to reduce the summation in the right-hand side of Eq. (10), set

Hβ
r ,k =

r∑
n=0

22 n (−1)r−n(n + r − 1)!� (
k + n + β + 1

2

)
(2 n)! (r − n)! (k + n + β)! ,

and using Zeilberger algorithm (Koepf 1998) to show that Hβ
r ,k, satisfies the following recur-

rence relation

−r (k + β − r) Hβ
r ,k + (r + 1 + k + β) (r + 1)Hβ

r+1,k = 0,

Hβ
1,k = (k + β)�

(
β + k + 1

2

)
� (k + β + 2)

,

which can be exactly solved to give

Hβ
r ,k = (−1)r �

(
β + k + 1

2

)
� (r − k − β)

r � (−k − β) � (r + 1 + k + β)
.

And therefore, Eq. (10) becomes

gk,βr = (−1)r
√

π τ k+β �
(
β + k + 1

2

)
� (r − k − β)

hτ,r � (−k − β) � (r + 1 + k + β)
.

Now, inserting Eq. (8) into Eq. (6), the desired result of Theorem 2 may be obtained. �
Lemma 2 For 0 < β < 1, the following approximation relation holds

∫ t

0
(t − s)β−1 φ0(s) ds ≈

N∑
r=0

C̄0,r φr (t),
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where

C̄0,r = (−1)r
√

π τβ �
(
β + 1

2

)
� (r − β)

β (β + 1) hτ,r � (−β) (r + β)! .

Remark 2 Theorem 2 and Lemma 2 can be combined to give the following matrix form
∫ t

0
(t − s)β−1 φ(t)ds ≈ Cβ φ(t),

where

Cβ =

⎡
⎢⎢⎢⎢⎢⎣

C̄0,0 C̄0,1 . . . C̄0,N

C1,0 C1,1 . . . C1,N

C2,0 C2,1 . . . C2,N
...

... . . .
...

CN ,0 CN ,1 . . . CN ,N

⎤
⎥⎥⎥⎥⎥⎦

(N+1×N+1)

.

Theorem 3 For 0 < α < 1, the following approximation formula is valid

Dα
t φi (t) ≈

N∑
r=0

Ai,r φr (t), i = 1, . . . , N ,

where

Ai,r =
i∑

k=0

(−1)r
√

π τ k−α (k + 1)! λk,i �
(
k − α + 1

2

)
� (r − k + α)

hτ,r (k + 1 − α)!� (−k + α) � (r + 1 + k − α)
.

Proof The application of the operator Dα
t on the power form representation of φi (t), enables

us to write

Dα
t φi (t) =

i∑
k=0

λk,i
(k + 1)!

(k + 1 − α)! t
k+1−α,

where λk,i is defined in (7).
Now, using similar steps as in follow in Theorem 2 to approximate tk+1−α, the results in

Theorem 3 can be easily obtained. �

Lemma 3 For 0 < α < 1, the following approximation formula is valid

Dα
t φ0(t) ≈

N∑
r=0

Ā0,r φr (t),

where

Ā0,r = (−1)r
√

π τ−α �
(−α + 1

2

)
� (r + α)

hτ,r � (α) (1 − α)!� (r + 1 − α)
.

Remark 3 Theorem 3 and Lemma 3 can be combined to give the following matrix form

Dα
t φ(t) ≈ Dα φ(t),
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where

Dα =

⎡
⎢⎢⎢⎢⎢⎣

Ā0,0 Ā0,1 . . . Ā0,N

A1,0 A1,1 . . . A1,N

A2,0 A2,1 . . . A2,N
...

... . . .
...

AN ,0 AN ,1 . . . AN ,N

⎤
⎥⎥⎥⎥⎥⎦

(N+1×N+1)

.

3.3 Collocation solution for nonlinear TFPIDE

Now,we are in a position to deduce our collocation scheme for treating the nonlinear TFPIDE
in (2).

