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Abstract
Governments around the world are taking different measures to deal with the novel severe
respiratory syndrome coronavirus 2. In this sense, realistic mathematical models are impor-
tant tools to explore the effect of different control strategies. In this work, we developed
an agent-based model for COVID-19 disease dynamics which incorporates a basic social
structure to simulate different control strategies in mid-size cities. We evaluated the impact
of combinations of social distancing measures, such as contact tracing/case isolation, school
closures and partial lockdowns for workplaces on the evolution of hospital beds occupancy.
The contact tracing/case isolation modeled in most cases cannot prevent hospital beds satu-
ration by itself. Our results suggest that schools, without strong social distancing measures,
may be an important driver of the epidemic. Household and workplace people distribution is
also an important factor to consider when studying the impact of control measures.
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1 Introduction

On March 11, 2020, the World Health Organization declared a global COVID-19 pandemic,
a disease caused by the SARS-COV-2 virus. From the first case report in Wuhan, China, at
the end of 2019 until the last days of May 2021, there were already more than 168 million
cases and more than 3.5 million deaths worldwide.

Governments around the world are taking different measures to deal with this new disease.
Contact tracing, the isolation of infected cases and their close contacts, is one of the most
used tools to contain disease spread. In addition, some public activities such as concerts,
sporting events, and religious events have also been banned. In some cases, more disruptive
measures like the closing of schools and workplaces were taken.

Several different epidemiological indicators such as the doubling time of cases, the value
of the reproductive number, the average daily incidence of cases, and/or the availability of
hospital beds trigger partial lockdowns (Anderson et al. 2020; Wilder-Smith and Freedman
2020). The combination of such control measures usually produces a declining trend in the
number of incidencewhichmay be followed by some relaxation in social distancingmeasures
leading to a further increase of cases.

In recent months, manymathematical models have been developed to predict future trends
and explore the effect of different social distancing measures. Most of them are based on
modifications of the classic SEIR model (Susceptible, Exposed, Infected, Recovered), with
the incorporation of some extra epidemiological classes such as: undetected infected indi-
viduals, hospitalized individuals, asymptomatic individuals, among others (Kucharski et al.
2020; Prem et al. 2020; Zhao and Feng 2020). These models are generally based on dif-
ferential equations without incorporating spatial and/or social contact structures. In these
types of models, the effect of measures of social distancing is modeled by varying some
parameters as the infection rate during the course of the epidemic (see for example Lin et al.
(2020), Acuña-Zegarra et al. (2020), and Giordano et al. (2020)). On the other hand, in recent
months, more realistic models were developed considering an agent-based model approach
to evaluate the effect of control measures in the disease dynamics (see for example Aleta
et al. (2020); Kerr et al. (2021); Hinch et al. (2021)) and to estimate the economic impact
under different types of interventions (Silva et al. 2020).

In this work, we are interested in developing a computational model to evaluate the effect
of different strategies to prevent hospital resources saturation in small or mid-size cities.
We developed an agent-based model that incorporates a basic social structure consisting of
households, workplaces, schools, and supermarkets or similar stores. Infectious individuals
maybe asymptomatic, present onlymild symptomsor developmore severe disease forms and,
therefore, seekmedical attention.Aproportion of these later caseswill require hospitalization.

Control tools considered in ourwork are contact tracing/case isolation, school closures, and
partial lockdowns for workplaces. In our modelling approach, hospital bed occupancy levels
dictate the beginning and finalization of any of these measures. An analysis on parameters
uncertainty is in theAppendix C. In addition, different household andworkplace distributions
were considered to determine their effect on disease dynamics. The model proposed in this
article was developed entirely by the authors and programmed in C language.

This paper is arranged as follows. In the next section we describe the population structure
and the individual’s routine, how the population is structured in epidemiological classes and
how the disease transmission is modelled. In Sect. 3, the parameters, the distribution of
the population, and the different scenarios considered for the simulations are described. In
turn, the numerical results obtained for each of them and an analysis of how the population
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distribution affects these results are presented in this section. Finally, the discussion of the
results and conclusions are presented in Sects. 4 and 5, respectively.

2 Methods

2.1 Population structure

We developed an agent-based model for an homogeneous population without age structure.
Individuals were allocated to households of size H . A proportion of the population was
assumed to attend a school (it may represent a kindergarten, an elementary school, high
school, or a college) distributed in classrooms of 30 students with one teacher. A school is
composed of a group of 10 classrooms. The rest of the individuals were allocated to randomly
chosen workplaces of size W . Some of these workplaces were considered as stores, like
supermarkets, which were visited by the individuals of the populations with some frequency
(one store per 100 persons).

2.2 Individual’s routine

Individuals leave home at 7 am and go directly to their workplace or school. People in the
schools divide the time between the classroom and breaks, until 2 pm. People who attend
other workplaces stay at them until 5 pm, except those who work at supermarkets and stay
there until 6:00 pm. After leaving their workplace or school, one person per house (chosen at
random) may spend one hour in a store (one visit to stores per household and no more than
one visit every four days). During the day, all individuals may have some number of casual
contacts, representing contacts in public transportation or other public areas.

