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Abstract
The Heston model is a popular stochastic volatility model in mathematical finance and it
has been extended or modified in several ways by researchers to overcome the shortcomings
of the model in the context of pricing derivatives. However, the extended models usually
do not lead to a closed-form formula for the derivative prices. This paper is focused on a
stochastic extension of the constant long-run mean of variance in the Heston model for the
pricing of variance swaps. The extension is given by a positive function perturbed by an
amplitude-modulated Brownian motion or Ito integral. We obtain two closed-form formulas
for the fair strike prices of a variance swap under two corresponding underlying models. The
formulas are explicitly given by elementary functions without any integral terms involved.
Further, the two models show better performance than the Heston model when the market
implied volatility has a concave-down pattern as shown in an unstable market circumstance
caused by the COVID-19 pandemic.

Keywords Variance swap · Long-run mean of variance · Heston model · He–Chen model ·
rDMR model

Mathematics Subject Classification 91G20 · 91G60

1 Introduction

Volatility risk trading and management have been crucial issues more and more in financial
market. In the past, volatility had been thought that it would be constant, for example, in the
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Black–Scholes world (1973). However, many evidences like volatility smile (Dumas et al.
1998) confirmed that the assumption would be false and it is prevailing that volatility also
follows a stochastic process as risky assets do. Volatility has been recognized even as an asset
now and trading volumes of financial derivatives related to volatility has increased rapidly.
The classical methods to trade volatility are strangles or butterflies (cf. Hull 2009) which
are composed of vanilla options. However, they have a drawback that their price could be
affected by risks of other variables and it may lead to unsatisfactory hedges or speculations
for market practitioners. So, volatility derivatives arose in the market. Variance swap is one of
pure volatility derivatives and it is a forward contract that trades the spread between realized
variance and strike Kvar. The main advantage of variance swap is that it does not suffer from
other risk exposures while traditional volatility trading strategies with options do. Refer to
the book of Neftci (2008) for more details.

One of the most widely used stochastic volatility models is the Heston model (Heston
1993). The Heston model for underlying asset price St and its variance vt is given by

dSt = r Stdt + √
vt StdW

1
t ,

dvt = κ(θ − vt )dt + σv
√

vtdW
2
t

under a risk-neutral probability measure, where W 1
t and W 2

t are Brownian motions with
dW 1

t dW
2
t = ρdt , r is the risk-free rate, and κ , θ and σv denote mean-reversion rate of

variance, long-term mean of variance and volatility of variance (vol-of-vol), respectively,
and they are all supposed to be positive. ρ is correlation between the underlying asset and its
variance process and it is assumed to be a constant between − 1 and 0. The Feller condition,
2κθ > σ 2

v , is required. It is a sufficient condition for the variance to be always positive. There
is a merit that an analytic form of the price formula for financial derivatives can be derived
when the underlying dynamics is assumed to follow the Heston model. The reason is that the
mean-reverting CIR process (Cox et al. 1985) of vt makes the characteristic function deduced
by a partial differential equation related to the model be simple. There are lots of studies on
variance swaps under the Heston model. For example, Swishchuk (2004) studied the pricing
of volatility and variance swap by using a probabilistic approach. Broadie and Jain (2008)
determined fair discrete and continuous variance strikes analytically. Zhu and Lian (2011)
derived a closed-form solution for a discretely sampled variance swap with simple return
using an additional variable introduced by Little and Pant (2001).

However, the Heston model has some weakness in that it may not fit well in market
for short-term products and it may not give analytic solutions for SPX and VIX options
prices simultaneously. It is true for all the single-factor stochastic volatility models. Thus the
model have been extended or modified by researchers to overcome the shortcomings. For
example, Zheng andKwok (2014) extended theHestonmodel by adding simultaneous jumps
and found closed form pricing formulas for exotic variance swaps. Elliott and Lian (2013)
presented closed-form exact solutions for pricing discretely sampled variance and volatility
swaps under the Heston model with regime switching. Kim and Kim (2020) obtained affine
approximations for the generalized variance swaps based on the Heston model incorporated
by stochastic interest rates by using the projection techniques of Grzelak and Oosterlee
(2011). On the other hand, Christoffersen et al. (2009) proposed the so-called double Heston
model, which has two different scale factors, for the fluctuation of the slope and the level of
volatility smirk. Jeon et al. (2021) used a rescaled version of the double Heston model for
consistent pricing SPX and VIX options. Fouque and Saporito (2018) proposed a multiscale
volatility of volatility generalization of the Heston model and derived asymptotic solutions
of SPX and VIX options using a perturbation theory. Also, there are some papers for pricing
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Fig. 1 Historical long-run variances calibrated from SPX vanilla options under the Heston model

variance swaps based on the stochastic volatility models other than the Heston type models.
For example, Yuen et al. (2015) derived quasi-closed form pricing formulas for the fair strike
prices of exotic discrete variance swaps under the 3/2-stochastic volatility model. Kim and
Kim (2019) used the moment generating function technique to find semi-analytic solutions
for generalized variance swaps under the exponential Ornstein–Uhlenbeck (expOU) model
and the double expOU model.

In this paper, we study the pricing of variance swaps under two stochastic volatilitymodels
extending the Heston model. First of all, we believe that the constant long-termmean level of
variance in the Heston model does not reflect the time evolution of market volatility. Figure 1
presents the historical long-run variance calibrated from S&P 500 vanilla call and put options
daily traded from 2013 to 2020 under the Heston model. The severely fluctuant part of the
graph is due to the effect of COVID-19 pandemic. The figure clearly indicates that the long-
run variance of the Heston model could not be considered as a constant. Simultaneously, we
wish for a desired stochastic volatility model to maintain the analytical tractability of the
Heston model for the pricing of variance swaps. So, based on stochastic long-run variance
assumption, we adopt the model of He and Chen (2021) and a reduced version of the double
mean-reverting model of Gatheral (2008). These are two-factor volatility models, where
the long-term mean level of variance is given by a positive function perturbed by a small
amplitude-modulated random process. A closed pricing formula for European options under
the He–Chen model was derived as its characteristic function has a similar form to that of
the Heston model. They exploited adaptive sample annealing (Ingber 1989) for empirical
studies and showed their option pricing formula outperforms that of the Heston model. On
the other hand, Gatheral’s double mean-reverting (DMR)model is also a two-factor volatility
extension of the Hestonmodel granting the mean-reverting property of the long-run variance.
It has a strength that it fits both SPX and VIX option data well. See Bayer et al. (2013) for
details. However, there is no closed-form formula for any types of financial derivatives yet
under the original DMR model. Thus some researchers used a reduced version of the DMR
model to find closed-form or approximate analytic solutions for the financial derivatives of
their interest. For instance, Huh et al. (2018) presented closed-form approximate solutions
for VIX derivatives under a rescaled version of the DMR model.
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In this paper, we obtain the fair strike value of discretely sampled variance swap under
both the He–Chen model and a reduced version of the DMR model denoted by the rDMR
model. All the adopted models have analytical tractability while they provide an improved
performance on empirical data. To support these claims, the paper is organized as follows.
The underlying models are specified in Sect. 2 and the fair strike value is given by a partial
differential equation form in Sect. 3. Then we obtain the fair strike formulas of a discretely
sampled variance swap under the two models in Sect. 4. Each formula is explicitly given by a
closed-form solution expressed in terms of elementary functions (without any single integral
involved). In Sect. 5, we check the validity of our formulas usingMonte-Carlo simulation and
investigate the sensitivity of the added parameters of the stochastic long-run variance process.
Furthermore, the He–Chen model and the rDMRmodel are compared with the Heston model
based on the VIX data in 2020.

2 Underlying dynamics

In this section, we describe two models, the He–Chen model and the rDMR model, whose
long-run variance is driven by a stochastic process. First, the He–Chen model is given by

dSt = r Stdt + √
vt StdW

1
t ,

dvt = κ(θt − vt )dt + σv
√

vtdW
2
t ,

dθt = λdt + σθdW
3
t (1)

under a risk-neutral probability measure, where W 1
t , W

2
t and W 3

t are standard Brownian
motions with dW 1

t dW
2
t = ρdt and dW 1

t dW
3
t = dW 2

t dW
3
t = 0. The parameters r , κ , σv and

λ and the initial value θ0 of θt are non-negative constants. Here, σθ is assumed to be a small
positive parameter so that θt can be a small perturbation around the non-negative function
θ0 + λt in a weak (mean square) sense. Note that the model can be reduced to the Heston
model when both λ and σθ become zero.