Remarks 1,2 and 3 enable us to get the following approximations after approximating
χ(x, t) as in (3)

Dα
t χN (x, t) ≈ �T(t)DαT ν̂ ψ(x),

χN (x, t) χN x (x, t) = [
�T(t) ν̂ ψ(x)

] [
�T(t) ν̂ (Qψ(x) + ζ (x))

]
,∫ t

0
(t − s)β−1 χN xx (x, s) ds ≈ �T(t)CβT

ν̂ (Mψ(x) + o(x)). (11)

With the aid of the last relations (11), the residual R(x, t) of Eq. (2) can be written as

R(x, t) = �T(t)DαT ν̂ ψ(x) + [
�T(t) ν̂ ψ(x)

] [
�T(t) ν̂ (Qψ(x) + ζ (x))

]
−�T(t)CβT

ν̂ (Mψ(x) + o(x)) − g(x, t). (12)

Now, we enforce Eq. (12) to be satisfied exactly at the following roots

xr = 1

2

(
1 + cos

(
(2 r + 1) π

2 (N + 1)

))
, r = 0, 1, . . . , N ,

ts = 1

2

(
1 + cos

(
(2 s + 1) π

2 (N + 1)

))
, s = 0, 1, . . . , N ,

to obtain

R(xr , ts) ≈ 0. (13)

Equation (13), produce a nonlinear system of algebraic equations of dimension (N + 1) ×
(N + 1) in the unknown expansion coefficients νi j , that may be solved using Newton’s
iterative method.

Algorithm 1 Coding algorithm for the nonlinear TFPIDE with homogeneous conditions
Input N and g(x, t).
Step 1. Assume an approximate solution χN (x, t) in the form �T (t) ν̂ ψ(x).
Step 2. Compute R(x, t) (12) of Eq. (2).
Step 3. Apply the collocation method to obtain the system in (13).
Step 4. Use FindRoot command with initial guess {νi j = 10−i− j , i, j = 0, 1, ...., N },

to solve the system in (13) to get ν̂.
Step 5. Find χN (x, t) = �T (t)O̊ψ(x).
Output χN (x, t).

123
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3.4 Transformation to homogeneous conditions

assuming that the nonlinear TFPIDE

Dα
t y(x, t) + y(x, t) yx (x, t) =

∫ t

0
(t − s)β−1 yxx (x, s) ds + g̈(x, t), 0 < α, β < 1,

subject to the non-homogeneous initial and boundary conditions

y(x, 0) = f (x), 0 < x ≤ �,

y(0, t) = Z1(t), y(�, t) = Z2(t), 0 < t ≤ τ.

Using the following transformation:

χ(x, t) = y(x, t) −
(
1 − x

�

)
(Z1(t) − f (0)) − x

�
(Z2(t) − Z2(0)) − f (x),

where f (0) = Z1(0), the nonlinear TFPIDE (2), with non-homogeneous conditions will be
transformed into its homogeneous ones.

4 Error analysis

This section is confined to study the error analysis of the double expansion of new basis
based on SCP1K used in approximation. This study is built on the results given in Ref. Abd-
Elhameed et al. (2016). The expression z � z̄ means z ≤ n z̄, where n is a generic positive
constant independent of N and of any function.

Lemma 4 (Stewart 2015)Let f (x)be continuous,positive anddecreasing function for x ≥ n.

If f (k) = ak such that
∑

an is convergent and Rn = ∑∞
k=n+1 ak, then Rn ≤ ∫ ∞

n f (x)d x .

Theorem 4 Any function χ(x, t) = x t (� − x) g1(x) g2(t) ∈ P̃N , with g1(x) and g2(t) have
bounded second derivative can be expanded as:

χ(x, t) =
∞∑
r=0

∞∑
s=0

νi j ψi (x) φ j (t). (14)

The above series is uniformly convergent.Moreover, the expansion coefficients in (14) satisfy:
|νrs | � 1

r2 s2
, ∀ r , s ≥ 2.

