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Abstract
In this article, a new fully fuzzy approach is developed for the evaluation based on distance
from average solution (EDAS) for multi-criteria decision-making (MCDM) using spherical
fuzzy sets (SFSs). The proposed approach avoids the current limitations and drawbacks of
distance-based methods in general and the EDAS method in particular using spherical fuzzy
information namely, early defuzzification, the flaws of distance measures, and the undefined
spherical fuzzy subtraction and division operations. First, the approach employs the score
functiononly in thefinal step for ranking. Second, the concept of the spherical fuzzydifference
is introduced to make up for the subtraction operation which is the backbone of EDAS and
as a substitute for distance measures. The spherical fuzzy difference is utilized to indicate
any increase or decrease in the membership degree, the non-membership degree, and the
hesitancy degree in the performance of an alternative for a criterion than that of its peer in the
average solution. Then, the weighted spherical differences are calculated. The total weighted
spherical differences from the average solution of each alternative for the assessment criteria
are aggregated in the appraisal score. Due to a flaw in the extant aggregation operators, their
results might be misleading. Therefore, an aggregation function is introduced that guarantees
a balanced and fair aggregation. The appraisal scores are defuzzified, and the alternative with
the highest appraisal score is the best. Two practical examples in MCDM are solved and a
comparative study is presented to demonstrate and validate the algorithm.
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1 Introduction

Multi-criteria decision-making (MCDM) encompasses plenty of methods that help decision-
makers in the assessment and the selection of the best candidate from a set of alternatives
based on many diverse, even conflicting, criteria. A new era in MCDM began when Zadeh
(1965) introduced the notion of fuzzy sets. The fuzzy set theory proved to be powerful in
handling various MCDM problems to overcome uncertainty, imprecise data, and ambiguous
information. FuzzyMCDMhas been extensively used in awide range of real-life applications,
e.g., evaluation of mergers and acquisitions (Zhang et al. 2016), assessment of alternative
vehicle technologies’ performance (Onat et al. 2016), green supplier chain management (Ali
et al. 2021), evaluation of site selection indicators for locating vehicle shredding facilities
(Deveci et al. 2022c), and the evaluation of safe e-scooter strategies (Deveci et al. 2022a).
Over the past decades, several researchers have proposed many extensions and generaliza-
tions of fuzzy sets. Zadeh (1975) introduced a more elaborate form of fuzzy sets, type-2
fuzzy sets. However, due to the computational complications of type-2 fuzzy sets, several
simple variants were proposed, e.g., interval-valued and interval type-2 fuzzy sets. Atanassov
(1986) introduced intuitionistic fuzzy sets (IFSs) to better depict the alternatives’ information
under incomplete and uncertain data. Nevertheless, IFSs may fail in some cases to fulfill the
condition on the sum of the membership degree and the non-membership degree to be at most
one. Several extensions of IFSs were introduced, their main goal is to handle uncertainty and
clarify the indeterminacy with a high level of reliability (Ilbahar et al. 2018).

Smarandache (1998) introduced neutrosophic fuzzy sets (NFSs) as an extension of IFSs,
defining the degree of indeterminacy as an independent parameter of the set. Therefore,
real-life problems can be represented more accurately. The sum of three parameters of the
set can be between 0 and 3, with each parameter varying between 0 and 1, independently.
Yager (2014) introduced the Pythagorean fuzzy sets (PFSs).The condition on the sum of
the membership degree and the non-membership degree is modified to take the sum of the
squares instead. This gives more room for decision-makers to express their preference. Yager
(2017) also introduced the q-rung orthopair fuzzy sets as a generalization of IFSs and PFSs.
They are characterized by a pair of degrees, a membership degree (μ) and a non-membership
degree (υ), satisfying the relation μq + υq ≤ 1, for q ≥ 1.

Intuitionistic and Pythagorean fuzzy sets or q-rung orthopair sets can handle the hesi-
tancy of the decision-makers in a limited way because they do not consider an independent
hesitancy degree. Regarding neutrosophic sets, independent hesitancy is considered, but dif-
ferent complications arise from the condition on the sum of the three parameters, making
it difficult to utilize in scientific and engineering applications. Spherical fuzzy sets (SFSs)
were developed to handle these issues, and their operations are proposed (Gül 2021). SFSs
are new members of the fuzzy sets’ family. They were introduced to fulfill the aspiration
of researchers and practitioners to express human perception and cognition effectively and
efficiently. The novel concept of SFSs has a major advantage; the decision-makers are free to
express their hesitance independent of the membership degree and non-membership degree.
Hence, higher independence opportunities are given to the decision-makers. In addition,
the geometric spherical surface gives the decision-makers a broader preference domain and
makes experts more free to assign the values of parameters of the set. Similar to PFSs, the
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sum of the squares of the membership degree, the non-membership degree, and the hesitancy
degree is considered. Yet, for SFSs the sum is less than or equal to one.

The development of novel MCDMmethods and the improvement of the extant techniques
or the integration of these techniques to build efficient and robust structures that can han-
dle complex decisions arising from recent emerging technologies receive enormous interest
among researchers. For example, Gorcun et al. (2021) proposed an integrated fuzzy approach
consisting of the fuzzy Step-Wise Weight Assessment Ratio Analysis (F-SWARA) and the
combinative Distance-based assessment (F-CODAS) techniques to select the best tanker
vehicle option. Iordache et al. (2022) proposed an improved interval rough Measurement
Alternatives and Ranking according to the COmpromise Solution (MARCOS) methodology
for hydrogen gas grid development via natural gas network conversion. Deveci et al. (2022b)
improved the Weighted Aggregated Sum Product Assessment (WASPAS) approach to eval-
uate and rank the prioritization of climate change mitigation strategies using triangular fuzzy
numbers. Yu and Xu (2022) established the advantage matrix and designed new effective and
reliable algorithms.

The evaluation based on distance from average solution (EDAS) method is one of the
recently proposed MCDM techniques that simplify the traditional decision-making process
(Liang 2020).The EDASmethod has a significant role in solvingMCDMproblems especially
when more conflicting criteria exist. It is steady and progressive when various weights of the
criteria are allocated. In addition, it has the potential to produce more accurate results with
fewer calculations (Batool et al. 2021). It also makes the compromise solution method more
stable (Gül 2021).

The EDAS method is one of the distance-based multi-criteria decision-making methods
similar to the technique of order preference by similarity to the ideal solution (TOPSIS) and
multi-criteria optimization and compromise solution (VIKOR).TOPSIS andVIKORconsider
the measure of the distances between each alternative and the positive and the negative ideal
solutions as a decision criterion. Then, a positive and a negative ideal solution must be
determined. EDAS can eliminate this additional step since it measures the distance between
an alternative and the average solution. Therefore, decision-makers do not have to obtain
positive and negative ideal solutions; they just need to compute the average performance
scores of each attribute. For this, the EDASmethod simplifies the calculation of distances and
determines the final decision rapidly (Karaşan and Kahraman 2018). EDAS also outperforms
TOPSIS and VIKOR in terms of time complexity due to the elimination of non-prospective
candidates. Besides, the method is favorable when there is information about the preferred
average value of the attributes’ evaluation (Ilieva et al. 2018).

In the spherical fuzzy environment, distance-based methods have two main deficiencies
that can lead to incorrect results or hinder their implementation. First, as SFSs are recently
introduced, the newly developed score functions might produce different ranks since they
have not been extensively studied (Kutlu Gündoğdu and Kahraman 2020). As a result, the
positive and negative ideal solutions might change according to the score function employed.
Second, the distance between the positive and negative ideal solutions might not be the
largest. Therefore, the EDAS method is superior in this environment since it has the merit of
using the average solution not the positive and the negative ideal solutions. In addition, it is
always better to develop fully fuzzy approaches to utilize the score functions in the final step
only for ranking with the aid of the accuracy function, if required, to lessen their effect.