On the other hand, the original DMR model is given by

dSt = r Stdt + √
vt StdW

1
t ,

dvt = κ(θt − vt )dt + σvv
γ1
t dW 2

t ,

dθt = α(β − θt )dt + σθθ
γ2
t dW 3

t ,

dW 1
t dW

2
t = ρ12dt, dW 1

t dW
3
t = ρ13dt, dW 2

t dW
3
t = ρ23dt

under a risk-neutral probability measure, where r , κ , σv , σθ , γ1 and γ2 are non-negative
constants. α represents the mean reversion rate of θt and θt reverts to β at the rate α, where
α < κ is assumed. This form of model could make it easy to catch the market movement
effectively. However, it is onerous to find an analytic formula for the fair prices of derivatives
because of the complexity of the model. So, to find an analytic solution for variance swaps,
we reduce the DMR model to

dSt = r Stdt + √
vt StdW

1
t ,

dvt = κ(θt − vt )dt + σv
√

vtdW
2
t ,

dθt = α(β − θt )dt + σθdW
3
t , (2)

which is called the rDMR model. Here, the initial value θ0 is assumed to be a non-negative
constant. α and β are non-negative parameters and σθ is a small positive parameter so that θt
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is a small perturbation around the non-negative function θ0e−αt +β(1−e−αt ). The difference
between the original DMRmodel and the rDMRmodel is in the diffusion part of the variance
vt and the long-term mean variance θt while the mean-reverting property of the original
DMR model is still being kept. One can notice that the process θt is an Ornstein–Uhlenbeck
process (Uhlenbeck and Ornstein 1930). The correlation structure dW 1

t dW
2
t = ρdt and

dW 1
t dW

3
t = dW 2

t dW
3
t = 0 is assumed to avoid the difficulty of obtaining an analytic

solution formula for the fair strike of variance swaps while still keeping Heston’s correlation
structure.

3 Problem formulation

Given the underlying asset price St , the discretely sampled realized variance of a variance
swap over a time period [0, T ] is defined by

σ 2
RV = 1002 × 1

T

N∑

j=1

(
log

St j
St j−1

)2

, (3)

where [0, T ] is divided into N periods of [t j−1, t j ], tN = T and j = 1, . . . , N . The fair
strike, Kvar, of the variance swap is given by the strike such that the expected value, under
a risk-neutral probability measure, of the payoff σ 2

RV − K is equal to 0 at time t = t0 = 0.
Therefore, we have

Kvar
(
t0, St0 , vt0 , θt0

) = E
0,∗ [σ 2

RV

] = 1002 × 1

T

N∑

j=1

E
0,∗
(
log

St j
St j−1

)2

= 1002 × 1

T

N∑

j=1

E
0,∗
⎡

⎣E
t j−1,∗

(
log

St j
St j−1

)2
⎤

⎦ , (4)

where the superscript ∗ denotes a risk-neutral probability measure. Here, the tower property
of conditional expectation has been used. One could notice that the above realized variance
is defined in terms of logarithmic return instead of simple return. The multi-period of simple
return can be approximated by a product of the one-period simple returns, which may lead
to a problem when the one-period values get close to zero. Meanwhile, the multi-period log
return is a sum of the one-period log returns, being free of the computational problem. So,
the preference for log return prevails in financial industry.

For convenience, let us use a new independent variable It , introduced by Little and Pant
(2001), which is defined by

It =
∫ t

0
δ
(
t j−1 − s

)
Ssds,

where the δ(·) means the generalized Dirac delta function. Note that It = St j−1 if t ≥ t j−1

and It = 0 if not.
Considering the time interval [t j−1, t j ], let U j (t, S, v, θ; I ) be the solution of the partial

differential equation (PDE)

(
∂

∂t
+ r S

∂

∂S
+ κ(θ − v)

∂

∂v
+ η(θ)

∂

∂θ
+ 1

2
S2v

∂2

∂S2
+ 1

2
σ 2

v v
∂2

∂v2
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+ 1

2
σ 2

θ

∂2

∂θ2
+ ρσvvS

∂2

∂S∂v

)
U j = 0, t j−1 ≤ t < t j , (5)

with terminal condition U j (t, S, v, θ; I )|t=t j =
(
log

St j
It j

)2
, where η(θ) is determined as

η(θ) = λ under the He–Chen model and η(θ) = α(β − θ) under the rDMR model. Then,
by applying the well-known Feynman-Kac theorem (cf. Oksendal 2000), we have

U j (t j−1, St j−1 , vt j−1 , θt j−1; It j
) = E

t j−1,∗
⎡

⎣
(
log

St j
It j

)2
⎤

⎦ . (6)

This is the value of the solution of (5) at time t = t j−1. It is represented as a conditional

expectation of the random variable

(
log

St j
It j

)2
given the underlying value St j−1 at time

t = t j−1.
The variable It has a jump at each t j−1 but the no-arbitrage pricing theory requiresU j to

be continuous (cf. Wilmott 2013). So, we have a jump condition expressed as

lim
t ↑ t j−1

U j (t, S, v, θ; I ) = lim
t ↓ t j−1

U j (t, S, v, θ; I ). (7)

Considering the time interval [t0, t j−1] this time, let W j (t, S, v, θ; I ) be the solution of
the PDE

( ∂

∂t
+ r S

∂

∂S
+ κ(θ − v)

∂

∂v
+ η(θ)

∂

∂θ
+ 1

2
S2v

∂2

∂S2
+ 1

2
σ 2

v v
∂2

∂v2

+ 1

2
σ 2

θ

∂2

∂θ2
+ ρσvvS

∂2

∂S∂v

)
W j = 0, t0 ≤ t < t j−1, (8)

with terminal condition W j (t, S, v, θ)|t=t j−1 = U j (t j−1, S, v, θ; S). Then the Feynman-
Kac theorem gives

W j (t0, St0 , vt0 , θt0) = E
0,∗ [U j (t j−1, St j−1 , vt j−1 , θt j−1; St j−1

)]
. (9)

Therefore, combining the above results (4), (6) and (9), the fair strike price (4) is expressed
as

Kvar(t0, St0 , vt0 , θt0) = 1002 × 1

T

N∑

j=1

W j (t0, St0 , vt0 , θt0), (10)

whereW j is given by the conditional expectation (9) andU j in (9) is given by the conditional
expectation (6). So, to calculate the fair strike price Kvar, we first need to solve the PDE
problem (5) forU j (the inner expectation) and then compute the conditional expectation (9)
(the outer expectation) for W j .

4 Pricing variance swaps

In this section, we concretely solve the PDE problem (5) for the inner expectationU j for the
He–Chen and rDMR models by using the Fourier transform and Green function methods.
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Then we calculate the outer expectation W j from the inner expectation result. The Fourier
transform φ̂ of a given function φ, which will be used from now on, is defined by

φ̂(τ, w, v, θ; I ) =
∫

R

e−iwqφ(τ, q, v, θ; I )dq.

4.1 Preliminary results

Considering the payoff function h(S; I ) = (
log S

I

)2
, using notation τ = t j − t and q =

rτ + log(S) and taking the Fourier transform Û j of U j , the PDE problem (5) becomes
(

− ∂

∂τ
+ κ(θ − v)

∂

∂v
+ η(θ)

∂

∂θ
+ 1

2
v2(−iw − w2)

+ 1

2
σ 2

v v
∂2

∂v2
+ 1

2
σ 2

θ

∂2

∂θ2
+ ρσviwv

∂

∂v

)
Û j = 0,

Û j (0, w, v, θ; I ) = ĥ(w; I ), 0 < τ ≤ t j − t j−1, (11)

where

ĥ(w; I ) :=
∫

R

e−iwqh(eq ; I )dq.

