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Abstract
This paper is devoted to studying the linear systemof partial differential equationsmodelling a
one-dimensional thermo-porous-elastic problemwithmicrotemperatures in the context of the
dual-phase-lag heat conduction. Existence, uniqueness, and exponential decay of solutions
are proved. Polynomial stability is also obtained in the case that the relaxation parameters
satisfy a certain equality. Our arguments are based on the theory of semigroups of linear
operators.
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1 Introduction

At the beginning of the last century, Cosserat brothers (Cosserat and Cosserat 1909) proposed
the study of the micropolar elastic solids; that is a type of material such that the material
points can rotate and, therefore, microstructure is taken into account. In the second part of
the last century, there were extensive study about elastic materials with microstructure based
on the axioms of thermomechanics. In the work of Goodman and Cowin (1972), the authors
proposed the foundations of a continuum theory for granular materials with interstitial voids.
Their basic idea consists in writing the bulk density as the product of the density matrix by
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the volume fraction. Based on this point of view, (Cowin 1985; Cowin and Nunziato 1983;
Nunziato and Cowin 1979) set down the theory of elastic solids with voids. The intention was
tomodel the deformations of solidswith pores or small voids distributedwithin them.Thermal
effects were also included (Ieşan 1986, 2004; Ieşan and Nappa 2004). It is worth recalling
that this theory has received a lots of attention in the past years (Feng and Apalara 2019;
Feng and Yin 2019; Leseduarte et al. 2010; Magaña and Quintanilla 2006, 2007; Miranville
and Quintanilla 2019, 2020; Pamplona et al. 2011; Santos et al. 2017) to understand the
relevance of the microstructural component in the whole material. In fact, the microstructure
has deserved much attention and one of its possible components is the microtemperature
(Bazarra et al. 2019; Casas and Quintanilla 2005; Feng et al. 2020; Grot 1969; Ieşan 2007;
Ieşan and Quintanilla 2000; Magaña and Quintanilla 2018; Passarella et al. 2017; Riha 1975,
1976).

Heat conduction is usually based on the Fourier law. In this case, the heat flux vector is
expressed as a linear form of the gradient of temperature. However, this assumption brings
us to a paradox, because the thermal waves propagates instantaneously and, therefore, the
causality principle is violated. It has been natural to look for an alternative law for the
heat flux vector. Cattaneo and Maxwell proposed the introduction of a relaxation parameter
which brings to a hyperbolic damped equation. Other authors, such as Green and Naghdi,
have proposed alternative laws. In this paper, we recover the one proposed by Tzou (1995).
The introduction of two delay parameters is considered, and the Cattaneo and Maxwell law
can be seen as a particular case. It is worth recalling that the first contribution concerning
the decay of solutions for the dual-phase-lag thermoelasticity was presented by Quintanilla
and Racke (2006). Many results dealing this thermoelatic theory have been obtained later.
Recently, Liu et al. (2020) proposed the study of the dual-phase-lag heat conduction with
microtemperatures and gave sufficient conditions to guarantee the stability of the problem
(Borgmeyer et al. 2014; Liu et al. 2017; Liu and Quintanilla 2018; Magaña and Quintanilla
2018).

In this short note, we want to focus our attention to porous-thermo-elastic materials with
microtemperatures in the context of the dual-phase-lag theory. That is to consider the elastic
materials with voids where the heat conduction and the microheat conduction are determined
by the dual-phase-lag theory. In this sense, the present paper develops three main objectives:
the first one is to propose the one-dimensional thermo-porous-elasticity with microtempera-
tures in the context of the dual-phase-lag heat conduction. The second one is to provide of a
family of conditions on the parameters of the system guaranteeing the well-posedness of the
problem in a suitable Hilbert space. The third one is to prove an exponential stability result
for the solutions. We also obtain the polynomial stability of the solutions when the relaxation
parameters satisfy a certain relation (limit case).

