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Abstract
We introduce a new class of explicit two-step peer methods with the aim of improving the
stability properties of already existing peer methods, bymaking use of coefficients depending
on the Jacobian of the Ordinary Differential Equations (ODEs) system to solve. Numerical
tests highlight the best stability and accuracy properties of the new methods compared to
the classical and equation-dependent ones proposed in Conte et al. (Lect Notes Comput Sci
12949:309–324, 2021).
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1 Introduction

It is the purpose of this work to derive new explicit two-step s-stage peer methods with
improved stability properties for the numerical solution of first-order ODEs of the type{

y′(t) = f
(
t, y(t)

)
, f : R × Rd → Rd ,

y(t0) =y0, t ∈ [t0, T ], y0 ∈ Rd .
(1)

Peer methods were first introduced in their linearly implicit form (Schmitt and Weiner
2004). Furthermore, explicit (Horváth et al. 2015; Jebens et al. 2008; Klinge et al. 2017;
Weiner et al. 2009), implicit (Jebens et al. 2011; Kulikov and Weiner 2018; Schneider et al.
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2017), implicit–explicit (Schneider et al. 2021; Soleimani and Weiner 2017, 2018), and
parallelizable (Kulikov and Weiner 2010; Schmitt and Wiener 2010; Schmitt et al. 2009;
Weiner et al. 2012) peer methods have been derived. There are also specific techniques that
can allow to build peer methods adapted to the problem to solve. For example, if it is a
priori known that the analyzed problem has an oscillating solution (Budroni et al. 2021a, b),
the Exponential Fitting (EF) technique (Ixaru 1997; Ixaru and Vanden 2004) leads to peer
methods with coefficients depending on the oscillation frequency (Conte et al. 2018, 2019,
2020b), that are much more accurate than the classical ones.

Peer methods are characterized by several stages like Runge–Kutta schemes, but unlike
the latter all of them show the same accuracy and stability properties. They have been intro-
duced with the aim of combining the advantages of Runge–Kutta and multistep methods and
are very convenient. In fact, peer methods do not suffer from order reduction if applied to
ODEs systems with a decidedly high stiffness. Furthermore, they are suitable for parallel
implementation, as the actual stages rely only on the previous ones.

In this paper, we focus on explicit peer methods with fixed step-size h. Explicit methods
are less expensive than implicit ones, but they usually haveworse stability properties. For this,
the main aim of our work lies in the derivation of new peer methods that are still explicit, but
with improved stability properties than the classical ones. Considering a time discretization
{tn , n = 1, ..., N} of the integration interval [t0, T ] related to the ODE (1), classic explicit
peer methods can be expressed as

Y [n+1] = (B ⊗ Id)Y
[n] + h(A ⊗ Id)F(Y [n]) + h(R ⊗ Id)F(Y [n+1]), (2)

where A = (ai, j )si, j=1, B = (bi, j )si, j=1 and R = (ri, j )si, j=1 are matrices containing the
coefficients of the method. Id is the identity matrix of order d . In our case, since we analyze
explicit methods, R is strictly lower triangular, i.e., ri, j = 0 ∀i ≤ j . The notation used to
represent these methods in vectorial form (2) is the following:

Y [n] = (Yn,i )
s
i=1, F(Y [n]) = (

f (tn,i , Yn,i )
)s
i=1,

Yn,i ≈ y(tn,i ), tn,i = tn + hci ,

where the nodes ci are assumed to be distinct with cs = 1. The stages Y [n], and therefore
F(Y [n]), are column vectors.

To determine the methods proposed in this work, we apply a technique that leads to new
coefficients with respect to classical schemes, depending on the Jacobian of the problem.
This technique briefly consists in modifying the classical case by considering a different
expression of the stages of the method. By imposing the order conditions using the new form
of the stages, the new coefficients of the method are obtained. We were inspired by Ixaru
(2012), in which a similar procedurewas applied to explicit Runge–Kuttamethods improving
their accuracy and stability properties, as evidenced also by the numerous numerical tests
conducted in Conte et al. (2020a). An extension of this methodology has also been applied to
peer methods in Conte et al. (2021), in which the authors have managed to derive Jacobian-
dependent coefficients, slightly improving the stability properties of classical schemes. In this
work, we show that by changing the approach proposed in Conte et al. (2021), it is possible to
obtain New Explicit Jacobian-Dependent Peer (NEJDP) methods with much better stability
and accuracy properties than those obtained in Conte et al. (2021), which will be called Old
Explicit Jacobian-Dependent Peer (OEJDP) methods.

Moreover, this paper also completes the work done in Conte et al. (2021), where the
coefficients of the proposed methods have been derived only in the scalar case and when the
accuracy order and the number of stages are equal to two. Now, we derive the old methods
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coefficients (which becomematrices) also for non-scalar problems.We also provide the order
conditions of these methods even when the accuracy order p and number of stages s satisfy
p = s ≥ 2. Therefore, Sect. 2 of this paper is devoted to the extension of OEJDP methods
of Conte et al. (2021), while the following ones are devoted to the derivation of NEJDP
methods.

Specifically, this paper is organized as follows: in Sect. 2, we extend the work done in
Conte et al. (2021), formulating the OEJDP methods in the non-scalar case and deriving the
related order conditions for p = s ≥ 2; in Sect. 3, we derive two-stage NEJDP methods of
order two, showing the relative linear stability properties; in Sect. 4, we carry out numerical
tests highlighting the advantages of the new methods over the old Jacobian-dependent and
classical ones; in Sect. 5, we discuss the obtained results and the possible future research.

2 Old equation-dependent peer methods

In this section, after recalling the formulation of the two-stage OEJDP methods for scalar
ODEs (Sect. 2.1), we first of all extend these methods to the case of s-stages (Sect. 2.2), and
afterwards, we derive two-stage OEJDP methods able to solve differential problems of any
dimension d (Sect. 2.3).