2.3 Epidemiological classes

Susceptible individualsmaybecome infected by contactwith infectious cases.Newly infected
individuals enter in the latent, not infectious state. After the latency period, they become
infectious but pre-symptomatic. A proportion σa of the infectious individuals remains asymp-
tomatic or develop only mild symptoms and, therefore, are usually not detected by the health
system. The rest of the infectious individuals who develop clinical symptoms are likely to
seek medical attention.

We considered two clinical classes, a first sub-clinical stage, where only mild symptoms
are observed, and a clinical phase where symptoms are apparent. Some of these last types
of cases (a proportion σh) present symptoms severe enough to become hospitalized. Finally,
individuals recover or die.Weassume that recovered individuals develop long-term immunity.

According to Li et al. (2020), the time spent in each infected class has a bell-shaped
distribution. In our case, we considered Gamma distributions for these periods with mean
and variance listed in Table 2.

The mean duration of the latent period was set in 4 days, which is in the range reported by
Kucharski et al. (2020), Li et al. (2020) and Lauer et al. (2020). For the infectious period, there
are different estimations. We choose a mean duration of 7.5 days with a variance of 9 days
(Zhao and Feng 2020; Ivorra et al. 2020; World Health Organization 2020; He et al. 2020).
For the hospitalization time, we considered a distribution according to the data observed for
Argentina (Ministerio de Salud de la Nación 2020). For the simulations, these periods were
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Fig. 1 Progression in the epidemiological classes. Susceptible (S), Latent (L), Pre-symptomatic (Ps), Asymp-
tomatic (A), Sub-clinical (Sc), Clinical (C), Hospitalized (H), Recovered (R)

controlled in order to that the latency, infectious, and hospitalization period were at least one
day. Thus, all the individuals spend at least 1 day in any of these epidemiological states. In
addition, a maximum value of 15 and 20 days was considered for the latent and infectious
periods, respectively.

The progression from pre-symptomatic to subclinical and clinical classes allows for an
easy way to consider different transmission probabilities at different stages of the disease
progression. A diagram for the progression in the epidemiological classes is presented in Fig.
1.

2.4 Modeling disease transmission and parameter estimation

2.4.1 Probabilities of infection

Theprobability of transmissionper contact per unit of time in a householdβH wasnumerically
estimated from the data in the secondary attack rate Liu et al. (2020); Jing et al. (2020) as
described inAppendixA. In a given environment, susceptible individuals have a probability of
infection per unit of time and per infectious contact, depending on the type of the environment
and the infectious class of the active case. We considered the worst-case scenario in which all
the infectious classes have the same infectivity. Theprobability of transmission is decomposed
as the maximum value (βH ) weighted by a coefficient which depends on the type of the
environment, ρ j , where j ∈ {H ,W , St, S}, for households, workplaces, stores, and schools,
respectively. We set ρH = 1 for a household, and ρ j ≤ 1 for the other environments.
Three different cases were evaluated regarding the risk of infection in each environment
(ρ values). In the first case, we considered that the risk of infection is the same in all the
environments (ρH = 1 for all j). In the other two cases, we used different ρ j values for
different environments. In both cases a value of ρS = 1/8 was considered for schools,
while for stores this value was set to ρSt = 1/4. For workplaces, two different values were
considered: ρW = 1/2 (case 1) and ρW = 1/3 (case 2). It is important to note that for store’s
workers the value used in these places is the same as in any other workplace.

2.4.2 Latency and infectious periods

All periods considered are random variables modeled with Gamma distributions with signif-
icant variance values. In other words, for each simulation, the values for the different waiting
periods widely vary between individuals. The mean value of the latency period may produce
a shift in the epidemic curves but not in the peaks. The duration of the infectious period may
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have a significant impact on the force of infection but in our case we fixed the value of the
probability of transmission per contact and per unit of time from the data in the secondary
attack rate. Changing the mean infectious period translates to a change in the probability of
infection to leave the secondary attack rate unchanged.

2.4.3 Proportion of non-detected cases

Asymptomatic cases and mild cases that do not seek medical attention are not detected by the
health system except by contact tracing. The percentage of asymptomatic cases, i.e., never
experience symptoms, remains uncertain (Centers for Disease Control and Prevention 2020)
and there are different estimations with high variation ranging from 10% to 73% depending
on what symptoms are included in the definition of the suspect case and when the patients
were tested (Centers for Disease Control and Prevention 2020; He et al. 2021; Poletti et al.
2020). We assumed that a constant proportion of new cases are asymptomatic or develop
only mild symptoms and, therefore, are not detected for the public health system.

2.4.4 Proportion of hospitalized cases and hospitalization length of stay

The proportion of cases detected which require hospitalization is a parameter that depends
on many factors such as the age of the patients and their co-morbidities, and different values
have been reported for different countries and cities (Zhao and Feng 2020; CDC COVID-19
Response Team 2020; Moghadas et al. 2020). The probability of hospitalization estimated
from data can represent up to 1/3 of the detected cases (CDC COVID-19 Response Team
2020).