Let G(τ, q, v, θ; I ) be a function satisfying
(

− ∂

∂τ
+ κ(θ − v)

∂

∂v
+ η(θ)

∂

∂θ
+ 1

2
v2(−iw − w2)

+ 1

2
σ 2

v v
∂2

∂v2
+ 1

2
σ 2

θ

∂2

∂θ2
+ ρσviwv

∂

∂v

)
Ĝ = 0,

G(0, w, v, θ; I ) = δ0(q), 0 < τ ≤ t j − t j−1, (12)

where δ is the generalized Dirac-delta function. Then G is utilized as the Green function of
(11). Following Heston’s procedure, we suppose that

Ĝ(τ, w, v, θ; I ) = exp(A(τ, w) + vB(τ, w) + θC(τ, w)). (13)

Putting (13) into (12), one could get ordinary differential equations (ODEs) for A(τ, w),
B(τ, w) and C(τ, w). They will be obtained concretely for each of the He–Chen and rDMR
models later. By the convolution property of Fourier transform, one can deduce

U j (τ, q, v, θ; I ) = 1

2π

∫

R

eiwq ĥ(w; I )Ĝ(τ, w, v, θ; I )dw. (14)

On the other hand, the Fourier transform of the payoff function h(S; I ) can be expressed
as

ĥ(w; I ) = 2π
(−δ′′

0 (w) − 2i (log I ) δ′
0(w) + (log I )2 δ0(w)

)
,

where δ′
0(w) and δ′′

0 (w) are the first and second derivatives of Dirac delta function, respec-
tively, defined in the sense of distribution and satisfy

δ′
0(w) = −i

2π

∫

R

qe−iwqdq, δ′′
0 (w) = −1

2π

∫

R

q2e−iwqdq,
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respectively. Therefore, from (13) and (14), one can deduce

U j (τ, q, v, θ; I ) = 1

2π

∫

R

eiwq · ĥ(w; I )Ĝ(τ, w, v, θ; I )dw

= 1

2π

∫

R

eiwq · ĥ(w; I )eA(τ,w)+vB(τ,w)+θC(τ,w)dw

= ∂2γ

∂w2

∣∣∣∣
w=0

· (−1) + ∂γ

∂w

∣∣∣∣
w=0

· (2i log I ) + γ (τ, 0, q) · (log I )2 , (15)

where the function γ (τ,w; q) is given by

γ (τ,w; q) = exp(iwq + A(τ, w) + vB(τ, w) + θC(τ, w)).

Based on the above preliminary results, we can derive closed-form formulas of the fair
strike price under the He–Chen and rDMR models as shown in the following sections.

4.2 Inner expectation

First, we calculate concretely the inner expectation U j under the He–Chen model.

Proposition 1 Under the He–Chen model (1), U j (τ, S, v, θ; I ) is given by
U j (τ, S, v, θ; I ) = B2

1v
2 + C2

1θ
2 + 2B1C1vθ

+
(
2B1 log

S

I
+ 2A1B1 + 2B1rτ − B2

)
v

+
(
2C1 log

S

I
+ 2A1C1 + 2C1rτ − C2

)
θ

− A2 + (rτ + A1 + log
S

I
)2, (16)

where

A1(τ ) = λ

2

(
τ

κ
− τ 2

2
+ 1

κ2 (e−κτ−1)

)
,

B1(τ ) = 1 − eκτ

2κeκτ
, C1(τ ) = 1

2

(
eκτ − 1

κeκτ
− τ

)
,

A2(τ ) = −λ

[
1

2

(
1 + σ 2

v

4κ2 − ρσv

κ

)
τ 2 +

(
− 1

κ
− 5σ 2

v

8κ3 + 2ρσv

κ2

)
τ

×
(

− 1

κ2 − σ 2
v

2κ4 + 2ρσv

κ3

)
(e−κτ − 1) − σ 2

v

16c4
(e−2κτ − 1)

+
(

σ 2
v

2κ2 − ρσv

κ

)(
1

κ2 − τ

κ
e−κτ − 1

κ2 e
−κτ

)]

+ σ 2
θ

4

(
1

2κ3 (e−2κτ − 1) + 2τe−κtau

κ2 − τ

κ2 + τ 2

κ
− τ 2

3

)
,

B2(τ ) = σ 2
v

4κ3 e
−2κτ + 1

κ

(
1 − ρσv

κ

)
e−κτ − 1

κ
− σ 2

v

4κ3 + 1

κ2 ρσv

+ τ

κ

(
σ 2

v

2κ
− ρσv

)
e−κτ ,
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C2(τ ) = −1

2

[
e−2κτ

(
σ 2

v

4κ2

)
+ e−κτ

(
2

κ
+ σ 2

v

κ3 − 4ρσv

κ2

)
− 2

κ

− 5σ 2
v

4κ3 + 4ρσv

κ2 + τ

(
2 + σ 2

v

2κ2 − 2ρσv

κ
+ 2e−κτ

(
σ 2

v

2κ2 − ρσv

κ

))]
,

τ = t j − t .

Proof Under the He–Chen model, we have η(θ) = λ. Then, putting (13) into (12), one can
get the following ODEs.

∂A

∂τ
(τ,w) = λC + 1

2
σ 2

θ C
2,

A(0, w) = 0,

∂B

∂τ
(τ,w) = 1

2
(−iw − w2) + (ρσviw − κ)B + 1

2
σ 2

v B
2,

B(0, w) = 0,

∂C

∂τ
(τ,w) = κB,

C(0, w) = 0.

Since the ODE for B(τ, w) is a Riccati type of equation with constant coefficients, B can be
solved precisely. Then A(τ, w) and C(τ, w) can be solved by taking integration of the right
side of their equation directly. The results are

A(τ, w) = λ

∫ τ

0
C(s, w)ds + 1

2
σ 2

θ

∫ τ

0
C2(s, w)ds,

B(τ, w) = κ + a(w)

σ 2
v

· 1 − eτa(w)

1 − b(w)eτa(w)
,

C(τ, w) = κ

σ 2
v

(
(κ + a(w))τ − 2 log

(
1 − b(w)eτa(w)

1 − b(w)

))
,

a(w) :=
√

κ2 + σ 2
v (w2 + iw), b(w) := κ + a(w)

κ − a(w)
.

To calculateU j , it is necessary to find the first and second derivatives of A, B and C with
respect to w as can be seen in (15). Since the first derivative part in (15) is observed to be
purely imaginary while the second derivative part is purely real, for convenience, we define
Ak , Bk and Ck (k = 1, 2) as

A1(τ ) = 1

i
· Aw(τ, 0), B1(τ ) = 1

i
· Bw(τ, 0), C1(τ ) = 1

i
· Cw(τ, 0),

A2(τ ) = Aww(τ, 0), B2(τ ) = Bww(τ, 0), C2(τ ) = Cww(τ, 0), (17)

where Aw, Bw , Cw, Aww , Bww and Cww denote the first and second derivatives of A, B
and C with respect to w, respectively. Since B and C are expressed by elementary functions
only, Bk and Ck (k = 1, 2) can be obtained easily with a good deal of algebra. It looks
like that numerical integration would be mandatory for calculating A. However, Ak’s can be
calculated as closed-form solutions because of the characteristic of the payoff function. We
have

Aw = λ

∫ τ

0
Cw(s, w)ds + σθ

∫ τ

0
Cw(s, w)C(s, w)ds,
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Aww = λ

∫ τ

0
Cww(s, w)ds + σ 2

θ

∫ τ

0

(
Cww(s, w)C(s, w) + (Cw(s, w))2

)
ds.

Taking w = 0 in the equations above, we get

Aw

∣∣∣∣
w=0

= λ

∫ τ

0
Cw(s, w)

∣∣∣∣
w=0

ds,

Aww

∣∣∣∣
w=0

= λ

∫ τ

0
Cww(s, w)

∣∣∣∣
w=0

ds + σ 2
θ

∫ τ

0

(
Cw(s, w)

∣∣∣∣
w=0

)2
ds

sinceC(τ, w) goes to zero asw goes to 0. Thenwe can obtain A1 and A2 by direct integration.
Rearranging (15) with notations in (17), the desired result in (16) can be derived. 	


Next, we calculate concretely the inner expectation U j under the rDMR models.