A major concern in distance measures in a spherical fuzzy environment is handling the
three parameters of a SFS in the same manner despite the different influences of each param-
eter. For example, an increase in the membership degree has the same effect as an increase
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in the non-membership degree, although the former is an advantage and the latter is a dis-
advantage. Herein, it is important to find a substitute for distance measures that takes the
different influences of each parameter of a SFS into consideration when comparing the dis-
tance between SFSs.

In this article, EDAS is extended to handle MCDM problems with SFSs. Since SFSs are
non-negative and the subtraction operation is not defined for SFSs, the main challenge is
to perform the algorithm under these conditions. Instead of using subtraction, the spherical
fuzzy differences are utilized to indicate any increase or decrease in the membership degree,
the non-membership degree, and the hesitancy degree in the performance of an alternative
for a criterion than that of its peer in the average solution. The weighted differences are
calculated. Then, the total weighted differences are aggregated in the appraisal score of each
alternative. Due to a drawback in the extant weighted averaging operators, they might not be
able to represent the actual situation. Therefore, an aggregation function is introduced which
guarantees a balanced aggregation and depicts the actual situation fairly. The appraisal scores
are defuzzified, and the alternatives are ranked in descending order. The alternative with the
highest appraisal score is the best candidate. Two practical examples are solved with the
proposed SF-EDAS to demonstrate the algorithm. The results are compared mainly with the
results of some extant MCDM methods to validate the algorithm.

In the nutshells, the main contributions of the article are:

(1) Due to the deficiencies of distance-based methods in the spherical fuzzy environment,
a spherical fully fuzzy EDAS algorithm is developed that surpasses these deficiencies
and encompasses all the advantages of SFSs over the other fuzzy set types.

(2) It is known that a proposedMCDMmethod is robust if they obtained results are invariant
under different distancemetrics (Ilieva et al. 2018).Hence, the concept of spherical fuzzy
difference is introduced as a substitute for distance measures and to account for negative
distances due to the absence of the subtraction operation.

(3) Due to certain flaw in the extant aggregation operators, a new aggregation function is
proposed that ensures balanced aggregation, increasing the accuracy of the results.

The article is organized as follows. The basic operations on SFSs, a literature review on the
EDASmethod, and the ordinaryEDASalgorithmare given inSect. 2. The concept of spherical
fuzzy difference, the proposed aggregation function, and the SF-EDAS are developed in
Sect. 3. In Sect. 4, two practical examples are solved to demonstrate the method, and a
comparative analysis is presented. Finally, the conclusion is given in Sect. 5.

2 Preliminaries

In this section, we briefly review some basic concepts about the SFSs.

2.1 Spherical fuzzy sets

A SFS is expressed by

Ãs �
{〈
u,
(
μ Ãs

(u), υ Ãs
(u), π Ãs

(u)
)
|u ∈ U

〉}
,

where μ Ãs
: U → [0, 1] is the membership degree,υ Ãs

: U → [0, 1] is the non-

membership degree,π Ãs
: U → [0, 1] is the hesitancy degree, and 0 ≤ μ2

Ãs
(u) + υ2

Ãs
(u) +

π2
Ãs

(u) ≤ 1,∀u ∈ U .
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Definition 2.1.1 (Gündoǧdu and Kahraman 2019). Let Ãs �
(
μ Ãs

, υ Ãs
, π Ãs

)
and B̃s �(

μB̃s
, υB̃s

, πB̃s

)
be two SFSs. The operational laws of SFSs are given as follows.

Addition

Ãs ⊕ B̃s �

⎧
⎪⎨
⎪⎩

(
μ2

Ãs
+ μ2

B̃s
− μ2

Ãs
μ2
B̃s

)1/2
, υ Ãs

υB̃s
,

((
1 − μ2

B̃s

)
π2
Ãs

+
(
1 − μ2

Ãs

)
π2
B̃s

− π2
Ãs

π2
B̃s

)1/2

⎫
⎪⎬
⎪⎭

, (1)

and

Ãs ⊕ B̃s � B̃s ⊕ Ãs .

Multiplication by a scalar; For real λ > 0

λ 	 Ãs �
{(

1 −
(
1 − μ2

Ãs

)λ
)1/2

, νλ
Ãs

,

[(
1 − μ2

Ãs

)λ −
(
1 − μ2

Ãs
− π2

Ãs

)λ
]1/2}

(2)

and.

λ 	
(
Ãs ⊕ B̃s

)
� λ 	 Ãs ⊕ λ 	 B̃s .

Multiplication

Ãs ⊗ B̃s �

⎧
⎪⎨
⎪⎩

μ Ãs
μB̃s

,
(
υ2
Ãs

+ υ2
B̃s

− υ2
Ãs

υ2
B̃s

)1/2
,

((
1 − υ2

B̃s

)
π2
Ãs

+
(
1 − υ2

Ãs

)
π2
B̃s

− π2
Ãs

π2
B̃s

)1/2

⎫
⎪⎬
⎪⎭

. (3)

Definition 2.1.2 (Gündoǧdu and Kahraman 2019). The score and accuracy functions for
ranking SFSs are given by:

Score
(
Ãs

)
�
(
μ Ãs

− π Ãs

)2 −
(
υ Ãs

− π Ãs

)2
. (4)

Accuracy
(
Ãs

)
� μ2

Ãs
+ υ2

Ãs
+ π2

Ãs
. (5)

An order relation between two SFSs Ãs and B̃s is stated as

Ãs < B̃s ifScore
(
Ãs

)
< Score

(
B̃s

)
,

or Score
(
Ãs

)
� Score

(
B̃s

)
and Accuracy

(
Ãs

)
< Accuracy

(
B̃s

)
.

Definition 2.1.3 (Ashraf et al. 2019). The conjugate of a SFS is given by:

Ãc
s �

(
υ Ãs

, μ Ãs
, π Ãs

)
. (6)

Definition 2.1.4 (Gündoǧdu and Kahraman 2019). The aggregation operators namely, the
spherical weighted arithmetic mean (SWAM) and the spherical weighted geometric mean
operators (SWGM) are given by:

SWAMw

(
ÃS1 , ÃS2 , . . . , ÃSn

)
� w1 ÃS1 ⊕ w2 ÃS2 ⊕ . . . ⊕ wn ÃSn

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1 −

n∏
i�1

(
1 − μ2

ÃSi

)wi
]1/2

,
n∏

i�1
υ

wi

ÃSi

,

[
n∏

i�1

(
1 − μ2

ÃSi

)wi

−
n∏

i�1

(
1 − μ2

ÃSi

− π2
ÃSi

)wi
]1/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
(7)
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where wi ∈ [0, 1];
∑n

i�1 wi � 1.