Hospital length of stay also has great variability. We considered that this period is gamma
distributed with mean 12 days and a significant standard deviation of 72 days (Ministerio de
Salud de la Nación 2020).

2.5 Modeling contact tracing, case isolation and lockdowns

We assumed a conservative scenario where only a passive contact tracing is implemented.We
considered that clinical cases are detected at the rate rd . Thus, the probability of detection in
an interval of time �t is given by 1− e−rd�t . When a case is detected their entire household
is isolated (for a fixed period of time Tct ) as well as all their workplace contacts (but not their
corresponding household contacts). If the detected case is an individual who attends school
or works in a store, only their household contacts are isolated. Isolated individuals remain at
home most of the time, and therefore, their casual contact rates are substantially reduced.

After the isolation period ends, isolated individuals are tested. If the test result is positive,
the individual will remain isolated and will be tested every 2 days until a negative result is
obtained. If an individual in isolation, who was not previously detected, test positive, their
family is also isolated for a fixed period of time Tct . In all cases, a negative result is necessary
to end the isolation.

A partial lockdown consisted of the closure of a percentage of the workplaces and/or
schools. Individuals are isolated, and their casual contacts are reduced. A partial lockdown
begins when a fraction of the emergency rooms are occupied and relaxed when a lower value
for this fraction is reached. Lockdown policies modify people’s routines. People who are not
attending their workplaces or schools may visit stores at any time of the day.
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Fig. 2 Distribution of inhabitants per house for La Banda city, Santiago del Estero, Argentina according to
Instituto Nacional de Estadística y Censo (2010)

3 Results

3.1 Parameters and scenarios considered

For the simulations, a population of 100 thousand inhabitants was considered. These inhabi-
tants were distributed in households of different sizes in accordwith the empirical distribution
observed for La Banda (Fig. 2), an Argentinian city in Santiago del Estero province, with
approximately 100.000 inhabitants (Instituto Nacional de Estadística y Censo 2010). The
mean of the distribution is equal to 3.94. For the distribution of workplace size, we do not
have empirical information, so a Poisson distribution with a mean equal to 8 truncated from
1 to 15 was considered. As mentioned before, some workplaces were considered as stores (1
per 100 persons). In all cases considered, each store has a staff of 8 workers. A brief study
about how the distributions of houses and workplaces sizes affect the epidemic dynamics is
presented in Sect. 3.3.

We considered that 25% of the population is attending school, so we have a total of 834
classrooms with 30 students and one teacher each. The rest of the population is distributed in
workplaces considering one store every 100 people. The population is composed of 25000
school-attending individuals, 834 teachers, 8000 store workers, and 66166 regular workers.

To evaluate the impact on the disease dynamics of the different measures, we considered
several control strategies as detailed in Table 1. The strategy E1 corresponds to doing nothing,
and therefore, we have a free epidemic. In strategy E2, only contact tracing and case isolation
is implemented. In scenarios E3, E4, and E5 different, combinations of partial lockdowns of
schools and workplaces are simulated. All the scenarios were simulated for two years (720
days), given that we consider that in that period of time a vaccine or other pharmaceutical
solutions to the disease will be found.

In our model, schools are the most significant driver of the epidemic. Schools are closed
when 35% of the hospital beds are occupied and are reopened when this percentage drops
below 5%. A percentage of workplaces, other than schools and stores, are closed when 50%
of the hospital bed are occupied and reopen when occupancy is below 40%.
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Table 1 Description of the different scenarios considered for the simulations

Scenario Contact tracing Schools closure Workplaces closure (%)

E1 No No No

E2 Yes No No

E3 Yes Yes No

E4 Yes Yes 25%

E5 Yes Yes 50%

In some cities with strong systems of public health, the availability of hospital beds is
around eight beds per thousand inhabitants or higher (World Bank 2020). However, in most
small cities (mainly in non-developed countries) as the considered in this work, availability of
hospital beds is significantly lower.We considered the case of four hospital beds per thousand
population.

As mentioned before, three different cases in relation with the risk of infection were
considered. One in which the risk is the same in all environments, and two in which there
is heterogeneity in the values. Other parameters values used in the simulations are listed in
Table 2. For σa and σh values, we considered a combination that represents the worst-case
scenario. A discussion about how these values affect the results obtained in the simulation
can be found in Sect. 3.4.

3.2 Results for the different cases considered

3.2.1 Case 0 (�j = 1 for all j)

When ρ j = 1 for all j , the saturation of the health system is practically impossible to avoid.
The doubling time of the free epidemic was estimated in 2 days considering the exponential
phase of the epidemic growth between days 20 and 30, with a final epidemic size greater than
0.99. These results strongly suggest that assuming ρ j = 1 for all j is a very unrealistic case.