Proposition 2 Under the rDMR model (2), U j (τ, S, v, θ; I ) is given by
U j (τ, S, v, θ; I ) = E2

1v
2 + F2

1 θ2 + 2E1F1vθ

+
(
2E1 log

S

I
+ 2D1E1 + 2E1rτ − E2

)
v

+
(
2F1 log

S

I
+ 2D1F1 + 2F1rτ − F2

)
θ

− D2 + (rτ + D1 + log
S

I
)2, (18)

where

D1(τ ) = 1

2

[
αβ

α − κ

{
(e−ατ − 1)

α
− (e−κτ − 1)

κ

}
− β

{
τ + (e−ατ − 1)

α

}]
,

E1(τ ) = 1 − eκτ

2κeκτ
, F1(τ ) = 1

2

{
(e−κτ − e−ατ )

α − κ
− (1 − e−ατ )

α

}
,

D2(τ ) = αβσ 2
v

4κ2(α − 2κ)

{
(e−ατ − 1)

α
− (e−2κτ − 1)

2κ

}

+ αβ

α − κ

(
1 − ρσv

κ

){ (e−ατ − 1)

α
− (e−κτ − 1)

κ

}

+ β

(
ρσv

κ
− σ 2

v

4κ2 − 1

){
τ + (e−ατ − 1)

α

}

+ αβ

α − κ

(
σ 2

v

2κ
− ρσv

){−τe−κτ

κ
− (e−κτ − 1)

κ2

}

+ αβ

(α − κ)2

(
σ 2

v

2κ
− ρσv

){
(e−κτ − 1)

κ
− (e−ατ − 1)

α

}

+ σ 2
θ

4(α − κ)2

{
(e−2κτ − 1)

2κ
− 2(e−(α+κ)τ − 1)

α + κ
+ (e−2ατ − 1)

2α

}

+ σ 2
θ

2α(α − κ)

{
(e−(α+κ)τ − 1)

α + κ
+ (e−ατ − 1)

α
− (e−κτ − 1)

κ
− (e−2ατ − 1)

2α

}

+ σ 2
θ

4α2

{
(e−2ατ − 1)

2α
− 2(e−ατ − 1)

α
− τ

}
,
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E2(τ ) = σ 2
v

4κ3 e
−2κτ + 1

κ

(
1 − ρσv

κ

)
e−κτ − 1

κ
− σ 2

v

4κ3 + 1

κ2 ρσv

+ τ

κ

(
σ 2

v

2κ
− ρσv

)
e−κτ ,

F2(τ ) = σ 2
v (e−2κτ − e−ατ )

4κ2(α − 2κ)
+
(
1 − ρσv

κ

)(e−κτ − e−ατ

α − κ

)

+
(

ρσv

κ
− σ 2

v

4κ2 − 1

)(
1 − e−ατ

α

)
+
(

σ 2
v

2κ
− ρσv

)(
τe−κτ

α − κ

)

−
(

σ 2
v

2κ
− ρσv

)
e−κτ − e−ατ

(α − κ)2
.

Proof The inner expectation U j under the rDMR model can be derived by the analogous
method as used in Proposition 1 for U j under the He–Chen model. Altering some symbols
for γ (τ,w; q) in (15), we define

γ (τ,w; q) = exp(iwq + D(τ, w) + vE(τ, w) + θF(τ, w))

to make a difference between the solution in Proposition 2 and the solution (16) in Proposi-
tion 1. Since η(θ) = α(β − θ) in the rDMR model, the ODEs for D, E and F will be given
by

∂D

∂τ
(τ,w) = αβF + 1

2
σ 2

θ F
2,

D(0, w) = 0,

∂E

∂τ
(τ,w) = 1

2
(−iw − w2) + (ρσviw − κ)E + 1

2
σ 2

v E
2,

E(0, w) = 0,

∂F

∂τ
(τ,w) = κE − αF,

F(0, w) = 0,

respectively. D(τ, w) can be given as a form similar to A(τ, w) in the proof of Proposition 1.
E(τ, w) is identical with B(τ, w) as their equations are the same. F(τ, w) can be expressed
in terms of E(τ, w). We have

D(τ, w) = αβ

∫ τ

0
F(s, w)ds + 1

2
σ 2

θ

∫ τ

0
F2(s, w)ds,

E(τ, w) = B(τ, w),

F(τ, w) = κe−ατ

∫ τ

0
eαs E(s, w)ds.

Using the same logic as in the proof of Proposition 1, we define the corresponding terms
Dk , Ek and Fk for k = 1, 2 and substitute them into (15). Then the same form as in (18) can
be derived. What is left is finding analytic solutions of Dk , Ek and Fk . Ek is equal to Bk . F1
and F2 are expressed as

F1(τ ) = 1

i
· Fw

∣∣∣∣
w=0

= κe−ατ

∫ τ

0
eαs E1(s)ds,
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F2(τ ) = Fww

∣∣∣∣
w=0

= κe−ατ

∫ τ

0
eαs E2(s)ds,

respectively. Since F(τ, w) goes to zero as w → 0,

D1(τ ) = 1

i
· Dw

∣∣∣∣
w=0

= αβ

∫ τ

0
Fw(s, w)

∣∣∣∣
w=0

ds,

D2(τ ) = Dww

∣∣∣∣
w=0

= αβ

∫ τ

0
Fww(s, w)

∣∣∣∣
w=0

ds + σ 2
θ

∫ τ

0

(
Fw(s, w)

∣∣∣∣
w=0

)2
ds.

So, simple direct calculation starting with E(τ, w) = B(τ, w) can lead to the desired result
(18) in the proposition. 	


In the above Propositions 1 and 2, we have derived the inner expectations U j under the
He–Chen and rDMRmodels, respectively. It is worthy to note that they have no integral terms
whereas the characteristic functions contain integral terms. It is due to the payoff structure of
variance swaps with log return. The characteristic function itself is not required to calculate
U j , whereas other financial derivatives like European options are in need of it.

4.3 Outer expectation

In this section, we obtain the outer expectations W j based on the result for the inner expec-
tations U j . Recall that the inner expectations U j at time t = t j−1 under the He–Chen and
rDMR models are given by

U j (t j−1, S, v, θ; x) = B2
1 (Δτ)v2 + C2

1 (Δτ)θ2 + 2B1(Δτ)C1(Δτ)vθ

+ (2A1(Δτ)B1(Δτ) + 2B1(Δτ)rΔτ − B2(Δτ))v

+ (2A1(Δτ)C1(Δτ) + 2C1(Δτ)rΔτ − C2(Δτ))θ

+ (rΔτ + A1(Δτ))2 − A2(Δτ) (the He-Chen model) (19)

and

U j (t j−1, S, v, θ; x) = E2
1(Δτ)v2 + F2

1 (Δτ)θ2 + 2E1(Δτ)F1(Δτ)vθ

+ (2D1(Δτ)E1(Δτ) + 2E1(Δτ)rΔτ − E2(Δτ))v

+ (2D1(Δτ)F1(Δτ) + 2F1(Δτ)rΔτ − F2(Δτ))θ

+ (rΔτ + D1(Δτ))2 − D2(Δτ), (the rDMR model) (20)

respectively, where Δτ = t j − t j−1 = T /N . Note that the variable S dependence of the
inner expectations vanishes. The PDE (8) is reduced to

(
∂

∂t
+ κ(θ − v)

∂

∂v
+ η(θ)

∂

∂θ
+ 1

2
σ 2

v v
∂2

∂v2
+ 1

2
σ 2

θ

∂2

∂θ2

)
W j = 0

on the time interval [t0, t j−1). Then by the jump condition (7) and the Feynman-Kac theorem,
the outer expectation W j can be represented as

W j (t0, vt0 , θt0) = E
0,∗ [U j (t j−1, S, v, θ; S)

∣∣∣vt0 , θt0
]
. (21)

In the following propositions, we manipulate (21) and obtain explicit solutions for W j

under the He–Chen and rDMR models.
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Proposition 3 Under the He–Chen model (1), W j (t, v, θ) is given by

W j (t, v, θ) = B2
1 (Δτ)E[v2] + C2

1 (Δτ)E[θ2] + 2B1(Δτ)C1(Δτ)E[vθ ]
+ (2A1(Δτ)B1(Δτ) + 2B1(Δτ)rΔτ − B2(Δτ))E[v]
+ (2A1(Δτ)C1(Δτ) + 2C1(Δτ)rΔτ − C2(Δτ))E[θ ]
+ (rΔτ + A1(Δτ))2 − A2(Δτ), (22)

where

E[θ ] = θt + λτ,

E[θ2] = θ2t + λ2τ 2 + σ 2
θ τ,

E[v] = vte
−κτ − θt (1 − e−κτ ) + λτ − λ

κ
(1 − e−κτ ),

E[vθ ] = (vt − θt )e
−κτ − λ

κ
(1 − e−κτ )(θt + λτ)

+ (θt + λτ)2 + σ 2
θ τ − σ 2

θ

κ
(1 − e−κτ ),

E[v2] = (E[v])2 + σ 2
θ

2κ
(1 − e−2κτ ) + �1(τ ),

�1(τ ) = σ 2
v (e−κτ − e2−κτ )

(
vt

κ
− θt

κ
+ λ

κ2

)

+ σ 2
v

2κ
(1 − e−2κτ )

(
θt − 3λ

2κ

)
+ λ

σ 2
v

2κ
τ,

τ := t j−1 − t, Δτ := t j − t j−1 = T /N .