2 Basic equations

This section is devoted to set down the basic equations for the one-dimensional problem of the
thermo-porous-elasticity with microtemperatures for isotropic and homogeneous materials
in the context of the dual-phase-lag theory. As we consider the case of a rod, we could think
that it occupies the interval of length π . In this case, the evolution equations are

ρü = tx , J φ̈ = hx + g,

ρT0η̇ = qx , ρε̇ = Px + q − Q,

123



Dual-phase-lag one-dimensional... Page 3 of 12 231

and the constitutive equations1

t = μux + μ0φ − β0θ, h = a0φx − μ2T ,

g = −μ0ux − ξφ + β1θ, ρη = β0ux + β1φ + aθ,

ρε = −μ2φx − bT

q + τ1q̇ + τ 21

2
q̈ = (kθx + k1T ) + τ2(kθ̇x + k1Ṫ ),

P + τ1 Ṗ + τ 21

2
P̈ = −k4(Sx + τ2 Ṡx ),

Q + τ1 Q̇ + τ 21

2
Q̈ = (k − k1)θx + (k1 − k2)T + τ2((k − k1)θ̇x + (k1 − k2)Ṫ ).

In the above system of equations ρ is the mass density, u is the displacement, t is the stress,
h is the equilibrated stress, g is the equilibrated body force, η is the entropy, q is the heat
flux, J is the equilibrated inertia, T0 is the reference temperature at the equilibrium state (that
we will assume equal to one), ε is the first moment of the energy, Q is the microheat flux
average, P is the first heat fluxmoment, φ is the volume fraction, θ is the temperature, T is the
microtemperature, and τ1 and τ2 are the relaxation parameters. The constitutive parameters,
μ,μ0, β0, β1, a0, μ2, ξ, k and ki define the characteristics of the material, and in particular,
they define the couplings2.

We will assume that

μ > 0, μξ > μ2
0, a0 > 0, k > 0, k4 > 0, ρ > 0, (1)

J > 0, a > 0, b > 0, kk2 > k21, 2τ2 ≥ τ1 > 0. (2)

These assumptions are natural in the context of the theory. In particular, they imply that the
internal energy and the dissipation are positive definite bilinear forms which are related to the
elastic stability. We also mention that the last condition on the relaxation parameters implies
that the heat conduction is stable and dissipative (Liu et al. 2020) (see also the numerical
treatment (Bazarra et al. 2021)).When the relaxation parameters do not satisfy this condition,
the instability of solutions holds (Quintanilla 2003).

If we substitute the constitutive equations into the evolution equations, we obtain the
following linear system:

ρü = μuxx + μ0φx − β0θx ,

J φ̈ = a0φxx − μ0ux − μ2Tx + β1θ − ξφ,

a(θ̇ + τ1θ̈ + τ 21

2

...
θ ) = −β0(u̇x + τ1üx + τ 21

2
...
u x )

−β1(φ̇ + τ1φ̈ + τ 21

2

...
φ) + k(θxx + τ2θ̇xx ) + k1(Tx + τ2Ṫx ),

b(Ṫ + τ1T̈ + τ 21

2

...
T ) = −μ2(φ̇x + τ1φ̈x + τ 21

2

...
φ x ) + k4(Txx + τ2Ṫxx )

1 A general formulation of the constitutive equations would allow that the relaxation parameters for the
macroscopic structure could be different from the ones corresponding to the microstructure. However, as our
contribution try to be a pioneering work in the study concerning dual-phase-lag at the microstructure, we
consider the easier case from the mathematical aspect and it corresponds to the case when they agree. The
general case is much more difficult from a mathematical point of view and the analysis of the general case is
not clear even for the rigid solid.
2 We have assumed that the Onsager postulate is satisfied (see Eringen 1999, p.55).

123



231 Page 4 of 12 Z. Liu, R. Quintanilla

−k2(T + τ2Ṫ ) − k1(θx + τ2θ̇x ).

