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Abstract
Intuitionistic fuzzy sets, Pythagorean fuzzy sets, and q-rung orthopair fuzzy sets are rudi-
mentary concepts in computational intelligence, which have amyriad of applications in fuzzy
systemmodeling and decision-making under uncertainty. Nevertheless, all these notions have
some strict restrictions imposed on the membership and non-membership grades (e.g., the
sum of the grades or the sum of the squares of the grades or the sum of the qth power of
the grades is less than or equal to 1). To relax these restrictions, linear Diophantine fuzzy set
is a new extension of fuzzy sets, by additionally considering reference/control parameters.
Thereby, the sum of membership grade and non-membership grade can be greater than 1, and
even both of these grades can be 1. By selecting different pairs of reference parameters, linear
Diophantine fuzzy sets can naturally categorize concerned problems and produce appropriate
solutions accordingly. In this paper, the interval-valued linear Diophantine fuzzy set, which
is a generalization of linear Diophantine fuzzy set, is studied. The interval-valued linear
Diophantine fuzzy set is more efficient to deal with uncertain and vague information due to
its flexible intervals of membership grades, non-membership grades, and reference parame-
ters. Some basic operations on interval-valued linear Diophantine fuzzy sets are presented.
We define interval-valued linear Diophantine fuzzy weighted average and interval-valued
linear Diophantine fuzzy weighted geometric aggregation operators. Based on these new
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aggregation operators, we propose a method for multi-criteria decision-making based on
supplier selection under the interval-valued linear Diophantine fuzzy environment. Besides,
a real-life example, comparison study, and advantages of proposed aggregation operators
are presented. We describe some correlation coefficient measures (type-1 and type-2) for the
interval-valued linear Diophantine fuzzy sets and they are applied in medical diagnosis for
Coronavirus Disease 2019 (COVID-19). Lastly, a comparative examination and the benefits
of proposed correlation coefficient measures are also discussed.

Keywords Linear Diophantine fuzzy set · Interval-valued linear Diophantine fuzzy set ·
Aggregation operator · Correlation coefficient · Supplier selection · Medical diagnosis

Mathematics Subject Classification 03E72 · 28E10 · 94D05

1 Introduction

As a generalization of a classical set, Zadeh (1965) brought the perception of a fuzzy set (FS).
The membership degrees of elements into a fuzzy set are measured using the membership
function. In the literature, Zadeh’s fuzzy set is tackled from different aspects in the multi-
criteria decision making (MCDM) issues (Petchimuthu et al. 2020; Petchimuthu and Kamacı
2020, 2019; Ye 2011; Song et al. 2014). The interval-valued fuzzy set (IVFS) is proposed
as an interval spanned extension of a fuzzy set (Gehrke et al. 1996; Sambuc 1975). These
sets treat the membership degree of a fuzzy set as interval values in place of an exact value.
Atanassov (1986) generalized the fuzzy set into the intuitionistic fuzzy set (IFS), which
possesses a non-membership grade in addition to membership grade. The perception of IFS
is stepped forward to address the real-life MCDM issues (Aydın and Enginog̃lu 2021; Hayat
et al. 2018; Kamacı 2019; Karaaslan 2016). The average and geometric aggregation operators
are evolved to aggregate the information in the surrounding of IFS [see Xu (2007), Zhao et al.
(2010), Xu and Yager (2006)]. To cope with the MCDM issues based on IFS information
measures, similarity measures (Song et al. 2014) and cosine similarity measures (Ye 2011)
were developed. To expand both the membership and non-membership degrees of the IFS
from exact values to interval values, Atanassov and Gargov (1989) brought the interval-
valued intuitionistic fuzzy set (IVIFS). Many researchers contributed to the development
of IVIFS by proposing aggregation operators (Wang et al. 2012; Garg 2016a) and distance
measures (Ye 2013; Baccour and Alimi 2019). Yager (2014) adopted the idea of Pythagorean
fuzzy set (PyFS) (is also referred to as IFS of type 2) through relaxing some conditions
of IFS and advanced a few outstanding aggregation operators termed O-PFWPA and O-
PFWPG. To prioritize the options concerning PyFS, many PyF operations, relations, and
aggregation operators were developed (Garg 2017; Hashmi and Riaz 2020). Moreover, the
distance measures (Firozja et al. 2020; Nguyen et al. 2019; Zhang et al. 2019), divergence
measures (Zeng et al. 2019) and cosine function-based similarity measures (Wei and Wei
2018) were proposed to measure between two PyFNs. In Abdullah and Goh (2019), Akram
et al. (2020), Khalid et al. (2019), Riaz and Hashmi (2020), many authors endeavored to
deal with the fruitful real-life applications of PyFSs. The PyFS was prolonged into the
interval-valued Pythagorean fuzzy set (IVPyFS) (Peng 2019; Zhang 2016) and studied in
some aspects (Garg 2016b; Li et al. 2018). In 2017, Yager (2017) introduced the q-rung
orthopair fuzzy set (q-ROFS) (is also referred to as IFS of type q (where q ≥ 1)). Later
on, Liu and Wang (2018) and Riaz et al. (2020a) focused on the aggregation operators such
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as q-ROFHWAGA, q-ROFWA, q-ROFWG, and Wang et al. (2019) aimed to measure the
similarity between two q-ROFSs. The different perspectives on q-ROFS, which are closer to
real-life applications, were presented (Ali 2018; Ali and Mahmood 2022; Mahmood and Ali
2021). Joshi et al. (2018) extended the q-ROFS into an interval-valued q-rung orthopair fuzzy
set (IVq-ROFS), and immediately afterward, they were advanced in different directions (Gao
et al. 2019). In 2019, Riaz and Hashmi (2019) significantly tested the regulations associated
with the membership and non-membership degrees in the structures of FS, IFS, PyFS, and q-
ROFS and those obstacles were offered numerically. They introduced the linear Diophantine
fuzzy set (LDFS) by including reference parameters to the nature of IFS to take away those
obstacles. They put forward that the idea of LDFSwill eradicate the constraints in the existing
methodologies of other sets and enable the free selection of data in practice. Also, they proved
that the space of this set is larger than those of FS, IFS, PyFS, and q-ROFS using the arbitrary
property of the reference parameters [see: Theorem 3.3 and Table 18 in Riaz and Hashmi
(2019)]. Formore details on the hybridizations, algebraic and topological structures of LDFS,
the concepts in Almagrabi et al. (2021), Kamacı (2021a, b), Riaz et al. (2020b) can also be
reviewed. Moreover, the reference parameter approach utilized by Riaz and Hashmi (2019)
on LDFS is a rising fashion to assess alternatives thoroughly and accurately. It sparks in our
thoughts that a deep and tricky observation needs to be made on LDFS.

Thus, encouraged by Riaz and Hashmi’s studies on LDFS in Riaz and Hashmi (2019),
we focused on the theory of interval-valued linear Diophantine fuzzy set (IVLDFS) in which
the degrees of membership, non-membership, and reference parameters are intervals. We
know from the prevailing research (Beg and Rashid 2015; Chinram et al. 2021; Riaz and
Hashmi 2019) that the average and geometric aggregation operators are the simplest and
appropriate approaches to fuse information. So, we seek the solutions to the supplier selec-
tion based on IVLDF information by introducing the interval-valued linear Diophantine
fuzzy weighted average (IVLDFWA) and interval-valued linear Diophantine fuzzy weighted
geometric (IVLDFWG) aggregation operators. Recently, Garg and Rani (2019) proved that
the correlation coefficient measure is one of the most critical measures to assist not only in
evaluating data entity with another but also show the extent of association between them
and their direction. It leads us to define type-1 and type-2 correlation coefficient measures
between two IVLDFSs.

The motivation of this paper is (1) to extend the range of IVLDFS, (2) to derive new
operations on IVLDFSs, (3) to present some aggregation operators to fuse IVLDF informa-
tion, (4) to formulate correlation coefficients that measure similarity/distance between two
IVLDSs, and (5) to show that the proposed operations, operators, and correlation coefficients
can be used to deal with problems such as supplier selection and medical diagnosis. The
contributions of this paper are itemized as follows.

• The current concepts such as IFS, PyFS, q-ROFS, LDFS, IVIFS, IVPyFS, and IVq-ROFS
have been prosperously applied in different areas, but there are situations in genuine life
that cannot be represented by those notions. The LDFS perception of Riaz and Hashmi
generalizes the concepts of IFS, PyFS, q-ROFS, LDFS, IVIFS, IVPyFS, and IVq-ROFS
with the integration of reference parameters. The reference parameters increase the range
of membership and non-membership grades. Further, by changing the physical sense of
reference parameters, LDFS can be used effectively in different situations. The perception
of IVLDFS thatwepropose is themore generalized formof theLDFSofRiaz andHashmi.
It has extra functionality in processing the degrees of membership, non-membership, and
reference parameters as interval values instead of exact values in evaluation with LDFS.
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• The existing arithmetic, geometric, and other aggregation operators created for the
subsisting notions IFS, PyFS, q-ROFS,LDFS, IVIFS, IVPyFS, and IVq-ROFSare not rel-
evant to resolve theMCDM quandaries under the IVLDFS environment. Meanwhile, our
proposed arithmetic and geometric aggregation operators (IVLDFWA and IVLDFWG)
are eligible to resolve the MCDM based on supplier selection under the environment of
both the subsisting notions IFS, PyFS, q-ROFS, LDFS, IVIFS, IVPyFS, IVq-ROFS, and
the proposed IVLDFS.

• The information measures proposed for the IFS, PyFS, q-ROFS, LDFS, IVIFS, IVPyFS,
and IVq-ROFS are special instances of the proposed type-1 and type-2 correlation coef-
ficients of the IVLDFS. Consequently, the type-1 and type-2 correlation coefficients of
IVLDFS are felicitous and effective to deal with the authentic-life MCDM issues more
accurately than the preexisting ones.

The rest of this study is organized as follows: In Sect. 2, we give the introductory notions
and principal properties about the fuzzy set and its prolonged models. In Sect. 3, we present
a framework for linear Diophantine fuzzy set theory in which grades of membership, non-
membership, and reference parameters are interval values. Also, we discuss relationships
between interval-valued linear Diophantine fuzzy sets and the prolonged interval-valued
fuzzy sets like IVIFS, IVPyFS, IVq-ROFS. In Sect. 4, we define interval-valued linear Dio-
phantine fuzzy weighted average (IVLDFWA) and interval-valued linear Diophantine fuzzy
weighted geometric (IVLDFWG) aggregation operators. Based on these new aggregation
operators, we propose a method for the MCDM based on material supplier selection in
the interval-valued linear Diophantine fuzzy surrounding. In addition to these, a real-life
example, comparison study, and advantages of proposed aggregation operators (IVLDFWA,
IVLDFWG) are presented. In Sect. 5, we describe some correlation coefficient measures
(type-1 and type-2) for the IVLDFSs and they are applied in medical diagnosis for Coron-
avirus Disease 2019 (COVID-19). A comparative examination and the benefits of proposed
correlation coefficient measures are also discussed. In Sect. 6, the conclusion of this study is
summarized.

2 Preliminaries

This section reviews some basic concepts and results related to the fuzzy set and its extended
models.

We start this section with Zadeh’s definition of a fuzzy set.

Definition 2.1 (Zadeh 1965) A fuzzy set (FS) F in the universal discourse set X is defined
as follows:

F = {(xi , 〈MF (xi )〉) : xi ∈ X},
where MF : X → [0, 1] represents the membership function of F and the value MF (xi )
denotes the degree of membership of xi ∈ X into the set F . The set of all FSs over the
universal discourse set X is denoted by FS(X).

Definition 2.2 (Gehrke et al. 1996; Sambuc 1975) Let I[0,1] be the set of all closed subin-
tervals of the interval [0, 1]. Then, an interval-valued fuzzy set (IVFS) F̈ in the universal
discourse set X can be described as follows:

F̈ = {(xi ,
〈
MF̈ (xi )

〉) : xi ∈ X
}
,
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where MF̈ : X → I[0,1] represents the membership function of F̈ such that MF̈ (xi ) =
[ML

F̈ (xi ),MU
F̈ (xi )] and 0 ≤ ML

F̈ (xi ) ≤ MU
F̈ (xi ) ≤ 1. The values ML

F̈ (xi ) and MU
F̈ (xi )

denote the lower and upper degrees of membership of xi ∈ X into the set F̈ , respectively.
The set of all IVFSs over the universal discourse set X is denoted by I V FS(X).

Definition 2.3 (Atanassov 1986) An intuitionistic fuzzy set (IFS) I in the universal discourse
set X is defined as follows:

I = {(xi , 〈MI(xi ),NI(xi )〉) : xi ∈ X},
where MI : X → [0, 1] and NI : X → [0, 1] represent the membership function and
non-membership function of I, respectively. The values MI(xi ) and NI(xi ) denote the
degrees of membership and non-membership of xi ∈ X into the set I with the condition
0 ≤ MI(xi ) + NI(xi ) ≤ 1 for each xi ∈ X. The hesitation margin, which is the degree of
non-determinacy of xi ∈ X into the set I, is described as HI(xi ) = 1− (MI(xi ) +NI(xi ))
for each xi ∈ X. The set of all IFSs over the universal discourse setX is denoted by I FS(X).

Definition 2.4 (Atanassov and Gargov 1989) Let I[0,1] be the set of all closed subintervals of
the interval [0, 1]. Then, an interval-valued intuitionistic fuzzy set (IVIFS) Ï in the universal
discourse set X is described as follows:

Ï = {(xi ,
〈
MÏ(xi ),NÏ(xi )

〉) : xi ∈ X
}
,

where MÏ = [ML
I(xi ),MU

I (xi )] : X → I[0,1] and NÏ = [NL
I(xi ),NU

I (xi )] : X → I[0,1]
represent the membership function and non-membership function of Ï, respectively. The
values ML

I(xi ), MU
I (xi ) denote the lower and upper degrees of membership of xi ∈ X

into the set Ï, and the values NL
I(xi ), NU

I (xi ) denote the lower and upper degrees of non-
membership of xi ∈ X into the set Ï. Besides, the following condition is provided: 0 ≤
MU

I (xi ) + NU
I (xi ) ≤ 1 for each xi ∈ X. The hesitation margin is evaluated as HÏ(xi ) =

[1 − (ML
Ï(xi ) + NL

Ï(xi )), 1 − (MU
Ï (xi ) + NU

Ï (xi ))] for each xi ∈ X. The set of all IVIFSs
over the universal discourse set X is denoted by IVIFS(X).