SWGMw

(
ÃS1 , ÃS2 , . . . , ÃSn

)
� Ãw1

S1
⊗ Ãw2

S2
⊗ . . . ⊗ Ãwn

Sn

�

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n∏
i�1

μ
wi

ÃSi

,

[
1 −

n∏
i�1

(
1 − υ2

ÃSi

)wi
]1/2

,

[
n∏

i�1

(
1 − υ2

ÃSi

)wi

−
n∏

i�1

(
1 − υ2

ÃSi

− π2
ÃSi

)wi
]1/2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

,
(8)

where wi ∈ [0, 1];
∑n

i�1 wi � 1.
The Euclidean distance between two SFSs is given by (Kutlu Gündoǧdu and Kahraman

2019)

disE
(
Ãs, B̃s

)
�
√(

μ Ãs
− μB̃s

)2
+
(
υ Ãs

− υB̃s

)2
+
(
π Ãs

− πB̃s

)2
. (9)

The Xu and Zhang’s distance is given by:

disXZ

(
Ãs, B̃s

)
� 1

2

∣∣∣∣
(
μ Ãs

− μB̃s

)2
+
(
υ Ãs

− υB̃s

)2
+
(
π Ãs

− πB̃s

)2∣∣∣∣. (10)

The spherical distance is given by:

disSp
(
Ãs, B̃s

)
� 2

π

(
arccos

(
μ Ãs

μB̃s
+ υ Ãs

υB̃s
+ π Ãs

πB̃s

))
. (11)

2.2 The EDASmethod

2.2.1 A literature review

The evaluation based on distance from average solution (EDAS) method is a recent MCDM
method. Ghorabaee et al. (2015) introduced EDAS as an effective method for managing and
controlling a large number of inventory items or stock-keeping units (SKUs), i.e., inventory
classification with crisp data. The evaluation process in the EDASmethod is based on the dis-
tances of the alternatives from the average scores of the attributes for the total appraisal of the
alternatives. Two types of distances are defined, the positive distance from the average (PDA),
and the negative distance from the average (NDA) for the assessment of the alternatives. The
alternative with the highest PDA total score and lowest NDA total score is considered the
best. Thus, the EDASmodel owns the merit of taking the average solutions only into account
concerning the intangibility of decision-makers and the uncertainty of the decision-making
environment to obtain more accurate and effective aggregation results (Zhang et al. 2019a).
Compared to other decision-making and classification methods, the EDAS method has high
efficiency and needs fewer computations (He et al. 2019). It is more accurate and effective
for considering the conflicting attributes (Zhang et al. 2019b).

The EDAS method was extended to handle MCDM problems with trapezoidal type-
1 (Ghorabaee et al. 2016) and trapezoidal interval type-2 fuzzy sets (Ghorabaee et al.
2017b). Ghorabaee et al. (2017a) proposed a new integrated model based on IT2FSs and
the EDAS method for supplier evaluation and order allocation with environmental consid-
eration. Keshavarz Ghorabaee et al. (2017) proposed a stochastic EDAS method to handle
problems in which the performance values of alternatives on each criterion follow the normal
distribution, and used the proposed method to evaluate the performance of bank branches.
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Kahraman et al. (2017) proposed an intuitionistic fuzzy EDAS for the management of solid
wastes. Peng and Liu (2017) proposed three algorithms to solve single-valued neutrosophic
soft decision-making problems based on EDAS, similarity measure, and level soft set. Ecer
(2018) proposed a novel integrated model composed of the fuzzy Analytical Hierarchy Pro-
cess (AHP) and EDAS to select proper third-party logistics providers, in which Fuzzy AHP is
used for calculating priority weights of each criterion and EDAS is employed to achieve the
final ranking. Feng et al. (2018) proposed an EDAS method for the extended hesitant fuzzy
linguistic environment. Ilieva (2018) proposed two variants of EDAS for interval type-2 fuzzy
sets to improve the computations. In addition, Ilieva et al. (2018) proposed a new variant of
the EDAS method for trapezoidal type-1 fuzzy sets which reduces the number of needed
calculations without affecting the quality of the solution. Karaşan and Kahraman (2018)
introduced an interval-valued neutrosophic version of EDAS with the advantage of consider-
ing experts’ truthiness, falsity, and indeterminacy simultaneously. The proposed method was
applied to the prioritization of The United Nations’ national sustainable development goals.
Keshavarz-Ghorabaee et al. (2018) proposed a fuzzy dynamic MCGDM approach based on
the EDAS method for subcontractor evaluation.

He et al. (2019) proposed a novel integrated model using information entropy and EDAS
under probabilistic uncertain linguistic sets, in which information entropy is used for deriving
priority weights of each attribute and EDAS is employed to obtain the final ranking of a
green supplier. Li et al. (2019) extended the traditional EDAS method to solve the MAGDM
problem in the picture fuzzy environment. Wang et al. (2019) presented a 2-tuple linguistic
neutrosophic EDASmodel and employed thismodel for the safety assessment of construction
projects. Mi and Liao (2019) utilized the Best Worst Method and the EDAS method with
hesitant fuzzy information for choosing commercial endowment insurance products. Zhang
et al. (2019a) designed an EDAS model with picture 2-tuple linguistic numbers for green
supplier selection. Zhang et al. (2019b) also constructed a picture fuzzy EDAS model for
green supplier selection.

Li et al. (2020) extended the EDAS method for multi-attribute group decision-making
(MAGDM) under q-rung orthopair fuzzy sets. Liang (2020) extended the EDAS method to
intuitionistic fuzzy environments to solve some MAGDM issues and utilized the method for
evaluating green building energy-saving design projects. Yanmaz et al. (2020) extended the
EDAS method using interval-valued Pythagorean fuzzy numbers for MCDM problems and
applied the extended method to the car selection problem. Batool et al. (2021) established
a multi-attribute decision-making approach based on the EDAS method under Pythagorean
probabilistic hesitant fuzzy information to select an ideal drug fromcertain drugswith efficacy
values for coronavirus disease. They also developed an algorithm to address the uncertainty
in the selection of drugs in emergency decision-making issues concerning clinical analysis.
Krishankumar et al. (2021) proposed an integrated framework composed of a novel attitu-
dinal evidence-based Bayesian approach for criteria weight estimation, variance approach
to determine experts’ weights, and EDAS approach to prioritize zero-carbon measures. Li
et al. (2021) proposed a new EDAS method using PFSs based on the prospect theory. They
applied the proposed approach to select a suitable project for building a high-grade highway.
Finally, Gül (2021) modified EDAS for the spherical fuzzy environment with Entropy-based
objective attribute weighting to avoid the undesired potential effects of subjective weighting.
In his study, Gül (2021) had to consider the score function value of the average solution
rather than the average solution itself since there is no proposition for division operation of
SFS and the development of division operation on SFS requires complex mathematics. This
situation can be considered a limitation of the study.
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From the previous studies, we conclude that the EDAS as an efficient, robust, and accurate
method but it has not beenwell studied using spherical fuzzy information.Hence, it is required
to propose new versions of the EDAS algorithm that can dodge the current limitations and
drawbacks of the method namely the undefined spherical fuzzy subtraction and division
operations, early defuzzification, and the flaws of distance measures.

2.2.2 The conventional EDAS algorithm

For a MCDM problem, let A � {a1, a2, . . . , an} be the set of alternatives,
C � {c1, c2, . . . , cm} the set of criteria, and D � {D1, D2, . . . , Dk} the set of decision-
makers. The EDAS method can be summarized in the following steps (Ghorabaee et al.,
2015).

Step 1: Determine the most relevant criteria that describe the alternatives.
Step 2: Construct the decision matrix and the weighting matrix of the criteria according

to the evaluation of the decision-makers.

X � [
xi j
] �

c1 c2 . . . cm
a1
a2
...
an

⎡
⎢⎢⎢⎢⎣

x11 x12
x21 x22

· · · x1m
x2m

...
. . .

...
xn1 xn2 · · · xnm

⎤
⎥⎥⎥⎥⎦

and W � [
w1 w2 . . . wm

]
,

where xi j is the performance of the ith alternative for the jth criterion, and w j is the weight
of the jth criterion.

Step 3: Determine the average solution for each criterion.

av j �
∑n

i�1 xi j
n

. (12)

Step 4: Compute the matrices of the PDA and the NDA.

PDA � [
PDAi j

]
,NDA � [

NDAi j
]
,

where PDAi j �
⎧
⎨
⎩

max(0,(xi j−av j))
av j

if j ∈ benefit criteria
max(0,(av j−xi j))

av j
if j ∈ cost criteria,

(13)

and NDAi j �
⎧
⎨
⎩

max(0,(av j−xi j))
av j

if j ∈ benefit criteria
max(0,(xi j−av j))

av j
if j ∈ cost criteria.

(14)

Step 5: Compute the weighted sum of the PDA and the NDA for each alternative.

SPi �
m∑
j�1

w j PDAi j , (15)

SNi �
m∑
j�1

w j N DAi j . (16)

Step 6: Normalize the weighted sums for all the alternatives.