2.1 Two-stage OEJDPmethods for scalar ODEs

Consider explicit two-stage peer methods:

Yn,1 = b11Yn−1,1 + b12Yn−1,2 + ha11 f (tn−1,1, Yn−1,1) + ha12 f (tn−1,2, Yn−1,2),

Yn,2 = b21Yn−1,1 + b22Yn−1,2 + ha21 f (tn−1,1, Yn−1,1) + ha22 f (tn−1,2, Yn−1,2)

+ hr21 f (tn,1, Yn,1).

(3)

By defining the error operators L1 and L2 associated, respectively, with the first and
second stages as

L1
(
y(t)

) = y(t + hc1) − Y1(t), L2
(
y(t)

) = y(t + h) − Y2(t), (4)

where Y1 and Y2 represent the continuous expression of Yn,1 and Yn,2

Y1(t) = b11y
(
t + h(c1 − 1)

) + b12y(t) + ha11y
′(t + h(c1 − 1)

) + ha12y
′(t),

Y2(t) = b21y
(
t + h(c1 − 1)

) + b22y(t) + ha21y
′(t + h(c1 − 1)

) + ha22y
′(t)

+ hr21y
′(t + hc1),

(5)

it has been shown that annihilating L1(tk) and L2(tk), k = 0, 1, 2, at t = 0, i.e., annihilating
the moments Li,k , i = 1, 2, k = 0, 1, 2, leads to the following order conditions for classic
peer methods of accuracy order equal to two, respectively⎧⎪⎨

⎪⎩
1 − b11 − b12 = 0,

c1 − b11(c1 − 1) − a11 − a12 = 0,

c21 − b11(c1 − 1)2 − 2a11(c1 − 1) = 0,

(6)

⎧⎪⎨
⎪⎩
1 − b21 − b22 = 0,

1 − b21(c1 − 1) − a21 − a22 − r21 = 0,

1 − b21(c1 − 1)2 − 2a21(c1 − 1) − 2r21c1 = 0.

(7)
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Instead, in the derivation of equation-dependent methods, it was assumed that the first
stage computed at tn,1, i.e. Yn,1, is affected by an error err1, which has the form

err1(t) = terr1(t) + O(h4),

terr1(t) = h3

3!
(
c31 − b11(c1 − 1)3 − 3a11(c1 − 1)2

)
y′′′(t) = 1

3! L1,3y
′′′(t).

(8)

To prove this, the following relationship between error operators and moments has been
used:

Li
(
y(t)

) = 1

k! Li,k y
(k)(t). (9)

By doing so, the expression of Y2 (and therefore that of L2) has changed

Y2(t) = b21y
(
t + h(c1 − 1)

) + b22y(t) + ha21y
′(t + h(c1 − 1)

) + ha22y
′(t)

+ hr21 f
(
t + hc1, Y1(t)

)
,

(10)

where f
(
t + hc1, Y1(t)

) = y′(t + hc1) − j1(t)terr1(t) + O(h4) (through Taylor expansion
of the second term of f

(
t + hc1, Y1(t) + err1(t)

) = y′(t + hc1)). The function j1 is the
Jacobian related to the ODE (1) at Y1, i.e., j1(t) = fy(t + hc1, y)|y=Y1(t).

By annihilating L1,k , k = 0, 1, 2, and the new L2,k , k = 0, 1, 2, 3, the same conditions
(6) and (7) related to the classical case are obtained, plus an additional one

1 − b21(c1 − 1)3 − 3a21(c1 − 1)2 − 3r21c
2
1 + hj1(t)r21

(
c31 − b11(c1 − 1)3

− 3a11(c1 − 1)2
) = 0.

(11)

The resulting two-stage peer methods are still explicit and of order two, but they exhibit
better accuracy and stability properties than the classical ones. The Jacobian-dependent scalar
coefficients of these methods, which can be derived by imposing the order conditions (6),
(7), and (11), are

a11 =
(

− (
b11(−1 + c1)

2) + c21

)
/
(
2(−1 + c1)

)
,

a12 =
(

− (
b11(−1 + c1)

2) + (−2 + c1)c1
)
/
(
2(−1 + c1)

)
,

a21 =
(
b11(−1 + b21)hj1(t) + (−1 + b11 + 7b21 − 10b11b21)c

3
1hj1(t) − (−1 + b11)

b21c
5
1hj1(t) + b21c

4
1

(
2 + 5(−1 + b11)hj1(t)

) + c1
(
4 + 3b11hj1(t) + b21(4 −

5b11hj1(t))
) + c21

( − 6 + 3hj1(t) − 3b11hj1(t) + b21(−6 − 3hj1(t) + 10b11

hj1(t))
))

/
(
2(−1 + c1)(−(b11hj1(t)) − 3(−1 + b11)c

2
1hj1(t) + (−1 + b11)

c31hj1(t) + 3c1(−2 + b11hj1(t))
))

,

a22 =
(

− 10 + 3b11hj1(t) − 9(−1 + b11)c
3
1hj1(t) + 2(−1 + b11)c

4
1hj1(t) + c1(24

−11b11hj1(t)) + 3c21(−4 − 3hj1(t) + 5b11hj1(t)) − b21(−1 + c1)
2( − 2 −

b11hj1(t) − 3(−1 + b11)c
2
1hj1(t) + (−1 + b11)c

3
1hj1(t) + c1(−4 + 3b11hj1

(t))
))

/
(
2(−1 + c1)

( − (b11hj1(t)) − 3(−1 + b11)c
2
1hj1(t) + (−1 + b11)c

3
1

hj1(t) + 3c1(−2 + b11hj1(t))
))

,
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r21 =
(

− 5 − b21(−1 + c1)
3 + 3c1

)
/
(

− (b11hj1(t)) − 3(−1 + b11)c
2
1hj1(t) +

(−1 + b11)c
3
1hj1(t) + 3c1(−2 + b11hj1(t))

)
. (12)

Note that the moments associated with L2(tk) have been annihilated also for k = 3, i.e.,
the second stage is calculated with accuracy order equal to three. That is why there is an
additional order condition (11) than the classical case and why this technique can also lead
to better accuracy properties.