If we denote by f̂ = f + τ1 ḟ + τ 21
2 f̈ , we can write our system as

ρ ¨̂u = μûxx + μ0φ̂x − β0(θx + τ1θ̇x + τ 21

2
θ̈x ),

J ¨̂
φ = a0φ̂xx − μ0ûx − μ2(Tx + τ1Ṫx + τ 21

2
T̈x ) + β1(θ + τ1θ̇ + τ 21

2
θ̈ ) − ξ φ̂,

a(θ̇ + τ1θ̈ + τ 21

2

...
θ ) = −β0

˙̂ux − β1
˙̂
φ + k(θxx + τ2θ̇xx ) + k1(Tx + τ2Ṫx ),

b(Ṫ + τ1T̈ + τ 21

2

...
T ) = −μ2

˙̂
φx + k4(Txx + τ2Ṫxx ) − k2(T + τ2Ṫ ) − k1(θx + τ2θ̇x ).

From now on, we will omit the hats on the mechanical variables to simplify the notation.
To propose the well-posed problem, we will need to impose the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = v0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = ϕ0(x),
θ(x, 0) = θ0(x), T (x, 0) = T 0(x), θ̇ (x, 0) = ϑ(x), Ṫ (x, 0) = S0(x)
θ̈(x, 0) = ζ 0(x), T̈ (x, 0) = R0(x),

where u0, v0, φ0, ϕ0, θ0, ϑ0, ζ 0, T 0, S0, and R0 are given functions.
Since we assume homogeneous Dirichlet boundary conditions, it follows that:

u(x, t) = φ(x, t) = θ(x, t) = T (x, t) = 0, t ∈ [0,∞), x = 0, π.

In this situation, the energy of the system is given by

E(t) = 1

2

∫ π

0
(ρ|u̇|2 + J |φ̇|2 + μ|ux |2 + 2μ0uxφ + ξ |φ|2 + a|φx |2)dx

+1

2

∫ π

0
(a|θ̂ |2 + b|T̂ |2 + k(τ1 + τ2)|θx |2 + kτ 21 τ2

2
|θ̇x |2 + k2(τ1 + τ2)|T |2

+k2τ 21 τ2

2
|Ṫ |2 + kτ 21 θx θ̇x )dx

+1

2

∫ π

0
(k2T Ṫ + 2(τ1 + τ2)k1θx T + k1τ

2
1 (θx Ṫ + θ̇x T )

+k1τ
2
1 τ2θ̇x Ṫ + k4(τ1 + τ2)|Tx |2

+τ 21

2
k4|Ṫx |2 + τ 21 k4Tx Ṫx )dx .

The dissipation is given by

D(t) =
∫ π

0

[
k|θx |2 + k(τ1τ2 − τ 21

2
)|θ̇x |2 + k2|T |2 + k2(τ1τ2 − τ 21

2
)|Ṫ |2

+2k1θx T + 2k1(τ1τ2 − τ 21

2
)θ̇x Ṫ

]
dx

+
∫ π

0

[
k4|Tx |2 + (τ1τ2 − τ 21

2
)|Ṫx |2

]
dx .

As we said before, under the assumptions we imposed previously, the energy and the dissi-
pation are positive definite.
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We have

E(t) +
∫ t

0
D(ξ)dξ = E(0).

Therefore, we can expect the stability of the solutions of the problem. In fact, we will show
the exponential stability (or polynomial).

3 Existence and uniqueness

This section is devoted to show the well-posedness of the problem proposed previously.
Therefore, our intention is to transform our problem into a Cauchy problem in a suitable
Hilbert space.

We will propose the problem in the Hilbert space

H = W 1,2
0 × L2 × W 1,2

0 × L2 × W 1,2
0 × W 1,2

0 × L2 × W 1,2
0 × W 1,2

0 × L2.

As usual, W 1,2
0 and L2 are the usual Hilbert spaces. It is worth noting that now we consider

that the elements take values in the complex field.
An element in this space will be denoted by U = (u, v, φ, ϕ, θ, ϑ, ζ, T , S, R).
Defining an operator A : H → H by

AU =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v

1
ρ
[μux + μ0φ − β0(θ + τ1ϑ + τ 21

2 ζ )]x
ϕ

1
J [(a0φx − μ2(Tx + τ1Sx + τ 21

2 Rx ))x − μ0ux − ξφ + β1(θ + τ1ϑ + τ 21
2 ζ )]

ϑ

ζ
2

aτ 21
[−β0vx − β1ϕ + k(θx + τ2ϑx )x + k1(Tx + τ2Sx ) − aϑ − aτ1ζ ]

S
R
2

bτ 21
[−μ2ϕx + k4(Tx + τ2Sx )x − k2(T + τ2S) − k1(θ + τ2ϑx ) − aS − aτ1R]

(3)
with the domain

D(A) = {U ∈ H | v, ϕ, ζ, R ∈ W 1,2
0 , uxx , φxx , θxx + τ2ϑxx , Txx + τ2Sxx ∈ L2}.