NSPi � SPi
maxi (SPi )

, (17)
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NSNi � 1 − SNi

maxi (SNi )
. (18)

Step 7: Compute the appraisal score for all the alternatives.

ASi � 1

2
(NSPi + NSNi ),where 0 ≤ ASi ≤ 1. (19)

Step 8: Rank the alternatives in decreasing order according to the appraisal score. The
alternative with the highest appraisal score is the best candidate.

3 The proposed SF-EDAS algorithm

In this section, a newmethodnamed asSF-EDAS is proposed. In thismethod, the performance
of the alternatives and the weights of the criteria are represented in the form of SFSs. Since
the subtraction operation is not defined for SFSs, the algorithm will count on the spherical
fuzzy difference instead. First, the formation of the spherical fuzzy difference to express
the difference in the performance of an alternative from the average solution is explained.
Second, the proposed spherical weighted averaging operator is developed. Third, the steps
of the algorithm are demonstrated. In the case of cost criteria, the conjugate given by Eq. (6)
is used. The first two steps, the selection of the criteria and the formation of the decision
and weight matrices, are standard in most MCDM methods. Hence, the illustration of the
algorithm will start after these three steps.

3.1 The formation of spherical fuzzy difference

Let x̃i j � (
μi j , υi j , πi j

)
be the performance of the ith alternative for the jth criterion. Amem-

bership degree μi j denotes the extent an alternative fulfills a criterion. A non-membership
degree υi j denotes the extent an alternative does not fulfill a criterion. A hesitancy degree πi j

denotes the reliability of the information represented by an alternative (Szmidt and Kacprzyk
2004).

The distance between the two performances x̃i j and the average solution ãv j �(
μ j , υ j , π j

)
is calculated using the Hamming distance as follows.

dH
(
x̃i j , ãv j

) � ∣∣μi j − μ j
∣∣ + ∣∣υi j − υ j

∣∣ + ∣∣πi j − π j
∣∣. (20)

Then, the performance x̃i j is comparedwith the average solution ãv j per degree to form the
spherical fuzzy difference S̃�

i j � (μ�, υ�, π�). An increment in μ indicates an increase in
the agreement on an alternative. An increment in υ indicates an increase in the disagreement
on an alternative. While an increment in π indicates an increase in the hesitation margin and
thus less reliability. Alternatively, a decrement in μ indicates an increase in the disagreement
on an alternative. A decrement in υ indicates an increase in the agreement on an alternative.
While a decrement inπ indicates a decrease in the hesitationmargin and thusmore reliability,
hence an increase in the agreement on the alternative.

First, compare the membership degrees. If μi j > μ j , in this case, the increase in the
membership degree of x̃i j than its peer in the average ãv j is considered an advantage.
Therefore, we set the membership degree

μ�μ+ �
∣∣μi j − μ j

∣∣
dH

, (21)
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which represents the percentage of agreement on the alternative according to its increment
from the average.

On the contrary, if μi j < μ j , the decrease in the membership degree of x̃i j than its peer
in the average ãv j is considered as a disadvantage. Therefore, we set the non-membership
degree.

υ�μ− �
∣∣μi j − μ j

∣∣
dH

, (22)

which represents the percentage of rejection of the alternative due to its decrement from
the average.

Second, compare the non-membership degrees. If υi j > υ j , in this case, the increase
in the non-membership degree of x̃i j than its peer in the average ãv j is considered as a
disadvantage. Therefore, we set the non-membership degree

υ�υ+ �
∣∣υi j − υ j

∣∣
dH

, (23)

which represents the percentage of rejection of the alternative according to its increment
from the average.

On the other hand, if υi j < υ j , the decrease in the non-membership degree of x̃i j than
its peer in the average ãv j is considered as an advantage. Therefore, we set the membership
degree.

μ�υ− �
∣∣υi j − υ j

∣∣
dH

, (24)

which represents the percentage of agreement on the alternative according to its decrement
from the average.

Third, compare the hesitancy degrees. Ifπi j > π j , in this case, the increase in the hesitancy
degree of x̃i j than its peer in the average ãvj is considered as a disadvantage. Therefore, we
set the hesitancy degree

π�π+ �
∣∣πi j − π j

∣∣
dH

, (25)

which represents the percentage of reliability according to its increment from the average.
Else if πi j < π j , the decrease in the hesitancy degree of x̃i j than its peer in the average ãv j

is considered as an advantage. Therefore, we set the membership degree.

μ�π− �
∣∣πi j − π j

∣∣
dH

, (26)

which represents the percentage of agreement on the alternative according to its decrement
from the average.

Finally, compute the spherical fuzzy difference S̃�
i j � (μ�, υ�, π�), where

μ� � μ�μ+ + μ�υ− + μ�π− , υ� � υ�μ− + υ�υ+ andπ� � π�π+ (27)

Consequently, we can form the spherical fuzzy difference matrix S̃ �
[
S̃�
i j

]
, i.e., the

matrix of spherical fuzzy differences. The matrix S̃ accentuates the increase or decrease
of the membership degree, the non-membership degree, and the hesitancy degree of the
performance of each alternative from their peer in the average solution for the whole criteria.
Figure 1 illustrates the computation of the spherical fuzzy difference between two SFSs.
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Fig. 1 Computation of the proposed spherical fuzzy difference

3.2 The proposed spherical aggregation function

The extant aggregation operators have a flaw when employing a SFS with either a member-
ship degree “μ � 0” or a non-membership degree “υ � 0” e.g., (1, 0, 0) and (1, 0, 0). It is
clear from the definition of the SWAMoperator (7) that the resulting non-membership degree
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is the product of all the non-membership degrees,
n∏

i�1
υ

wi

ÃSi

. Therefore, whenever any SFS has

a zero non-membership degree, this zero will dominate and the resulting SFSwill have a zero
non-membership degree regardless of the values of the other non-membership degree. For
example, consider the SFSs (1, 0, 0), (0.2, 0.8, 0.2), and (0.1, 0.9, 0.1). The result of aggre-
gation using (7) is always (1, 0, 0), despite the second and third non-membership degrees
being relatively high. Similarly, from the definition of the SWGM operator (8), the resulting

membership degree is the product of all the membership degrees,
n∏

i�1
μ

wi

ÃSi

. Hence, whenever

any SFS has a zero membership degree, this zero will dominate and the resulting SFS will
have a zero membership degree. For example, consider the SFSs (0, 1, 0), (0.8, 0.2, 0.2), and
(0.9, 0.1, 0.1). The result of aggregation using (8) is (0, 1, 0), although the second and third
membership degrees are relatively high.

Thus, it is required to develop a balanced aggregation function that is not affected by a
zero either in the membership or the non-membership degree and reflects the actual average
of the aggregated SFSs. The proposed aggregation function is based on Yager’s definition of
aggregation functions and does not rely on the operational laws of SFSs (1) and (2).According
to Yager (2014) an aggregation function should satisfy the following three conditions.

Definition 3.2.1 (Yager 2014) A function Agg : [0, 1]n → [0, 1] is an aggregation function
if

i) Agg(0, . . . , 0) � 0,

i i) Agg(1, . . . , 1) � 1,

i i i) Agg(a1, . . . , an) ≥ Agg(b1, . . . , bn) if ai ≥ bi for all i .

Definition 3.2.2 For the SFSs
{
Ã1, Ã2, . . . , Ãn

}
withweights (w1, w2, . . . , wn);wi ∈ [0, 1]

and
n∑

i�1
wi � 1, the average value obtained using the spherical aggregation (SFAF) is given

by:

SFAgg
(
Ã1, Ã2, . . . , Ãn

)
�
⎛
⎝
√√√√

n∑
i�1

wiμ
2
Ãi

,

√√√√
n∑

i�1

wiυ
2
Ãi

,

√√√√
n∑

i�1

wiπ
2
Ãi

⎞
⎠. (28)

Theorem For SFSs, the SFAgg operator defined in Eq. (28) satisfies the properties given in
Definition 3.2.1 and the resulting number is again a SFS.