Here, E[ · ] is a simple expression of E
t,∗[ · |vt , θt ].

Proof By the linear property of conditional expectation and Proposition 1, one can obtain
(22), where the explicit calculations of the conditional expectations are given in Appendix
A.1. 	

Proposition 4 Under the rDMR model (2), W j (t, v, θ) is given by

W j (t, v, θ) = E2
1(Δτ)E[v2] + F2

1 (Δτ)E[θ2] + 2E1(Δτ)F1(Δτ)E[vθ ]
+ (2D1(Δτ)E1(Δτ) + 2E1(Δτ)rΔτ − E2(Δτ))E[v]
+ (2D1(Δτ)F1(Δτ) + 2F1(Δτ)rΔτ − F2(Δτ))E[θ ]
+ (rΔτ + D1(Δτ))2 − D2(Δτ), (23)

where

E[θ ] = θte
−ατ + β(1 − e−ατ ),

E[θ2] = {θte−ατ + β(1 − e−ατ )
}2

+ θt
σ 2

θ

α
(e−ατ − e−2ατ ) + βσ 2

θ

2α
(1 − e−ατ )2,

E[v] = vte
−κτ + β(1 − e−κτ ) + κ

κ − α
(θt − β)(e−ατ − e−κτ ),

E[vθ ] = E[v]E[θ ] + κσ 2
θ

2α(κ − α)
(1 − e−2ατ )

123



235 Page 14 of 28 Y. Yoon et al.

− κσ 2
θ

(κ + α)(κ − α)
(1 − e−(α+κ)τ ),

E[v2] = (E[v])2 + �2(τ ) +
(

κσθ

κ − α

)2 { 1

2κ
(1 − e−2κτ )

+ 1

2α
(1 − e−2ατ ) − 2

κ + α
(1 − e(−α+κ)τ )

}
,

�2(τ ) = σ 2
v

[ (vt − β)

κ
(e−κτ − e−2κτ ) + β

2κ
(1 − e−2κτ )

+ κ(θt − β)

(κ − α)(2κ − α)
(e−ατ − e−2κτ ) − (θt − β)

κ − α
(e−κτ − e−2κτ )

]
,

τ = t j−1 − t, Δτ = t j − t j−1 = T /N .

Proof This proposition can be proved similarly to the proof of Proposition 3. The explicit
calculations of the conditional expectations are given in Appendix A.2. 	


4.4 The fair strike value

Finally, the above propositions put together lead to the fair strike price Kvar of the variance

swap as it is expressed as the sum of 1002
T W j for 1 ≤ j ≤ N , where N and T are sampling

frequency and tenor of the variance swap, respectively.

Theorem 1 Under the He–Chen model (1) or the rDMR model (2), the fair strike Kvar at
t = t0 is

Kvar = 1002 × 1

T

N∑

j=1

W j (t0, vt0 , θt0), (24)

where W j is given by (22) under the He–Chen model or (23) under the rDMR model,
respectively.

Proof It is a direct result from (10) and Proposition 3 or Proposition 4. 	


We note that the pricing formulas for the He–Chen and rDMR models are all composed
of elementary functions without any integral. If one sets λ = σθ = 0 in (22), the fair strike
value Kvar in Theorem 1 is identical with the corresponding strike value under the Heston
model.

5 Numerical results

5.1 Validity of the solutions

In this section, we use Monte-Carlo (MC) simulation to obtain the fair strikes of a discretely
sampled variance swap under the He–Chen and rDMRmodels. Then we compare the results
with the values calculated by the analytic formulas given in Theorem 1.

We use three kinds of samples, named as Sample 1, 2 and 3, in which themodel parameters
are given in Table 1, where r and T are fixed as r = 0.01 and T = 1, respectively.
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Table 1 Sample parameters of
the He–Chen and rDMR models
for Monte-Carlo simulation

Parameters Sample 1 Sample 2 Sample 3

v0 0.1 0.16 0.09

θ0 0.2 0.11 0.06

κ 3 6.3 2.7

σv 0.1 0.12 0.08

σθ 0.01 0.004 0.013

ρ − 0.5 − 0.7 − 0.82

λ (He–Chen) 0.1 0.05 − 0.04

α (rDMR) 4 3.6 2.3

β (rDMR) 0.05 0.125 0.08

We use the well-known Euler–Maruyama scheme to generate sample paths up to maturity
T = 1 with N number of sub-intervals. The sample paths are given by

St j = St j−1 + r St j−1Δt +√vt j−1 St j−1ΔW1(t j ),

vt j = vt j−1 + κ
(
θt j−1 − vt j−1

)
Δt + σv

√
vt j−1

(
ρΔW1(t j ) +

√
1 − ρ2ΔW2(t j )

)
,

θt j = θt j−1 + η(θt j−1)Δt + σθΔW3(t j ),

where Δt = T /N , t j = jΔt, ΔWi (t j ) = Wi (t j ) − Wi (t j−1), j = 1, . . . , N , i = 1, 2, 3.
η(θ) = λ for the He–Chen model and η(θ) = α(β −θt ) for the rDMRmodel. We have taken
100,000 number of sample paths for each of different sampling frequency N . The prices
given by the analytic formula in Theorem 1, the MC simulation results and the standard
errors are shown in Table 2. In this table, AS, MC and SE stand for the analytic solution,
the MC simulation result and the standard error, respectively. Table 2 demonstrates that our
analytic result in Theorem 1 well agrees with the MC simulation result. Note that the error
tends to increase as N decreases but it is mainly due to the discretization error caused by the
Euler–Maruyama scheme.

5.2 Sensitivity analysis

In this section, we investigate the sensitivity of the fair strike value of a variance swap to the
added parameters of the stochastic long-term mean of variance.

5.2.1 The He–Chenmodel

First, under the He–Chen model, the impact of the long-term mean θt of variance on the fair
strike Kvar is shown in Fig. 2. In Fig. 2a, b, we draw the time-to-maturity T dependence of
the fair strike value Kvar for five different choices of λ (the drift of θt ). It is expected that
higher λ leads to larger average value of volatility level. If λ increases, then the fair strike
value increases regardless of time-to-maturity as shown in Fig. 2a, b. If θ0 > v0, then Kvar

tends to increase with time-to-maturity as shown in Fig. 2a. If θ0 < v0, then Kvar tends to
decrease with time-to-maturity in a certain range of time-to-maturity as shown in Fig. 2b.

The sensitivity of the fair strike price to λ is shown in Fig. 2c. It is clear that the fair
strike value is an increasing function of λ. Also, we note that larger initial long-term mean of
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Table 2 Fair strike prices Kvar obtained by the analytic formula in Theorem 1 and Monte-Carlo simulation
results

Model N AS MC SE

He–Chen (sample 1) 12 (monthly) 1982.59 1992.08 2.15927

52 (weekly) 1973.71 1976.39 0.92801

252 (daily) 1971.73 1970.63 0.44846

He–Chen (sample 2) 12 (monthly) 1369.32 1372.05 1.39437

52 (weekly) 1364.15 1362.61 0.63914

252 (daily) 1362.79 1361.45 0.30801

He–Chen (sample 3) 12 (monthly) 602.553 606.297 0.65919

52 (weekly) 601.075 602.101 0.32371

252 (daily) 600.707 600.952 0.19538

rDMR (sample 1) 12 (monthly) 953.145 948.340 1.04385

52 (weekly) 950.838 948.411 0.44244

252 (daily) 950.248 951.106 0.22553

rDMR (sample 2) 12 (monthly) 1272.51 1276.98 1.25807

52 (weekly) 1267.88 1265.57 0.58039

252 (daily) 1266.67 1266.74 0.28975

rDMR (sample 3) 12 (monthly) 775.506 773.783 0.79047

52 (weekly) 773.478 772.599 0.37614

252 (daily) 772.970 773.570 0.21698

variance θ0 leads to higher fair strike price regardless of the initial value of vt . In fact, all the
cases in which θ0 is larger or smaller than or equal to v0(= 0.1) are expressed in that graph.