We then can write our problem as

dU

dt
= AU , U (0) = U 0, (4)

where U 0 = (u0, v0, φ0, ϕ0, θ0, ϑ0, ζ 0, T 0, S0, R0).
The main aim of this section is to prove that the operator A generates a C0 semigroup of

contractions on H.
Given U = (u, v, φ, ϕ, θ, ϑ, ζ, T , S, R) and U∗ = (u∗, v∗, φ∗, ϕ∗, θ∗, ϑ∗, ζ ∗, T ∗, S∗,

R∗), we consider the inner product defined as

〈U ,U∗〉H = 1

2

∫ π

0
(ρvv̄∗ + Jϕϕ̄∗ + μux ū

∗
x + μ0(ux φ̄

∗ + ū∗
xφ) + ξφφ̄∗

+a0φx φ̄
∗
x + cθ ¯̂

θ∗ + bT ¯̂T ∗)dx
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+1

2

∫ π

0
(k(τ1 + τ2)θx θ̄

∗
x + kτ 21 τ2

2
ϑx ϑ̄

∗
x + k2(τ1 + τ2)T T̄

∗ + k2τ 21 τ2

2
T T̄ ∗

+kτ 21
2

(θx ϑ̄
∗
x + θ̄∗

x ϑx ))dx

+1

2

∫ π

0
(
k2
2

(T S̄∗ + T̄ ∗S) + k1(τ1 + τ2)(θx T̄
∗ + θ̄∗

x T ) + k1τ 21 τ2

2
(ϑx S̄

∗ + ϑ̄∗
x S))dx

+1

2

∫ π

0
(
k1τ 21
2

(θx S̄
∗ + θ̄∗

x S) + k4(τ1 + τ2)Tx T̄
∗
x + k4τ 21

2
Sx S̄

∗
x

+k4τ 21
2

(Tx S̄
∗
x + T̄ ∗

x Sx ))dx

+1

2

∫ π

0

k1τ 21
2

(ϑx T̄
∗ + ϑ̄∗

x T )dx .

Here, and from now on, the bar denotes the conjugated complex. It is clear that this inner
product is equivalent to the usual one in the Hilbert space H (see Liu et al. 2020).

Theorem 1 Assume that the conditions (1)–(2) hold. Then, operatorA generates a C0 semi-
group of contractions.

Proof It is clear that D(A) is dense in H. We can easily show that

Re〈AU ,U 〉H = −1

2

∫ π

0
[k|θx |2 + k(τ1τ2 − τ 21

2
)|ϑx |2 + k2|T |2

+k2(τ1τ2 − τ 21

2
)|S|2 + 2k1Reθx T̄ ]dx

−1

2

∫ π

0
[2k1(τ1τ2 − τ 21

2
)Reϑx S̄ + k4|Tx |2 + k4(τ1τ2 − τ 21

2
)|Sx |2]dx .

In view of the assumptions we have imposed on the constitutive coefficients, we see that this
is less or equal to zero (see Liu et al. 2020).

Now, we prove that zero belongs to the resolvent of the operator. Given ( f1, f2, f3, f4, f5,
f6, f7, f8, f9, f10) ∈ H, we must show that the system

v = f1, ϕ = f3, ϑ = f5, ζ = f6, S = f8, R = f9

μuxx + μ0φx − β0(θx + τ1ϑx + τ 21

2
ζx ) = ρ f2,

a0φxx − μ0ux − μ2(Tx + τ1Sx + τ 21

2
Rx ) + β1(θ + τ1ϑ + τ 21

2
ζ ) − ξφ = J f4,

−β0vx − β1ϕ + k(θxx + τ2ϑxx ) + k1(Tx + τ2Sx ) − aϑ − aτ1ζ = aτ 21

2
f5,

−μ2ϕx + k4(Txx + τ2Sxx ) − k2(T + τ2S) − k1(θ + τ2ϑx ) − aS − aτ1R = bτ 21
2

f6,

has a solution in the domain of operator A. The solution for v, ϕ, ϑ, ζ, S, and R is directly
obtained. Therefore, we obtain the system of equations