Definition 2.5 (Yager 2014) A Pythagorean fuzzy set (PyFS) P in the universal discourse
set X is defined as follows:

P = {(xi , 〈MP (xi ),NP (xi )〉) : xi ∈ X},
whereMP ,NP : X → [0, 1] represent themembership function and non-membership func-
tion ofP , respectively. ThevaluesMP (xi ) andNP (xi )denote the degrees ofmembership and
non-membership of xi ∈ X into the setP with the condition 0 ≤ (MP (xi ))2+(NP (xi ))2 ≤ 1
for each xi ∈ X. The hesitation margin of xi ∈ X is HP (xi ) = (

1 − ((MP (xi ))2 +
(NP (xi ))2)

) 1
2 . PyFS(X) denotes the set of all PyFSs over the universal discourse set X.

Definition 2.6 (Peng 2019; Zhang 2016) Let I[0,1] be the set of all closed subintervals of the
interval [0, 1]. Then, an interval-valued Pythagorean fuzzy set (IVPyFS) P̈ in the universal
discourse set X is presented as follows:

P̈ = {(xi ,
〈
MP̈ (xi ),NP̈ (xi )

〉) : xi ∈ X
}
,

where MP̈ = [ML
P (xi ),MU

P (xi )] : X → I[0,1] and NP̈ = [NL
P (xi ),NU

P (xi )] : X → I[0,1]
represent the membership function and non-membership function of P̈ , respectively. The
values ML

P (xi ), MU
P (xi ) denote the lower and upper degrees of membership of xi ∈ X
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into the set P̈ , and the values NL
P (xi ), NU

P (xi ) denote the lower and upper degrees of non-
membership of xi ∈ X into the set P̈ . In addition, the following condition is provided: for each
xi ∈ X, 0 ≤ (MU

P (xi ))2 + (NU
P (xi ))2 ≤ 1. For each xi ∈ X,HP̈ (xi ) = [HL

P̈ (xi ),HU
P̈ (xi )] =

[(
1 − ((ML

P̈ (xi ))2 + (NL
P̈ (xi ))2)

) 1
2 ,
(
1 − ((MU

P̈ (xi ))2 + (NU
P̈ (xi ))2)

) 1
2
]
is termed to be

hesitation margin of xi ∈ X. The set of all IVPyFSs over the universal discourse set X is
denoted by IVPyFS(X).

Definition 2.7 (Yager 2017) A q-rung orthopair fuzzy set (q-ROFS) Q in the universal dis-
course set X is defined as follows:

Q = {(xi , 〈MQ(xi ),NQ(xi )〉) : xi ∈ X},
where MQ,NQ : X → [0, 1] represent the membership function and non-membership
function ofQ, respectively. The valuesMQ(xi ) andNQ(xi ) denote the degrees of member-
ship and non-membership of xi ∈ X into the set Q with the condition 0 ≤ (MQ(xi ))q +
(NQ(xi ))q ≤ 1 (where q ≥ 1) for each xi ∈ X. The hesitation margin can be evaluated as

HQ(xi ) = (1− ((MQ(xi ))q + (NQ(xi ))q)
) 1
q for each xi ∈ X. The set of all q-ROFSs over

the universal discourse set X is denoted by q-ROFS(X).

Definition 2.8 (Joshi et al. 2018) Let I[0,1] be the set of all closed subintervals of the interval
[0, 1]. Then, an interval-valued q-rung orthopair fuzzy set (IVq-ROFS) Q̈ in the universal
discourse set X is described as follows:

Q̈ = {(xi ,
〈
MQ̈(xi ),NQ̈(xi )

〉) : xi ∈ X
}
,

whereMQ̈ = [ML
Q(xi ),MU

Q(xi )] : X → I[0,1] andNQ̈ = [NL
Q(xi ),NU

Q(xi )] : X → I[0,1]
represent the membership function and non-membership function of Q̈, respectively. The
values ML

Q(xi ), MU
Q(xi ) denote the lower and upper degrees of membership of xi ∈ X

into the set Q̈, and the values NL
Q(xi ), NU

Q(xi ) denote the lower and upper degrees of non-
membership of xi ∈ X into the set Q̈. In addition, the following condition is provided:
0 ≤ (MU

Q(xi ))q + (NU
Q(xi ))q ≤ 1 (where q ≥ 1) for each xi ∈ X. The hesitation margin

is calculated as HQ̈(xi ) = [HL
Q̈(xi ),HU

Q̈(xi )] = [(
1 − ((ML

Q̈(xi ))q + (NL
Q̈(xi ))q)

) 1
q ,
(
1 −

((MU
Q̈(xi ))q + (NU

Q̈(xi ))q)
) 1
q
]
for each xi ∈ X. I V q − ROFS(X) denotes the set of all

IVq-ROFSs over the universal discourse set X.

The website “https://smartphonesrevealed.com” focuses on determining the mobile phones
best suit buyer’s functionality-quality requirements and wallet. For example, we consider
Fig. 1 based on data from this website on October 16, 2020.

In Fig. 1, “score on selected criteria” means rating the mobile phones evaluating
their functionality-quality (that is, phones ranked on Camera&Video, Data Speed, User-
friendliness, Battery Life, Design-Materials), “total score” means rating the mobile phones
evaluating their functionality-quality and price (that is, phones ranked on Camera&Video,
Data Speed, User-friendliness, Battery Life, Design-Materials, Price). The best mobile phone
is Samsung Galaxy Note 20 Ultra 256 GB, both according to “score on selected criteria” and
“total score” (its score on selected criteria is 95/100 = 0.95 and its total score is 55/60 = 0.917).
When the functionality-quality of mobile phones is evaluated according to the “Price Level”
and mobile phones are ranked according to these evaluations, Motorola Edge + (2020), Sony
Xperia 1 II (2020), and One Plus 8 (2020) 128 GB are recommended for the best phone.
While one can describe “score on selected criteria” and “total score” with FS, IFS, PyFS, or
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Fig. 1 The comparison of mobile phones (Source: https://smartphonesrevealed.com)

q-ROFS, it is difficult to describe these evaluations with the existing fuzzy set approaches
when the reference parameter is Price Level (wallet).

To eliminate such difficulties, Riaz and Hashmi (2019) proposed the linear Diophantine
fuzzy sets which are the extended forms of the IFSs, PyFSs, and q-ROFSs, by integrating the
degrees of reference parameters to the degrees of membership and non-membership in the
structure of the IFS (or PyFS, q-ROFS). The constitutional definition of linear Diophantine
fuzzy set can be given as follows.

Definition 2.9 (Riaz and Hashmi 2019) A linear Diophantine fuzzy set (LDFS) L in the
universal discourse set X is defined as follows:

D = {(xi , 〈MD(xi ),ND(xi )〉 , 〈τD, κD〉) : rk ∈ �},
whereMD(xi ),ND(xi ), τD, κD ∈ [0, 1], respectively, represent the degrees ofmembership,
non-membership and references parameters of xi ∈ X into the set D with the conditions
0 ≤ τD + κD ≤ 1 and 0 ≤ τDMD(xi ) + κDND(xi ) ≤ 1. The hesitation margin for each
xi ∈ X is θDHD(xi ) = 1 − (τDMD(xi ) + κDND(xi )). The set of all LDFSs over the
universal discourse set X is denoted by LDFS(X).
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Table 1 The comparison analysis
of LDFS with FS, IFS, PyFS,
q-ROFS

Sets Comments Parameterization

FS Cannot deal with the
non-membership degrees

×

IFS Cannot deal with the
conditionM + N > 1

×

PyFS Cannot deal with the
conditionM2 + N2 > 1

×

q-ROFS Cannot deal for smaller
values of q with the
conditionMq + Nq > 1,
and forM = 1,N = 1

×

LDFS This set deals with the
condition
0 ≤ τM + κN ≤ 1 and for
all the conditions which
fails to hold for FS, IFS,
PyFS, q-ROFS. It works
under the influence of
reference parameters τ and
κ ,M and N can be freely
selected from [0,1]

�

In 2019, Riaz and Hashmi (2019) gave the comparison analysis of LDFS with existing fuzzy
set approaches as in Table 1.

We believe that assigning an exact number to an expert’s opinion is too restrictive and it is
more realistic to assign an interval of value. Although the LDFS is quite an extensive theory
of FS, IFS, PyFS, and q-ROFS, this sets cannot deal with the interval values of membership
and non-membership in the structures of IVFS, IVIFS, PyFS, and IVq-ROFS. Now, we will
outline the basic framework of models in which linear Diophantine fuzzy values are intervals.

3 Interval-valued linear Diophantine fuzzy sets

In this section, we discuss some operations on interval-valued linear Diophantine fuzzy sets
(Mahmood et al. 2022) in which values of membership, non-membership, and reference
parameters are intervals. Also, we investigate relationships between interval-valued linear
Diophantine fuzzy sets and the extended interval-valued fuzzy sets like IVIFS, IVPyFS,
IVq-ROFS.

3.1 The construction of interval-valued linear Diophantine fuzzy set

Definition 3.1 Let I[0,1] be the set of all closed subintervals of the interval [0, 1]. Then, an
interval-valued linear Diophantine fuzzy set (IVLDFS) D̈ in the universal discourse set X is
described as follows:

D̈ = {(xi ,
〈
MD̈(xi ),ND̈(xi )

〉
,
〈
τD̈, κD̈

〉) : xi ∈ X
}
,

whereMD̈(xi ) = [ML
D̈(xi ),MU

D̈(xi )],ND̈(xi ) = [NL
D̈(xi ),NU

D̈(xi )], τD̈ = [τ L
D̈, τUD̈ ], κD̈ =

[κL
D̈, κU

D̈ ] ∈ I[0,1], respectively, represent the lower and upper degrees of membership,
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Table 2 The table of IVLDFS for
Price Level

D̈ (〈
MD̈(xi ),ND̈(xi )

〉
,
〈
τD̈, κD̈

〉)

x1 (〈[0.7, 0.8], [0.3, 1]〉, 〈[0.2, 0.3], [0.5, 0.6]〉)
x2 (〈[0.4, 0.7], [0.5, 0.5]〉, 〈[0.2, 0.5], [0.3, 0.5]〉)
x3 (〈[0.8, 0.9], [0, 0.9]〉, 〈[0.4, 0.55], [0.1, 0.3]〉)
x4 (〈[0.25, 0.4], [0.7, 0.9]〉, 〈[0, 0.9], [0.1, 0.1]〉)

Table 3 The table of IVLDFS for
Screen Size

D̈ (〈
MD̈(xi ),ND̈(xi )

〉
,
〈
τD̈, κD̈

〉)

x1 (〈[0.4, 0.5], [0.7, 0.8]〉, 〈[0.4, 0.45], [0.1, 0.3]〉)
x2 (〈[0.7, 0.9], [0.2, 0.8]〉, 〈[0.5, 0.6], [0.3, 0.3]〉)
x3 (〈[0.3, 0.7], [0.4, 0.7]〉, 〈[0.2, 0.25], [0.6, 0.7]〉)
x4 (〈[0.3, 1], [0, 0.6]〉, 〈[0.35, 0.55], [0.3, 0.4]〉)

non-membership, and references parameters of xi ∈ X into the set D̈ with the conditions
0 ≤ τUD̈ + κU

D̈ ≤ 1 and 0 ≤ τUD̈MU
D̈(xi ) + κU

D̈NU
D̈(xi ) ≤ 1. The hesitation margin of xi ∈ X

into D̈ is described as θD̈HD̈(xi ) = [1 − (τ L
D̈ML

D̈(xi ) + κL
D̈NL

D̈(xi )), 1 − (τUD̈MU
D̈(xi ) +

κU
D̈NU

D̈(xi ))]. The any element of IVLDFS is said to be an interval-valued linear Diophan-
tine fuzzy number (IVLDFN) and is briefly denoted by η = (〈MD̈,ND̈〉, 〈τD̈, κD̈〉) =
(〈[ML

D̈,MU
D̈], [NL

D̈,NU
D̈]〉, 〈[τ L

D̈, τUD̈ ], [κL
D̈, κU

D̈ ]〉). The sets of all IVLDFSs over the univer-
sal discourse set X is denoted by IVLDFS(X).

Example 3.2 Suppose that X = {x1, x2, x3, x4} is the set of four mobile phones that one is
considering purchasing. One might want to determine the best mobile phone having eligible
functionality-quality based on the price level. Then, “cheap” and “not cheap or expensive”
can be considered as reference parameters. For these reference parameters, the following
IVLDFS can be created.

D̈ =

⎧
⎪⎪⎨

⎪⎪⎩

(x1, 〈[0.7, 0.8], [0.3, 1]〉, 〈[0.2, 0.3], [0.5, 0.6]〉),
(x2, 〈[0.4, 0.7], [0.5, 0.5]〉, 〈[0.2, 0.5], [0.3, 0.5]〉),
(x3, 〈[0.8, 0.9], [0, 0.9]〉, 〈[0.4, 0.55], [0.1, 0.3]〉),
(x4, 〈[0.25, 0.4], [0.7, 0.9]〉, 〈[0, 0.9], [0.1, 0.1]〉)

⎫
⎪⎪⎬

⎪⎪⎭
.

These IVLDF data can be take the form as Table 2.

The optimal screen resolution and battery for a mobile phone may vary depending on the
screen size. In other words, to watch a video in sufficient quality, the ideal pixel size for a
mobile phone with a screen size of 6 inches is 1440 × 2560, while 1080 × 1920 is a good
option for a mobile phone with a screen size of 5 inches. However, for a mobile phone with
a screen size of 6 inches, if the pixel size is 1080 × 1920, it may not be satisfactory. One
might want to determine the best mobile phone having eligible functionality-quality based on
screen size. Then, it can be considered the reference parameters “ideal screen size” and “not
ideal screen size”. According to these reference parameters, the IVLDF data can be given as
in Table 3.