2.2 s-stage OEJDPmethods for scalar ODEs

In this subsection, we derive the order conditions of the OEJDP methods in the general s-
stage case where the order is p = s. To do this, recall the definition of accuracy order of an
explicit peer method (Weiner et al. 2008).

Definition 1 The peer method

Yn,i =
s∑

j=1

bi j Yn−1, j + h
s∑

j=1

ai j f (tn−1, j , Yn−1, j ) + h
i−1∑
j=1

ri j f (tn, j , Yn, j ),

i = 1, ..., s,

(13)

is consistent of order p if �i = O(h p), ∀i = 1, ..., s, where

h�i :=y(tn,i ) −
s∑

j=1

bi j y(tn−1, j ) − h
s∑

j=1

ai j y
′(tn−1, j ) +

i−1∑
j=1

ri j y
′(tn, j ). (14)

The values of �i are called residuals. Imposing that the method (13) has accuracy order
p = s, leads to express its coefficients in the following form (Weiner et al. 2008):{

B1 = 1, 1 = (1, ..., 1)T (pre-consistency condition),

A = (CV0D
−1 − RV0)V

−1
1 − B(C − Is)V1D

−1V−1
1 ,

(15)

V0 = (c j−1
i )si, j=1, V1 = (

(ci − 1) j−1)s
i, j=1, Is = identity matrix of order s,

D = diag(1, ..., s), C = diag(ci ).

What we want to do now is to express the coefficients of OEJDP methods with accuracy
order p = s in a similar form. Let us consider the conditions (6), (7), and (11) that come
out by canceling the moments L1,k , k = 0, 1, 2, and L2,k , k = 0, 1, 2, 3, in the simple
case of two-stage schemes of order two. All the equations of (6) and (7) correspond to the
classical order conditions. Equation (11) returns an additional order condition with respect
to the classical case, which arises by assuming that in general, for s-stage methods, the first
s − 1 stages are affected by error and the last stage is more accurate than the previous ones.

Define the continuous expression of the i th stage

Yi (t) =
s∑

j=1

bi j y(t + h(ci − 1)) + h
s∑

j=1

ai j y
′(t + h(ci − 1)) + h

i−1∑
j=1

ri j f (t + ci h, Yi (t)).

(16)
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The related error operator is Li
(
y(t)

) = y(t + hci ) − Yi (t), i = 1, ..., s. The values of erri
associated with Yi , i = 1, ..., s assume the following form:

erri (t) =terri (t) + O(hs+2),

terri (t) = hs+1

(s + 1)!
(
cs+1
i −

s∑
k=1

bik(ck − 1)s+1 − (s + 1)
s∑

k=1

(
aik(ck − 1)s + cskrik

)

+ h
i−1∑
k=1

jk(t)rik terrk (t)
)
y(s+1)(t).

(17)

Note that erri depends on the product jk terrk , k ≤ i − 1, where the Jacobians jk(t) =
fy(t + hck, y)|y=Yk (t) arise from the Taylor series expansion of the terms y′(t + hck) =
f
(
t + hck, Yk(t) + errk(t)

)
at the second component, replacing the result in (16).

To understand why the error associated with Yi takes this form, just extend the procedure
shown in Conte et al. (2021) for err1 (8), observing that it depends on the moment L1,3.
Still referring to the simple two-stage case, look at Eq. (11), in which at the end, the product
between j1 and L1,3 (deprived of h3 which has been simplified) just appears. In fact, here,
the moment L2,3 is annihilated, whose expression contains L1,3, i.e., it depends on terr1 . In
the general s-stage case, therefore, the moment Ls,s+1 must be annihilated, which depends
on all the errors made at the previous stages.

Define the following column vector operr ∈ Rs×1 to derive a compact notation for the
moments associated with the error operators:

operr = V [s+1]
0 − BV [s+1]

1 − (s + 1)(AV [s]
1 + RV [s]

0 ) + herrcum, (18)

V [k]
0 = (cki )

s
i=1 ∈ Rs×1, k = s, s + 1, V [k]

1 = (
(ci − 1)k

)s
i=1 ∈ Rs×1, k = s, s + 1,

errcum =
( i−1∑

k=1

jkrikoperrk

)s

i=1
∈ Rs×1 (errcum1 = 0).

The vector operr essentially contains in the i th component the moment (deprived of the
powers of h) associated with Li (t s+1). Therefore, once we have determined the first s − 1
(in consecutive order) components of operr, we can calculate its last component operrs .
Annihilating operrs corresponds to the additional order condition we have for the s-stage
OEJDP methods.

Summarizing, these methods have order p = s if their coefficients satisfy⎧⎪⎨
⎪⎩

B1 = 1, 1 = (1, ..., 1)T (pre-consistency condition),

A = (CV0D
−1 − RV0)V

−1
1 − B(C − Is)V1D

−1V−1
1 ,

(V [s+1]
0 − BV [s+1]

1 − (s + 1)(AV [s]
1 + RV [s]

0 ) + herrcum)s = 0.

(19)

2.3 Two-stage OEJDPmethods for systems of ODEs

In this subsection, we show how the coefficients of the OEJDP methods can be obtained in
the multi-dimensional case (d ≥ 1), practically deriving them for two-stage methods of order
two.
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As seen above, explicit peer methods can be expressed in the vectorial form (2), in which
the coefficients matrices A, B, and R are tensorially multiplied by the identity matrix of
order d (which from now on we simply denote with I instead of Id ). However, since the
Jacobian related to the ODE (1) has dimension d , the Jacobian-dependent coefficients must
be re-formulated appropriately, and there is no need to multiply them by the identity matrix.