Proof Applying the SFAgg for SFSs {(1, 0, 0), . . . , (1, 0, 0)}

SFAgg{(1, 0 0), . . . , (1, 0 0)} �
⎛
⎝
√√√√

n∑
i�1

wiμ
2
Ãi

,

√√√√
n∑

i�1

wiυ
2
Ãi

,

√√√√
n∑

i�1

wiπ
2
Ãi

⎞
⎠

�
(

n∑
i�1

wi ,

n∑
i�1

0 ,

n∑
i�1

0

)
� (1, 0, 0)

Similarly, the aggregation of the SFSs {(0, 1, 0), . . . , (0, 1, 0)} is (0, 1, 0) and the aggre-
gation of the SFSs {(0, 0, 1), . . . , (0, 0, 1)} is (0, 0, 1).
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Further, by applying the SFAgg for the SFSs
{
Ã1, Ã2, . . . , Ãn

}
, we get

SFAgg
{
Ã1, Ã2, . . . , Ãn

}
�
⎛
⎝
√√√√

n∑
i�1

wiμ
2
Ãi

,

√√√√
n∑

i�1

wiυ
2
Ãi

,

√√√√
n∑

i�1

wiπ
2
Ãi

⎞
⎠,

and SFAgg for the SFSs
{
B̃1, B̃2, . . . , B̃n

}
, we get

SFAgg
{
B̃1, B̃2, . . . , B̃n

}
�
⎛
⎝
√√√√

n∑
i�1

wiμ
2
B̃i

,

√√√√
n∑

i�1

wiυ
2
B̃i

,

√√√√
n∑

i�1

wiπ
2
B̃i

⎞
⎠.

Supposeμ Ãi
≥ μB̃i

,υ Ãi
≥ υB̃i

, and π Ãi
≥ πB̃i

∀i , then it is clear from definition that
√√√√

n∑
i�1

wiμ
2
Ãi

≥
√√√√

n∑
i�1

wiμ
2
B̃i

,

√√√√
n∑

i�1

wiυ
2
Ãi

≥
√√√√

n∑
i�1

wiυ
2
B̃i
and

√√√√
n∑

i�1

wiπ
2
Ãi

≥
√

wiπ
2
B̃i

.

Finally, it is required to prove that the result is a SFS.
⎛
⎝
√√√√

n∑
i�1

wiμ
2
Ãi

⎞
⎠

2

+

⎛
⎝
√√√√

n∑
i�1

wiυ
2
Ãi

⎞
⎠

2

+

⎛
⎝
√√√√

n∑
i�1

wiπ
2
Ãi

⎞
⎠

2

�
n∑

i�1

wiμ
2
Ãi

+
n∑

i�1

wiυ
2
Ãi

+
n∑

i�1

wiπ
2
Ãi

�
n∑

i�1

wi

(
μ2

Ãi
+ υ2

Ãi
+ π2

Ãi

)
≤

n∑
i�1

wi � 1.

This completes the proof.
To demonstrate the working of these stated operators, we illustrate them with the help of

two examples.

Example Suppose the performance of two alternatives for three different criteria whose
weights are {0.2, 0.3, 0.5} is given by the following decision matrix.

c1 c2 c3

D̃ � a1
a2

[
(1, 0, 0)

(0.9, 0.1, 0.1)
(0.2, 0.8, 0.2)
(0.8, 0.2, 0.2)

(0.1, 0.9, 0.1)
(0.9, 0.1, 0.1)

]
.

It is clear from the decision matrix that the ratings of “a2” are far better than “a1” for the
second and the third criteria that have higher weights. Meanwhile, the rating of “a1” is a bit
better than that of “a2” for the first criterion only that has the lowest weight. Therefore, “a2”
is better than “a1” intuitively.

Applying the SWAM aggregation operator (7) and the score function (4), we get
SWAM(a1) � (1, 0, 0) with Sc(a1) � 1, and SWAM(a2) � (0.8774, 0.1231, 0.1274)
with score Sc(a2) � 0.5625. Then, we have a1 > a2 although it is the worst by intu-
ition.When using the SWAM aggregation operator, a single criterion with the rating (1, 0, 0)
will dominate and eliminate the effect of all the other assessment criteria regardless of its
weight. Hence, the alternative having a rating of (1, 0, 0) for a criterion is selected regardless
of its ratings for the other criteria leading to an incorrect ranking. However, by using the
proposed SFAgg (28), SFAgg(a1) � (0.4658, 0.7727, 0.1304) with Sc(a1) � −0.3001, and
SFAgg(a2) � (0.8712, 0.1378, 0.1378) with score Sc(a2) � 0.5379. Here, the aggregation
is balanced and the ranking a2 > a1 is logic.
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Example Suppose the performance of two alternatives for three different criteria whose
weights are {0.2, 0.3, 0.5} is given by the following decision matrix.

c1 c2 c3

D̃ � a1
a2

[
(0, 1, 0)

(0.1, 0.9, 0.1)
(0.8, 0.2, 0.2)
(0.2, 0.8, 0.2)

(0.9, 0.1, 0.1)
(0.1, 0.9, 0.1)

]

The ratings of “a1” exceed that of “a2” for the second and third criteria with higher
weights. On the other hand, the rating of “a2” is a bit better than that of “a1” for the first
criterion with the lowest weight. Accordingly, “a1” is better than “a2” intuitively. Applying
theSWGMaggregation operator (8) and the score function (4),we get SWGM(a1) � (0, 1, 0)
with Sc(a1) � −1 and SWGM(a2) � (0.1382, 0.8688, 0.1389) with Sc(a2) � −0.5328.
Consequently, a2 > a1 this is not true by intuition. When using the SWGM aggregation
operator, a single criterion with the rating (0, 1, 0) will dominate and eliminate the effect of
the other evaluation criteria. Hence, the alternative having a rating of (0, 1, 0) for a criterion
is selected regardless of its ratings for the other criteria leading to an incorrect ranking. On
the other hand, by using the proposed SFAgg (28), SFAgg(a1) � (0.7727, 0.4658, 0.1304)
with Sc(a1) � 0.3001, and SFAgg(a2) � (0.1378, 0.8712, 0.1378) with score Sc(a2) �
−0.5379. Hence, the aggregation is also balanced and the ranking a1 > a2 is logic.

3.3 The steps of the proposed SF-EDAS algorithm

In this section, we describe the steps of the proposed algorithm to solve the decision-making
problems as follows.

Step 1: Determine the most relevant criteria that describe the alternatives.

Step 2:Construct the spherical fuzzy decision matrix
(
X̃
)
and the weighting matrix

(
W̃
)

of the criteria according to the evaluation of the decision-makers.

X̃ � [
x̃i j
] �

c1 c2 . . . cm
a1
a2
...
an

⎡
⎢⎢⎢⎢⎣

x̃11 x̃12
x̃21 x̃22

· · · x̃1m
x̃2m

...
. . .

...
x̃n1 x̃n2 · · · x̃nm

⎤
⎥⎥⎥⎥⎦

and W̃ � [
w̃ j
] � [

w̃1 w̃2 . . . w̃m
]
,

where x̃i j (the performance of the ith alternative for the jth criteria) and w̃ j (the weight of
the jth criteria) are SFSs given by x̃i j � (

μi j , υi j , πi j
)
, and w̃ j � (

μ j , υ j , π j
)
.

Step 3: Determine the average solution for each criterion.
The performances of the alternatives for the jth criterion are aggregated using the spherical

weighted arithmetic mean (7) to compute the average solution.

ãv j � SWAMw

(
x̃1 j , x̃2 j , . . . , x̃n j

) �
(
μav

j , υav
j , πav

j

)
, where wi � 1

n
. (29)

Step 4: Construct the spherical fuzzy difference matrix.