Proposition 3.3 The space of IVLDFN is larger than the space of IVIFN, IVPyFN, and IVq-
ROFN.
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Fig. 2 The relationship between IVLDFS and other fuzzy sets

Proof Let η = (〈[ML
D̈,MU

D̈], [NL
D̈,NU

D̈]〉, 〈[τ L
D̈, τUD̈ ], [κL

D̈, κU
D̈ ]〉) be an IVLDFN with

the conditions 0 ≤ τUD̈ + κU
D̈ ≤ 1 and 0 ≤ τUD̈MU

D̈ + κU
D̈NU

D̈ ≤ 1 where

ML
D̈,MU

D̈,NL
D̈,NU

D̈, τ L
D̈, τUD̈ , κL

D̈, κU
D̈ ∈ [0, 1]. It is obvious that considering the arbitrary

choice of lower and upper degrees of reference parameters, the above inequalities are achieved
for every IVIFN, IVPyFN, and IVq-ROFN. Thus, each of IVIFN, IVPyFN, and IVq-ROFN
is also an IVLDFN.

An IVIFN, IVPyFN, or IVq-ROFN may not necessarily be an IVLDFN with the given
set of reference parameters. Let us consider the upper degrees of membership and non-
membership as MU

D̈ = 1, NU
D̈ = 1. Then, we have 1q + 1q = 2 > 1 for any q ≥ 1

but 0 ≤ τUD̈MU
D̈ + κU

D̈NU
D̈ ≤ 1 for the arbitrary set of reference parameters providing the

condition 0 ≤ τUD̈ +κU
D̈ ≤ 1. So, any IVLDFNmay not be IVIFN, IVPyFN, and IVq-ROFN.

	

Consequently, IVLDFS is an extended version of LDFS, and so FS, IFS, PyFS, and q-ROFS
(from Table 1). Since the lower and upper degrees of reference parameters in the structure
of IVLDFS can be arbitrarily selected (by Proposition 3.3), it is asserted that IVLDFS(X) ⊇
IVq − ROFS(X) ⊇ IVPyFS(X) ⊇ IVIFS(X) ⊇ IVFS(X). These are illustrated in Figure 2.
Note 1. The reference parameters in the structure of an IVLDFS are expressed in a single
form, such as cheap and not cheap. However, the degrees of these reference parameters can
not be the same for each xi ∈ X (see Tables 2 and 3). The notations of the reference parameters
as τD̈ = [τ L

D̈, τUD̈ ] and κD̈ = [κL
D̈, κU

D̈ ] can lead to the assumption that their degrees will
be the same for all xi ∈ X. To avoid this confusion, from now on we will show reference
parameters as (i)τD̈ = [(i)τ L

D̈, (i)τUD̈ ] and (i)κD̈ = [(i)κL
D̈, (i)κU

D̈ ] for each xi ∈ X. These new
notations will contribute to a better understanding of the proposed concepts and operations
for IVLDFS.

Definition 3.4 An IVLDFS in the universal discourse set X of the form D̈1 = {(xi , 〈[1, 1],
[0, 0]〉, 〈[1, 1], [0, 0]〉) : xi ∈ X} is termed to be absolute IVLDFS and D̈0 =
{(xi , 〈[0, 0], [1, 1]〉, 〈[0, 0], [1, 1]〉) : xi ∈ X} is termed to be null or empty IVLDFS.
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Definition 3.5 Let D̈1, D̈2 ∈ I V LDFS(X). Then,

(a) D̈1 is a subset of D̈2, symbolized by D̈1 ⊆ D̈2, if for each xi ∈ X
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ML
D̈1

(xi ) ≤ ML
D̈2

(xi ), MU
D̈1

(xi ) ≤ MU
D̈2

(xi ),

NL
D̈1

(xi ) ≥ NL
D̈2

(xi ), NU
D̈1

(xi ) ≥ NU
D̈2

(xi ),
(i)τ L

D̈1
≤ (i)τ L

D̈2
, (i)τUD̈1

≤ (i)τUD̈2
,

(i)κL
D̈1

≥ (i)κL
D̈2

, (i)κU
D̈1

≥ (i)κU
D̈2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(b) D̈1 and D̈2 are equal, symbolized by D̈1 = D̈2, if for each xi ∈ X⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ML
D̈1

(xi ) = ML
D̈2

(xi ), MU
D̈1

(xi ) = MU
D̈2

(xi ),

NL
D̈1

(xi ) = NL
D̈2

(xi ), NU
D̈1

(xi ) = NU
D̈2

(xi ),
(i)τ L

D̈1
= (i)τ L

D̈2
, (i)τUD̈1

= (i)τUD̈2
,

(i)κL
D̈1

= (i)κL
D̈2

, (i)κU
D̈1

= (i)κU
D̈2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

By Definition 3.5(a) and (b), we say that D̈1 = D̈2 if and only if D̈1 ⊆ D̈2 and D̈2 ⊆ D̈1.

3.2 Some operations on interval-valued linear Diophantine fuzzy sets

Definition 3.6 Let D̈k={(xi , 〈[ML
D̈k

(xi ),MU
D̈k

(xi )], [NL
D̈k

(xi ),NU
D̈k

(xi )]〉, 〈[(i)τ L
D̈k

,(i) τUD̈k
],

[(i)κL
D̈k

,(i) κU
D̈k

]〉) : xi ∈ X} for k = 1, 2, ..., s. Then, we derive the following operations:

(a) (Complement of IVLDFS) D̈c
k =

{(
xi ,
〈[
NL

D̈k
(xi ),NU

D̈k
(xi )
]
,
[
ML

D̈k
(xi ),MU

D̈k
(xi )
]〉

,
〈[(i)

κL
D̈k

,(i) κU
D̈k

]
,
[(i)

τ L
D̈k

, (i)τUD̈k

]〉)
: xi ∈ X

}
.

(b) (Union of IVLDFSs)
s⋃

k=1
D̈k =

{{
(xi ,

〈[
ML

∪̃D̈k
(xi ),MU

∪̃D̈k
(xi )
]
,
[
NL

∪̃D̈k
(xi ),NU

∪̃D̈k
(xi )
]〉

,
〈[(i)

τ L
∪̃D̈k

,(i) τU∪̃D̈k

]
,

[(i)
κL
∪̃D̈k

,(i) κU
∪̃D̈k

]〉)
: xi ∈ X

}
, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ML
∪̃D̈k

(xi ) = max
k∈{1,2,...,n}M

L
D̈k

(xi ), MU
∪̃D̈k

(xi ) = max
k∈{1,2,...,n}M

U
D̈k

(xi ),

NL
∪̃D̈k

(xi ) = min
k∈{1,2,...,n}N

L
D̈k

(xi ), NU
∪̃D̈k

(xi ) = min
k∈{1,2,...,n}N

U
D̈k

(xi ),

(i)τ L
∪̃D̈k

= max
k∈{1,2,...,n}

(i)τ L
D̈k

, (i)τU∪̃D̈k
= max

k∈{1,2,...,n}
(i)τUD̈k

,

(i)κL
∪̃D̈k

= min
k∈{1,2,...,n}

(i)κL
D̈k

, (i)κU
∪̃D̈k

= min
k∈{1,2,...,n}

(i)κU
D̈k

,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for each xi ∈ X.

(c) (Intersection of IVLDFSs)
s⋂

k=1
D̈k =

{{(
xi ,
〈[
ML

∩̃D̈k
(xi ),MU

∩̃D̈k
(xi )
]
,
[
NL

∩̃D̈k
(xi ),

NU
∩̃D̈k

(xi )
]〉

,
〈[(i)

τ L
∩̃D̈k

,(i) τU∩̃D̈k

]
,
[(i)

κL
∩̃D̈k

,(i) κU
∩̃D̈k

]〉)
: xi ∈ X

}
, where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ML
∩̃D̈k

(xi ) = min
k∈{1,2,...,n}M

L
D̈k

(xi ), MU
∩̃D̈k

(xi ) = min
k∈{1,2,...,n}M

U
D̈k

(xi ),

NL
∩̃D̈k

(xi ) = max
k∈{1,2,...,n}N

L
D̈k

(xi ), NU
∩̃D̈k

(xi ) = max
k∈{1,2,...,n}N

U
D̈k

(xi ),

(i)τ L
∩̃D̈k

= min
k∈{1,2,...,n}

(i)τ L
D̈k

, (i)τU∩̃D̈k
= min

k∈{1,2,...,n}
(i)τUD̈k

,

(i)κL
∩̃D̈k

= max
k∈{1,2,...,n}

(i)κL
D̈k

, (i)κU
∩̃D̈k

= max
k∈{1,2,...,n}

(i)κU
D̈k

,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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for each xi ∈ X.

Example 3.7 Let us consider the IVLDFSs in the universal discourse set X = {x1, x2} as
follows:

D̈k =

⎧
⎪⎨

⎪⎩

(
x1,
〈[

1
2+k ,

1
1+k

]
,
[

1
4+k ,

1
k

]〉
,
〈[

1
3+k ,

1
3+k

]
,
[

1
4+k ,

1
3+k

]〉)
,

(
x2,
〈[

1
3+k ,

1
2+k

]
,
[

1
3+k ,

1
1+k

]〉
,
〈[

1
3+k ,

1
2+k

]
,
[

1
4+k ,

1
3+k

]〉)

⎫
⎪⎬

⎪⎭

for k = 1, 2, ..., 100. Then, we obtain

i. The complement of IVLDFSs D̈k for each k ∈ {1, 2, ..., 100} is

D̈c
k =

⎧
⎪⎨

⎪⎩

(
x1,
〈[

1
4+k ,

1
k

]
,
[

1
2+k ,

1
1+k

]〉
,
〈[

1
4+k ,

1
3+k

]
,
[

1
3+k ,

1
3+k

]〉)
,

(
x2,
〈[

1
3+k ,

1
1+k

]
,
[

1
3+k ,

1
2+k

]〉
,
〈[

1
4+k ,

1
3+k

]
,
[

1
3+k ,

1
2+k

]〉)

⎫
⎪⎬

⎪⎭
.

ii. The union of IVLDFSs D̈k for all k ∈ {1, 2, ..., 100} is
100⋃

k=1

D̈k =
{

(x1, 〈[ 13 , 1
2 ], [ 1

104 ,
1

100 ]〉, 〈[ 14 , 1
4 ], [ 1

104 ,
1
103 ]〉),

(x2, 〈[ 14 , 1
3 ], [ 1

103 ,
1

101 ]〉, 〈[ 14 , 1
3 ], [ 1

104 ,
1

103 ]〉)

}

.

iii. The intersection of IVLDFSs D̈k for all k ∈ {1, 2, ..., 100} is
100⋂

k=1

D̈k =
{(

x1,
〈[ 1

102 ,
1

101

]
,
[ 1
5 , 1
]〉

,
〈[ 1

103 ,
1
103

]
,
[ 1
5 ,

1
4

]〉)
,

(
x2,
〈[ 1

103 ,
1

102

]
,
[ 1
4 ,

1
2

]〉
,
〈[ 1

103 ,
1

102

]
,
[ 1
5 ,

1
4

]〉)

}

.

Proposition 3.8 Let D̈k ∈ I V LDFS(X) (k = 1, 2, ..., s), then D̈c
k ,
⋃s

k=1 D̈k and
⋂s

k=1 D̈k

are also IVLDFSs in the universal discourse set X.

Proof Let D̈k ∈ IVLDFS(X) (k = 1, 2, ..., s). Let’s prove that
⋂s

k=1 L j is also IVLDFS.
Others can be similarly proved. To verify

⋃s
k=1 D̈k is an IVLDFS, it should be demon-

strated that the following conditions are valid: 0 ≤ (i)τU∩̃D̈k
+ (i)κU

∩̃D̈k
≤ 1 and

0 ≤ (i)τU∩̃D̈k
MU

∩̃D̈k
(xi ) + (i)κU

∩̃D̈k
NU

∩̃D̈k
(xi ) ≤ 1 for each xi ∈ X. Suppose that

(i)κU
∩̃D̈k

= (i)κU
D̈k�

= ξ for any xi ∈ X. By Definition 3.1, we write 0 ≤ (i)τUD̈k�
+

(i)κU
D̈k�

≤ 1 and so (i)τUD̈k�
≤ 1 − ξ . Since (i)τU∩̃D̈k

= min
k∈{1,2,...,s}

(i)τUD̈k
from Defini-

tion 3.6 (c), we have (i)τU∩̃D̈k
≤ (i)τUD̈k�

and so (i)τU∩̃D̈k
≤ 1 − ξ . We compute that

0 ≤ (1−ξ)MU
∩̃D̈k

(xi )+ξNU
∩̃D̈k

(xi ) ≤ 1 sinceMU
∩̃D̈k

(xi ),NU
∩̃D̈k

(xi ) ∈ [0, 1] for each xi ∈ X.

Since (i)κU
D̈k�

∈ [0, 1] (i.e. ξ ∈ [0, 1]) byDefinition 3.1, we obtain 0 ≤ (i)τU∩̃D̈k
+ (i)κU

∩̃D̈k
≤ 1

and 0 ≤ (i)τU∩̃D̈k
MU

∩̃D̈k
(xi ) + (i)κU

∩̃D̈k
NU

∩̃D̈k
(xi ) ≤ 1 for each xi ∈ X. Hence, the proof is

completed. 	

Proposition 3.9 Let D̈1, D̈2, D̈3 ∈ I V LDFS(X). Then, the following rules of commutative,
associative, distributive, and De Morgan are valid for ∗,� ∈ {∪,∩}.
(i) D̈1 ∗ D̈2 = D̈2 ∗ D̈1 (commutative).
(ii) D̈1 ∗ (D̈2 ∗ D̈3) = (D̈1 ∗ D̈2) ∗ D̈3 (associative).
(iii) D̈1 ∗ (D̈2 � D̈3) = (D̈1 ∗ D̈2) � (D̈1 ∗ D̈3) (distributive).
(iv) (D̈1 ∗ D̈2)

c = D̈c
1 � D̈c

2 (De Morgan laws).