For example, in the case of two-stage methods, the coefficients take the form (12). Specif-
ically, a21, a22 and r21 depend on the Jacobian, and must therefore be re-formulated as
matrices. For this reason, let us indicate them with capital letters A21, A22, and R21, respec-
tively. To understand how to derive such matrices, let us accurately show the computation of
R21.

The coefficient r21 of (12) can be expressed as rnum21 /rden21 , where

rnum21 = − 5 − b21(−1 + c1)
3 + 3c1,

rden21 = − (b11hj1(t)) − 3(−1 + b11)c
2
1hj1(t) + (−1 + b11)c

3
1hj1(t)

+ 3c1(−2 + b11hj1(t)).

(20)

Now, isolate the coefficients of rnum21 and rden21 that do not multiply the Jacobian j1.
Considering rden21 , the only coefficient that respects this property corresponds to −6c1 and
appears in the last term, while rnum21 does not contain j1. Therefore, define the coefficient
rc21 = rnum21 /(−6c1).

The next step involves highlighting the term hj1 in rden21 , dividing everything by the coef-
ficient −6c1 previously determined. This operation must be done, in general, also for rnum21
(dividing it by the numerator of rc21). However, in this case, we can avoid that as rnum21 does
not depend on the Jacobian. This leads to

rden21 = − 6c1

(
1 + rden121

−6c1
hj1(t)

)
,

rden121 =−b11 − 3(−1 + b11)c
2
1 + (−1 + b11)c

3
1 + 3c1b11.

(21)

By indicating the Jacobian with the capital letter J in the multi-dimensional case, we
obtain the following form for the matrix R21:

R21 = rc21 × inv
(
I + rden121 h J1(t)

)
. (22)

Similarly, the matrices A21 and A22 can be derived

A21 = ac21A
num
21 × inv(Aden

21 ), A22 = ac22A
num
22 × inv(Aden

22 ), where (23)

ac21 = 2b21c41 + 4c1 + 4c1b21 − 6c21 − 6b21c21
−12c1(−1 + c1)

,

ac22 = −10 + 24c1 − 12c21 + 2b21(−1 + c1)2 + 4c1b21(−1 + c1)2

−12c1(−1 + c1)
,

Anum
21 = I + anum21

2b21c41 + 4c1 + 4c1b21 − 6c21 − 6b21c21
h J1(t),

Anum
22 = I + anum22

−10 + 24c1 − 12c21 + 2b21(−1 + c1)2 + 4c1b21(−1 + c1)2
h J1(t),

Aden
21 = Aden

22 = I + aden21

−12c1(−1 + c1)
h J1(t).
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Here, anum21 , anum22 , and aden21 correspond to the numerators and denominators of a21 and a22
of (12), deprived of the coefficients that do not multiply hj1.

Note that the matrices Aden
21 and Aden

22 match, as the denominators of a21 and a22 of (12)
are equal. This is a good thing, as these matrices need to be inverted at each time-step. Thus,
the computational cost of this two-stage method is halved.

When we deal with numerical tests in the next sections, we will show that these Jacobian-
dependent peer methods work well even in the multi-dimensional case, resulting once again
better than the classical ones.

3 New equation-dependent peer methods

As mentioned in the Introduction, in the paper Conte et al. (2021) the authors derived the
OEJDPmethods shown in the previous section by applying a technique similar to that adopted
in Ixaru (2012) for Runge–Kutta methods. However, the procedure applied for Runge–Kutta
and peer methods could not be the same, as for the latter the stages in the current interval
depend on those in the previous one. In the work Conte et al. (2021) this was ignored. That
is, the OEJDP methods have been derived by assuming that only the stages Yn, j , j < i , in
the computation of Yn,i , are affected by error. Now, we derive NEJDP methods by assuming
that also the stages Yn−1, j , j < i , are affected by error in the computation of Yn,i .

3.1 Two-stage NEJDPmethods of order two

In this subsection, we determine two-stage NEJDP methods by following the observations
just made. The continuous expressions of the stages Yn,1 and Yn,2 in this case are

Y1(t) = b11Y1(t − h) + b12y(t) + ha11 f
(
t + h(c1 − 1), Y1(t − h)

) + ha12y
′(t),

Y2(t) = b21Y1(t − h) + b22y(t) + ha21 f
(
t + h(c1 − 1), Y1(t − h)

) + ha22y
′(t)

+ hr21 f
(
t + hc1, Y1(t)

)
.

(24)

Assuming that Yn−1,1 is affected by error (which we call err−1, while with terr−1 we
indicate the local truncation error which is obtained by imposing that the first stage has order
two) means that the following writings hold:

y
(
t + h(c1 − 1)

) = Y1(t − h) + err−1(t − h) = Y1(t − h) + terr−1(t − h) + O(h4),

y′(t + h(c1 − 1)
) = f

(
t + h(c1 − 1), Y1(t − h) + err−1(t − h)

)
= f

(
t + h(c1 − 1), Y1(t − h)

) + j1(t − h)terr−1(t − h) + O(h4).

(25)

Once again, the Jacobian j1(t−h) = fy(t+h(c1−1), y)|y=Y1(t−h) arises from the application
of Taylor series expansion. Substituting the expressions (25) in the continuous stages (24)
leads to
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Y1(t) = b11
(
y
(
t + h(c1 − 1)

) − terr−1(t − h)
)

+ b12y(t) + ha11
(
y′(t + h(c1 − 1)

)
− j1(t − h)terr−1(t − h)

)
+ ha12y

′(t),

Y2(t) = b21
(
y
(
t + h(c1 − 1)

) − terr−1(t − h)
)

+ b22y(t) + ha21
(
y′(t + h(c1 − 1)

)
− j1(t − h)terr−1(t − h)

)
+ ha22y

′(t) + hr21 f
(
t + hc1, Y1(t)

)
.