In scenario E5 (schools closed and 50% of the workplaces closed), the most conservative
considered in this work, the peak of bed occupancy is equal to 1595 beds, close to quadrupling
the capacity of the health system, when closures are triggered at 140 (schools) and 200
(workplaces) occupancy beds.

We also considered an extreme scenario in which schools and 50% of the workplaces are
closed at the beginning of the simulation, and these remain closed throughout the simulation.
In this scenario, a large proportion of the population can only come into contact with people
outside their household only through casual contacts or contacts in stores. Even in this case,
the health system collapses assuming four beds per thousand population (Fig. 3), a relatively
high value for most small to mid-size cities in non-developed countries.

3.2.2 Cases 1 and 2 (�W = 1/2 and�W = 1/3)

For cases 1 and 2, the doubling time for the free epidemic was estimated in 5 days from
the exponential phase of the simulated epidemic growth in case 1, and in 5.5 for case 2
(see Appendix B). These values are in the range of the doubling times observed by Li et al.
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Fig. 3 Dynamics of hospitalized individuals for the special scenario for the case 0. The horizontal line is the
total number of available hospital beds for covid 19 patients

Fig. 4 Dynamics of hospitalized individuals for each scenario considering ρW = 1/2 (case 1). The horizontal
line is the total amount of hospital beds

(2020); Volz et al. (2020); Wu et al. (2020). The dynamics of hospitalized individuals for
each scenario is shown in Fig. 4 (case 1) and Fig. 7 (case 2).

For the free epidemic scenario, almost everyone in the population is infected (95% in
case 1 and 91% in case 2). Under our passive contact tracing strategy, which only tracks and
isolates people in the workplace and the household of the detected case, the epidemic final
size is reduced to about 78% in case 1 and 70% in case 2. However, this reduction is far from
enough to prevent a collapse of the health system (Figs. 4 and 7).

In case 1 (ρW = 1/2), closing only schools is not enough to avoid a collapse of the health
system, and a further partial lockdown of at least a 50% of workplaces is necessary.

According to Fig. 5, the final epidemic size decreases as the partial lockdown increases.
As we can see, the passive and conservative contact tracing policy considered reduced 17.7%
the final epidemic size, going from 95% to 78%. A further closure of schools reduces it to
about 30%. The difference between a lockdown of 25% or 50% is 2.9% of the population,
being the final epidemic size approximately 60.6% in E4 and 57.7% in E5.
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Fig. 5 Epidemic size for each scenario considering ρW = 1/2 (case 1)

Fig. 6 Epidemic size for each scenario considering ρW = 1/3 (case 2)

A different situation occurs if a lower value of ρW is considered, as in case 2 (ρW = 1/3).
Closing 25% of the workplaces, the health system would operate close to its maximum
capacity and could collapse due to the need for beds for other diseases different to COVID-
19. Under these conditions, closing 50% of workplaces ensures a good response from the
health system.

For the lower value of ρW = 1/3 considered, disease transmission in households and
schools dominate the dynamics concerning the contribution of workplaces. In general, the
epidemic size of each scenario is lower considering a lower value of ρW (comparison of
Figs. 5 and 6), an expected result. A non-trivial result considering ρW equals 1/3 (instead of
ρW = 1/2) is that closing the schools and only 25% of workplaces is enough to prevent the
health system collapse.

An evidence of the decrease of the importance of workplaces in the epidemic dynamics,
is that the curve of hospitalized individuals closing only schools (E3) is higher in case 1
(ρw = 1/2, Fig. 4) than in case 2 (ρw = 1/3, Fig. 7).

A partial lockdown of schools and workplaces involves a general loss of class days and
working days that are summarized for each case in Table 3. In case 1, the schools are closed
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Fig. 7 Dynamics of hospitalized individuals for each scenario considering ρW = 1/3 (case 2). The horizontal
line is the total amount of hospital beds

Table 3 Loss of class and work days in each scenario according to dynamics in Figs. 4 and 7 for a simulation
of 720 days of duration

Scenario Days with schools closed Days with workplaces closed

Case 1 Case2 Case 1 Case2

E3 192 262 − −
E4 288 405 132 103

E5 477 414 122 53

on day 69 of the 720 simulated days and remain closed for a period of 192, 208, and 416 days
for scenarios E3, E4, and E5, respectively. In scenario E3, the schools are not closed again,
but in scenario E4 are closed again for 80 days (from day 398 to day 478), while in scenario
E5, it occurs for about 2 months (from day 603 to day 664). On the other hand, workplaces
are closed on day 75 of the simulation in both scenarios (E4 and E5). In E4, after opening on
day 207, these are not closed again, while in E5 these are open on day 177, and then these
are closed again for 20 days (from day 222 to day 242). Considering a lower value for ρW ,
the disease spreads through the population slower. The lockdown of schools and workplaces
begins approximately two weeks later than in case 1, on day 85 for schools and on day 89 for
workplaces. From Fig. 7, we can see that the more aggressive the closure policy, the sooner a
new peak occurs in the curve for hospitalized people. The times when those new peaks begin
correspond to the times when schools reopen.