Proof They can be demonstrated using the concepts of complement, union, and intersection
in Definition 3.6; hence, it is omitted. 	
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3.3 Operational laws of interval-valued linear Diophantine fuzzy numbers

Definition 3.10 Some operational laws like sum, product, scalar multiplication, scalar power
for two IVLDFNs

η1 =
(〈[

1ML
D̈, 1MU

D̈
]
,
[
1NL

D̈, 1NU
D̈
]〉

,
〈[

1τ L
D̈, 1τUD̈

]
,
[
1κL

D̈, 1κU
D̈
]〉)

and

η2 =
(〈[

2ML
D̈, 2MU

D̈
]
,
[
2NL

D̈, 2NU
D̈
]〉

,
〈[

2τ L
D̈, 2τUD̈

]
,
[
2κL

D̈, 2κU
D̈
]〉)

are described as below:

(a) The sum of two IVLDFNs η1 and η2 is

η1 ⊕ η2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[(
1ML

D̈ + 2ML
D̈ − 1ML

D̈
2ML

D̈
)

,
(
1MU

D̈ + 2MU
D̈ − 1MU

D̈
2MU

D̈
)]

,

[(
1NL

D̈
2NL

D̈
)

,
(
1NU

D̈
2NU

D̈
)]〉

,

〈[(
1τ L

D̈ + 2τ L
D̈ − 1τ L

D̈
2τ L

D̈
)

,
(
1τUD̈ + 2τUD̈ − 1τUD̈

2τUD̈
)]

,

[(
1κL

D̈
2κL

D̈
)

,
(
1κU

D̈
2κU

D̈
)]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(b) The product of two IVLDFNs η1 and η2 is

η1 ⊗ η2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[(
1ML

D̈
2ML

D̈
)

,
(
1MU

D̈
2MU

D̈
)]

,

[(
1NL

D̈ + 2NL
D̈ − 1NL

D̈
2NL

D̈
)

,
(
1NL

D̈ + 2NL
D̈ − 1NL

D̈
2NL

D̈
)]〉

,

〈[(
1τ L

D̈
2τ L

D̈
)

,
(
1τUD̈

2τUD̈
)]

,
[(

1κL
D̈ + 2κL

D̈ − 1κL
D̈

2κL
D̈
)

,

(
1κU

D̈ + 2κU
D̈ − 1κU

D̈
2κU

D̈
)]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(c) The scalar multiplication of IVLDFN η1 is

βη1 =

⎛

⎜⎜⎜
⎝

〈[
1 −

(
1 − 1ML

D̈
)β

, 1 −
(
1 − 1MU

D̈
)β
]

,

[(
1NL

D̈
)β

,
(
1NU

D̈
)β
]〉

,

〈[
1 −

(
1 − 1τ L

D̈
)β

, 1 −
(
1 − 1τUD̈

)β
]

,

[(
1κU

D̈
)β

,
(
1κU

D̈
)β
]〉

⎞

⎟⎟⎟
⎠

,

where β is a positive real number.
(d) The scalar power of IVLDFN η1 is

η
β
1 =

⎛

⎜⎜⎜
⎝

〈[(
1ML

D̈
)β

,
(
1MU

D̈
)β
]

,

[
1 −

(
1 − 1NL

D̈
)β

, 1 −
(
1 − 1NU

D̈
)β
]〉

,

〈[(
1τ L

D̈
)β

,
(
1τUD̈

)β
]

,

[
1 −

(
1 − 1κL

D̈
)β

, 1 −
(
1 − 1κU

D̈
)β
]〉

⎞

⎟⎟⎟
⎠

,

where β is a positive real number.

Example 3.11 Let η1 = (〈[0.4, 0.8], [0, 0.7]〉, 〈[0.1, 0.6], [0.2, 0.3]〉) and η2 = (〈[0.5, 1],
[0.1, 0.6]〉, 〈[0.3, 0.3], [0.2, 0.4]〉) be two IVLDFSs and β = 2. Then, we have

i. η1 ⊕ η2 = (〈[0.7, 1], [0, 0.42]〉, 〈[0.37, 0.72], [0.04, 0.12]〉).

123



409 Page 14 of 41 S. Petchimuthu et al.

ii. η1 ⊗ η2 = (〈(0.2, 0.8), (0.1, 0.88)〉, 〈(0.03, 0.18), (0.36, 0.58)〉).
iii. 4η1 = (〈[0.8704, 0.9984], [0, 2401]〉, 〈[0.3439, 0.9744], [0.0016, 0.0081]〉).
iv. η42 = (〈[0.0625, 0.1], [0.3439, 0.9744]〉, 〈[0.0081, 0.0081], [0.5904, 0.8704]〉).
Proposition 3.12 Let η1 and η2 be two IVLDFNs and β > 0, then η1 ⊕ η2, η1 ⊗ η2, βη1 and
η

β
1 are also IVLDFNs.

Proof Let η1 and η2 be two IVLDFNs. Then, byDefinition 3.1, we have 0 ≤ jτUD̈ + jκU
D̈ ≤ 1

and 0 ≤ jτUD̈
jMU

D̈ + jκU
D̈

jNU
D̈ ≤ 1 for j = 1, 2. Assume that η3 = η1 ⊗ η2, where

⎧
⎪⎪⎨

⎪⎪⎩

3ML
D̈ = 1ML

D̈
2ML

D̈, 3MU
D̈ = 1MU

D̈
2MU

D̈,3 NL
D̈ = 1NL

D̈ +2 NL
D̈ −1 NL

D̈
2NL

D̈, 3NU
D̈

= 1NU
D̈ +2 NU

D̈ −1 NU
D̈1

2NU
D̈,3 τ L

D̈ = 1τ L
D̈

2τ L
D̈, 3τUD̈ = 1τUD̈

2τUD̈ , 3κL
D̈

= 1κL
D̈ + 2κL

D̈ − 1κL
D̈

2κL
D̈, 3κU

D̈ = 1κU
D̈ + 2κU

D̈ − 1κU
D̈

2κU
D̈

⎫
⎪⎪⎬

⎪⎪⎭
.

It is obvious that γ + δ ≥ 0, γ δ ≥ 0 and γ + δ ≥ γ δ for γ, δ ∈ [0, 1], and so we have
3ML

D̈ , 3MU
D̈ , 3NL

D̈ , 3NU
D̈ , 3τ L

D̈ , 3τUD̈ , 3κL
D̈ , 3κL

D̈ ≥ 0. Also, if γ L ≤ γU and δL ≤ δU for

γ L , γU , δL , δU ∈ [0, 1] then γ LδL ≤ γU δU and γ L + δL − γ LδL ≤ γU + δU − γU δU .
Since 0 ≤ jτUD̈ + jκU

D̈ ≤ 1 ( j = 1, 2), we can write 0 ≤ jκU
D̈ ≤ 1 − jτUD̈ for j = 1, 2.

Then, we obtain

3τUD̈ + 3κU
D̈ = 1τUD̈

2τUD̈ + 1κU
D̈ + 2κU

D̈ − 1κU
D̈

2κU
D̈

≤ 1τUD̈
2τUD̈ + 1 − 1τUD̈ + 1 − 2τUD̈ −

(
1 − 1τUD̈

) (
1 − 2τUD̈

)

= 1τUD̈
2τUD̈ + 1 − 1τUD̈ + 1 − 2τUD̈ − 1 + 1τUD̈ + 2τUD̈ − 1τUD̈

1τUD̈
= 1.

On the other hand, we obtain 3τUD̈ + 3κU
D̈ ≥ 0 since 1κU

D̈+ 2κU
D̈ ≥ 1κU

D̈
2κU

D̈ for 1κU
D̈ , 2κU

D̈ ∈
[0, 1]. Thus, we obtain that 0 ≤ 3τUD̈

3MU
D̈ + 3κU

D̈
3NU

D̈ ≤ 1 since 0 ≤ 3τUD̈ + 3κU
D̈ ≤ 1

and 3MU
D̈, 3NU

D̈ ∈ [0, 1]. Hence, we have η1 ⊗ η2 is an IVLDFN. Likewise, it is proved that

η1 ⊕ η2, βη1 and η
β
1 are also IVLDFNs. 	


Proposition 3.13 Let η1, η2 and η3 be the IVLDFNs and β, β1, β2 > 0. Then, we have

(i) η1 ◦ η2 = η2 ◦ η1 for ◦ ∈ {⊕,⊗}.
(ii) (η1 ◦ η2) ◦ η3 = η1 ◦ (η2 ◦ η3) for ◦ ∈ {⊕,⊗}.
(iii) β(η1 ⊕ η2) = βη1 ⊕ βη2.
(iv) (η1 ⊗ η2)

β = η
β
1 ⊗ η

β
2 .

(v) (β1 + β2)η1 = β1η1 ⊕ β2η1.
(vi) η

β1+β2
1 = η

β1
1 ⊗ η

β2
1 .

Proof Let’s prove part (i) for ⊗ and part (iii), the others can be demonstrated similarly.
(i) Let �1 and �2 be two CLDFNs, then we have

η1 ⊕ η2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[(
1ML

D̈ + 2ML
D̈ − 1ML

D̈
2ML

D̈
)

,
(
1MU

D̈ + 2MU
D̈ − 1MU

D̈
2MU

D̈
)]

,

[(
1NL

D̈
2NL

D̈
)

,
(
1NU

D̈
2NU

D̈
)]〉

,

〈[(
1τ L

D̈ + 2τ L
D̈ − 1τ L

D̈
2τ L

D̈
)

,
(
1τUD̈ + 2τUD̈ − 1τUD̈

2τUD̈
)]

,

[(
1κL

D̈
2κL

D̈
)

,
(
1κU

D̈
2κU

D̈
)]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[(
2ML

D̈ + 1ML
D̈ − 2ML

D̈
1ML

D̈
)

,
(
2MU

D̈ + 1MU
D̈ − 2MU

D̈
1MU

D̈
)]

,

[(
2NL

D̈
1NL

D̈
)

,
(
2NU

D̈
1NU

D̈
)]〉

,

〈[(
2τ L

D̈ + 1τ L
D̈ − 2τ L

D̈
1τ L

D̈
)

,
(
2τUD̈ + 1τUD̈ − 2τUD̈

1τUD̈
)]

,

[(
2κL

D̈
1κL

D̈
)

,
(
2κU

D̈
1κU

D̈
)]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= η2 ⊕ η1.

(iii) Let η1 and η2 be two IVLDFNs and β > 0, then

β(η1 ⊕ η2)

= β

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[(
1ML

D̈ + 2ML
D̈ − 1ML

D̈
2ML

D̈
)

,
(
1MU

D̈ + 2MU
D̈ − 1MU

D̈
2MU

D̈
)]

,

[(
1NL

D̈
2NL

D̈
)

,
(
1NU

D̈
2NU

D̈
)]〉

,

〈[(
1τ LD̈ + 2τ LD̈ − 1τ LD̈

2τ LD̈
)

,
(
1τUD̈ + 2τUD̈ − 1τUD̈

2τUD̈
)]

,

[(
1κL

D̈
2κL

D̈
)

,
(
1κUD̈

2κUD̈
)]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[
1 −

(
1 −

(
1ML

D̈ + 2ML
D̈ − 1ML

D̈
2ML

D̈
))β

,

1 −
(
1 −

(
1MU

D̈ + 2MU
D̈ − 1MU

D̈
2MU

D̈
))β]

,

[(
1NL

D̈
2NL

D̈
)β

,
(
1NU

D̈
2NU

D̈
)β]〉

,

〈[
1 −

(
1 −

(
1τ LD̈ + 2τ LD̈ − 1τ LD̈

2τ LD̈
))β

,

1 −
(
1 −

(
1τUD̈ + 2τUD̈ − 1τUD̈

2τUD̈
))β]

,

[(
1κL

D̈
2κL

D̈
)β

,
(
1κUD̈

2κUD̈
)β]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(
1 −

(
1 − 1ML

D̈
)β + 1 −

(
1 − 2ML

D̈
)β

−
(
1 −

(
1 − 1ML

D̈
)β)(

1 −
(
1 − 2ML

D̈
)β))

,
(
1 −

(
1 − 1MU

D̈
)β

+1 −
(
1 − 2MU

D̈
)β −

(
1 −

(
1 − 1MU

D̈
)β)(

1 −
(
1 − 2MU

D̈
)β))

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢
⎣

((
1NL

D̈
)β (2NL

D̈
)β)

,
((

1NU
D̈
)β (2NU

D̈
)β)

⎤

⎥⎥
⎦

〉,

〈⎡⎢⎢⎢⎢⎢⎣(1 −
(
1 − 1τ LD̈

)β + 1 −
(
1 − 2τ LD̈

)β −
(
1 −

(
1 − 1τ LD̈

)β)

(
1 −

(
1 − 2τ LD̈

)β))
,

(
1 −

(
1 − 1τUD̈

)β + 1 −
(
1 − 2τUD̈

)β

−
(
1 −

(
1 − 1τUD̈

)β)(
1 −

(
1 − 2τUD̈

)β))

⎤

⎥⎥⎥⎥⎥
⎦

,〉
[ ((

1κL
D̈
)β (2κL

D̈
)β)

,

((
1κUD̈

)β (2κUD̈
)β) ]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= βη1 ⊕ βη2.
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To compare the two IVLDFNs, we define the concepts of score function and accuracy
function for an IVLDFN as follows.

Definition 3.14 Let η = (〈[ML
D̈,MU

D̈], [NL
D̈,NU

D̈]〉, 〈[τ L
D̈, τUD̈ ], [κL

D̈, κU
D̈ ]〉) be an IVLDFN.

(a) The n-score function for η is denoted and defined by

Sn(η) = 1

4

(((
ML

D̈
)n −

(
NL

D̈
)n)+

((
MU

D̈
)n −

(
NU

D̈
)n)+

((
τ L
D̈
)n −

(
κL
D̈
)n)

+
((

τUD̈
)n −

(
κU
D̈
)n))

, Sn(η) ∈ [−1, 1],

where n is a positive integer.
(ii) The n-accuracy function for η is denoted and defined by

An(η) = 1

4

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝

(
ML

D̈
)n +

(
NL

D̈
)n )

2

⎞

⎟⎟
⎠+

⎛

⎜
⎝

(
MU

D̈
)n +

(
NU

D̈
)n

2

⎞

⎟
⎠+

((
τ L
D̈
)n

+
(
κL
D̈
)n)+

((
τUD̈
)n +

(
κU
D̈
)n))

, An(η) ∈ [−1, 1],

where n is a positive integer.

Note 2. Some special cases of n-score function and n-accuracy function for an IVLDFN are
stated as below.

• If n = 1 then the n-score function and n-accuracy function are termed to be score function
and accuracy function for an IVLDFN, respectively. Also, it is symbolized as S(η) and
A(η) instead of Sn(η) and An(η), respectively.

• If n = 2 then the n-score function and n-accuracy function are termed to be quadratic
score function and quadratic accuracy function for an IVLDFN, respectively.

• If n = 3 then the n-score function and n-accuracy function are termed to be cubic score
function and cubic accuracy function for an IVLDFN, respectively.

• If n = 4 then the n-score function and n-accuracy function are termed to be quartic score
function and quartic accuracy function for an IVLDFN, respectively.