In Fig. 2d, the impact of the volatility σθ of the long-run mean of variance is demonstrated
for three choices of σv (vol-of-vol). It is obvious that the fair strike price is also an increasing
function of σθ . Higher volatility of the long-run mean of variance gives rise to more volatile
θt which makes the realized variance higher. We note from the figure that the fair strike is
positively correlated with vol-of-vol as it should be.

5.2.2 The rDMRmodel

Figure 3 shows the impact of the long-run mean θt of variance on the fair strike prices under
the rDMR model.

The fair strike prices against time-to-maturity T are depicted in Fig. 3a, where the param-
eters were given by v0 = 0.1 and θ0 = 0.2. If the mean value β of the long-run mean of
variance is larger (smaller) than v0, then the fair strike price increases (decreases) when T
is sufficiently long enough. The relationship between the mean reversion rate α and the fair
strike price is presented in Fig. 3b. If β > θ0, then the fair strike price increases with α.
Conversely, it decreases as α increases under the condition β < θ0. The expected value of θt
would be closer to β at the expiration as α gets larger. One more interesting thing is that when
β = θ0, the impact of α on the fair strike is nearly negligible. From Fig. 3c, it is clear that the
fair strike price is an increasing function of β. If α becomes larger, then the increasing speed
increases. The sensitivity of σθ (the diffusion term of the long-run of variance) under the
rDMR model is also expressed in Fig. 3d and the fair strike increases with it, which agrees
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Fig. 2 Impact of the long-run mean θt of variance on the fair strike prices under the He–Chen model

with the expectation that the bigger the diffusion term is, the more volatile the long-run mean
of variance is.

5.3 Model calibration

In this section,we carry out someempirical studies to verify howwell the concept of stochastic
long-run mean of variance matches the real market data related to variance swaps. There is
no available market data of variance swaps itself as they are traded in the over-the-counter
market. Fortunately, the value of the CBOE Volatility Index (VIX) is equivalent to the square
root of the (strike) price of a variance swap. So, the VIX becomes an important tool for the
calibration of the Heston type of stochastic volatility models considered in this paper. More
specifically, given the underlying price (SPX) St , the VIX is given by

VIXt (τ ) = 100 ×
√
2

τ
Et

[∫ t+τ

t

dSs
Ss

− d(log(Ss))

]
.

Under the model (1) or (2), it can be reduced by the Ito formula to

(VIXt (τ ))2 = 1002 × 1

τ

∫ t+τ

t
E
t [vs]ds.
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Fig. 3 Impact of the long-run mean θt of variance on the fair strike prices under the rDMR model

Thus we could use the VIX data as an instrument for calibration regarding the VIX as the
square root of the strike of a variance swap as it is calculated with sufficiently high sampling
frequency. One can check a study of details about VIX, for example, in Luo and Zhang
(2012). We have exploited the Levenberg–Marquardt algorithm (Levenberg 1944) for the
calibration in this paper. We adopt the Heston model as a benchmark and compare it with the
He–Chen and rDMR models to investigate the influence of the parameters of the stochastic
long-run mean of variance process.

Figure 4 presents the model fit after calibration under the Heston, He–Chen and rDMR
models at four different dates. The estimated parameters are given inTable 3. Figure 4a depicts
the VIX values in the ordinarymarket while Fig. 4b presents the results at the beginning of the
financial crisis caused by COVID-19. One can notice that the market volatility of 2020-03-27
is much higher than that of 2020-01-03. The three models match well overall as shown in
Fig. 4a, b. However, Fig. 4c, d indicate somewhat different results. The VIX values show
a different pattern (concave-down behavior) in those figures. The Heston model does not
capture the market behavior well when the expiration is long enough while the He–Chen
and rDMR models fit them closely. This is because the fair strike prices under the original
Heston model (constant long-run mean of variance) can represent only monotone increasing
or decreasing behavior with respect to time-to-maturity. Note that Fig. 4c corresponds to an
extremely turbulent environment caused by the COVID-19 pandemic.
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Fig. 4 Calibration results of the Heston, He–Chen and rDMR models

As shown in Table 4, the mean square errors (MSEs) between VIX values and theoretical
values with the He–Chen or rDMR model are smaller than those with the Heston model,
in particular, when the situation develops into a more unstable environment. It seems that
there is no notable difference between the He–Chen model and the rDMR model in terms of
market predictability.

6 Conclusion

In this paper, we use two stochastic long-run mean of variance models, called the He–Chen
model and the rDMR model, extending the Heston model and follow the similar arguments
to Heston’s original work and obtain successfully the closed-form formulas for the fair
strike prices of the discretely sampled variance swaps with log return. Our solutions consist
of elementary functions with no integral terms and thus they are very easy to calculate.
The validity of our analytic formulas is confirmed by the Monte-Carlo simulation method.
Some sensitivity analysis has been scrutinized to understand the effect of the newly added
parameters of stochastic long-run mean of variance on the fair strike values of the variance
swaps. A comparison analysis has been made between the VIX data and theoretical prices in
theHeston, He–Chen, and rDMRmodels. TheVIX data chosen in this paper covers not only a
stable market situation but also a turbulent situation caused by the COVID-19 pandemic. The
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Table 3 Parameters estimated by calibration to 2020-01-03, 2020-03-27, 2020-10-16 and 2020-11-27 VIX
data quoted from CBOE

Parameters 2020-01-03 2020-03-27

He–Chen rDMR Heston He–Chen rDMR Heston

v0 0.0148 0.0148 0.0153 0.5145 0.5767 0.4941

θ0(= θ) 0.0310 0.0309 0.0380 0.1947 0.4187 0.0201

c 8.5132 8.5957 4.8114 8.2477 48.941 4.0276

σv 0.0142 0.1064 0.4417 0.3188 0.2694 0.0036

ρ − 0.2348 − 0.2065 − 0.0851 − 0.8669 − 0.1724 − 0.002

λ 0.0117 − 0.2820

α 0.0638 3.3042

β 0.2193 0.0011

σθ 0.0420 0.0050 0.0008 0.0071

Parameters 2020-10-16 2020-11-27

He–Chen rDMR Heston He–Chen rDMR Heston

v0 0.0730 0.0699 0.0012 0.0387 0.0385 0.0340

θ0(= θ) 0.1905 0.1768 0.0886 0.1185 0.1786 0.0753

c 2.5210 1.4698 9.2710 2.5210 1.4698 9.2710

σv 0.8386 1.4057 75.713 0.0401 0.5854 1.0815

ρ − 0.6324 − 0.1227 − 0.0051 − 0.3181 − 1.6 ×106 − 0.0244

λ − 0.1749 − 0.0649

α 1.4669 1.4669

β 0.0013 0.0014

σθ 0.0671 0.1247 0.1493 0.1327

Table 4 Mean square errors between VIX data and theoretical prices

2020-01-03 2020-03-27 2020-10-16 2020-11-27

He–Chen 0.0171 1.6059 0.1410 0.0272

rDMR 0.0172 1.5910 0.1734 0.0294

Heston 0.0229 1.6823 0.6660 0.2539

model fit results demonstrate that the stochastic long-runmean of variance has an vital impact
on the fair strike prices of the variance swaps in the turbulent market condition. Subsequently,
the He–Chen or rDMR model has better performance than the Heston model when the VIX
market shows a concave-down pattern. There is no notable difference between the He–Chen
model and the rDMR model in terms of market predictability. The choice between the two
models may depend on the preference for the number of model parameters or the mean-
reversion property of the stochastic long-run mean of variance. The He–Chen model requires
fewer parameters than the rDMR model while the long-run mean of variance of the rDMR
model reverts to the average level of the entire data set which is not the case in the He–Chen
model.