(26)

By defining the error operator related to Yn−1,1 as

L−1
(
y(t − h)

) =y
(
t + h(c1 − 1)

) − Y1(t − h), where (27)

Y1(t − h) = b11y
(
t + h(c1 − 2)

) + b12y(t − h) + ha11y
′(t + h(c1 − 2)

)
+ ha12y

′(t − h),

it’s possible to determine err−1 and therefore terr−1 . Following a similar approach to the one
detailed in Conte et al. (2021), to have an order-two first stage we have to annihilate the
moments related to L−1(tk), k = 0, 1, 2 (it is easy to see that annihilating them leads to
conditions equivalent to (6)). The resulting error err−1 is given by the following expression,
that involves the moment L−1,3:

err−1(t − h) = terr−1(t − h) + O(h4),

terr−1(t − h) = h3

3!
(
(c1 − 1)3 − b11(c1 − 2)3 + b12 − 3a11(c1 − 2)2 − 3a12

)
y′′′(t − h)

= 1

3! L−1,3y
′′′(t − h). (28)

In order to determine err−1 we have used the property (9) that binds error operators to the
related moments.

Note that by defining L−1 as done in (27) we have implicitly assumed that, for simplicity,
there are no further errors at the earlier stages Yn−k,1, k ≤ 2. Therefore, the additional error
we consider compared to the OEJDP methods concerns Yn−1,1.

It is necessary to define the error operators associated with the stages Yn,1 and Yn,2 to
determine the order conditions of the NEJDP methods. Such operators have the same form
as (4), but obviously the continuous expression of the stages is now given by (26).

To calculate the first stagewith accuracy order equal to two, themoments L1,k , k = 0, 1, 2,
must be annihilated. Note that, by (26), L1 is completely known, as the expression of terr−1

is known (28). This operator, evaluated at y(t) = tk , assumes the following form:

L1(t
k) = (t + hc1)

k − b11
((
t + h(c1 − 1)

)k − (1/6)L−1,3k(k − 1)(k − 2)(t − h)k−3
)

−b12t
k − ha11

(
k
(
t + h(c1 − 1)

)k−1 − j1(t − h)(1/6)L−1,3k(k − 1)(k − 2)

(t − h)k−3
)

− hka12t
k−1. (29)

Canceling themoments L1,k , k = 0, 1, 2, leads to order conditions equivalent to that obtained
in the classical case (6) for the first stage. Leveraging property (9), it is possible to conclude
that, for NEJDP methods, the error associated with the first stage Yn,1 is
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err1(t) = terr1(t) + O(h4) = 1

3! L1,3y
′′′(t) + O(h4), (30)

L1,3 = h3
(
c31 − b11

(
(c1 − 1)3 − (

(c1 − 1)3 − b11(c1 − 2)3 + b12 − 3a11(c1 − 2)2

− 3a12
)) − a11

(
3(c1 − 1)2 − hj1(t − h)

(
(c1 − 1)3 − b11(c1 − 2)3 + b12

− 3a11(c1 − 2)2 − 3a12
))

.

The final step now consists in deriving the conditions coming from the imposition that
the second stage has accuracy order equal to three. Therefore, we consider the continuous
expression of the second stage obtained previously (26), assuming that Yn,1 is affected by
the error (30):

Y2(t) = b21
(
y
(
t + h(c1 − 1)

) − terr−1(t − h)
)

+ b22y(t) + ha21
(
y′(t + h(c1 − 1)

)
− j1(t − h)terr−1(t − h)

)
+ ha22y

′(t) + hr21
(
y′(t + hc1) − j1(t)terr1(t)

)
.

(31)

As usual, the Jacobian j1(t) = fy(t + hc1, y)|y=Y1(t) appears by applying Taylor expansion
of y′(t + hc1) = f

(
t + hc1, Y1(t) + err1(t)

)
at the second component.

By defining the error operator associated with Yn,2 as before (4), considering this time the
new continuous expression of the second stage (31), we can determine the moments L2,k ,
k ≥ 0, which are obtained by canceling L2(tk) at t = 0. Report the expression of L2(tk):

L2(t
k) = (t + h)k − b21

((
t + h(c1 − 1)

)k − (1/6)L−1,3k(k − 1)(k − 2)(t − h)k−3
)

− b22t
k − ha21

(
k
(
t + h(c1 − 1)

)k−1 − j1(t − h)(1/6)L−1,3k(k − 1)(k − 2)

(t − h)k−3
)

− hka22t
k−1 − hr21

(
k(t + hc1)

k − j1(t)(1/6)L1,3k(k − 1)

(k − 2)tk−3).
(32)

Now, the moments L2,0, L2,1, L2,2 and L2,3 can be easily calculated. While canceling the
first three, we obtain exactly the same order conditions of the classical case (7), annihilating
the last moment leads to the following additional order condition, different from that derived
for OEJDP methods:

1 − b21
(
(c1 − 1)3 − (

(c1 − 1)3 − b11(c1 − 2)3 + b12 − 3a11(c1 − 2)2 − 3a12
))

− a21
(
3(c1 − 1)2 − hj1(t − h)

(
(c1 − 1)3 − b11(c1 − 2)3 + b12 − 3a11(c1 − 2)2

− 3a12
)) − r21

(
3c21 − hj1(t)

(
c31 − b11

(
(c1 − 1)3 − (

(c1 − 1)3 − b11(c1 − 2)3

+ b12 − 3a11(c1 − 2)2 − 3a12
)) − a11

(
3(c1 − 1)2 − hj1(t − h)

(
(c1 − 1)3 − b11

(c1 − 2)3 + b12 − 3a11(c1 − 2)2 − 3a12
)))

= 0.