The spherical fuzzy difference
(
S̃�
i j

)
between the performance of an alternative for a

criterion
(
x̃i j
)
and the average solution

(
ãv j

)
is calculated as shown by the flowchart in
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Fig. 1. Then, the matrix of spherical fuzzy differences S̃ �
[
S̃�
i j

]
is constructed.

S̃ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S̃�
11 S̃�

12

S̃�
21 S̃�

22

· · · S̃�
1m

S̃�
2m

...
. . .

...

S̃�
n1 S̃�

n2
· · · S̃�

nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

Step 5: Construct the weighted spherical fuzzy difference matrix S̃w .
The weighted difference matrix is computed by multiplying each spherical fuzzy differ-

ence
(
S̃�
i j

)
by the weight of the criterion

(
w̃j
)
using Eq. (3).

S̃w �
[
S̃i j
]
, (31)

where S̃i j � w̃ j ⊗ S̃�
i j .

It is noted that if the weights of the criteria are crisp values, then the operational law (2)
is used instead.

Step 6: Compute the appraisal scores of the alternatives.
The appraisal scores of the alternatives are calculated by aggregating the weighted differ-

ences of each alternative for the whole criteria, i.e., aggregating the elements of each row in
the weighted difference matrix. This is accomplished by applying the proposed aggregation
operator SFAgg (30) to ensure balanced aggregation, hence correct ranking.

˜ASc � [ãsci ], ãsci � (
μasi , υasi , πasi

)
,

ãsci � SFAggw

{
S̃i1, S̃i2, . . . , S̃im

}
, w j � 1

m
. (32)

Step 7: Calculate the score of each alternative, and the accuracy if required (in case of
equal scores).

The appraisal scores are defuzzified using the score function (4), and if two alternatives
have the same score, the accuracy function (5) is also calculated.

Score(ãsci ) � (
μãsi − πãsi

)2 − (
υãsi − πãsi

)2
.

Accuracy(ãsci ) � μ2
ãsi + υ2

ãsi + π2
ãsi .

Step 8:Rank the alternatives: Finally, the alternatives are ranked in descending order. The
alternative with the highest score is the best.

The flowchart of the proposed SF-EDAS approach is summarized in Fig. 2.

4 Applications

In this section, two examples are solved to demonstrate the proposed method and compare
the results with the results of other methods. The first example is due to Gündoǧdu and
Kahraman (2019) in supplier selection. The second example is industrial robot selection
(Kutlu Gundogdu and Kahraman 2019).
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Fig. 2 The proposed SF-EDAS algorithm

4.1 A supplier selection problem

It is required to determine the best air condition supplier from four suppliers A �
{a1, a2, a3, a4}. Four criteria C � {c1, c2, c3, c4} are chosen for assessment: price, qual-
ity, delivery and performance, respectively. Only the price is a cost criterion, the rest are
benefit criteria. Three decision-makers D � {D1, D2, D3} participate in the evaluation pro-
cess. The solution steps are illustrated using the decision matrix and the weights obtained
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by the SWAM operator directly. The details of the example can be found in Gündoǧdu and
Kahraman (2019). The solution steps are as follows.

Step 1: Determine the most relevant criteria that describe the alternatives.
Price (c1), quality (c2), delivery (c3), and performance (c4).
Step 2: Construct the decision matrix and the weighting matrix of the criteria according

to the evaluation of the decision-makers.

and

W̃ � [
(0.57, 0.44, 0.32) (0.82, 0.19, 0.23) (0.80, 0.20, 0.21) (0.81, 0.20, 0.23)

]
.

Step 3: Determine the average solution for each criterion using (29).

ãv j � SWAMw

(
x̃1 j , x̃2 j , . . . , x̃n j

) �
(
μav

j , υav
j , πav

j

)
, wherewi � 1

4
.

ãv j � [
(0.69, 0.33, 0.26) (0.66, 0.36, 0.0.35) (0.75, 0.27, 0.26) (0.64, 0.39, 0.33)

]
.

Step 4: Construct the spherical fuzzy difference matrix (30).

Step 5: Construct the weighted spherical fuzzy difference matrix (31).

Step 6: Compute the appraisal score of the alternatives using (32).

∼
ASc� [ ˜asci

]
, ˜asci � (

μasi , υasi , πasi

)
,

ãsci � SFAggw

{
S̃i1, S̃i2, . . . , S̃im

}
, w j � 1

4
.

˜ASc � [
(0.76, 0.28, 0.25) (0.50, 0.50, 0.38) (0.03, 0.80, 0.39) (0.02, 0.83, 0.26)

]
.

Step 7: Calculate the score of each alternative using the score function (4).

AS � [
0.26 0.00 −0.04 −0.27

]
.
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Step 8:Rank the alternatives in descending order. The alternative with the highest score
is the best candidate. According to the obtained scores, the best alternative is a1, and the
overall ranking is

a1 > a2 > a3 > a4.

4.1.1 Comparative analysis of the supplier selection problem

This subsection presents a comparative analysis between the proposed SF-EDAS and both
the SF-TOPSIS (Gündoǧdu and Kahraman 2019) and the SF-VIKOR (Kutlu Gündoǧdu and
Kahraman 2019) to show its applicability and validity. The aforementioned supplier selection
problem is solved using these techniques being the most successful distance-based methods
from which SF-EDAS stems.

Throughout this section, the score function (4) is utilized. Three distance measures will
be employed namely, the Euclidean distance (9), Xu and Zhang’s distance (10), and the
Spherical distance (11). First, the SF-TOPSIS is applied. The weighted decision matrix is
given in Table 1 (Gündoǧdu and Kahraman 2019).

The score function values of the weighted decision matrix with the positive (PIS) and
negative ideal solutions (NIS) are given in Table 2.

When employing the three distance measures (9), (10), and (11), it turned out that the only
distance measure that can be utilized is the Euclidean distance (9).

Regarding Xu and Zhang distance (10), the PIS for the fourth criterion "c4" is "a1" with a
weighted rating of (0.46, 0.48, 0.36). On the other hand, theNIS is "a3"with aweighted rating
of (0.42, 0.55, 0.35). The distance between the PIS and the NIS equals disX Z

(
a+, a−) �

disX Z (a1, a4) � 0.2506. Meanwhile, the distance between the PIS "a1" and the second

Table 1 Weighted decision matrix for the supplier selection problem

c1 c2 c3 c4

a1 (0.46, 0.48, 0.36) (0.57, 0.35, 0.36) (0.66, 0.27, 0.30) (0.65, 0.28, 0.32)

a2 (0.44, 0.50, 0.37) (0.60, 0.33, 0.37) (0.59, 0.33, 0.34) (0.37, 0.57, 0.48)

a3 (0.33, 0.60, 0.40) (0.43, 0.52, 0.41) (0.59, 0.33, 0.34) (0.42, 0.55, 0.35)

a4 (0.27, 0.67, 0.36) (0.51, 0.43, 0.43) (0.53, 0.42, 0.31) (0.50, 0.43, 0.39)

Table 2 Score function values of the weighted decision matrix

c1 c2 c3 c4

a1 − 0.0041 0.0454 0.1248 0.1157

a2 − 0.0105 0.0510 0.0696 0.0037

a3 − 0.0346 − 0.0115 0.0657 − 0.0327

a4 − 0.0876 0.0064 0.0335 0.0113

PIS
(
a+
)

a1 a2 a1 a1

NIS
(
a−) a4 a3 a4 a3
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alternative "a2" equals disXZ(a1, a2) � 0.3301 Therefore, the distance between the PIS and
the NIS is not the largest. Here, SF-TOPSIS might not give a correct result.