Proof Based on the following separability χ(x, t) = x t (� − x) g1(x) g2(t) and imitating
similar steps to those given inAbd-Elhameed et al. (2016), the desired result may be obtained.

�
Theorem 5 Ifχ(x, t) satisfies thehypothesis of Theorem4,and ifχN (x, t) = ∑N

r=0
∑N

s=0 νrs
ψr (x) φs(t), then the following truncation error estimate is satisfied

|χ(x, t) − χN (x, t)| � 1

N
. (15)

Proof According to the definitions of χ(x, t) and χN (x, t), we have

|χ(x, t) − χN (x, t)| ≤
∣∣∣∣∣

N∑
r=2

∞∑
s=N+1

νrs ψr (x) φs(t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
r=N+1

∞∑
s=2

νrs ψr (x) φs(t)

∣∣∣∣∣

123
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+
∣∣∣∣∣

∞∑
s=N+1

[ ν0s ψ0(x) + ν1s ψ1(x) ]φs(t)

∣∣∣∣∣

+
∣∣∣∣∣

∞∑
r=N+1

[ νr0 φ0(t) + νr1 φ1(t) ]ψr (x)

∣∣∣∣∣ .

As in Theorem 4 followed in Abd-Elhameed et al. (2016), it is easy to obtain the following
inequalities

|ν0s | � 1

s2
, |ν1s | � 1

s2
,

|νr0| � 1

r2
, |νr1| � 1

r2
. (16)

Now, the direct application of inequalities (16), Theorem 4 and the two identities

|ψr (x)| � 1,

|φs(t)| � 1,

lead to

|χ(x, t) − χN (x, t)| ≤
N∑

r=2

∞∑
s=N+1

|νrs | +
∞∑

r=N+1

∞∑
s=2

|νrs | +
∞∑

s=N+1

[ |ν0s | + |ν1s | ] +
∞∑

r=N+1

[ |νr0| + |νr1| ],

�
N∑

r=2

∞∑
s=N+1

1

r2 s2
+

∞∑
r=N+1

∞∑
s=2

1

r2 s2
+

∞∑
s=N+1

1

s2
+

∞∑
r=N+1

1

r2
.

Using Lemma 4 along with the following approximation

b∑
i=a+1

f (i) ≤
∫ b

x=a
f (x) dx,

where f is decreasing function, one has

|χ(x, t) − χN (x, t)| �
∫ N

1

∫ ∞

N

1

x2 y2
dx dy +

∫ ∞

N

∫ ∞

1

1

x2 y2
dx dy

+
∫ ∞

N

1

y2
dy +

∫ ∞

N

1

x2
dx,� 1

N
.

This completes the proof of Theorem 5. �

Remark 4 As shown in Theorem 5, we find that the truncation error estimate (15) leads to an
exponential rate of convergence.

5 Illustrative examples

In this section, we apply our approximate spectral scheme which is presented in Sect. 3 on
four examples. All results show that our method is applicable and effective when we compare
it with results in Taghipour and Aminikhah (2022b).
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Table 1 Comparison of absolute errors for Example 1

(x, t) α = 0.5, β = 0.1 α = 0.5, β = 0.3
Method in Taghipour
and Aminikhah
(2022b)

Our method Method in Taghipour
and Aminikhah
(2022b)