μuxx + μ0φx − β0θx = F1,

a0φxx − μ0ux − μ2Tx + τ1Sx + β1θ − ξφ = F2,
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kθxx + k1Tx = F3

k4Txx − k2T − k1θx = F4.

Here, Fi , i = 1, · · · , 4 can be obtained in terms of the fi , i = 1...10. What it is relevant is
that Fi belongs to W−1,2 for every i = 1...4. If we look to the last two equations, we can
define the bilinear form

B[(θ1, T1), (θ2, T2)] =
∫ π

0

(
(kθ1,xx + k1T1,x )θ̄2 + (k4T1,xx − k2T1 − k1θ1,x )T̄2

)
dx .

It is bounded and coercive inW 1,2
0 ×W 1,2

0 . By the Lax–Milgram lemma, we see the existence

of θ and T satisfying the last two equations. Moreover, they belong to W 1,2
0 . Thus, we can

substitute them into the first two equations and use again the Lax–Milgram lemma to prove
the existence of u and φ also in W 1,2

0 .
In view of the Lumer–Phillips corollary to the Hille–Yosida theorem, we find that our

operator generates a C0 semigroup of contractions on H. 	

Thus, we have proved the following result.

Theorem 2 Assume that conditions (1)–(2) hold, then, for every U 0 ∈ D(A), there exists a
unique solution to problem (4).

We note that, since the operator generates a contractive semigroup, the problem is stable
and well-posed in the sense of Hadamard. Furthermore, in case that we impose supply terms
with suitable regularity conditions, the solutions will depend continuously on the supply
terms.

4 Exponential decay: case of 2�2 > �1

The aim of this section is to prove that the solutions of our problem decay in an exponential
way to the equilibrium solution whenever we assume that β0 �= 0 and μ2 �= 0. To prove this
result, we will use the characterization of the exponentially stable semigroups that we can
find for instance in the book of Liu and Zheng (1999). In this sense, we recall that whenever
the imaginary axis is contained in the resolvent of the generator A of the semigroup and the
condition

lim
λ∈R,|λ|→∞ ‖(iλI − A)−1‖L(H) < ∞, (5)

holds, the semigroup is exponentially stable.
Then, we prove the following result which states the exponential decay of the energy

system.

Theorem 3 Assume that (1)–(2) holdwhen2τ2 > τ1, and thatβ0, μ2 �= 0, then the semigroup
generated by the operatorA is exponentially stable. That is, there exist two positive constants
which are independent of the initial data N , η, such that

||U (t)||H ≤ N exp(−ηt)||U (0)||H
for every U (0) ∈ H.

Proof We shall employ the arguments used in the book of (Liu and Zheng (1999), page 25).
In the case that the intersection of the imaginary axis and the spectrum is non-empty, then
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there will exist of real numbers λn with λn → �, |λn | < |� | and a sequence of vectors
Un = (un, vn, φn, ϕn, θn, ϑn, ζn, Tn, Sn, Rn) in D(A), and with unit norm, such that

lim
n→∞ ‖(iλnI − A)Un‖ = 0. (6)

This can be written as

iλnun − vn → 0 in W 1,2, (7)

iρλnvn − (μun,xx + μ0φn,x − β0(θn,x + τ1ϑn,x + τ 21

2
ζn,x )) → 0 in L2, (8)

iλnφn − ϕn → 0 in W 1,2, (9)

iρ Jλnϕn − (a0φn,xx − μ0un,x − μ2(Tn,x + τ1Sn,x + τ 21

2
Rn,x )

+β1(θn + τ1ϑn + τ 21

2
ζn) − ξφn) → 0 in L2, (10)

iλnθn − ϑn → 0 in W 1,2, (11)

iλnϑn − ζn → 0 in W 1,2, (12)

iaτ 21 λn

2
ζn + β0vn,x + β1ϕn − k(θn,xx + τ2ϑn,xx )