123



Closed-form pricing formulas for variance… Page 21 of 28 235

There remain a quite number of open issues required to be considered apart from the
problems discussed in this paper. For instance, hedging is an important topic required to be
included. Considering the dynamic hedging of volatility swaps using variance swaps would
make our paper more complete as done in the paper by Swishchuk and Vadori (2014)
under the delayed Heston model. However, it doesn’t seem to be easy in the current exact
analysis of this study. Also, both volatility and variance swaps calculations in one paper
would be nice to be included in one paper. However, a closed-form exact solution of the
price of volatility swaps is difficult to find even in the Heston model with constant long-run
mean of variance due to the inherent difficulty associated with the nonlinearity in the pay-off
function. So, inevitably, we would need to perform some approximate analysis for volatility
swaps. Keeping the He–Chen and rDMR models as they are and considering the usage
of continuously sampled swap prices as an approximation of the corresponding discretely
sampled swap prices, we obtain closed-form approximate solution formulas in the case of
continuously sampled volatility swaps and the results are shown in Appendix B. From the
modeling point of view, it is possible to do an immediate extended research of this work as
follows. For example, one may consider the same type of models as the He–Chen and rDMR
models but with a more extended correlation structure than our choice in this paper. Then
approximate solution formulas could be obtained by applying the same technique as used in
Kim and Kim (2020). Also, other types of processes like the CIR process could be considered
for the long-run mean of variance process.
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Appendix A: Expectations of vt , vt�t and v2t

A.1: The He–Chenmodel

The SDEs of vt and θt are given by

dvt = κ(θt − vt )dt + σv
√

vtdw
2
t ,

dθt = λdt + σθdW
3
t ,

respectively, where dW 2
t dW

3
t = 0. The solution θt can be expressed as

θt = θt0 + λ(t − t0) + σθ

∫ t

t0
dW 3

t (25)

and thus

E[θt ] = θt0 + λ(t − t0),

E[θ2t ] = θ2t0 + λ2(t − t0)
2 + σ 2

θ (t − t0).
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By the Ito lemma, we have

d(eκsvs) = κθse
κsds + σve

κs√vsdW
2
s , (26)

d(eκsθs) = κθse
κsds + eκs(λds + σθdW

3
s ). (27)

Integrating these equations, we have

eκtvt − eκt0vt0 =
∫ t

t0
κθse

κsds + σv

∫ t

t0
eκs√vsdW

2
s , (28)

eκtθt − eκt0θt0 =
∫ t

t0
κθse

κsds + λ

∫ t

t0
eκsds + σθ

∫ t

t0
eκsdW 3

s . (29)

By eliminating
∫ t
t0

κθseκsds term, (28) and (29) lead to

vt = θt + vt0e
κ(t0−t) − θt0e

κ(t0−t) − λ

κ
(1 − eκ(t0−t))

− σθ

eκt

∫ t

t0
eκsdW 3

s + σv

eκt

∫ t

t0
eκs√vsdW

2
s . (30)

and thus

E[vt ] = vt0e
κ(t0−t) + θt0(1 − eκ(t0−t)) + λ(t − t0) − λ

κ
(1 − eκ(t0−t)).

Multiplying (25) and (30) and taking conditional expectation at t0, we obtain

E[vtθt ] = E[vt ]E[θt ] − E

[
σ 2

θ

eκt

∫ t

t0
eκsds

]

= (vt0 − θt0)e
κ(t0−t) − λ

κ
(1 − eκ(t0−t))(θt0 + λ(t − t0))

+ (θt0 + λ(t − t0))
2 + σ 2

θ (t − t0) − σ 2
θ

κ
(1 − eκ(t0−t)),

where the Ito isometry has been used. Similarly,

E[v2t ] = (E[vt ])2 + σ 2
θ

e2κt

∫ t

t0
e2κsds + E

[
σ 2

v

e2κt

∫ t

t0
e2κsvsds

]

= (E[vt ])2 + σ 2
θ

2κe2κt
(e2κt − e2κt0) + �1(t; t0)

holds, where

�1(t; t0) := E

[
σ 2

v

e2κt

∫ t

t0
e2κsvsds

]
= σ 2

v

e2κt

∫ t

t0
e2κsE[vs]ds

= σ 2
v (eκ(t−t0) − e2κ(t−t0))

(
vt0

κ
− θt0

κ
+ λ

κ2

)

+ σ 2
v

2κ
(1 − e2κ(t−t0))

(
θt0 − 3λ

2κ

)

+ λ
σ 2

v

2κ
(t − t0)

in which Fubini’s theorem has been used.
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A.2: The rDMRmodel

The SDEs of vt and θt are given by

dvt = κ(θt − vt )dt + σv
√

vtdW
2
t ,

dθt = α(β − θt )dt + σθdW
3
t ,

where dW 2
t dW

3
t = 0. By Ito’s lemma, we have

d(eαsθs) = αβeαsds + eαsσθdW
3
s , (31)

d(eκtθt ) = (κ − α)θte
κtdt + αβeκtdt + eκtσθdW

3
t . (32)

Integrating (31) from t0 to t , one can obtain

θt = eα(t0−t)θt0 + β(1 − eα(t0−t)) + e−αt
∫ t

t0
eαsσθdW

3
s . (33)

Integrating (26) and (32), we have

eκtvt − eκt0vt0 = κ

∫ t

t0
θse

κsds + σv

∫ t

t0
eκs√vsdW

2
s , (34)

eκtθt − eκt0θt0 = (κ − α)

∫ t

t0
θse

κsds + αβ

κ
(eκt − eκt0) + σθ

∫ t

t0
eκsdW 3

s . (35)

By eliminating
∫ t
t0

θseκsds term from (34) and (35) and applying (33), we have

vt = vt0e
κ(t0−t) − κ

κ − α
θt0e

κ(t0−t) − αβ

κ − α
(1 − eκ(t0−t)) + κ

κ − α
θt0e

α(t0−t)

+ κβ

κ − α
(1 − eα(t0−t)) + κσθ

κ − α
e−αt

∫ t

t0
eαsdW 3

s

− κσθ

κ − α
e−κt

∫ t

t0
eκsdW 3

s + σve
−κt
∫ t

t0
eκs√vsdW

2
s (36)

which leads to

vt = E[vt ] + κσθ

κ − α
e−αt

∫ t

t0
eαsdW 3

s

− κσθ

κ − α
e−κt

∫ t

t0
eκsdW 3

s + σve
−κt
∫ t

t0
eκs√vsdW

2
s

and

θt = E[θt ] + e−αt
∫ t

t0
eαsσθdW

3
s ,

where

E[vt ] = vt0e
κ(t0−t) + β(1 − eκ(t0−t)) + κ

κ − α
(θt0 − β)(eα(t0−t) − eκ(t0−t)),

E[θt ] = θt0e
α(t0−t) + β(1 − eα(t0−t)).

Multiplying vt and θt and taking conditional expectation of the result, one can obtain

E[vtθt ] = E[vt ]E[θt ] + κe−2αt

κ − α
E

[∫ t

t0
e2αsσ 2

θ ds

]
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− κe−(α+κ)t

κ − α
E

[∫ t

t0
e(α+κ)sσ 2

θ ds

]

= E[vt ]E[θt ] + κσ 2
θ

2α(κ − α)
(1 − e2α(t0−t))

− κσ 2
θ

(κ + α)(κ − α)
(1 − e(α+κ)(t0−t)).