Our method

(0.1, 0.1) 5.2665 × 10−11 5.20417 × 10−18 7.5026 × 10−11 5.90891 × 10−18

(0.2, 0.2) 8.8713 × 10−10 7.02563 × 10−17 7.0142 × 10−10 6.33174 × 10−17

(0.3, 0.3) 4.6062 × 10−9 1.31839 × 10−16 3.6713 × 10−9 1.45717 × 10−16

(0.4, 0.4) 1.4766 × 10−8 5.55112 × 10−17 1.2353 × 10−8 6.93889 × 10−18

(0.5, 0.5) 3.6426 × 10−8 4.16334 × 10−16 3.1853 × 10−8 5.55112 × 10−16

(0.6, 0.6) 7.6243 × 10−8 1.38778 × 10−16 6.9345 × 10−8 1.11022 × 10−16

(0.7, 0.7) 1.4258 × 10−7 1.99814 × 10−15 1.3432 × 10−7 1.83187 × 10−15

(0.8, 0.8) 2.4555 × 10−7 3.94129 × 10−15 2.3833 × 10−7 3.77476 × 10−15

(0.9, 0.9) 3.8165 × 10−7 3.52496 × 10−15 3.7801 × 10−7 4.13558 × 10−15

(1, 1) 7.3344 × 10−15 9.77076 × 10−16 1.1944 × 10−16 1.88391 × 10−15

Example 1 (Taghipour and Aminikhah 2022b; Guo et al. 2020) Consider the following equa-
tion

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,

along with the following initial and boundary conditions:

χ(x, 0) = 0, 0 < x ≤ 1,

χ(0, t) = 0, χ(1, t) = 0, 0 < t ≤ 1,

where

g(x, t) = sin(π x)

(
6 t3−α

�(4 − α)
+

(
6π2�(β)

)
tβ+3

�(β + 4)
+ π t6 cos(π x)

)
.

The exact solution of this problem is χ(x, t) = t3 sin(π x).
Tables 1 and 2 show the comparison of the absolute errors between our method at N = 12

with the method developed in Taghipour and Aminikhah (2022b) at different values of α and
β. In addition, Fig. 1 shows the L∞ error for the case corresponding to α = 0.7, β = 0.4
and α = 0.3, β = 0.8 at N = 12. It can be seen that the approximate solution is quite near
to the precise one.

Example 2 (Taghipour andAminikhah 2022b)Consider the following equationwith the exact
solution χ(x, t) = t2 x (1 − x)

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,

along with the following initial and boundary conditions:

χ(x, 0) = 0, 0 < x ≤ 1,

χ(0, t) = 0, χ(1, t) = 0, 0 < t ≤ 1,
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Table 2 Comparison of absolute errors for Example 1

(x, t) α = 0.5, β = 0.7 α = 0.5, β = 0.9
Method in Taghipour
and Aminikhah
(2022b)

Our method Method in Taghipour
and Aminikhah
(2022b)

Our method

(0.1, 0.1) 9.4157 × 10−10 4.93312 × 10−18 1.5935 × 10−9 5.85469 × 10−18

(0.2, 0.2) 1.7084 × 10−9 6.50521 × 10−17 4.5505 × 10−9 6.07153 × 10−17

(0.3, 0.3) 5.8173 × 10−8 1.21431 × 10−16 1.3764 × 10−9 1.38778 × 10−16

(0.4, 0.4) 3.6620 × 10−7 3.46945 × 10−17 1.2902 × 10−7 4.85723 × 10−17

(0.5, 0.5) 1.2736 × 10−6 3.88578 × 10−16 6.7104 × 10−7 4.44089 × 10−16

(0.6, 0.6) 3.4065 × 10−6 2.22045 × 10−16 2.2596 × 10−6 8.32667 × 10−17

(0.7, 0.7) 7.7630 × 10−6 1.72085 × 10−15 6.0393 × 10−6 2.10942 × 10−15

(0.8, 0.8) 1.5689 × 10−5 4.21885 × 10−15 1.3673 × 10−5 4.10783 × 10−15

(0.9, 0.9) 2.5814 × 10−5 3.05311 × 10−15 2.4145 × 10−5 2.91434 × 10−15

(1, 1) 1.6793 × 10−15 2.16126 × 10−15 2.1690 × 10−14 6.99906 × 10−16

Fig. 1 The L∞ error of Example 1

where

g(x, t) = 4 tβ+2

β3 + 3β2 + 2 β
+ (2 x (1 − x)) t2−α

�(3 − α)
+ t4 x (1 − x) (1 − 2 x).