In this paper, especially, we assume that n = 1.
To rank two IVLDFNs η1 and η2, the following comparison strategy is proposed.

1. If Sn(η1) > Sn(η2) then η1 > η2.
2. If Sn(η1) < Sn(η2) then η1 < η2.
3. If Sn(η1) = Sn(η2) then

i. if An(η1) > An(η2) then η1 > η2,
ii. if An(η1) < An(η2) then η1 < η2,
iii. if An(η1) = An(η2) then η1 = η2.

Example 3.15 We consider IVLDFNs η1 and η2 in Example 3.11. Then, we have η1 ≺ η2
since S(η1) = 0.175 < 0.2 = S(η2) for n = 1. If n = 5 then we calculate 5-score functions
as S5(η1) = 0.0612 and S5(η1) = 0.2369.
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4 IVLDF weighted aggregation operators and their application for
supplier selection

In this section, we define interval-valued linear Diophantine fuzzy weighted average oper-
ator and interval-valued linear Diophantine fuzzy weighted geometric operator. Also, we
propose an approach to MCDM based on supplier selection under an interval-valued linear
Diophantine fuzzy environment.

4.1 Interval-valued linear Diophantine fuzzy weighted aggregation operators

For the following definitions, N is a collection of all IVLDFNs and (η1, η2, ..., ηr ) ∈ N r .

Definition 4.1 Let η j ( j = 1, 2, ..., r) be a collection of IVLDFNs. Also, let ω =
(ω1, ω2, ..., ωr )

T be the weighted vector of η j ( j = 1, 2, ..., r) with ω j ∈ [0, 1] and∑r
j=1 ω j = 1.

(a) An interval-valued linear Diophantine fuzzy weighted average (IVLDFWA) operator is
a mapping IVLDFWAω : N r → N such that

IVLDFWAω(η1, η2, ..., ηr ) =
r⊕

j=1

ω jη j = ω1η1 ⊕ ω2η2 ⊕ · · · ⊕ ωrηr . (4.1)

(b) An interval-valued linear Diophantine fuzzy weighted geometric (IVLDFWG) operator
is a mapping I V LDFWGω : N r → N such that

IVLDFWGω(η1, η2, ..., ηr ) =
r⊗

j=1

η
ω j
j = η

ω1
1 ⊗ η

ω2
2 ⊗ · · · ⊗ ηωr

r . (4.2)

Theorem 4.2 Let η j ( j = 1, 2, ..., r) be a collection of IVLDFNs. Also, let ω =
(ω1, ω2, ..., ωr )

T be the weighted vector of η j ( j = 1, 2, ..., r) with ω j ∈ [0, 1] and∑r
j=1 ω j = 1.

(1) The aggregation value of IVLDFNs using the IVLDFWA operator is also an IVLDFN,
and IVLDFWAω(η1, η2, ..., ηr ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[1 −
r∏

j=1

(
1 − jML

D

)ω j
, 1 −

r∏

j=1

(
1 − jMU

D

)ω j

]

,

[
r∏

j=1

(
jNL

D

)ω j
,

r∏

j=1

(
jNU

D

)ω j

] 〉,

〈[1 −
r∏

j=1

(
1 − jτ L

D

)ω j
,

1 −
r∏

j=1

(
1 − jτUD

)ω j

]

,

[
r∏

j=1

(
jκL

D

)ω j
,

r∏

j=1

(
jκU

D

)ω j

]〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.3)
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(2) The aggregation value of IVLDFNs using the IVLDFWG operator is also an IVLDFN,
and I V LDFWGω(η1, η2, ..., ηr ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[ r∏

j=1

(
jML

D

)ω j
,

r∏

j=1

(
jMU

D

)ω j

]

,

[

1 −
r∏

j=1

(
1 − jNL

D

)ω j
, 1 −

r∏

j=1

(
1 − jNU

D

)ω j

]〉,

〈[ r∏

j=1

(
jτ L

D

)ω j
,

r∏

j=1

(
jτUD

)ω j

]

,

[

1 −
r∏

j=1

(
1 − jκL

D

)ω j
, 1 −

r∏

j=1

(
1 − jκU

D

)ω j

]〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.4)

Proof (1) Let us use the mathematical induction technique for proof.
(i) For r = 1, by Eq. (4.3), we write

IVLDFWAω(η1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[1 −
1∏

j=1

(
1 − jML

D

)ω j
, 1 −

1∏

j=1

(
1 − jMU

D

)ω j

]

,

[
1∏

j=1

(
jNL

D

)ω j
,

1∏

j=1

(
jNU

D

)ω j

] 〉,

〈[1 −
1∏

j=1

(
1 − jτ L

D

)ω j
, 1 −

1∏

j=1

(
1 − jτUD

)ω j

]

,

[
1∏

j=1

(
jκL

D

)ω j
,

1∏

j=1

(
jκU

D

)ω j

] 〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈 [1 − (1 − 1ML
D

)ω1
, 1 − (1 − 1MU

D

)ω1
]
,

[(
1NL

D

)ω1
,
(
1NU

D

)ω1
] 〉,

〈 [1 − (1 − 1τ L
D

)ω1
, 1 − (1 − 1τUD

)ω1
]
,

[(
1κL

D

)ω1
,
(
1κU

D

)ω1
] 〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.5)

Considering Definition 3.10 (c), we have

ω1η1 =
⎛

⎜
⎝

〈 [
1 − (1 − 1ML

D

)ω1
, 1 − (1 − 1MU

D

)ω1
]
,
[(

1NL
D

)ω1
,
(
1NU

D

)ω1
] 〉

,

〈 [
1 − (1 − 1τ L

D

)ω1
, 1 − (1 − 1τUD

)ω1
]
,
[(

1κL
D

)ω1
,
(
1κU

D

)ω1
] 〉

⎞

⎟
⎠ .

(4.6)

Thus, by Eqs. (4.5) and (4.6), we have I V LDFW Aω(η1) = ω1η1 and so Eq. (4.3) is
valid for r = 1.
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(ii) For r = 2, by Eq. (4.3), we write

IVLDFWAω(η1, η2)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[1 −
2∏

j=1

(
1 − jML

D

)ω j
, 1 −

2∏

j=1

(
1 − jMU

D

)ω j

]

,

[
2∏

j=1

(
jNL

D

)ω j
,

2∏

j=1

(
jNU

D

)ω j

] 〉,

〈[1 −
2∏

j=1

(
1 − jτ L

D

)ω j
, 1 −

2∏

j=1

(
1 − jτUD

)ω j

]

,

[
2∏

j=1

(
jκL

D

)ω j
,

2∏

j=1

(
jκU

D

)ω j

] 〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈 [1 − (1 − 1ML
D

)ω1

(
1 − 2ML

D

)ω2
, 1 − (1 − 1MU

D

)ω1 (1 − 2MU
D

)ω2
]
,

[(
1NL

D

)ω1
(
2NL

D

)ω2
,
(
1NU

D

)ω1 (2NU
D

)ω2
] 〉,

〈 [1 − (1 − 1τ L
D

)ω1
(
1 − 2τ L

D

)ω2
, 1 − (1 − 1τUD

)ω1 (1 − 2τUD

)ω2
]
,

[(
1κL

D

)ω1
(
2κL

D

)ω2
,
(
1κU

D

)ω1 (2κU
D

)ω2
] 〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(4.7)

From Definition 3.10 (c), we can write

ω1η1 =
⎛

⎜
⎝

〈[
1 −

(
1 − 1ML

D̈
)ω1

, 1 −
(
1 − 1MU

D̈
)ω1
]
,
[(

1NL
D̈
)ω1

,
(
1NU

D̈
)ω1
]〉

,

〈[
1 −

(
1 − 1τ LD̈

)ω1
, 1 −

(
1 − 1τUD̈

)ω1
]
,
[(

1κUD̈
)ω1

,
(
1κUD̈

)ω1
]〉

⎞

⎟
⎠

(4.8)

and

ω2η2 =
⎛

⎜
⎝

〈[
1 −

(
1 − 2ML

D̈
)ω2

, 1 −
(
1 − 2MU

D̈
)ω2
]
,
[(

2NL
D̈
)ω2

,
(
2NU

D̈
)ω2
]〉

,

〈[
1 −

(
1 − 2τ LD̈

)ω2
, 1 −

(
1 − 2τUD̈

)ω2
]
,
[(

2κUD̈
)ω2

,
(
2κUD̈

)ω2
]〉

⎞

⎟
⎠ .

(4.9)

By Definition 3.10 (a), the sum of ω1η1 and ω2η2 is calculated as follows:
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ω1η1 ⊕ ω2η2 =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈 [

1 −
(
1 − 1ML

D̈

)ω1

+ 1 −
(
1 − 2ML

D̈

)ω2

−
((

1 −
(
1 − 1ML

D̈

)ω2)(
1 −

(
1 − 2ML

D̈

)ω2))
,

1 −
(
1 − 1MU

D̈

)ω1

+ 1 −
(
1 − 2MU

D̈

)ω2

−
((

1 −
(
1 − 1MU

D̈

)ω2

)

(
1 −

(
1 − 2MU

D̈

)ω2))

]
,

[(1

NL
D̈

)ω1(2

NL
D̈

)ω2

,

(1

NU
D̈

)ω1(2

NU
D̈

)ω2]

,〉
〈 [

1 − (1 − 1ML
D̈)ω1 + 1 − (1 − 2ML

D̈)ω2

−((1 − (1 − 1ML
D̈)ω2)(1 − (1 − 2ML

D̈)ω2)
)
,

1 − (1 − 1MU
D̈)ω1 + 1 − (1 − 2MU

D̈)ω2

−((1 − (1 − 1MU
D̈)ω2)(1 − (1 − 2MU

D̈)ω2)
)

]
,

[
(1NL

D̈)ω1(2NL
D̈)ω2 , (1NU

D̈)ω1(2NU
D̈)ω2

] 〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.10)

As a result of the calculations, it is seen that IVLDFWAω(η1, η2) = ω1η1 ⊕ ω2η2. So,
Eq. (4.3) is valid for r = 2.
(iii) If Eq. (4.3) holds for r = k, then we should demonstrate that Eq. (4.3) holds for
r = k + 1. That is, we must prove that IVLDFWAω(η1, η2, ..., ηk) ⊕ ωk+1ηk+1 =
IVLDFWAω(η1, η2, ..., ηk+1).
Since Eq. (4.3) holds for r = k and considering Definition 3.10 (a) and (c), we obtain
IVLDFWAω(η1, η2, ..., ηk) ⊕ ωk+1ηk+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[1 −
k∏

j=1

(
1 − jML

D

)ω j
, 1 −

k∏

j=1

(
1 − jMU

D

)ω j

]

,

[
k∏

j=1

(
jNL

D

)ω j
,

k∏

j=1

(
jNU

D

)ω j

] 〉,

〈[1 −
k∏

j=1

(
1 − jτ L

D

)ω j
, 1 −

k∏

j=1

(
1 − jτUD

)ω j

]

,

[
k∏

j=1

(
jκL

D

)ω j
,

k∏

j=1

(
jκU

D

)ω j

] 〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[
1 −

(
1 − k+1ML

D̈
)ωk+1

, 1 −
(
1 − k+1MU

D̈
)ωk+1

]
,

[(
k+1NL

D̈
)ωk+1

,
(
k+1NU

D̈
)ωk+1

]〉
,

〈[
1 − (1 − k+1τ L

D̈)ωk+1 , 1 − (1 − k+1τUD̈ )ωk+1
]
,

[
(k+1κU

D̈)ωk+1 , (k+1κU
D̈)ωk+1

]〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.11)

123



Correlation coefficient measures and aggregation operators... Page 21 of 41 409

Then, we calculate as
⎛

⎝1 −
k∏

j=1

(
1 − jML

D

)ω j

⎞

⎠+
(
1 −

(
1 − k+1ML

D̈
)ωk+1

)

−
⎛

⎝1 −
k∏

j=1

(
1 − jML

D

)ω j

⎞

⎠
(
1 −

(
1 − k+1ML

D̈
)ωk+1

)
= 1 −

k+1∏

j=1

(
1 − jML

D

)ω j
,

and
(

k∏

j=1

((
jκU

D

)ω j
) (

k+1κU
D̈
)ωk+1

)

=
k+1∏

j=1

(
jκU

D

)ω j .

Others can be calculated similarly. Thus, we have
IVLDFWAω(η1, η2, ..., ηk) ⊕ ωk+1ηk+1 =

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

〈[1 −
k+1∏

j=1

(
1 − jML

D

)ω j
, 1 −

k+1∏

j=1

(
1 − jMU

D

)ω j

]

,

[
k+1∏

j=1

(
jNL

D

)ω j
,
k+1∏

j=1

(
jNU

D

)ω j

] 〉,

〈[1 −
k+1∏

j=1

(
1 − jτ L

D

)ω j
, 1 −

k+1∏

j=1

(
1 − jτUD

)ω j

]

,

[
k+1∏

j=1

(
jκL

D

)ω j
,
k+1∏

j=1

(
jκU

D

)ω j

] 〉
⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= IVLDFWAω(η1, η2, ..., ηk+1) (by Eq. (4.3)). (4.12)

So, if Eq. (4.3) is valid for r = k then Eq. (4.3) is valid for r = k + 1. Thus, the proof is
completed.

(2) It can be shown similarly to the proof of (1) using equations in Definition 3.10 (b) and
(d). 	


4.2 An approach to MCDM based on supplier selection under IVLDF information

Let X = {x1, x2, ..., xp} be a set of alternatives, E = {ε1, ε2, ..., εr } be a set of criteria and
its weight vector ω = {ω1, ω2, ..., ωr } where ω j ∈ [0, 1] ( j = 1, 2, ..., r) and

r∑

j=1
ω j = 1.

Let ηij be the IVLDFN of the alternative xi with the respect to the criterion ε j .
Algorithm 1. (Based on IVLDFWA and IVLDFWG)

Step 1. Find the aggregation value ηi of LDFNs ηi1, η
i
2, ..., η

i
r using IVLDFWA operator

or IVLDFWG operator, i.e., respectively

IVLDFWAω

(
ηi1, η

i
2, ..., η

i
r

)
=

r⊕

j=1

ω jη
i
j = ηi (4.13)
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Fig. 3 Hierarchical structure of decision problem based on material supplier selection

or

IVLDFWGω

(
ηi1, η

i
2, ..., η

i
r

)
=

r⊗

j=1

(ηij )
ω j = ηi . (4.14)

Step 2. Calculate the values of score function S(ηi ) ∀ i = 1, 2, . . . , p. If S(ηi1) = S(ηi2)

for any i1, i2 ∈ {1, 2, . . . , p}, then calculate the values of accuracy function A(ηi1)

and A(ηi2) to rank ηi1 and ηi2 .
Step 3. Specify the optimal alternative according to the maximum value of score function

S(ηi ) (i = 1, 2, . . . , p). (If there are two maximum values for the score function,
then specify the optimal alternative according to themaximumvalue of the accuracy
function).