From Table 3, we can see that to avoid the saturation of the health system in case 1 (E5),
we need more days with schools and workplaces closed than in case 2 (E4 and E5). On the
other hand, considering that in E5 we are closing twice as many workplaces as in E4, but
half the time, we might conclude that, from an economic point of view, the closure of 25%
or 50% of the workplaces has the same economic impact.

An important feature of the dynamics simulated with the model is the great impact that
closing school has on the disease dynamics, as can be seen in the difference between peaks
in the bed occupancy curve for E3 and E2 in Figs. 4 and 7. So, we can conclude that in the

123



14 Page 12 of 22 M. I. Simoy, J. P. Aparicio

Fig. 8 Distribution of inhabitants per house for Tandil city, Buenos Aires, Argentina according to Instituto
Nacional de Estadística y Censo (2010)

cases considered in this work, schools are the main driver of disease dynamics, and closing
them has a great impact in the chain of transmission.

3.3 Effect of population distribution

In this section, we briefly explore the effects of household and workplace people distribution
on the dynamics.

One of the distributions of inhabitants per house corresponds to the empirical distribution
observed for Tandil (Fig. 8), a city of approximately 100 thousand inhabitants in the Buenos
Aires province in Argentina. This distribution of house sizes has a mean equal to 2.93. In this
case, for theworkplaces size distribution, we consider the same truncated Poisson distribution
with mean equal to 8, as before. The third distribution considered was the ‘homogeneous
case’ in which all houses have four inhabitants, and all workplaces have eight members.

If the epidemic dynamics in these two new situations (Tandil and the homogeneous case)
is simulated, the case ‘La Banda’ has the lowest doubling time of cases in a situation of a free
epidemic (considering the first exponential phase of growth) in all the cases and the highest
final epidemic size in most cases (Table 4). On the other hand, we can see that, in all the
cases, the epidemic final size is higher in the ‘homogeneous’ case than in Tandil. However,
the doubling time of cases in Tandil is lower than in the ‘homogeneous’ case, only for cases
1 and 2, while in the case 0, the situation is the opposite. It is important to mention that the
doubling time of cases is a good indicator for the exponential phase of the epidemic growth,
while the final epidemic size considers all its evolution.

If the different scenarios are compared for the same parameter values, La Banda always
needs more restrictions to avoid saturation of the health system than Tandil and the homo-
geneous case. As shown above, in case 1, in La Banda, it is necessary to consider closing
schools and a 50% of the workplaces, however, in Tandil and the homogeneous case, it is
enough closing school and a 25% of the workplaces, as can be seen in Fig. 9 (top). In this
figure, we can see that the dynamics of hospitalized individuals considering scenario E4 (in
case 1) for Tandil and the homogeneous case is more similar to scenario E5 than to E4 in La
Banda.
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Table 4 Doubling time of cases for the exponential phase of epidemic growth for a free epidemic situation
(final epidemic size) for each case and population distribution considered

Case La Banda Homogeneous Tandil

Case 0 2.0 (98834) 2.12 (99051) 2.99 (97812)

Case 1 5.0 (95117) 6.5 (94338) 6.15 (90333)

Case 2 5.5 (91719) 7.14 (90554) 6.5 (84376)

Fig. 9 Dynamics of hospitalized individuals for the different population distributions considering case 1 (up)
and case 2 (bottom)

The differences are greater if we compare the E3 scenario in case 2 for the three population
distributions. We can see that in Tandil and in the homogeneous case it is enough to close
schools to avoid the health system saturation (Fig. 9 - bottom). At the same time, in La Banda,
this control measure is notoriously insufficient, and it is needed to close at least 25% of the
workplaces (Fig. 7).

As before, in case 0 (ρ j = 1 for all j), a saturation of the health system is practically
impossible to avoid regardless of the population distribution considered.

If the impact of the contact trace/case isolation measure is compared for cases 1 and 2,
in the different population distributions, we can see that it has a greater impact in Tandil
producing a reduction in the epidemic final size of a 24% in case 1 and a 27% in case 2, than
in La Banda and the homogeneous case where the reduction is approximately the same in
both case, 17% in case 1 and 21% in case 2.

A non-trivial result is the similarity obtained for the epidemic dynamics considering the
population distribution of Tandil and the homogeneous case.We can see that in both cases, the
saturation of the health system is avoided applying the same scenario (more examples of that
situation can be found in C). However, the final epidemic size reached in the homogeneous
case is always higher than in Tandil if the same parameters and scenarios are considered.

The differences between the results obtained for the different population distributions
can be explained considering the contribution to the non-zero variance’s disease dynamics.
We can see that La Banda and the homogeneous case have approximately the same mean
size of houses (3.94 and 4, respectively) and workplaces (8 in both cases). However, the
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homogeneous case has zero variance in both cases, while La Banda has a non-zero variance,
and that is the reason why it has faster and aggressive dynamics.