Table 3 shows the absolute errors at different values of α and β at N = 1. The results in
the last table show that our method is more accurate when we compare our results with those
obtained in table 2 at Taghipour and Aminikhah (2022b).

Example 3 (Akram et al. 2021; Guo et al. 2020) Consider the following equation

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,

along with the following initial and boundary conditions:

χ(x, 0) = (1 − x)2x2, 0 < x ≤ 1,

χ(0, t) = 0, χ(1, t) = 0, 0 < t ≤ 1,
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Table 3 The absolute errors of Example 2

(x, t) α = 0.5 α = 0.7 α = 0.9 α = 1
β = 0.5 β = 0.5 β = 0.5 β = 0.5

(0.1, 0.1) 1.08421 × 10−19 0. 1.08421 × 10−19 3.25261 × 10−19

(0.2, 0.2) 0. 6.50521 × 10−17 0. 8.67362 × 10−19

(0.3, 0.3) 0. 1.21431 × 10−16 0. 3.46945 × 10−18

(0.4, 0.4) 6.93889 × 10−18 6.93889 × 10−18 0. 6.93889 × 10−18

(0.5, 0.5) 0. 3.88578 × 10−16 0. 1.38778 × 10−17

(0.6, 0.6) 2.77556 × 10−18 0. 0. 2.77556 × 10−17

(0.7, 0.7) 5.55112 × 10−17 1.38778 × 10−17 1.38778 × 10−17 5.55112 × 10−17

(0.8, 0.8) 1.38778 × 10−17 2.77556 × 10−17 4.16334 × 10−17 2.77556 × 10−17

(0.9, 0.9) 2.77556 × 10−17 2.77556 × 10−17 2.77556 × 10−17 2.77556 × 10−17

(1, 1) 6.02068 × 10−17 1.11374 × 10−17 2.28121 × 10−17 1.26785 × 10−17

Table 4 Comparison of absolute errors of Example 3

x α = 0.25 α = 0.5 α = 0.75
Method in
Akram et al.
(2021)

Present method Method in
Akram et al.
(2021)

Present method Method in
Akram et al.
(2021)

Present method

0.1 0.0002278 3.30415 × 10−8 0.0002393 2.53155 × 10−9 0.0002611 4.06707×10−8

0.2 0.0018783 1.23441 × 10−7 0.0019005 5.30274 × 10−8 0.0019430 2.83869×10−8

0.3 0.0035717 2.22268 × 10−7 0.0036034 1.21711 × 10−7 0.0036639 1.79009×10−9

0.4 0.0042866 2.95213 × 10−7 0.0043257 1.74001 × 10−7 0.0043997 1.97597×10−8

0.5 0.0034757 3.21894 × 10−7 0.0035196 1.93254 × 10−7 0.0036008 2.76727×10−8

0.6 0.0011975 2.95494 × 10−7 0.0012421 1.74051 × 10−7 0.0013230 1.95891×10−8

0.7 0.0017931 2.22686 × 10−7 0.0017525 1.21761 × 10−7 0.0016805 2.05927×10−9

0.8 0.0040788 1.23807 × 10−7 0.0040474 5.30638 × 10−7 0.0039930 2.86461×10−8

0.9 0.0038964 3.32384 × 10−8 0.0038792 2.52148 × 10−9 0.0038497 4.08221×10−8

where

g(x, t) = 2
(
t5/2 + 1

)2
(1 − x)3 x3 (1 − 2x) + �

( 7
2

)
�

( 7
2 − α

) (1 − x)2 x2 t
5
2−α

−2
(
6 x2 − 6 x + 1

) (
�

( 7
2

)
�(β)

�
(
β + 7

2

) tβ+ 5
2 + tβ

β

)
.

The exact solution of this problem is u(x, t) =
(
t
5
2 + 1

)
x2 (1 − x)2.