Example 4.3 A high-technology manufacturing company desires to select a suitable mate-
rial supplier to purchase the main components of new products. After preliminary screening,
four candidates (X = {x1, x2, x3, x4}) remain for further evaluation. A committee of decision
makers has been formed to select the most suitable supplier. Three benefit criteria (parame-
ters) are considered as “Technological Capability”, “Delivery Time”, and “Quality”. The
weight vector of parameters is taken as ω = {0.2, 0.5, 0.3}. Assume that “low cost” and
“not low cost (or high cost)” are the reference parameters for the material suppliers. The
hierarchical structure of this decision problem based on material supplier selection is shown
in Fig. 3.
The tabular forms of interval-valued linear Diophantine fuzzy sets (IVLDFSs) corresponding
to the given three criteria for the material suppliers are displayed in Tables 4, 5 and 6,
respectively.

We use the proposed aggregation operators IVLDFWA and IVLDFWG defined in Sect. 4
to pick out the suitable material supplier in keeping with Algorithm 1 as follows.

Step 1. The aggregation value ηi of IVLDFNs ηi1, η
i
2, ..., η

i
r (i = 1, 2, . . . 4) are given in

Table 7.
Step 2. The score values S(ηi ) (i = 1, 2, . . . , p) and ranking order in keeping with the

proposed aggregation operators IVLDFWA and IVLDFWG are displayed in Table
8.
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Table 4 The table of IVLDFS for technological capability

D̈ (〈MD̈(xi ),ND̈(xi )〉, 〈τD̈, κD̈〉)
x1 (〈[0.62, 0.73], [0.26, 0.68]〉, 〈[0.32, 0.41], [0.25, 0.37]〉)
x2 (〈[0.58, 0.64], [0.11, 0.21]〉, 〈[0.1, 0.37], [0.11, 0.28]〉)
x3 (〈[0.59, 0.89], [0.23, 0.87]〉, 〈[0.25, 0.41], [0.15, 0.33]〉)
x4 (〈[0.86, 0.91], [0.32, 0.73]〉, 〈[0.35, 0.46], [0.02, 0.18]〉)

Table 5 The table of IVLDFS for delivery time

D̈ (〈MD̈(xi ),ND̈(xi )〉, 〈τD̈, κD̈〉)
x1 (〈[0.67, 0.83], [0.28, 0.43]〉, 〈[0.48, 0.51], [0.13, 0.15]〉)
x2 (〈[0.69, 0.78], [0.03, 0.13]〉, 〈[0.4, 0.61], [0.12, 0.35]〉)
x3 (〈[0.87, 0.97], [0.26, 0.63]〉, 〈[0.57, 0.63], [0.03, 0.11]〉)
x4 (〈[0.25, 0.96], [0.24, 0.47]〉, 〈[0.32, 0.61], [0.12, 0.14]〉)

Table 6 The table of IVLDFS for quality

D̈ (〈MD̈(xi ),ND̈(xi )〉, 〈τD̈, κD̈〉)
x1 (〈[0.29, 0.78], [0.36, 0.57]〉, 〈[0.27, 0.45], [0.18, 0.21]〉)
x2 (〈[0.13, 0.73], [0.15, 0.18]〉, 〈[0.11, 0.51], [0.17, 0.19]〉)
x3 (〈[0.75, 0.91], [0.17, 0.71]〉, 〈[0.45, 0.49], [0.14, 0.26]〉)
x4 (〈[0.54, 0.92], [0.32, 0.68]〉, 〈[0.24, 0.51], [0.1, 0.15]〉)

Step 3. We achieve the most suitable material supplier as x3 in keeping with the proposed
aggregation operators IVLDFWA and IVLDFWG from Table 8. Therefore, the
material supplier with the high-end configurations and having a low cost is x3. The
comparison outcomes of each of the proposed aggregation operators IVLDFWA
and IVLDFWG are visually displayed in Figure 4.

4.3 Comparative study for IVLDFWA and IVLDFWG

In this part, we examine our proposed aggregation operators Interval-Valued Linear Diophan-
tine Fuzzy Weighted Average (IVLDFWA) and Interval-Valued Linear Diophantine Fuzzy
Weighted Geometric (IVLDFWG) with some existing operators GIVIFIWA (Garg 2016a),
O-PFWPA, O-PFWPG (Yager 2014), PFOWA, PFOWG (Xu et al. 2017), IVPFWHM,
IVPFWDHM (Li et al. 2018), IVPFWA, IVPFWG (Garg 2016b), q-ROFHWAGA (Riaz et al.
2020a), q-ROFWA, q-ROFWG (Liu and Wang 2018), Algebraic, Einstein, Hamacher, Frank
(Gao et al. 2019), SF, ESF (Riaz and Hashmi 2019) based on the existing models IVIFS,
PyFS, IVPyFS, q-ROFS, IVq-ROFS, and LDFS. The comparison effects are provided in
Table 9.

Advantages of proposed IVLDFWA and IVLDFWG aggregation operators
Any IFN (〈MI ,NI〉) may be considered as IVLDFN (〈[MI ,MI], [NI ,NI ]〉, 〈[0, 0],
[0, 0]〉). (For instance, (〈0.7, 0.2〉) corresponds to (〈[0.7, 0.7], [0.2, 0.2]〉, 〈[0, 0], [0, 0]〉) ).
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Table 8 The values of score function and ranking order

Aggregation operator Score value Ranking order

S(η1) S(η2) S(η3) S(η4)

IVLDFWA 0.26624 0.3676 0.4048 0.31409 x3 � x2 � x4 � x1
IVLDFWG 0.23204 0.29948 0.36238 0.26431 x3 � x2 � x4 � x1

Fig. 4 Comparison outcomes of aggregation operators IVLDFWA and IVLDFWG

Using the matching of the existing notions IVIFN, PyFN, IVPyFN, q-ROFN, IVq-ROFN,
and LDFN with the proposed IVLDFN, one can utilize our proposed aggregation opera-
tors IVLDFWA and IVLDFWG to solve the MCDM problems under the environment of
IVIFS, PyFS, IVPyFS, q-ROFS, IVq-ROFS, and LDFS. However, the existing operators
GIVIFIWA (Garg 2016a), O-PFWPA, O-PFWPG (Yager 2014), PFOWA, PFOWG (Xu et al.
2017), IVPFWHM, IVPFWDHM (Li et al. 2018), IVPFWA, IVPFWG (Garg 2016b), q-
ROFHWAGA (Riaz et al. 2020a), q-ROFWA, q-ROFWG (Liu and Wang 2018), Algebraic,
Einstein, Hamacher, Frank (Gao et al. 2019), SF, ESF (Riaz and Hashmi 2019) based on the
existing notions IVIFS, PyFS, IVPyFS, q-ROFS, IVq-ROFS, and LDFS can not be utilized
to solve the MCDM problems where data is collected under IVLDF information. It suggests
that our proposed aggregation operators IVLDFWA and IVLDFWG are advanced than the
existing aggregation operators mentioned in Garg (2016a, b), Xu et al. (2017), Yager (2014),
Li et al. (2018), Riaz and Hashmi (2019), Riaz et al. (2020a), Liu and Wang (2018), Gao
et al. (2019).

5 Correlation coefficients for IVLDFSs and their application inmedical
diagnosis

In this section, we describe some correlation coefficients for the IVLDFSs and they applied
in medical diagnosis.
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5.1 Correlation coefficients for IVLDFSs

Let

D̈1=
{(

xi ,
〈[
ML

D̈1
(xi ),MU

D̈1
(xi )
]
,
[
NL

D̈1
(xi ),NU

D̈1
(xi )
]〉

,
〈[

(i)τ L
D̈1

,(i) τUD̈1

]
,
[
(i)κL

D̈1
,(i) κU

D̈1

]〉)
: xi ∈ X

}

and

D̈2=
{(

xi ,
〈[
ML

D̈2
(xi ),MU

D̈2
(xi )
]
,
[
NL

D̈2
(xi ),NU

D̈2
(xi )
]〉

,
〈[

(i)τ L
D̈2

,(i) τUD̈2

]
,
[
(i)κL

D̈2
,(i) κU

D̈2

]〉)
: xi ∈ X

}

be two IVLDFSs over the universal discourse set X = {x1, x2, ..., xp}. Then, the informa-
tional energies of two IVLDFSs D̈1 and D̈2 are described as

T
(D̈1
) =

p∑

i=1

((
ML

D̈1
(xi )
)2 +

(
MU

D̈1
(xi )
)2

+
(
NL

D̈1
(xi )
)2 +

(
NU

D̈1
(xi )
)2 +

(
(i)τ L

D̈1

)2 +
(

(i)τUD̈1

)2

+
(

(i)κL
D̈1

)2 +
(

(i)κU
D̈1

)2)
, (5.1)

T
(D̈2
) =

p∑

i=1

((
ML

D̈2
(xi )
)2 +

(
MU

D̈2
(xi )
)2 +

(
NL

D̈2
(xi )
)2 +

(
NU

D̈2
(xi )
)2 +

(
(i)τ L

D̈2

)2

+
(

(i)τUD̈2

)2 +
(

(i)κL
D̈2

)2 +
(

(i)κU
D̈2

)2)
. (5.2)

The correlation of the IVLDFSs D̈1 and D̈2 is defined as

C
(D̈1, D̈2

)

=
p∑

i=1

⎛

⎜
⎝

ML
D̈1

(xi )M
L
D̈2

(xi ) + MU
D̈1

(xi )M
U
D̈2

(xi ) + NL
D̈1

(xi )N
L
D̈2

(xi ) + NU
D̈1

(xi )N
U
D̈2

(xi )

+(i)τ LD̈1
(i)τ LD̈2

+ (i)τUD̈1
(i)τUD̈2

+ (i)κLD̈1
(i)κLD̈2

+(i) κUD̈1
(i)κUD̈2

⎞

⎟
⎠ . (5.3)

It can be easily verified from Eq. (5.1) and Eq. (5.3) that the correlation of IVLDFSs satisfies
the following properties:

• C
(D̈1, D̈2

) = C
(D̈2, D̈1

)
.

• C
(D̈1, D̈1

) = T (D̈1).

Now, based on these concepts, we propose the correlation coefficients between IVLDFSs

Definition 5.1 Let D̈1 and D̈2 be two IVLDFSs over the universal discourse set X =
{x1, x2, ..., xp}.

(a) The type-1 correlation coefficient (type-1 CoCo) between D̈1 and D̈2 is denoted by
C1(D̈1, D̈2) and defined as

123



409 Page 28 of 41 S. Petchimuthu et al.

C1 (D̈1, D̈2
) = C(D̈1, D̈2)

(T (D̈1) × T
(D̈2)

) 1
2

=

p∑

i=1

(
ML

D̈1
(xi )ML

D̈2
(xi ) + MU

D̈1
(xi )MU

D̈2
(xi ) + NL

D̈1
(xi )NL

D̈2
(xi ) + NU

D̈1
(xi )NU

D̈2
(xi )

+(i)τ L
D̈1

(i)τ L
D̈2

+ (i)τUD̈1

(i)τUD̈2
+ (i)κL

D̈1

(i)κL
D̈2

+(i) κU
D̈1

(i)κU
D̈2

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

p∑

i=1

((
ML

D̈1
(xi )
)2 +

(
MU

D̈1
(xi )
)2 +

(
NL

D̈1
(xi )
)2 +

(
NU

D̈1
(xi )
)2

+
(

(i)τ L
D̈1

)2 +
(

(i)τUD̈1

)2 +
(

(i)κL
D̈1

)2 + ((i)κU
D̈1

)2
)

×
p∑

i=1

((
ML

D̈2
(xi )
)2 +

(
MU

D̈2
(xi )
)2 +

(
NL

D̈2
(xi )
)2 +

(
NU

D̈2
(xi )
)2

+
(

(i)τ L
D̈2

)2 +
(

(i)τUD̈2

)2 +
(

(i)κL
D̈2

)2 +
(

(i)κU
D̈2

)2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
2

.

(5.4)

(b) The type-2 correlation coefficient (type-2 CoCo) between D̈1 and D̈2 is denoted by
C2(D̈1, D̈2) and defined as

C2 (D̈1, D̈2
) = C(D̈1, D̈2)

max
{
T (D̈1), T (D̈2)

}

=

p∑

i=1

(
ML

D̈1
(xi )ML

D̈2
(xi ) + MU

D̈1
(xi )MU

D̈2
(xi ) + NL

D̈1
(xi )NL

D̈2
(xi ) + NU

D̈1
(xi )NU

D̈2
(xi )

+(i)τ L
D̈1

(i)τ L
D̈2

+ (i)τUD̈1

(i)τUD̈2
+ (i)κL

D̈1

(i)κL
D̈2

+(i) κU
D̈1

(i)κU
D̈2

)

max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p∑

i=1

((
ML

D̈1
(xi )

)2 +
(
MU

D̈1
(xi )

)2 +
(
NL

D̈1
(xi )

)2 +
(
NU

D̈1
(xi )

)2 +
(

(i)τ L
D̈1

)2 +
(

(i)τUD̈1

)2

+
(

(i)κL
D̈1

)2 +
(

(i)κU
D̈1

)2)
,

p∑

i=1

(
(ML

D̈2
(xi ))2 + (MU

D̈2
(xi ))2 + (NL

D̈2
(xi ))2 + (NU

D̈2
(xi ))2 + ((i)τ L

D̈2
)2 + ((i)τUD̈2

)2 + ((i)κL
D̈2

)2 + ((i)κU
D̈2

)2
)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(5.5)

Theorem 5.2 The correlation coefficients (CoCos) between two IVLDFSs D̈1 and D̈2, as
defined in Eq. (5.4) and Eq. (5.5), satisfies the following properties. For t = 1, 2,

(1) 0 ≤ Ct (D̈1, D̈2) ≤ 1.
(2) Ct (D̈1, D̈2) = Ct (D̈2, D̈1).
(3) Ct (D̈1, D̈2) = 1 if D̈1 = D̈2.