Also, the conditional expectation of the square of vt is calculated as

E[v2t ] = (E[vt ])2 +
(

κ

κ − α

)2
e−2αt

E

[∫ t

t0
e2αsσ 2

θ ds

]

+
(

κ

κ − α

)2
e−2κt

E

[∫ t

t0
e2κsσ 2

θ ds

]

− 2

(
κ

κ − α

)2
e−(α+κ)t

E

[∫ t

t0
e(α+κ)sσ 2

θ ds

]

+ σ 2
v e

−2κt
E

[∫ t

t0
e2κsvsds

]

= (E[vt ])2 + �2(t; t0) +
(

κσθ

κ − α

)2 { 1

2κ
(1 − e2κ(t0−t))

+ 1

2α
(1 − e2α(t0−t)) − 2

κ + α
(1 − e(α+κ)(t0−t))

}
,

where

�2(t; t0) := σ 2
v e

−2κt
E

[∫ t

t0
e2κsvsds

]

= σ 2
v

[ (vt0 − β)

κ
(eκ(t0−t) − e2κ(t0−t)) + β

2κ
(1 − e2κ(t0−t))

+ κ(θt0 − β)

(κ − α)(2κ − α)
(eα(t0−t) − e2κ(t0−t))

− (θt0 − β)

κ − α
(eκ(t0−t) − e2κ(t0−t))

]
.

Appendix B: Continuously sampled variance and volatility swaps

The exact and approximate fair strike solution formulas for both variance and volatility swaps
are derived, respectively, in the continuously sampled case as follows.

The fair strikes of continuously sampled variance and volatility swaps are defined by

Kc
var = E

[
1

T

∫ T

0
vtdt

]
,

Kc
vol = E

⎡

⎣
√

1

T

∫ T

0
vtdt

⎤

⎦ ,
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respectively, where vt is a stochastic variance process. The exact value of Kc
var can be com-

puted using the results of Appendix A.1 and A.2 directly. However, it is difficult to derive the
exact formula of Kc

vol. Thus we manipulate the problem using the Brockhaus-Long (2000)
approximation to obtain an approximate value of Kc

vol. Using a random variable V defined
by

V = 1

T

∫ T

0
vtdt,

one can express Kc
var and Kc

vol as

Kc
var = E[V ],

Kc
vol = E[√V ] ≈

√
E[V ] − Var[V ]

(E[V ])3/2 ,

respectively, where Var[V ] means the variance of V .

B.1: The He–Chenmodel

Using the expectation of vt given in Appendix A.1, the value of the fair strike Kc
var under the

He–Chen model is derived as

Kc
var = E[V ]

= 1

T

∫ T

0
E[vt ]dt

= 1

T

∫ T

0

{(
v0 − θ0 + λ

κ

)
e−κt + λκ +

(
θ0 − λ

κ

)}
dt

= 1

κT

(
v0 − θ0 + λ

κ

)
(1 − e−κT ) + 1

2
λT +

(
θ0 − λ

κ

)
. (37)

On the other hand, noting that the expectation of V 2 is expressed as

E[V 2] = 1

T 2

∫ T

0

∫ T

0
E[vsvt ]dsdt, (38)

we use (30) and the property of Ito integral to obtain

E[vsvt ] = E[vt ]E[vs] + σ 2
θ

ek(t+s)
E

[∫ s∧t

0
e2κηdη

]
+ σ 2

v

ek(t+s)
E

[∫ s∧t

0
e2κηvηdη

]

= (E[vt ])2 + σ 2
θ

ek(t+s)

∫ s∧t

0
e2κηdη + σ 2

v

ek(t+s)

∫ s∧t

0
e2κη

E
[
vη

]
dη

= (E[vt ])2 + σ 2
θ

2κek(t+s)

(
e2k(s∧t)) − 1

)

+ σ 2
v

κek(t+s)

{(
v0 − θ0 + λ

κ

)(
ek(s∧t) − 1

)
+ λ

2
(s ∧ t)e2k(s∧t)

+
(

θ0

2
− 3λ2

4κ

)(
e2k(s∧t)) − 1

)}
, (39)
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where s ∧ t := min(t, s). By (38) and (39), we have

E[V 2] = (E[V ])2 + σ 2
θ

2κ3T 2

(
4e−κT − e−2κT − 3 + 2κT

)

+ σ 2
v

κ3T 2

{(
v0 − θ0 + λ

κ

)(
1 − e−2κT − 2κT e−κT

)

+ λ

κ

(
κ2T 2

2
− κT − e−κT + 1

)
+
(

θ0

2
− 3λ2

4κ

)(
4e−κT − e−2κT − 3 + 2κT

)}

and

Var[V ] = E[V 2] − (E[V ])2

= σ 2
θ

2κ3T 2

(
4e−κT − e−2κT − 3 + 2κT

)

+ σ 2
v

κ3T 2

{(
v0 − θ0 + λ

κ

)(
1 − e−2κT − 2κT e−κT

)

+ λ

κ

(
κ2T 2

2
− κT − e−κT + 1

)
+
(

θ0

2
− 3λ2

4κ

)(
4e−κT − e−2κT − 3 + 2κT

)}
.

(40)

Therefore, the value of the fair strike Kc
vol under the He–Chen model is approximated as

Kc
vol ≈

√
Kc
var − Var[V ]

(E[V ])3/2 ,

where Kc
var and Var[V ] are given by (37) and (40), respectively.

B.2: The rDMRmodel

Using the expectation of vt in Appendix 1, the value of the fair strike Kc
var under the rDMR

model is derived as

Kc
var = E[V ]

= 1

T

∫ T

0
E[vt ]dt

= 1

T

∫ T

0

{(
v0 + αβ

κ − α
− κθ0

κ − α

)
e−κt + κ

κ − α
(θ0 − β) e−αt + β

}
dt

= 1

T

(
v0

κ
+ αβ

κ(κ − α)
− θ0

κ − α

)
(1 − e−κT ) + κ (θ0 − β)

Tα(κ − α)
(1 − e−αT ) + β. (41)

On the other hand, from (36) we have

E[vsvt ] = E[vt ]E[vs] + σ 2
v e

−κ(t+s)
E

[∫ (s∧t)

0
e2κηvηdη

]

+
(

κσθ

κ − α

)2
e−α(t+s)

E

[∫ (s∧t)

0
e2αηdη

]

+
(

κσθ

κ − α

)2
e−α(t+s)

E

[∫ (s∧t)

0
e2κηdη

]
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−
(

κσθ

κ − α

)2 (
e−αt−κs + e−κt−αs)

E

[∫ (s∧t)

0
e(κ+α)ηdη

]

= E[vt ]E[vs] + 1

2α

(
κσθ

κ − α

)2
e−α(t+s)(e2α(s∧t) − 1)

+ 1

2κ

(
κσθ

κ − α

)2
e−κ(t+s)(e2κ(s∧t) − 1)

− 1

κ + α

(
κσθ

κ − α

)2
e−κt−αs)(e(κ+α)(s∧t) − 1)

− 1

κ + α

(
κσθ

κ − α

)2
e−αt−κs)(e(κ+α)(s∧t) − 1)

+ σ 2
v

κ

(
v0 + αβ

(κ − α)
− κθ0

κ − α

)
e−κ(t+s)(eκ(s∧t) − 1)

+ σ 2
v κ(θ0 − β)

(κ − α)(2κ − α)
e−κ(t+s)(e(2κ−α)(s∧t) − 1) + σ 2

v β

2κ
e−κ(t+s)(e2κ(s∧t) − 1).

(42)

From (38) and (42), we obtain

Var[V ] = E[V 2] − (E[V ])2

= 1

2α3T 2

(
κσθ

κ − α

)2 (
4e−αT − e−2αT − 3 + 2αT

)

+ 1

2κ3T 2

(
κσθ

κ − α

)2 (
4e−κT − e−2κT − 3 + 2κT

)

− 2

T 2(κ + α)

(
κσθ

κ − α

)2

(
T

κ
+ e−κT

κ2 − 1

κ2 + T

α
+ e−αT

α2 − 1

α2 − (1 − e−κT )(1 − e−αT )

κα

)

+ σ 2
v

κ3T 2

(
v0 + αβ

(κ − α)
− κθ0

κ − α

)(
1 − e−2κT − 2κT e−κT

)

+ 2σ 2
v κ(θ0 − β)

T 2(κ − α)2(κ − 2α)

(
1

α
(1 − e−αT ) − 1

κ
(1 − e−κT )

)

+ σ 2
v κ(θ0 − β)

T 2κ2(κ − α)(κ − 2α)

(
2e−κT − e−2κT − 1

)

+ σ 2
v β

2κ3T 2

(
4e−κT − e−2κT − 3 + 2κT

)
. (43)

Therefore, one can get a closed-form approximation formula of the fair strike Kc
vol under the

rDMR model using (41) and (43).
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