3.4 Results for other parameter values

In the previous analysis, we considered the worst-case scenarios according to available data.
If the proportion of non-detected cases (σa) is reduced to 0.15, close to the lower bound
reported (Centers for Disease Control and Prevention 2020), contact tracing and isolation is
much more effective, and epidemics are prevented without the need to close or schools or
workplaces (in cases 1 and 2). This happens for all the population distributions considered.
Taking into account the conservative contact tracing modeled, this result seems unrealistic.
When the rate of hospitalization is also in the lower bound of ten percent of the detected
cases, the prevention of health system saturation is also easily achieved. A more detailed
analysis of these situations can be seen in Appendix C.

4 Discussion

In most works, the effect of social distancing measures is modeled implicitly by changing
some parameter values, like the transmission parameter. The advantage of our modeling
approach is that the control measures are explicitly modeled by changing the individual’s
behavior of the population.

In our model, a conservative contact tracing was implemented where it is reduced to
household and workplaces contacts. In addition, only the contacts of the cases detected by
the health system (clinical cases) are tracked. In our simulations, all household andworkplace
contacts are isolated for 14 days and return to normal activities only after a negative result
for infection. Contact tracing and case isolation may be implemented more easily for low
values of the infectious population. In our simulations, we have not taken into account the
fact that it may be difficult to implement reliable contact tracing and isolation of suspected
cases for high values of the infectious population.

Although the effect that schools have on the epidemic dynamics is still under discus-
sion in the scientific literature, there is evidence that affirms that the reopening of schools
without disease mitigation measures accelerates the spread of the disease in the population
(see Edmunds (2020); Flasche and Edmunds (2021); Gurdasani et al. (2021) and references
therein). This effect of the reopening of schools (without strong measures of social distanc-
ing) in the epidemic dynamics can be observed in the model’s results. The moments when
new epidemic peaks begin correspond to the moment in which schools are reopened (Figs.
4, 7 and 9).

4.1 Population distribution, social structure and disease dynamics

How the population is distributed has a significant effect on the disease dynamics, as we
show in Sect. 3.3.

When we considered that σh = 1/3, σa = 2/3 and the risk of transmission in workplaces
equal to βW = 1

3βH (case 2), school closures were enough to prevent hospitalization satura-
tion considering the household distribution observed in Tandil (mean = 2.81, variance = 2.49)
and the homogeneous case (mean = 4, variance = 0). In the same situation, considering the
household distribution observed in La Banda (mean = 3.94, variance = 4.21), it is necessary to
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close at least 25% of workplaces. For a greater risk of transmission in workplaces (as in case
1), βW = 1

2βH , besides school closures, 25% of the workplaces also needed to be closed in
the case ‘Tandil’ and in the homogeneous case to maintain the hospital beds below saturation.
In contrast, while in the case ‘La Banda’, it is necessary to close a 50% of workplaces. On
the other hand, as the proportion of non-detected cases (σa) decreases, contact tracing and
isolation is much more effective, regardless of the population distribution considered.

Socially structuredmodels, such as that developed in thiswork, have the advantage of being
able to represent social relations within the population. These relationships define what the
structure of contacts in the population is like. In the socially structuredmodels, the contacts are
persistent, while in the model without social structure, the contacts represent a homogeneous
mixed of the population. Therefore, models that consider the population’s social structure
produce lower epidemics when the same transmission parameters are considered.

4.2 Effect of social distancingmeasures on the epidemic size

Social structure of the model defines a specific network of contact between the individuals
of the population for each moment of the day. The different control measures modify this
network of contacts changing the number of contacts an individual may have. Thus, different
epidemic sizes will be reached due to the differences in the number of contacts that the
individuals have according to the chosen scenario.

In this sense, different control measures may delay the increase of infected and hospi-
talized people. However, it is not always true that stricter control measures produce smaller
final epidemic sizes. In some situations, control measures focus on reducing the population
mobility (as implemented in the model) generate epidemic with peaks as plateaus, producing
larger epidemic sizes at the end of the epidemic. However, these plateaus avoid the saturation
of the health system.

4.3 Limitations of themodel

It is important to remark that risk of transmission for each environment was kept constant in
each simulation. However, those risks are likely to vary with time. Individual behavior may
change according to risk perception, and workplaces and institutions may enforce different
social distancing measures. In many places, re-opening the schools was accompanied by
a reduction in the number of students per classroom and other social distancing measures.
Changes in the risk of transmission have a significant impact on disease dynamics.

Loss of immunity and re-infection were two processes that we did not consider in the
model. Re-infection was documented for COVID-19, but it is a rare phenomenon affecting
a very small fraction of the cases. According to a recent study, possible reinfections account
for less than one percent of the cases (see for example Graham et al. (2021); Hansen et al.
(2021) and references therein). In these cases, the symptomatology is different (compared
with the first infection), and re-infected people develop only mild symptoms (in some cases
imperceptible) in most cases. Because of this, only a very small fraction of the re-infected
individuals will be detected by the health system, taking into account the conservative detec-
tion policy implemented in the model. In this sense, incorporating the re-infection process
implies the development of a more complex model accounting for different asymptomatic
and hospitalized rates for the first and the second infection of an individual.