(33)
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To conclude, therefore, the NEJDP methods that we propose in this paper are obtained by
imposing the order conditions (6), (7) and (33). This leads to coefficients which, compared
to the OEJDP methods, depend on the Jacobian calculated at the current and the previous
grid points:

A21 =acnum21

acden21

(
I + 1

acnum21
Anum
21 h J1(t)

)
× inv

(
I + 1

acden21

(
Aden1
21 h J1(t − h)+

Aden2
21 h J1(t)

))
,

A22 =acnum22

acden21

(
I + 1

acnum22

(
Anum1
22 h J1(t − h) + Anum2

22 h J1(t)
)) × inv

(
I + 1

acden21(
Aden1
21 h J1(t − h) + Aden2

21 h J1(t)
))

,

R21 =rcnum21

rcden21

(
I + 1

rcnum21
Rnum
21 h J1(t − h)

)
× inv

(
I + 1

rcden21

(
Rden1
21 h J1(t − h)

+ Rden2
21 h J1(t)

))
, where

(34)

Anum
21 = − ( − 1 + b21(−1 + c1)

2)(b11(−1 + c1)
3 − (−3 + c1)c

2
1

)(
2I + b11

(−1 + c1)
( − 2I + (−1 + c1)h J1(t − h)

) − c1(2I + c1h J1(t − h))
)
,

Aden1
21 =2(−1 + c1)

(
b11(−1 + c1)

3 − (−3 + c1)c
2
1

)(
b11h J1(t) + c1

(
2I + b11

(−2 + c1)h J1(t) − c1h J1(t)
))

,

Aden2
21 =4

(
(−1 + c1)

2)(b11 − b211(−1 + c1)
3 − 3b11c1 + (−3 + c1)c1

2),

Anum1
22 =2(−1 + c1)(−b11(−1 + c1)

3 + (−3 + c1)c
2
1)

(
1 − 2c1 + b21(−1 + c21)

)
,

Anum2
22 = − (3 + b21(−1 + c1)

2 − 2c1)(b11(−1 + c1)
3 − (−3 + c1)c

2
1)

(
2I + b11

(−1 + c1)
( − 2I + (−1 + c1)h J1(t − h)

) − c1
(
2I + c1h J1(t − h)

))
,

acnum21 = − 4(−1 + c1)c1
(
2 − 3c1 + b21(2 + b11(−1 + c1)

3 + 3(−1 + c1)c1)
)
,

acden21 =24c1(−1 + c1)
2,

acnum22 =4(−1 + c1)
(
5 + 6(−2 + c1)c1 + b21(−1 + b11(−1 + c1)

3 − 3(−2 + c1)c
2
1)

)
,

Rnum
21 =(

1 − b21(−1 + c1)
2)(b11(−1 + c1)

3 − (−3 + c1)c
2
1

)
,

Rden1
21 =2c1(b11(−1 + c1)

3 − (−3 + c1)c
2
1),

Rden2
21 =(b11(−1 + c1)

3 − (−3 + c1)c
2
1)

(
2I + b11(−1 + c1)(−2 + (−1 + c1)

h J1(t − h)) − c1
(
2I + c1 J1(t − h)

))
,

rcnum21 =2
( − 5 + (8 − 3c1)c1 + b21(−1 + c1)(−1 + b11(−1 + c1)

3 + 3c1)
)
,

rcden21 =12(−1 + c1)c1.

The coefficients a11 and a12 are scalar and correspond to that of OEJDP methods (12).
Furthermore, as in the previous case, the denominators of A21 and A22 correspond. For
convenience, we have reported the coefficients of the NEJDP methods directly in non-scalar
case.

The coefficients dependence on the Jacobian also at the previous point does not cause
an additional computational cost (with respect to the OEJDP methods) in terms of function
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evaluations. In fact, the Jacobian determined at the previous grid points can be stored in an
array, without the need to re-evaluate it at each step of the method. We note that, as with
the OEJDP methods, we still have two-stage methods of order two, and the second stage
is always computed by imposing that it has order three. Since we have also considered the
errors on the stages in the previous interval, it is reasonable to expect that the new methods
are more accurate than the classic and old equation-dependent ones. This observation will
be confirmed in numerical tests.

3.2 Stability analysis of NEJDPmethods

In the current subsection, we show the absolute stability region of the NEJDP methods
obtained in this paper. Through a careful selection of the parameters left free, the NEJDP
methods result more stable than the OEJDP methods (12) obtained in Conte et al. (2021),
and therefore also than the classical ones. Furthermore, in numerical tests, we will see that
they also have better accuracy.

To perform the linear stability analysis of the considered peer methods, we need to solve
with them the test equation

y′ = λy, (35)

where λ is a complex number with negative real part, by evaluating for which values of hλ

the numerical solution does not explode. The application of the peer method (2) to the test
Eq. (35) leads to

Y [n+1] = BY [n] + zAY [n] + zRY [n+1], z = hλ. (36)

Therefore, Y [n+1] = (I − zR)−1(B + zA)Y [n].
By defining the matrix M(z) = (I − zR)−1(B + zA), it is possible to conclude that

the numerical solution does not explode if its spectral radius is in modulus less than one.
Obviously the NEJDP, the OEJDP, and the classical method have three different stability
matricesM , respectively, as they have different coefficients. Consequently, in order to analyze
the stability properties of these three methods, the eigenvalues of the respective matrices M
must be determined, evaluating for which values of z they assume a value less than one in
modulus.

Regarding the OEJDP and classical peer methods, the values of the free parameters for
which the relative stability region has real part as large as possible have already been deter-
mined in Conte et al. (2021). For classical methods, these parameters are

b11 = −0.52, b21 = −1.3, c1 = 0.3, r21 = 0.8, (37)

while for the OEJDP schemes they assume the following values:

b11 = −0.59, b21 = −1, c1 = 0.3. (38)

Conducting the same analysis for the NEJDP methods derived in this work, using the
Matlab fmincon function (considering random initial values for the coefficients), we have
ascertained that the parameters that maximize the absolute stability region real part are

b11 = −0.24, b21 = −0.31, c1 = 0.2. (39)

Figure 1 shows the absolute stability regions of the three methods with the values of the
parameters just reported. Note that the considered OEJDP method has stability region that
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Fig. 1 Absolute stability regions (internal part) of classic (37), OEJDP (38) and NEJDP (39) methods, respec-
tively

in some places contains that of the NEJDP method. However, the latter has a larger area and
includes a much larger part of the real axis.