Proof Let us verify the above properties for t = 1. It can be verified in a similar way for
t = 2.

(1) Since MD̈1
(xi ),MD̈2

(xi ), ND̈1
(xi ), ND̈2

(xi ),(i)τD̈1
, (i)τD̈2

,(i)κD̈1
,(i)κD̈2

∈ I[0,1] for
all xi ∈ X, we have C(D̈1, D̈2) ≥ 0, T (D̈1) ≥ 0 and T (D̈2) ≥ 0. So, we obtain
C1(D̈1, D̈2) ≥ 0. Now, we shall prove C1(D̈1, D̈2) ≤ 1.
By Eq. (5.4), we write

C1 (D̈1, D̈2
) = C(D̈1, D̈2)

(
T (D̈1) × T (D̈2)

) 1
2

=

p∑

i=1

(
ML

D̈1
(xi )ML

D̈2
(xi ) + MU

D̈1
(xi )MU

D̈2
(xi ) + NL

D̈1
(xi )NL

D̈2
(xi ) + NU

D̈1
(xi )NU

D̈2
(xi )

+(i)τ L
D̈1

(i)τ L
D̈2

+ (i)τUD̈1

(i)τUD̈2
+ (i)κL

D̈1

(i)κL
D̈2

+(i) κU
D̈1

(i)κU
D̈2

)

⎛

⎜⎜
⎝

p∑

i=1

((
ML

D̈1
(xi )

)2 +
(
MU

D̈1
(xi )

)2 +
(
NL

D̈1
(xi )

)2 +
(
NU

D̈1
(xi )

)2 +
(

(i)τ L
D̈1

)2 +
(

(i)τUD̈1

)2 +
(

(i)κL
D̈1

)2 +
(

(i)κU
D̈1

)2)

×
p∑

i=1

((
ML

D̈2
(xi )

)2 +
(
MU

D̈2
(xi )

)2 +
(
NL

D̈2
(xi )

)2 +
(
NU

D̈2
(xi )

)2 +
(

(i)τ L
D̈2

)2 +
(

(i)τUD̈2

)2 +
(

(i)κL
D̈2

)2 +
(

(i)κU
D̈2

)2)

⎞

⎟⎟
⎠

1
2

.

(5.6)

UsingCauchy–Schwarz inequality (i.e., (
∑p

i=1 uivi )
2 ≤ (

∑p
i=1 u

2
i )(
∑p

i=1 v2i )), we have
C1(D̈1, D̈2) ≤
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⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

(
p∑

i=1

(
ML

D̈1
(xi )

)2)
1
2
(

p∑

i=1

(
ML

D̈2
(xi )

)2)
1
2

+
(

p∑

i=1

(
MU

D̈1
(xi )

)2)
1
2
(

p∑

i=1

(
MU

D̈2
(xi )

)2)
1
2

+
(

p∑

i=1

(
NL

D̈1
(xi )

)2)
1
2
(

p∑

i=1

(
NL

D̈2
(xi )

)2)
1
2

+
(

p∑

i=1

(
NU

D̈1
(xi )

)2)
1
2
(

p∑

i=1

(
NU

D̈2
(xi )

)2)
1
2

+
(

p∑

i=1

(
(i)τ L

D̈1

)2
) 1

2
(

p∑

i=1

(
(i)τ L

D̈2

)2)
1
2

+
(

p∑

i=1

(
(i)τUD̈1

)2)
1
2
(

p∑

i=1

(
(i)τUD̈2

)2)
1
2

+
(

p∑

i=1

(
(i)κL

D̈1

)2
) 1

2
(

p∑

i=1

(
(i)κL

D̈2

)2
) 1

2

+
(

p∑

i=1

(
(i)κU

D̈1

)2)
1
2
(

p∑

i=1

(
(i)κU

D̈2

)2)
1
2

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜
⎝

p∑

i=1

(
(ML

D̈1
(xi ))2 + (MU

D̈1
(xi ))2 + (NL

D̈1
(xi ))2 + (NU

D̈1
(xi ))2 + ((i)τ L

D̈1
)2 + ((i)τUD̈1

)2 + ((i)κL
D̈1

)2 + ((i)κU
D̈1

)2
)

×
p∑

i=1

((
ML

D̈2
(xi )

)2
+
(
MU

D̈2
(xi )

)2
+
(
NL

D̈2
(xi )

)2
+
(
NU

D̈2
(xi )

)2
+
(

(i)τ L
D̈2

)2

+
(

(i)τUD̈2

)2
+
(

(i)κL
D̈2

)2
+
(

(i)κU
D̈2

)2
)

⎞

⎟⎟
⎟
⎠

1
2

.

(5.7)

If we take the following notations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑

i=1

(
ML

D̈1
(xi )
)2 = a1,

p∑

i=1

(
ML

D̈2
(xi )
)2 = a2,

p∑

i=1

(
MU

D̈1
(xi )
)2 = b1,

p∑

i=1

(
MU

D̈2
(xi )
)2 = b2,

p∑

i=1

(
NL

D̈1
(xi )
)2 = c1,

p∑

i=1

(
NL

D̈2
(xi )
)2 = c2,

p∑

i=1

(
NU

D̈1
(xi )
)2 = d1,

p∑

i=1

(
NU

D̈2
(xi )
)2 = d2,

p∑

i=1

(
(i)τ L

D̈1

)2 = e1,
p∑

i=1

(
(i)τ L

D̈2

)2 = e2,
p∑

i=1

(
(i)τUD̈1

)2 = f1,
p∑

i=1

(
(i)τUD̈2

)2 = f2,

p∑

i=1

(
(i)κL

D̈1

)2 = g1,
p∑

i=1

(
(i)κL

D̈2

)2 = g2,
p∑

i=1

(
(i)κU

D̈1

)2 = h1,
p∑

i=1

(
(i)κU

D̈2

)2 = h2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

then Eq. (5.7) reduces to

C1 (D̈1, D̈2
)

≤
(√

a1a2 + √
b1b2 + √

c1c2 + √
d1d2 + √

e1e2 + √
f1 f2 + √

g1g2 + √
h1h2

)

√
(a1 + b1 + c1 + d1 + e1 + f1 + g1 + h1) × (a1 + b1 + c1 + d1 + e1 + f1 + g1 + h1)

.

(5.8)

Then, we calculate
(
C1(D̈1, D̈2)

)2

≤
((√

a1a2 + √
b1b2 + √

c1c2 + √
d1d2 + √

e1e2 + √
f1 f2 + √

g1g2 + √
h1h2

))2

(a1 + b1 + c1 + d1 + e1 + f1 + g1 + h1) × (a1 + b1 + c1 + d1 + e1 + f1 + g1 + h1)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1a2 + b1b2 + c1c2 + d1d2 + e1e2 + f1 f2 + g1g2 + h1h2
+2

√
a1a2

√
b1b2 + 2

√
a1a2

√
c1c2 + 2

√
a1a2

√
d1d2 + 2

√
a1a2

√
e1e2

+2
√
a1a2

√
f1 f2 + 2

√
a1a2

√
g1g2 + 2

√
a1a2

√
h1h2 + 2

√
b1b2

√
c1c2

+2
√
b1b2

√
d1d2 + 2

√
b1b2

√
e1e2 + 2

√
b1b2

√
f1 f2 + 2

√
b1b2

√
g1g2

+2
√
b1b2

√
h1h2 + 2

√
c1c2

√
d1d2 + 2

√
c1c2

√
e1e2 + 2

√
c1c2

√
f1 f2

+2
√
c1c2

√
g1g2 + 2

√
c1c2

√
h1h2 + 2

√
d1d2

√
e1e2 + 2

√
d1d2

√
f1 f2

+2
√
d1d2

√
g1g2 + 2

√
d1d2

√
h1h2 + 2

√
e1e2

√
f1 f2 + 2

√
e1e2

√
g1g2

+2
√
e1e2

√
h1h2 + 2

√
f1 f2

√
g1g2 + 2

√
f1 f2

√
h1h2 + 2

√
f1 f2

√
h1h2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1a2 + b1b2 + c1c2 + d1d2 + e1e2 + f1 f2 + g1g2 + h1h2 + a1b2 + a1c2 + a1d2
+a1e2 + a1 f2 + a1g2 + a1h2 + b1a2 + b1c2 + b1d2 + b1e2 + b1 f2
+b1g2 + b1h2 + c1a2 + c1b2 + c1d2 + c1e2
+c1 f2 + c1g2 + c1h2 + d1a2 + d1b2 + d1c2 + d1e2
+d1 f2 + d1g2 + d1h2 + e1a2 + e1b2 + e1c2
+e1d2 + e1 f2 + e1g2 + e1h2 + f1a2 + f1b2 + f1c2 + f1d2
+ f1e2 + f1g2 + f1h2 + g1a2 + g1b2
+g1c2 + g1d2 + g1e2 + g1 f2 + g1h2 + h1a2 + h1b2 + h1c2
+h1d2 + h1e2 + h1 f2 + h1g2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(5.9)
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For the positive numbers γ1, γ2, δ1, δ2, we have (
√

γ1δ2−√
δ1γ2)

2 ≥ 0. Then, we obtain
γ1δ2 + δ1γ2 − 2

√
γ1δ2

√
δ1γ2 ≥ 0 and so

γ1δ2 + δ1γ2 ≥ 2
√

γ1δ2
√

δ1γ2. (5.10)

Considering Eq. (5.10), we have
(
C1(D̈1, D̈2)

)2 ≤ 1 and thus C1(D̈1, D̈2) ≤ 1. Thus, we
prove that 0 ≤ C1(D̈1, D̈2) ≤ 1.

(2) It is obvious that C1(D̈1, D̈2) = C1(D̈2, D̈1) due to C(D̈1, D̈2) = C(D̈2, D̈1) and
T (D̈1) × T (D̈2) = T (D̈2) × T (D̈1).

(3) If D̈1 = D̈2 then C(D̈1, D̈1) = T (D̈1) and hence

C1 (D̈1, D̈1
) = C

(D̈1, D̈1
)

(
T (D̈1) × T (D̈1)

) 1
2

= T (D̈1)
((
T
(D̈1
))2)

1
2

= 1. (5.11)

	


In real-life situations, sometimes, we must take into account the proper weightage dedicated
to some elements. Therefore, we propose weighted correlation coefficients for IVLDFSs in
the following definition.

Definition 5.3 Let D̈1 and D̈2 be two IVLDFSs over the universal discourse set X =
{x1, x2, ..., xp}. Also, let ω = (ω1, ω2, ..., ωp)

T be the weighted vector corresponding to

the elements xi (i = 1, 2, ..., p) with ωi ∈ [0, 1] and
p∑

i=1
ωi = 1.

(a) The type-1 weighted correlation coefficient (type-1 WCoCo) between D̈1 and D̈2 is
denoted by C1

ω(D̈1, D̈2)and defined as

C1
ω(D̈1, D̈2) = Cω(D̈1, D̈2)

(
Tω(D̈1) × Tω(D̈2)

) 1
2

=

p∑

i=1
ωi

(
ML

D̈1
(xi )ML

D̈2
(xi ) + MU

D̈1
(xi )MU

D̈2
(xi ) + NL

D̈1
(xi )NL

D̈2
(xi ) + NU

D̈1
(xi )NU

D̈2
(xi )

+(i)τ L
D̈1

(i)τ L
D̈2

+ (i)τUD̈1

(i)τUD̈2
+ (i)κL

D̈1

(i)κL
D̈2

+(i) κU
D̈1

(i)κU
D̈2

)

⎛

⎜⎜
⎝

p∑

i=1
ωi

((
ML

D̈1
(xi )

)2 +
(
MU

D̈1
(xi )

)2 +
(
NL

D̈1
(xi )

)2 +
(
NU

D̈1
(xi )

)2 +
(

(i)τ L
D̈1

)2 +
(

(i)τUD̈1

)2 +
(

(i)κL
D̈1

)2 +
(

(i)κU
D̈1

)2)

×
p∑

i=1
ωi
(
(ML

D̈2
(xi ))2 + (MU

D̈2
(xi ))2 + (NL

D̈2
(xi ))2 + (NU

D̈2
(xi ))2 + ((i)τ L

D̈2
)2 + ((i)τUD̈2

)2 + ((i)κL
D̈2

)2 + ((i)κU
D̈2

)2
)

⎞

⎟⎟
⎠

1
2

.

(5.12)

(b) The type-2 weighted correlation coefficient (type-2 WCoCo) between D̈1 and D̈2 is
denoted by C2

ω(D̈1, D̈2) and defined as

C2
ω

(D̈1, D̈2
) = Cω

(D̈1, D̈2
)

max
{
Tω

(D̈1
)
, Tω

(D̈2
)}

=

p∑

i=1
ωi

(
ML

D̈1
(xi )ML

D̈2
(xi ) + MU

D̈1
(xi )MU

D̈2
(xi ) + NL

D̈1
(xi )NL

D̈2
(xi ) + NU

D̈1
(xi )NU

D̈2
(xi )

+(i)τ L
D̈1

(i)τ L
D̈2

+ (i)τUD̈1

(i)τUD̈2
+ (i)κL

D̈1

(i)κL
D̈2

+(i) κU
D̈1

(i)κU
D̈2

)

max

⎧
⎪⎪⎨

⎪⎪⎩

p∑

i=1
ωi

((
ML

D̈1
(xi )

)2 +
(
MU

D̈1
(xi )

)2 +
(
NL

D̈1
(xi )

)2 +
(
NU

D̈1
(xi )

)2 +
(

(i)τ L
D̈1

)2 +
(

(i)τUD̈1

)2 +
(

(i)κL
D̈1

)2 +
(

(i)κU
D̈1

)2)
,

p∑

i=1
ωi

((
ML

D̈2
(xi )

)2 +
(
MU

D̈2
(xi )

)2 +
(
NL

D̈2
(xi )

)2 +
(
NU

D̈2
(xi )

)2 +
(

(i)τ L
D̈2

)2 +
(

(i)τUD̈2

)2 +
(

(i)κL
D̈2

)2 + ((i)κU
D̈2

)2
)

⎫
⎪⎪⎬

⎪⎪⎭

.