From some numerical simulations (not included in this work), we can see that the potential
effects of re-infection are within stochastic fluctuations when short time frames are consid-
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ered (as those considered here). A different and more complex model has to be developed
to incorporate the re-infection process in longer time frames in a realistic way, including
competition between virus variants and vaccination.

We considered a homogeneous population, but age is a significant indicator for hospi-
talization. We considered a worst-case scenario where all individuals are equally likely to
develop severe forms of the disease. Also, we assumed that individuals belonging to any
households are randomly assigned to workplaces or schools. This approximation is only
plausible for relatively small populations. In the simulations, we considered the case of a city
with a size of 100000 (but essentially the same results were obtained for a 500000 population
size). For larger populations, some degree of spatiality should be considered.

5 Conclusions

Control of COVID-19 epidemics in large cities poses significant challenges as seen around the
world. In this work, we focused on small to mid-size cities initially without community virus
circulation. We developed an agent-based model for a homogeneous population but where
individuals belong to households and spend some of their time in workplaces, schools, and
stores. In each of these environments, we assumed a constant risk of infection proportional to
the number of infectious individuals in them. Households have the greatest risk of infection.
We considered different scenarios with different values for the risk of transmission in other
environments like workplaces, schools, or stores. The risk of transmission in a household
(βH ) was estimated from data on the secondary attack rates, as shown in Appendix A. We
also considered that individuals have some average number of daily casual contacts, others
than those which may take place at stores.

We considered only two relevant cases for the course of the disease. Some individuals
develop only mild symptoms and, therefore, are not detected, while other infected persons
present more severe symptoms and seek medical attention. A fraction of those will require
hospitalization. According to the available bibliography, realistic distributions were consid-
ered for the different waiting periods like exposed or infectious periods.

The effect of different strategies was evaluated by simulation. Contact tracing and case
isolation is assumed to be always implemented. Additionally, several grades of lockdowns
were simulated, consisting of the closure of schools and workplaces. The hospital beds
availability determined levels of the lockdowns. We considered the relatively conservative
case of 4 hospital beds (for SARS-CoV-2 patients) per 1000 population.

When we consider the same risk of transmission in all the environments, the health system
saturation is practically impossible to avoid. This situation of extremely high infectiousness
appears to be unrealistic and not reported for mid-size cities.

But infectiousness in classrooms and workplaces is likely smaller than in households.
Social distancing measures, like wearing masks, a limited number of persons per area, etc.,
are factors that substantially reduce the risk of infection (see for example Hendrix (2020)).
Additional measures like reducing the number of students per classroom, ventilation, etc.,
can further reduce the risk of transmission.

Our results suggest that the distribution of the population in homes andworkplaces is a key
factor to take into account when studying the impact of control measures. It has been shown
that the same measure has a different impact on populations that have different distributions.

Themodel presented here can be used for the local decision-makers to evaluate the effect of
different control measures. According to the results for the different population distributions,
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to apply themodel to a specific city, itmust be parametrized taking into account the population
structure and demographic dynamics of the corresponding city.
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Appendices

A Numerical estimation of ˇH from the reported secondary attack rates

The probability with which a susceptible individual can become infected by contact with an
infectious individual of class i on the environment j during a period �t is given by

ρ = 1 − e−βHρ j�t

with βH and ρ j according to the section Modeling disease transmission and parameter esti-
mation.

The Secondary Attack Rate (SAR) is defined as the probability of an infection occurring
among susceptible people within a specific group (e.g., households or close contacts) (Liu
et al. 2020). It is known that a person does not remain throughout the infectious period in
their house. Considering the population distribution and the personal routines described in
the main text, the average time a person stays at home in a day is equal to 15 hours and 44
minutes (a proportion of 0.643). Thus, if the mean infectious period is equal to 7.5 days,
then 4.825 days is the mean infectious period that a person remains at home. Therefore, if
we consider ρH = 1 and �t = 4.825, we can use the equation below to determine βH as
function of ρ,

βH = −ln(1 − ρ)

ρH�t

We calculate the SAR value as follows. First, we considered a group of 10 individuals with
only one infected individual. The infectious period of the index case was selected at random
from a gamma distribution with mean 7.5 and variance 9. Given a ρ value, we calculated
βH as explained above, and then we obtained the number of persons infected. The procedure
was repeated one hundred times. Average values for different values of ρ are in Table 5.

The advantage of using this procedure to determine βH is that the secondary attack rate
is reported for COVID-19. For the simulations a ρ = 0.5 (Liu et al. 2020; Jing et al. 2020)
was considered, resulting in a βH = 0.143732 according with the equation above.
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Table 5 Secondary attack rate
(SAR) values obtained from
simulation for different values of
ρ

ρ SAR

0.25 0.345

0.3 0.396

0.35 0.46

0.4 0.512

0.5 0.617

0.55 0.671

0.6 0.715

0.7 0.787

B Numerical estimation of the doubling time

To calculate the doubling time of cases we consider v(t) as the accumulated incidence of
daily cases (Fig. 10) which displays a phase of (quasi) exponential growth with a growth rate
λ from a certain time (t0 = 0 in the following). Then v(t) = v0eλt with v0 = v(t0).