4 Numerical tests

In this section we perform numerical tests to evaluate the advantages of NEJDP methods
derived in this paper, comparing them with the OEJDP and the classic ones. Since in Conte
et al. (2021) numerical testswere conducted exclusively on scalarODEs,wenowalso consider
non-scalar problems. Specifically, we will focus on the methods versions (39), (38) and (37),
which guarantee optimal stability properties as demonstrated in the previous subsection.

We evaluate for each method the absolute error committed at the final grid point T ,
comparing the computed numerical solution with the exact one (if known), or with that
determined by the Matlab function ode15s, requiring maximum accuracy. In addition, we
report tables with the estimate of the order of each method, calculated using the formula

p(h) = cd(h) − cd(2h)

log10(2)
, (40)

where cd(h) = −log10(absolute error) represents the number of correct digits obtained with
step-size h.

4.1 Prothero–Robinson equation

The Prothero–Robinson equation (Prothero and Robinson 1974) is often used to evaluate the
stability of numerical methods, as it depends on a parameter λ that determines the stiffness
of the problem. In fact, the stiffness of the equation is directly proportional to the modulus
of λ. This equation takes the form
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Fig. 2 Solution behaviour using the considered methods on Prothero–Robinson equation (41)

{
y′(t) = λ

(
y(t) − sin(t)

) + cos(t),

y(0) = 0, t ∈ [0, π/2]. (41)

Moreover, for (41), the exact solution is known: y(t) = sin(t).
In this case, we do not report tables with errors due to the application of the considered

methods. In fact, we will evaluate the greater accuracy of the new methods obtained in this
paper through the relative application on non-scalar problems. Now, we want to evaluate the
better stability of the NEJDP methods, both with respect to OEJDP and classical schemes.
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Fig. 3 Solution behaviour using the considered methods on Prothero–Robinson equation (41)

From Figs. 2 and 3, this observation becomes evident, since for different values of λ and
h, the numerical solution determined using NEJDP methods is very close to the exact one.
On the other hand, for the same values of the parameter and of the step-size, both the OEJDP
method and the classical one produce numerical solutions that either explode, or in any case
that have a completely different trend with respect the exact one.
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Table 1 Absolute errors at the endpoint T on Euler problem (42), in correspondence of several values of the
number of grid points (N + 1)

N NEJDP methods (39) OEJDP methods (38) Classic methods (37)

24 7.09e−01 8.61e−01 3.86e+05

25 7.38e−02 8.22e−02 3.62e+00

. . . .

29 1.93e−05 3.02e−04 7.79e−03

210 2.98e−06 7.31e−05 1.87e−03

211 5.18e−07 1.80e−05 4.56e−04

212 1.01e−07 4.45e−06 1.13e−04

213 2.42e−08 1.11e−06 2.79e−05

214 6.46e−09 2.76e−07 6.96e−06

4.2 Euler problem

Euler problem (Euler 1758) is represented by the following non-stiff ODEs system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y′
1(t) = − 2y2(t)y3(t),

y′
2(t) =5

4
y1(t)y3(t),

y′
3(t) = − 1

2
y1(t)y2(t),

y(0) =[1; 0; 0.9], t ∈ [0, 10].

(42)

In this case, from Table 1, it is evident the greater accuracy of the NEJDP methods
compared to the OEJDP and the classic ones. In fact, the error of the new methods is smaller
than the others by at least two orders of magnitude. Specifically, there are two orders of
difference between the new methods and the old ones, and even three orders of difference
between the new methods and the classic peer schemes.

As we expected, however, the order of NEJDP methods remains equal to two, despite
the fact that the second stage is calculated with order three. In fact, as mentioned in the
Introduction, peer methods are characterized by having all stages with the same properties in
terms of accuracy and stability. Therefore, if one stage is determined with order two, and the
other with order three, the overall order of the method is still equal to two. We can ascertain
this by looking at Table 2. However, note that, although the order tends to two, it is initially
close to three. Thus, the higher accuracy in the second-stage calculation is responsible for
the higher overall accuracy of the NEJDP methods.

4.3 Brusselator model

The last ODEs system we consider is the Brusselator (Nicolis and Prigogine 1977) problem⎧⎪⎨
⎪⎩

y′
1(t) =1 + y1(t)

2y2(t) − 4y1(t),

y′
2(t) =3y1(t) − y1(t)

2y2(t),

y(0) =[1.5; 3], t ∈ [0, 20].
(43)
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Table 2 Estimated order p(h) on Euler problem (42)

N NEJDP methods (39) OEJDP methods (38) Classic methods (37)

27 3.03 2.11 1.97

28 2.95 2.12 2.03

29 2.84 2.08 2.07

210 2.70 2.05 2.06

211 2.53 2.02 2.04

212 2.35 2.01 2.02

213 2.06 2.01 2.01

Table 3 Absolute errors at the endpoint T on Brusselator model (43), in correspondence of several values of
the number of grid points (N + 1)

N NEJDP methods (39) OEJDP methods (38) Classic methods (37)

29 1.37e−04 1.42e−04 1.50e−03

210 1.72e−05 6.62e−05 9.70e−04

211 2.36e−06 2.00e−05 4.24e−04

212 3.62e−07 5.40e−06 1.27e−04

213 6.29e−08 1.40e−06 3.41e−05

214 1.23e−08 3.55e−07 8.80e−06

215 2.66e−09 8.95e−08 2.23e−06

216 6.07e−10 2.25e−08 5.63e−07

Table 4 Estimated order p(h) on Brusselator model (43)

N NEJDP methods (39) OEJDP methods (38) Classic methods (37)

212 2.71 1.89 1.74

213 2.53 1.95 1.89

214 2.35 1.98 1.95

215 2.21 1.99 1.98

216 2.13 1.99 1.99

In this case, Tables 3 and 4 confirm the observations already made previously. Therefore,
even for non-scalar problemswith non-constant and non-linear Jacobian, theNEJDPmethods
work well.