As for the spherical distance (11), the distance between a SFS and itself is not necessarily
equal to zero. From the definition of the Spherical distance (11), this distance is equal to
zero only if μ2 + υ2 + π2 � 1. This condition is not always achieved for a SFS as it suffices
that μ2 + υ2 + π2 ≤ 1. Moreover, the distance between a SFS and itself might be the
largest. For the first criterion "c1", while the distance between the PIS and the NIS equals
disSp

(
a+, a−) � disSp(a1, a4) � 0.6125, the distance between the PIS "a1" and itself

equals disSp(a1, a1) � 0.6192. Hence, in this example, the spherical distance (11) is not
applicable. Finally, when employing the Euclidean distance (9), the distance between the PIS
and the NIS is the largest for the whole criteria. Then, the Euclidean distance can be applied
and guarantees a correct result. The obtained rank is a1 > a2 > a4 > a3.

Second, the SF-VIKOR is applied. The score function values for the decision matrix and
the positive and negative ideal solutions are given in Table 3.

When employing the three distance measures in the SF-VIKOR, the distance between the
PIS and the NIS is the largest for the whole criteria. Consequently, the results are correct
and reliable for comparison. Concerning the Spherical fuzzy distance, despite the distance
between an ideal solution and itself is not zero, it is the smallest relative to its distance from
other alternatives. Different values of γ , the weight of “the maximum group utility” strategy,
are also examined.

The results of comparison are summarized in Table 4. The results of the intuitionistic
fuzzy TOPSIS(IF-TOPSIS) is due to (Gündoǧdu and Kahraman 2019).

Table 3 Score function values of the weighted decision matrix for the supplier selection problem

c1 c2 c3 c4

a1 0.3480 0.1600 0.3465 0.3355

a2 0.3021 0.1748 0.2209 − 0.0080

a3 0.0481 0.0112 0.2115 0

a4 − 0.0368 0.0529 0.1456 0.0759

PIS
(
a+
)

a1 a2 a1 a1

NIS
(
a−) a4 a3 a4 a2

Table 4 Ranking using SF-EDAS, SF-TOPSIS, SF-VIKOR, and IF-TOPSIS for the supplier selection problem

Method Ranking

Proposed SF-EDAS a1 > a2 > a3 > a4
SF-TOPSIS (Euclidean distance) a1 > a2 > a4 > a3
SF-VIKOR (Euclidean distance for γ � 0) a1 > a2 > a3 > a4
SF-VIKOR (Euclidean distance for γ � 0.1 to 1) a1 > a2 > a4 > a3
SF-VIKOR (Xu and Zhang distance for γ � 0 and 0.1) a1 > a2 > a3 > a4
SF-VIKOR (Xu and Zhang distance for γ � 0.2 to 1) a1 > a2 > a4 > a3
SF-VIKOR (Spherical distance γ � 0 to 1) a1 > a2 > a4 > a3
IF-TOPSIS a1 > a2 > a4 > a3
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FromTable 4, it is clear that the best alternative obtained using the SF-EDAS is "a1" which
is also the best alternative obtained by the methods used for comparison. The overall ranking
is a1 > a2 > a3 > a4 which coincides with the overall ranking of the SF-VIKOR using the
Euclidean distance for γ � 0, SF-VIKOR using Xu and Zhang distance for γ � 0and0.1.
The third and fourth alternatives exchange positions from one method to another.

4.2 An industrial robot selection problem

In today’s technologically advanced society, most industries focus on improving automated-
driven systems to increase productivity and lower production costs. In this environment,
technical decisions are essential, such as robot selection. Robots are computer-programmed
automated material handling devices that perform various tasks, e.g. welding, spray paint-
ing, part assembly, loading, and unloading. They increase system flexibility and production,
improve material flow efficiency, improve facility utilization, and reduce lead time and labor
costs. Due to the wide range of industrial robots with different performances and various
technical characteristics, managers sometimes face difficulties in selecting the proper robot
to accomplish the required task. Improper industrial robot selection not only reduces produc-
tivity but also harms the organization’s reputation. Hence, proper robot selection is crucial
to increasing the production rate with the highest precision and accuracy (Goswami et al.
2021).

Consider the problem of choosing one of the most used robots, 6-axis robots, Scara
robots, Dual-arm robots, redundant robots, and Cartesian robots. Four criteria are used for the
assessment process, efficiency, suitability, automation, and ergonomics. Three experts, with
different levels of experience, are involved in the decision-making process. The judgments
of the experts for the performance of the robots for the evaluation criteria and the weights
of the criteria are aggregated using the SWAM operator (7). The aggregated decision matrix
and the aggregated weights of the criteria are given in Table 5. For the details of the problem,
the reader is referred to Kutlu Gundogdu and Kahraman (2019).

Since Steps 1 and 2 are summarized in Table 5, Step 3 is presented directly.
Step 3: Determine the average solution for each criterion using (29) with wi � 1

5 .

ãv j �
[
(0.64, 0.37, 0.35) (0.70, 0.31, 0.32) (0.67, 0.34, 0.30) (0.56, 0.45, 0.41)

]
.

Step 4: Construct the spherical fuzzy difference matrix (30).

Table 5 The aggregated decision matrix and the aggregated weights of the criteria

Efficiency (c1) Suitability (c2) Automation (c3) Ergonomics (c4)

6-axis (a1) (0.78, 0.23, 0.27) (0.63, 0.37, 0.37) (0.77, 0.23, 0.23) (0.55, 0.46, 0.40)

Scara (a2) (0.40, 0.60, 0.40) (0.71, 0.30, 0.32) (0.65, 0.35, 0.36) (0.58, 0.43, 0.44)

Dual-arm (a3) (0.56, 0.45, 0.41) (0.80, 0.20, 0.20) (0.77, 0.23, 0.23) (0.65, 0.35, 0.36)

Redundant (a4) (0.64, 0.36, 0.36) (0.66, 0.34, 0.34) (0.53, 0.50, 0.31) (0.40, 0.61, 0.41)

Cartesian (a5) (0.70, 0.30, 0.30) (0.62, 0.38, 0.39) (0.53, 0.49, 0.38) (0.57, 0.43, 0.43)

Criteria weights (0.78, 0.23, 0.27) (0.53, 0.50, 0.31) (0.77, 0.23, 0.23) (0.66, 0.34, 0.34)

123



A new spherical aggregation function with the concept of spherical … Page 21 of 26 212

Step 5: Construct the weighted spherical fuzzy difference matrix (31).

Step 6: Compute the appraisal score of the alternatives using (32) with w j � 1
4 .

˜ASc �
[
(0.5, 0.51, 0.24) (0.29, 0.52, 0.4) (0.51, 0.44, 0.27) (0.1, 0.74, 0.28) (0.39, 0.53, 0.32)

]
.

Step 7: Calculate the score of each alternative using the score function (4).

AS � [−0.0054 −7.3517∗10−4 0.0297 −0.1733 −0.04
]
.

Step 8:Rank the alternatives in descending order. The alternative with the highest score
is the best candidate. According to the obtained scores, the best alternative is "a3", and the
overall ranking is

a3 > a2 > a1 > a5 > a4.

4.2.1 Comparative analysis of the robot selection problem

First, apply the SF-TOPSIS. The weighted decision matrix is given in Table 6. The score
function values of the weighted decision matrix with the positive and negative ideal solutions
are given in Table 7. The problem is solved using the three distance measures (9), (10), and
(11). The Euclidean distance (9) is the only distance measure that guarantees that the distance
between the PIS and the NIS is the largest.