The doubling time TD is defined as the time in which the number of cases is doubled, that
is, v(t + TD) = 2v(t). Therefore, v(t + TD) = v0eλt+TD = 2v0eλt , from which we can
conclude that

TD = ln(2)

λ

In this way, knowing the exponential growth rate λ, we can calculate the doubling time
of cases. To estimate λ, we must identify the period of time where the cumulative daily
incidence has exponential growth and then fit an exponential function to these points. In our
case, considering a free epidemic situation (scenarioE1)with the parameters corresponding to
case 1 (ρW = 1/2) we have the cumulative daily incidence shown in Fig. 10. An exponential

Fig. 10 Daily cumulative incidence of cases (red dots) and a exponential fit (black line) for a free epidemic
situation (scenario E1) considering ρW = 1/2 (color figure online)
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Table 6 Least restrictive scenario to avoid the saturation of the health system for each combination of Case,
σh , σa and population distribution

Case σh σa Distribution Comment

La Banda Hom. Tandil

Case 0 1/3 2/3 − − −
Case 0 1/3 0.15 − (a) − (b) − (b) Considering the E5 scenario but

closing schools when the occu-
pation of beds reaches: (a) 15%;
(b) 25% of the total beds, the sat-
uration of the health system is
avoided.

Case 0 0.1 2/3 − − (c) − (c) (c) Considering the E5 scenario
but closing schoolswhen the occu-
pation of beds reaches 10% of the
total beds, the saturation of the
health system is avoided.

Case 0 0.1 0.15 − (a) − (b) − (b) Same as two rows above

Case 1 1/3 2/3 E5 E4 E4 Comments in the main text

Case 1 1/3 0.15 E2 E2 E2 Bed occupancy never reaches 10%

Case 1 0.1 2/3 E3 E3 E3

Case 1 0.1 0.15 E2 E2 E2 Bed occupancy never reaches 10%

Case 2 1/3 2/3 E4 E3 E3 Comments in the main text

Case 2 1/3 0.15 E2 E2 E2 Considering a policy of contact
tracing/case isolation, the epi-
demic is contained in a few days.

Case 2 0.1 2/3 E3 E2 E2

Case 2 0.1 0.15 E2 E2 E2 Considering a policy of contact
tracing/case isolation, the epi-
demic is contained in a few days.

function to these points from day 20 to day 70 was fitted, obtaining λ = 0.1368. Thus, the
doubling time of cases is equal to TD = 5 days.

If a lower ρW = 1/3 is considered (case 2), for a free epidemic situation (scenario E1) a
λ value λ = 0.1275 is obtained, resulting in a doubling time of cases is equal to TD = 5.5
days. Both values of TD are in the order of the doubling time of cases reported (Li et al. 2020;
Volz et al. 2020; Wu et al. 2020).

C Comparison between scenario and parameter values considered

As mentioned in the main text, when different values of the parameters σh and σa are
considered, the strategies to avoid saturation of the health system are different. As the value
of the probability of hospitalization σh decreases, it is easier to keep bed occupancy in a
lower value. On the other hand, as the proportion of non-detected cases σa decreases, there
is a greater number of people detected by the health system. Therefore contact tracing and
isolation has a significatively greater effect facilitating the control of the epidemic. Taking
this into account, we considered two lower values for σa and σa , and looked for the least
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restrictive scenario in which the health system is not saturated. These results are shown in
Table 6.

If σh and σa are kept constant, the measures necessary to prevent the saturation of the
health system are less restrictive as increasing Case. That is, in Case 0 are needed more
restrictions than in Case 1, and in Case 1 more than in Case 2. That is because the infectivity
is lower as increasing Case.

If Case and σh are kept constant, as σa increases, it becomes more difficult to control the
epidemic. This is because with more asymptomatic patients, a policy to detect and isolate
cases is difficult to implement.On the other hand, ifσa is low, the epidemic is easily controlled.

On the other hand, if Case and σa are kept constant, as σh increases, the epidemic becomes
more difficult to control since the number of detected is the same, but more cases are hospi-
talized.

We can see that La Banda always needs a more restrictive scenario to avoid the saturation
of the health system than Tandil and the homogeneous case. At the same time, these two
population distributions have the same least restrictive scenario in all the combinations of
cases and parameters.

A particular case is important to mention. In case 0 considering σa = 0.15 the reduction
of σh from 1/3 to 0.1 do not modify the least restrictive scenario. However, the bed occupancy
in both situations is different. While considering σh = 1/3 the health system works at full
of its capacity, considering σh = 0.1 there are some dozens of free beds.
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