−k1(Tn,x + τ2Sn,x ) + aϑn + aτ1ζn → 0 in L2, (13)

iλnTn − Sn → 0 in W 1,2, (14)

iλn Sn − Rn → 0 in W 1,2, (15)

ibτ 21 λn

2
Rn + μ2ϕn,x − k4(Tn,xx + τ2Sn,xx ) + k2(Tn + τ2Sn)

+k1(θn,x + τ2ϑn,x ) + aSn + aτ1Rn → 0 in L2. (16)

From (6) and the dissipation inequality and the assumptions on the coefficients, we see
that θn,x , ϑn,x , Tn,x and Sn,x tend to zero in L2. Taking the L2 inner product of (13) with ϑn

and (16) with Sn , respectively, we conclude that ζn and Rn also tend to zero in L2.
Next, in view of (7), we take the L2 inner product of (13) with λ−1

n un,x to obtain that

iβ0‖un,x‖2 + kλ−1
n 〈θn,x + τ2ϑn,x , un,xx 〉 + λ−1

n k
(
θn,x + τ2ϑn,x )ūn,x |π0

) → 0.

Hereafter, we use the notation ‖ · ‖ and 〈·, ·〉 to denote the L2 norm and inner prod-
uct, respectively. Since ‖λ−1

n un,xx‖ is bounded (because (13)), we see that kλ−1
n 〈θn,x +

τ2ϑn,x , un,xx 〉 tends to zero. On the other hand, in view of the Gagliardo–Nirenberg inequal-
ity, we know that

|λn |−1/2(θn,x + τ2ϑn,x )‖L∞ ≤ K1|λn |−1/2‖θn,x + τ2ϑn,x‖1/2‖θn,xx + τ2ϑn,xx‖1/2
+K2|λn |−1/2‖θn,x + τ2ϑn,x‖ → 0.

In a similar way

|λn |−1/2un,x‖L∞ ≤ K1|λn |−1/2‖un,x‖1/2‖un,xx‖1/2 + K2|λn |−1/2‖un,x‖ → 0.

We then conclude that

λ−1
n k(θn,x + τ2ϑn,x )ūn,x |π0 → 0.

Therefore, we obtain that ‖un,x‖ → 0, and therefore, from (8), we also conclude that ‖vn‖
tends to zero.
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A similar argument to the one used to prove that ‖un,x‖ and ‖vn‖ tend to zero can be used
to prove that ‖φn,x‖ and ‖ϕn‖ also tend to zero. The only key point is that we now work
with (16) in place of (13) and to take L2 inner product with λ−1

n φn,x in place of λ−1
n un,x .

However, this contradicts the assumption that ‖Un‖H = 1. We conclude that the intersection
of the imaginary axis with the spectrum of the operator A is void.

To conclude the proof of the theorem, we only need to show that condition (5) also holds.
Again, we shall use the contradiction argument. It follows that there exist a sequence of real
numbers λn , such that |λn | → ∞ and a sequence of unitary vectors Un in the domain of the
operator satisfying (7)– (16). We repeat the arguments used to show that the imaginary axis
is contained in the resolvent of the operator to arrive the ‖Un‖ → 0 contradiction. We point
out that the only difference is that now λn → ∞. 	


5 Polynomial decay: case of 2�2 = �1

In the case that 2τ2 = τ1, we cannot expect that the decay of the solutions is controlled by a
exponential function. In fact, we could adapt to this situation the result obtained in this sense
in the case that we do not consider the microtemperatures (see Liu and Quintanilla 2018)
. In this section, we prove that the solutions of our problem decay in a polynomial way to
the equilibrium solution whenever we assume that β0 �= 0 and μ2 �= 0. Our result will be a
consequence of the characterization proposed by Borichev and Tomilov (2010). In this sense,
we recall that whenever the imaginary axis is contained in the resolvent of the generator A
of the semigroup and the condition

lim
λ∈R,|λ|→∞ λ−2‖(iλI − A)−1‖L(H) < ∞, (17)

holds; the semigroup is polynomially stable. Furthermore, the estimate

||U (t)||H ≤ Nt−1/2||U (0)||D(A)

can be obtained for every U (0) ∈ D(A).
To prove that the imaginary axis is contained in the resolvent, we can follow the same

way of the previous section. The dissipation inequality implies that θn,x and Tn,x tend to zero
in L2. In the case that λn is bounded, we also see that ϑn,x and Sn,x also tend to zero in L2.
At this point, we can follow point-by-point the arguments used in the previous section to
conclude that the imaginary axis is contained in the resolvent.