Table 4 show the comparison of the absolute errors between our method at N = 12 with
the method developed in Akram et al. (2021) at β = 0.15 and different values of α. Also,
Fig. 2 shows the L∞ error for the case corresponding to α = 0.95, β = 0.15 and N = 12.
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Fig. 2 The L∞ error of Example 3

Example 4 (Taghipour and Aminikhah 2022b) Consider the following equation

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,

along with the following initial and boundary conditions:

χ(x, 0) = 0, 0 < x ≤ 1,

χ(0, t) = t3, χ(1, t) = e t3, 0 < t ≤ 1,

where

g(x, t) = (6 ex ) t3−α

�(4 − α)
− 6 ex �(β)tβ+3

�(β + 4)
+ t6 e2 x .

The exact solution of this problem is χ(x, t) = t3 ex .
Table 5 shows the absolute errors at N = 9, N = 12 and α = β = 0.5. Also Table 6

presents the maximum absolute errors at α = 0.9 and β = 0.3. The results in Tables 5 and 6
show that our method is more accurate when we compare our results with those obtained in
table 4 at Taghipour and Aminikhah (2022b). Figure 3 indicates the advantage of our method
for obtaining the maximum absolute errors at small values of N . This figure proves that our
method is in good agreement with the analytical solution.

Example 5 (Taghipour and Aminikhah 2022b) Consider the following equation

Dα
t χ(x, t) + χ(x, t) χx (x, t) =

∫ t

0
(t − s)β−1 χxx (x, s) ds + g(x, t), 0 < α, β < 1,

along with the following initial and boundary conditions:

χ(x, 0) = 0, 0 < x ≤ 1,

χ(0, t) = t2, χ(1, t) = 0, 0 < t ≤ 1,
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Table 5 The absolute errors of Example 4

(x, t) N = 9 N = 12
Absolute error Order of |χ − χN | Absolute error Order of |χ − χN |

(0.1, 0.1) 5.28549 × 10−19 10−1 4.06576 × 10−20 10−2

(0.2, 0.2) 1.23599 × 10−17 10−1 1.30104 × 10−18 10−2

(0.3, 0.3) 3.03577 × 10−17 10−1 5.20417 × 10−18 10−2

(0.4, 0.4) 6.07153 × 10−17 10−1 5.20417 × 10−18 10−2

(0.5, 0.5) 2.94903 × 10−16 10−1 2.77556 × 10−17 10−2

(0.6, 0.6) 1.87351 × 10−16 10−1 1.38778 × 10−17 10−2

(0.7, 0.7) 3.88578 × 10−16 10−1 4.16334 × 10−17 10−2

(0.8, 0.8) 6.93889 × 10−16 10−1 8.32667 × 10−17 10−2

(0.9, 0.9) 5.13478 × 10−16 10−1 6.93889 × 10−17 10−2

Table 6 Maximum absolute errors of Example 4

N 2 5 8 10 12

Error 2.2838 × 10−4 8.0261 × 10−9 2.1543 × 10−13 4.4409 × 10−16 4.4408 × 10−16

Fig. 3 The maximum absolute errors of Example 4

where

g(x, t) = t2−α(2 (1 − x) cos(x))

�(3 − α)
−

(
2�(β) tβ+2

)
(2 sin(x) + (x − 1) cos(x))

�(β + 3)

+t4 (1 − x) cos(x) (x sin(x) − sin(x) − cos(x)).

The exact solution of this problem is χ(x, t) = t2 (1 − x) cos(x).
Figure 4 shows the approximate solution and L∞ error for α = β = 0.7, at N = 10. In

addition, Table 7 displays the absolute errors at α = 0.6, β = 0.9 and N = 10. Moreover,
Table 8 shows the absolute errors at different values of N when α = 0.3, β = 0.8. Finally,
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Fig. 4 (Left) Approximate solution, (Right) L∞ error for Example 5