(5.13)

Theorem 5.4 The weighted correlation coefficients (WCoCos) between two IVLDFSs D̈1 and
D̈2, as defined in Eq. (5.12) and Eq. (5.13), satisfies the following properties. For t = 1, 2,
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Fig. 5 The symptoms of COVID-19, influenza, cold (Source: World Health Organization (WHO))

Table 10 The table of IVLDFS for patient ℘
〈[
ML

D̈(xi ),M
U
D̈(xi )

]
,
[
NL
D̈(xi ),N

U
D̈(xi )

]〉 〈[
(i)τ LD̈, (i)τUD̈

]
,
[
(i)κL

D̈, (i)κUD̈
]〉

℘ (Patient) x1
〈[0.3, 0.6], [0.5, 0.8]〉 〈[0.2, 0.4], [0.3, 0.6]〉

x2
〈[0.2, 0.5], [0.3, 0.9]〉 〈[0.7, 0.8], [0.1, 0.2]〉

x3
〈[0.5, 0.8], [0.4, 0.6]〉 〈[0.2, 0.6], [0.3, 0.4]〉

x4
〈[0.4, 0.6], [0.3, 0.8]〉 〈[0.5, 0.7], [0.1, 0.2]〉

x5
〈[0.3, 0.5], [0.6, 0.7]〉 〈[0.5, 0.7], [0.1, 0.3]〉

x6
〈[0.8, 0.9], [0.2, 0.5]〉 〈[0.3, 0.8], [0.1, 0.2]〉

x7
〈[0.5, 0.9], [0.3, 0.5]〉 〈[0.1, 0.2], [0.6, 0.7]〉

x8
〈[0.4, 0.8], [0.1, 0.9]〉 〈[0.3, 0.4], [0.2, 0.6]〉

x9
〈[0.1, 0.8], [0.2, 0.9]〉 〈[0.1, 0.3], [0.2, 0.7]〉

x10
〈[0.3, 0.6], [0.2, 0.8]〉 〈[0.1, 0.4], [0.2, 0.6]〉

(1) 0 ≤ Ct
ω(D̈1, D̈2) ≤ 1.

(2) Ct
ω(D̈1, D̈2) = Ct

ω(D̈2, D̈1).
(3) Ct

ω(D̈1, D̈2) = 1 if D̈1 = D̈2.

Proof They can be proved similar to the proof of Theorem 5.4, so they are omitted. 	
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Table 11 The table of CLDFSs as a consensus of infectious disease experts for diseases d1, d2, d3
〈[
ML

D̈(xi ),M
U
D̈(xi )

]
,
[
NL
D̈(xi ),N

U
D̈(xi )

]〉 〈[
(i)τ LD̈, (i)τUD̈

]
,
[
(i)κL

D̈, (i)κUD̈
]〉

℘ (COVID-19) x1
〈[0.1, 0.8], [0.5, 0.9]〉 〈[0.1, 0.6], [0.3, 0.4]〉

x2
〈[0.2, 0.7], [0.2, 0.5]〉 〈[0.1, 0.7], [0.2, 0.3]〉

x3
〈[0.1, 0.9], [0.5, 0.8]〉 〈[0.1, 0.5], [0.3, 0.5]〉

x4
〈[0.2, 0.6], [0.2, 0.5]〉 〈[0.2, 0.8], [0.1, 0.2]〉

x5
〈[0.3, 0.9], [0.2, 0.4]〉 〈[0.2, 0.7], [0.2, 0.3]〉

x6
〈[0.2, 0.9], [0.5, 0.8]〉 〈[0.2, 0.6], [0.3, 0.4]〉

x7
〈[0.5, 0.9], [0.6, 0.8]〉 〈[0.3, 0.7], [0.2, 0.3]〉

x8
〈[0.2, 0.8], [0.4, 0.8]〉 〈[0.2, 0.8], [0.1, 0.2]〉

x9
〈[0.1, 0.7], [0.3, 0.6]〉 〈[0.1, 0.6], [0.3, 0.4]〉

x10
〈[0.3, 0.9], [0.6, 0.9]〉 〈[0.7, 0.8], [0.1, 0.2]〉

℘ (Influenza) x1
〈[0.6, 0.8], [0.5, 0.9]〉 〈[0.1, 0.2], [0.5, 0.8]〉

x2
〈[0.7, 0.9], [0.2, 0.6]〉 〈[0.1, 0.3], [0.3, 0.6]〉

x3
〈[0.5, 0.7], [0.2, 0.5]〉 〈[0.2, 0.3], [0.3, 0.4]〉

x4
〈[0.6, 0.9], [0.4, 0.9]〉 〈[0.5, 0.6], [0.2, 0.4]〉

x5
〈[0.1, 0.2], [0.5, 0.6]〉 〈[0.2, 0.4], [0.1, 0.4]〉

x6
〈[0.1, 0.2], [0.6, 0.9]〉 〈[0.2, 0.3], [0.6, 0.7]〉

x7
〈[0.3, 0.4], [0.5, 0.8]〉 〈[0.1, 0.3], [0.4, 0.6]〉

x8
〈[0.2, 0.3], [0.6, 0.9]〉 〈[0.2, 0.3], [0.3, 0.7]〉

x9
〈[0.1, 0.2], [0.6, 0.8]〉 〈[0.3, 0.4], [0.3, 0.6]〉

x10
〈[0.2, 0.3], [0.5, 0.9]〉 〈[0.2, 0.4], [0.1, 0.3]〉

℘ (Cold) x1
〈[0.1, 0.3], [0.3, 0.4]〉 〈[0.1, 0.8], [0.1, 0.2]〉

x2
〈[0.2, 0.4], [0.1, 0.2]〉 〈[0.4, 0.7], [0.2, 0.3]〉

x3
〈[0.1, 0.6], [0.4, 0.5]〉 〈[0.1, 0.8], [0.1, 0.2]〉

x4
〈[0.3, 0.5], [0.6, 0.7]〉 〈[0.3, 0.8], [0.1, 0.2]〉

x5
〈[0.2, 0.6], [0.5, 0.6]〉 〈[0.2, 0.5], [0.4, 0.5]〉

x6
〈[0.1, 0.4], [0.4, 0.5]〉 〈[0.1, 0.5], [0.4, 0.5]〉

x7
〈[0.2, 0.5], [0.7, 0.8]〉 〈[0.1, 0.7], [0.1, 0.2]〉

x8
〈[0.1, 0.3], [0.6, 0.7]〉 〈[0.2, 0.8], [0.1, 0.2]〉

x9
〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.3, 0.7], [0.1, 0.2]〉

x10
〈[0.1, 0.2], [0.3, 0.4]〉 〈[0.2, 0.6], [0.2, 0.3]〉

5.2 The approach based on correlation coefficients of IVLDFSs with application

LetX = {x1, x2, ..., xp} be a set of alternatives, E = {ε1, ε2, ..., εr } be a set of criteria and its
weight vector ω = {ω1, ω2, ..., ωr } where ω j ∈ [0, 1] ( j = 1, 2, ..., r) and

∑r
j=1 ω j = 1.

Let ηij be the IVLDFN of the alternative xi with the respect to the criterion ε j .
Algorithm 2. (Based on Correlation Coefficients for IVLDFSs)

Step 1. Create the set of multiple symptoms of patient (with suspected COVID-19), possible
diagnostic set related to these symptoms and reference parameters.

Step 2. Create IVLDF values of symptoms detected in Patient ℘.
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Fig. 6 Comparison chart of type-1 and type-2 CoCos

Step 3. Generate IVLDFSs for the diseases dq (q = 1, 2, ..., v) according to the symptoms.
If it is possible, determine weight vector for the symptoms.

Step 4. Calculate the type-1 (or type-2) CoCos (type-1 (or type-2)WCoCos if the symptoms
have weights) between the diseases dq (q = 1, 2, ..., v) and Patient ℘.

Step 5. Sort the diseases according to the type-1 (or type-2) CoCos (type-1 (or type-2)
WCoCos if the symptoms have weights) and diagnose the disease suffered by Patient
P determining the largest value of (weighted) CoCos.

Now, we handle the COVID-19 problem to demonstrate the performance of Algorithm 2
based on CoCos for IVLDFSs.

Example 5.5 Many of the diseases show different symptoms. Medical diagnosis is related to
the patient’s symptoms to diagnosewhat kind of disease the patient has suffered. The patient’s
multiple symptoms can be clustered as a collection of symptoms, and different diseases can
form a set of diagnostics. On the other hand, the length of symptoms is very important for
the diagnosis of the disease. It is said by the infectious disease experts that in general, people
diagnosedwith COVID-19 have symptoms for twoweeks–some longer duration. However, if
you happen to have a severe case of COVID-19 and develop a complication like pneumonia,
your symptoms will likely last longer. More severely ill patients are seen to need care and
continue to have symptoms such as shortness of breath for six weeks or more.

We consider the diseases COVID-19, Influenza, Cold, and their possible symptoms as in
Fig. 5.

In short, the set of symptoms is

X =

⎧
⎪⎪⎨

⎪⎪⎩

x1 = Dry cough, x2 = Fever, x3 = Stuffy nose, x4 = Sore throat,
x5 = Shortness of breath,
x6 = Headache, x7 = Body aches, x8 = Sneezing,
x9 = Exhaustion, x10 = Diarrhea

⎫
⎪⎪⎬

⎪⎪⎭
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Fig. 7 Comparison chart of type-1 and type-2 WCoCos

and the diagnostic set is

S = {d1 = COVID − 19, d2 = Influenza, d3 = Cold} .

Also, we consider reference parameters as length of symptoms “long duration” and “not long
duration (or short duration)”. Suppose all symptoms and references parameters of a patient
can be represented by the IVLDFS (data collected through a survey of infectious disease
experts) in Table 10 (that is to say, it is considered IVLDFNs instead of linguistic terms given
in Fig. 5).

The symptoms of each disease dq (q = 1, 2, 3) can be also presented as IVLDFSs (data
collected by infectious disease experts) in Table 11.

Our goal is to diagnose the disease suffered by Patient℘, especially whether he/she suffers
from COVID-19, by correlation matching with classified diseases. Applying the formula in
Eq. (5.4), we can obtain that

C1 (℘, d1) = 0.8840687,C1 (℘, d2) = 0.8474309,C1 (℘, d3) = 0.8187327.

Thus, we can assign the patient to the diagnosis d1 (COVID-19) according to the evaluations
of infectious disease experts.
Similarly, if we use type-2 CoCo, then we have

C2 (℘, d1) = 0.8830382,C2 (℘, d2) = 0.8159738,C2 (℘, d3) = 0.6893975.

and so the patient ℘ suffers from the disease d1 (COVID-19). The comparison of type-1 and
type-2 CoCos is illustrated in Fig. 6.
If there are weights of symptoms, then we apply the formulas in Eqs. (5.12) and (5.13) and
obtain the outputs as in Table 12. The comparison of type-1 and type-2WCoCos is illustrated
in Fig. 7.
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Fig. 8 Comparison chart of type-1 and type-2 CoCos with some existing information measures

Fig. 9 Comparison chart of type-1 and type-2 WCoCos with some existing weighted information measures

5.3 Comparative study for correlation coefficients

To illustrate the prevalence of our proposed informationmeasures (type-1 and type-2 CoCos),
a comparison among the proposed similarity/distancemeasures and a fewpresent information
measures are mentioned in this section. We examine the type-1 and type-2 CoCos with
the present similarity/distance measures CI FS (Ye 2011), PFCS1 (Wei and Wei 2018),
q − ROFCS4 (Wang et al. 2019), and dH (Baccour and Alimi 2019). Also, the type-1 and
type-2 WCoCos are in comparison with the present weighted similarity/distance measures
SWY (Song et al. 2014),WPFCS1 (Wei andWei 2018), q−ROFWCS2 (Wang et al. 2019),
andWIV I FS (Ye 2013). These comparisons are shown in Tables 13 and 14, respectively. Also,
they are illustrated in Figs. 8 and 9.
Advantages of type-1 and type-2 correlation coefficients:
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Any IFN (〈MI ,NI〉) can be taken into consideration as IVLDFN (〈[MI ,MI ], [NI ,NI ]〉,
〈[0, 0], [0, 0]〉). (For instance, (〈0.7, 0.2〉) corresponds to (〈[0.7, 0.7], [0.2, 0.2]〉,
〈[0, 0], [0, 0]〉) ). By the usage of matching of the present notions of PyFN, q-ROFN, LDFN,
and IVIFN with the proposed belief of IVLDFN, one can use the type-1 and type-2 CoCos
to deal with the MCDM problems in the surroundings of PyFS, q-ROFS, LDFS, and IVIFS.
However, the prevailing information measures CIFS (Ye 2011), PFCS1 (Wei and Wei 2018),
q-ROFCS4 (Wang et al. 2019), dH (Baccour and Alimi 2019), SWY (Song et al. 2014),
WPFCS1 (Wei andWei 2018), q-ROFWCS2 (Wang et al. 2019), andWIVIFS (Ye 2013) based
on the IFS, PyFS, q-ROFS, and IVIFS can’t be applied to solve the MCDM problems in
the surroundings of IVLDFS. It put forward that the proposed type-1 and type-2 CoCos are
advanced to the prevailing information measures mentioned in Ye (2011, 2013), Wei and
Wei (2018), Wang et al. (2019), Baccour and Alimi (2019), Song et al. (2014).

6 Conclusion

In this article, we studied a new extension of fuzzy sets including IFSs, PyFSs, q-ROFSs,
and LDFSs, named IVLDFS. Powered by the additional use of flexible intervals of mem-
bership grades, non-membership grades, and reference parameters, this notion can provide
a more flexible and efficient framework for fuzzy system modeling and decision making
under uncertainty. We gave some basic operations for IVLDFSs, and developed IVLDFWA
and IVLDFWG aggregation operators. Using these interval-valued linear Diophantine fuzzy
aggregation operators, we solved the problem of material supplier selection. Besides, a real-
life example, comparison study, and advantages of proposed aggregation operators were
presented. We described some correlation coefficient measures (type-1 and type-2) for the
IVLDFSs and they were successfully applied in medical diagnosis for Coronavirus Disease
2019 (COVID-19). Lastly, a comparative examination and the benefits of proposed correla-
tion coefficient measures were also discussed.

It is worth noting that this paper will lead to new research describing new operations,
aggregation operators (to fuse information) and similarity/distance coefficients (to measure
information) for LDFS and IVLDFS. Our future research is to develop hesitancy and bipo-
larity hybridizations for IVLDFS and, thus, propose new approaches for more complex
real-world problems.
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