Table 6 Weighted decision matrix for the robot selection problem

c1 c2 c3 c4

a1 (0.61, 0.32, 0.36) (0.33, 0.59, 0.42) (0.59, 0.32, 0.31) (0.36, 0.55, 0.46)

a2 (0.31, 0.63, 0.43) (0.38, 0.56, 0.39) (0.50, 0.41, 0.40) (0.38, 0.53, 0.49)

a3 (0.44, 0.49, 0.45) (0.42, 0.53, 0.34) (0.59, 0.32, 0.31) (0.43, 0.47, 0.45)

a4 (0.50, 0.42, 0.42) (0.35, 0.58, 0.40) (0.41, 0.54, 0.35) (0.26, 0.67, 0.45)

a5 (0.55, 0.37, 0.38) (0.33, 0.60, 0.43) (0.41, 0.53, 0.41) (0.38, 0.53, 0.49)
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Table 7 Score function values of the weighted decision matrix for the robot selection problem

c1 c2 c3 c4

a1 0.0577 − 0.0253 0.0788 0.0023

a2 − 0.0239 − 0.0288 0.0095 0.0109

a3 − 0.0015 − 0.0279 0.0788 0

a4 0.0062 − 0.0296 − 0.0309 − 0.0130

a5 0.0272 − 0.0202 − 0.0139 0.0103

PIS
(
a+
)

a1 a5 a1, a3 a2

NIS
(
a−) a2 a4 a4 a4

When employing Xu and Zhang’s distance (10), the weighted rating of the PIS and the
NIS for the second criterion “c2" is (0.33, 0.60, 0.43) and (0.35, 0.58, 0.40), respectively.
Yet, disXZ(a5, a4) � 0.0285 < disXZ(a5, a3) � 0.1067. Then, it is inconvenient to be
utilized. As for the spherical distance (11), the previously mentioned flaws exist. Hence,
it cannot be utilized. The distance between an alternative and itself is larger than the its
distance from another alternative,disSp(a2, a2) � 0.5337 > disSp(a2, a4) � 0.5284. We also
have for the second criterion the distance between the PIS and the NIS is not the largest,
disSp(a5, a3) � 0.5957 > disSp(a5, a4) � 0.5746.

Second, the SF-VIKOR is applied. The distance between the ideal solutions is the largest
when the Euclidean and Xu and Zhang’s distance are utilized. The Spherical distance still
cannot be applied. The results of the SF-WASPAS and the IF-TOPSIS are due to Kutlu
Gundogdu and Kahraman (2019). The results of the comparison are summarized in Table 8.

From Table 8, the best alternative obtained by the proposed SF-EDAS is the alternative
"a3" which is ranked second by the other methods. The difference in ranking of the SF-
EDAS from the SF-TOPSIS, the SF-VIKOR, and the SF-WASPAS can be attributed to the
utilization of score functions in the early steps of these methods. In the SF-TOPSIS and
the SF-VIKOR the score function is used to find the PIS and the NIS. When processing
the SF-WASPAS, the criteria weights are defuzzified. The normalized criteria weights after

Table 8 Ranking using SF-EDAS, SF-TOPSIS and SF-VIKOR for the robot selection problem

Method Ranking

Proposed SF-EDAS a3 > a2 > a1 > a5 > a4
SF-TOPSIS (Euclidean distance) a1 > a3 > a5 > a4 > a2
SF-VIKOR (Euclidean distance for γ � 0 to 0.1) a1 > a3 > a2 > a4 > a5
SF-VIKOR (Euclidean distance for γ � 0.2 to 0.4) a1 > a3 > a2 > a5 > a4
SF-VIKOR (Euclidean distance for γ � 0.5 to 1) a1 > a3 > a5 > a2 > a4
SF-VIKOR (Xu and Zhang distance for γ � 0 to 0.3) a1 > a3 > a2 > a4 > a5
SF-VIKOR (Xu and Zhang distance γ � 0.4 to 0.5) a1 > a3 > a2 > a5 > a4
SF-VIKOR (Xu and Zhang distance γ � 0.6 to 1) a1 > a3 > a5 > a2 > a4
SF-WASPAS a1 > a3 > a5 > a4 > a2
IF-TOPSIS a1 > a3 > a2 > a5 > a4
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defuzzification are {0.26681, 0.00001, 0.49129, 0.24189}. Since the weight of the second
criterion is approximately zero, whenmultiplying the ratings of the alternatives for the second
criteria by its weight in the weighted sum model, the five alternatives have the same value
(0, 1, 0), which is the additive neutral. Hence, the effect of the second criterion is eliminated
despite the third alternative having the best performance for this criterion. Consequently, it is
preferable to use fully fuzzy approaches. Regarding the IF-TOPSIS, the difference is normal
due to the alteration of the preference domain with an independent hesitation degree.

5 Conclusion

In this study, a new fully fuzzy approach is proposed to develop EDAS for MCDM problems
using SFSs. In the spherical fuzzy environment, the implementation of distance-based meth-
ods faces some deficiencies. First, the reference points might change according to the score
function employed. Second, the distance between the reference points is not necessarily the
largest. The proposed SF-EDAS approach averts these deficiencies. Then, the contributions
of the study are.

• A spherical fully fuzzy EDAS algorithm is developed that avoids the current limitations
and drawbacks of distance-basedmethods in general and the SF-EDAS, in particular, using
spherical fuzzy information namely, early defuzzification, the flaws of distance measures,
and the undefined spherical fuzzy subtraction and division operations.

• The concept of spherical fuzzy difference is introduced to make up for the undefined
subtraction operation and as an alternative to distance measures to count for the increase
or decrease in the various degrees of the alternatives’ performance for the criteria than that
of their peers in the average solutions.

• The extant aggregation operators have a flaw when handling a zero membership or non-
membership degree, the aggregation result might be unfair. Therefore, an aggregation
function is introduced which guarantees a balanced aggregation and reflects the actual
values fairly.

Two practical examples were solved and a comparative study is presented for each exam-
ple. The data of the two examples are SFSs. Each example exemplifies one of the flaws
encountered in the implementation of distance-based methods in a spherical fuzzy environ-
ment. In examples, the SF-TOPSIS and the SF-VIKORwere employed for comparison. Three
distance measures were examined in their implementation namely the Euclidean distance,
Xu and Zhang distance, and the spherical fuzzy distance.

In the first example, the results of the proposed SF-EDAS are compared with the results
of the SF-TOPSIS, the SF-VIKOR, and the IF-TOPSIS. In the implementation of the SF-
TOPSIS, only the Euclidean distance maintained the distance between the PIS and the NIS
as the largest. Meanwhile, the other two distance measures failed. As for the SF-VIKOR, the
Euclidean distance and Xu and Zhang’s distance were valid. The Spherical fuzzy distance is
not valid except on the surface of the unit sphere. Therefore, it is not advisable to be utilized,
in general. The results revealed that the alternatives in the first and second places obtained
by the proposed SF-EDAS are identical to those obtained by these methods. The alternatives
in the third and fourth places exchange ranks from one method to another.

In the second example, the results of the proposed SF-EDAS are compared with the
results of the SF-TOPSIS, the SF-VIKOR, the SF-WASPAS, and the IF-TOPSIS. Similar to
the first example, not all distance measures were convenient in the implementation of the
SF-TOPSIS and the SF-VIKOR. The Euclidean distance was valid for both methods; Xu
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and Zhang distance was valid for the SF-VIKOR. In the SF-WASPAS, the weights of the
alternatives were defuzzified. As a result, the weight of one of the criteria was approximately
zero and its effect was eliminated although the third alternative has the best performance
for this criterion. In consequence, the third alternative which is ranked first by the proposed
SF-EDAS recedes to second place in the SF-WASPAS. The rest of the ranking list changes
from one method to another.

The main limitation of the proposed SF-EDAS method is the lack of objective evalua-
tions. The method handles only subjective evaluations in the spherical fuzzy environment.
Thus, future research should develop a SF-EDAS method for both subjective and objective
evaluations.

In addition, future research should investigate the employment of the concept of the
spherical fuzzy in other distance-based methods, e.g., TOPSIS and VIKOR as a substitute
for distancemeasures to avoid the flaw that might occur, i.e., the distance between the positive
and negative ideal solutions is not the largest between the alternatives.
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