Table 7 The absolute errors of Example 5

x α = 0.6, β = 0.9
t = 1

10 t = 4
10 t = 7

10 t = 1

0.1 5.14996 × 10−19 8.78204 × 10−18 2.68882 × 10−17 4.42354 × 10−17

0.2 8.13152 × 10−20 8.67362 × 10−19 5.20417 × 10−18 6.93889 × 10−18

0.3 3.79471 × 10−19 2.60209 × 10−18 8.67362 × 10−18 2.08167 × 10−17

0.4 3.79471 × 10−19 6.07153 × 10−18 2.42861 × 10−17 4.16334 × 10−17

0.5 7.58942 × 10−19 1.04083 × 10−17 3.12205 × 10−17 7.63278 × 10−17

0.6 1.40946 × 10−18 8.67362 × 10−18 2.08167 × 10−17 5.55112 × 10−17

0.7 1.40946 × 10−18 1.21431 × 10−17 3.46945 × 10−17 2.77556 × 10−17

0.8 1.73472 × 10−18 1.56125 × 10−17 4.85723 × 10−17 1.11022 × 10−16

0.9 3.1984 × 10−18 8.67362 × 10−18 4.16334 × 10−17 1.17961 × 10−16

1 3.20382 × 10−18 1.88632 × 10−17 9.02611 × 10−17 2.51491 × 10−16

Table 8 The absolute errors of Example 5

(x, t) N = 8 N = 10 N = 12
Absolute error Order of

|χ − χN |
Absolute error Order of

|χ − χN |
Absolute error Order of

|χ − χN |

(0.1, 0.1) 2.73128 × 10−15 10−1 1.35525 × 10−20 10−1 7.52165 × 10−19 10−2

(0.2, 0.2) 1.12764 × 10−14 10−1 4.33681 × 10−18 10−1 4.33681 × 10−19 10−2

(0.3, 0.3) 2.03015 × 10−14 10−1 2.38524 × 10−17 10−1 0. 10−2

(0.4, 0.4) 1.02121 × 10−13 10−1 3.90313 × 10−17 10−1 8.67362 × 10−19 10−2

(0.5, 0.5) 1.57861 × 10−16 10−1 1.56125 × 10−17 10−1 5.20417 × 10−18 10−2

(0.6, 0.6) 2.28061 × 10−13 10−1 4.85723 × 10−17 10−1 2.77556 × 10−17 10−2

(0.7, 0.7) 1.07837 × 10−13 10−1 1.52656 × 10−16 10−1 6.93889 × 10−18 10−2

(0.8, 0.8) 1.77199 × 10−13 10−1 1.38778 × 10−17 10−1 1.38778 × 10−17 10−2

(0.9, 0.9) 2.15043 × 10−13 10−1 1.45717 × 10−16 10−1 3.46945 × 10−17 10−2
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Table 9 The L2 error of Example 5

Method in Taghipour and Aminikhah (2022b) Present method
M N L2 error L2 error at N = 12

4 5 3.0728 × 10−5

4 6 2.0621 × 10−6

4 7 1.1742 × 10−7 1.36557 × 10−15

4 8 6.0069 × 10−7

4 9 7.7425 × 10−10

Table 9 presents a comparison of L2 error at α = β = 0.5. It can be seen that the approximate
solution is quite near to the precise one.

6 Concluding remarks

This paper presents suitable basis functions to solve the nonlinear TFPIDE subject to homo-
geneous initial and boundary conditions. Based on this basis, we developed new operational
matrices of differentiation and integration that enable us to get the approximate spectral solu-
tion.Moreover, the error analysis of the suggested approximate double expansionwas studied
in depth. In the end, the proposed numerical examples illustrated the presented technique’s
high accuracy, applicability, and efficiency. As an expected future work, we aim to employ
the developed theoretical results in this paper along with suitable spectral methods to treat
some other problems numerically. All codes were written and debugged byMathematica 11
on HP Z420 Workstation, Processor: Intel (R) Xeon(R) CPU E5-1620—3.6 GHz, 16 GB
Ram DDR3, and 512 GB storage.
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