Now, we want to prove that the asymptotic condition (17) also holds. Assuming that this
is not true, we can find a sequence of vectors

Un = (un, vn, φn, ϕn, θn, ϑn, ζn, Tn, Sn, Rn)

in D(A), and with unit norm, such that

lim
λn∈R,|λn |→∞ λ2n‖(iλnI − A)Un‖H = 0, (18)

that is

λ2n(iλnun − vn) → 0 in W 1,2, (19)

λ2n(iρλnvn − (μun,xx + μ0φn,x − β0(θn,x + τ1ϑn,x + τ 21

2
ζn,x ))) → 0 in L2, (20)

λ2n(iλnφn − ϕn) → 0 in W 1,2, (21)
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λ2n(iρ Jλnϕn − (a0φn,xx − μ0un,x − μ2(Tn,x + τ1Sn,x + τ 21

2
Rn,x )

+β1(θn + τ1ϑn + τ 21

2
ζn) − ξφn)) → 0 in L2, (22)

λ2n(iλnθn − ϑn) → 0 in W 1,2, (23)

λ2n(iλnϑn − ζn) → 0 in W 1,2, (24)

λ2n(
iaτ 21 λn

2
ζn + β0vn,x + β1ϕn − k(θn,xx + τ2ϑn,xx )

−k1(Tn,x + τ2Sn,x ) + aϑn + aτ1ζn) → 0 in L2, (25)

λ2n(iλnTn − Sn) → 0 in W 1,2, (26)

λ2n(iλn Sn − Rn) → 0 in W 1,2, (27)

λ2n(
ibτ 21 λn

2
Rn + μ2ϕn,x − k4(Tn,xx + τ2Sn,xx ) + k2(Tn + τ2Sn)

+k1(θn,x + τ2ϑn,x ) + aSn + aτ1Rn) → 0 in L2. (28)

By (18) and dissipation inequality, we obtain that λnθn,x and λnTn,x tend to zero (also in L2).
We can obtain from (23) and (26) that ϑn,x , Sn,x also tend to zero in L2. From this point, we
can follow the same argument to the one used in the previous section.

We have proved

Theorem 4 Assume that (1)–(2) holdwhen2τ2 = τ1, and thatβ0, μ2 �= 0, then the semigroup
generated by the operator A is polynomially stable. That is, there exists a positive constant
N , such that

||U (t)|| ≤ Nt−1/2||U (0)||D(A)

for every U (0) ∈ D(A).

6 Some comments

In this paper, we have proved several results concerning the decay of the solutions for the
porous elasticity when we add dual-phase-lag temperature and microtemperature. To be
precise, we have proved that whenever 2τ2 > τ1, the exponential decay of the solutions
holds, and when 2τ2 = τ1, the polynomial decay of order 2 of the solution holds. Both
results have been obtained under the assumption that β0 and μ2 are different from zero. In
the case when one of this parameters vanishes, we cannot expect the exponential decay and
a further study would be needed to clarify the behaviour.

From the previous results, one suspects that the phenomena of the second spectrum (see
Ramos et al. 2020) in the case of the porous elasticity can be eliminated when the dual-phase-
lag thermal effects proposed in the case that 2τ2 > τ1. However, this topic could be the aim
of another paper.

In a recent paper, Ramos et al. showed that the solutions of a truncated version of the
system of porous elasticity (see Ramos et al. 2020) decay in an exponential way when the
porous dissipation is considered. We believe that the inclusion of the thermal effects (also
dual-phase-lag) as the only dissipation mechanism brings the system to a similar behaviour.
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