4.4 Non-linear Burgers equation

To show the trend of the new methods also on ODEs systems of higher dimensions than
those discussed so far, let us consider a Partial Differential Equation (PDE) and discretize it
in space using the method of lines. In particular, we consider the following formulation of
the non-linear Burgers PDE (Burgers 1948):
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Table 5 Absolute errors andCPU time on the semi-discretized non-linear Burgers PDE (44) in correspondence
of several numbers of grid points (N+1), by applying NEJDP methods with frozen and unfrozen Jacobian and
the Matlab routine ode45, setting for it options ‘AbsTol’ and ‘RelTol’ which lead to an absolute error similar
to that of NEJDP methods

ode45 NEJDP methods (39) NEJDP (39), J = εL1

‘Tol’ (N) Error Time N Error Time N Error Time

1e−3 (52) 2.87e−05 0.0312 64 6.78e−05 0.0781 256 2.16e−05 0.0156

1e−4 (64) 1.78e−05 0.0469 128 8.74e−06 0.1250 512 5.48e−06 0.0312

1e−5 (92) 2.19e−06 0.0469 256 1.06e−06 0.2188 1024 1.38e−06 0.0469

1e−6 (136) 2.98e−07 0.0625 512 1.29e−07 0.5469 2048 3.46e−07 0.0781

∂ y

∂t
= ε

∂2y

∂x2
− 1

2

∂ y2

∂x
, (x, t) ∈ [0, 2π ] × [0, 2], ε = 0.1.

We set periodic boundary conditions and

y(x, 0) =
{
1, x ∈ [0, π],
0, x ∈ (π, 2π],

as initial conditions, then employing an order four finite differences spatial semi-
discretization, both for the second- and first-order spatial derivatives, fixing a grid of M = 25

spatial intervals. The semi-discretized is space problem, which is an ODEs system of dimen-
sion M , takes the following form:

y′(t) = εL1y(t) − 1

2
L2y(t)

2. (44)

Here, L1 and L2 are constant matrices having the discretization coefficients of the second-
and first-order spatial derivatives, respectively. The Jacobian is the non-constant matrix

J
(
y(t)

) = εL1 − L2y(t).

We solve the problem (44) with the NEJDP methods, also comparing the CPU time they
take with that of the Matlab ode45 routine, with parity of errors. The errors are evaluated,
as before, with respect to the reference solution determined by the ode15s function applied
to the semi-discretized ODEs system (44), requiring maximum accuracy. The corresponding
results are reported in Table 5.

Since ode45 has an adaptive step-size control, the comparison is not very fair, as NEJDP
methods are with fixed step-size. In fact, from Table 5, note that the number of grid points
taken by ode45 is significantly lower than that of the NEJDP methods. However, the latter
still manage to be competitive (they take on average a CPU time four times bigger than ode45,
but still low). To show that thanks to the step control ode45 saves a lot of time, in Table 6, we
have reported the minimum step-size hmin used by it during the integration. Then, note that
even though ode45 takes far fewer grid points than NEJDP methods, it is sometimes forced
to choose an even smaller step than them to obtain a comparable error.

Furthermore, note that in the far right column of Table 5, we have reported the results
obtained by applying the NEJDP methods by freezing the Jacobian as J = εL1. This choice
is usual when the system of ODEs to be solved is of the form (44), and it is also known
that its stiffness is mainly concentrated in the first term. In this case, NEJDP methods are
advantageous with respect to ode45 in terms of computational time, with parity of errors.
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Table 6 Minimum time-steps hmin used by ode45 and time-steps h used by theNEJDPmethodswith reference
to the results reported in Table 5

ode45 NEJDP methods (39) NEJDP (39), J = εL1

‘Tol’ (N) hmin N h N h

1e−3 (52) 1.0626e−02 64 3.1250e−02 256 7.8125e−03

1e−4 (64) 6.7047e−03 128 1.5625e−02 512 3.9062e−03

1e−5 (92) 4.2304e−03 256 7.8125e−03 1024 1.9531e−03

1e−6 (136) 2.6692e−03 512 3.9062e−03 2048 9.7656e−04

This happens despite the choice J = εL1 does not look at accuracy, and therefore could be
done in a better way, leading to much lower errors.

This suggests that, with adequate Jacobian freezing strategies and adaptive step-size con-
trol, NEJDPmethods could definitely perform even better than they already do. Indeed, in this
test, we have shown that, only with frozen (non-optimized) Jacobian and without adaptive
step, the NEJDPmethods are already competitive with ode45. Surely, with adaptive step-size
control, the computing times would be lowered even more drastically.

5 Conclusions and future perspectives

In this paper, we have proposed a new class of explicit peer methods with improved stability
and accuracy properties. Furthermore, we have proved that such methods are very advanta-
geous both with respect to the classic ones, and to those derived in Conte et al. (2021), which
have exactly the same computational cost. Furthermore,we have definitely improved thework
Conte et al. (2021), deriving the OEJDP methods also in non-scalar case and generalizing
their order conditions.

Moreover, we have shown how it is possible to generalize in an appropriate way the
technique proposed in Ixaru (2012) for Runge–Kutta methods also on peer methods, which
unlike the former are characterized by stages that in the current interval depend on those
determined in the previous one. In fact, we considered the stages in the intervals [tn, tn+1]
and [tn−1, tn] to be affected by error. Due to the shape of peer methods, we think that the
Jacobian dependency must be applied in some way to all points of the grid in [0, tn], to obtain
even better stability and accuracy properties.

Finally, the results reported in the last numerical test lead us to think about investigating
a variable step-size formulation of the NEJDP methods derived in this paper, also with a
Jacobian freezing strategy.
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