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Abstract
In this paper, we mainly discuss the iterative methods for solving nonlinear systems with
complex symmetric Jacobianmatrices. By applying an FPAE iteration (a fixed-point iteration
adding asymptotical error) as the inner iteration of the Newton method and modified Newton
method, we get the so–called Newton-FPAE method and modified Newton-FPAE method.
The local and semi-local convergence properties under Lipschitz condition are analyzed.
Finally, some numerical examples are given to expound the feasibility and validity of the two
new methods by comparing them with some other iterative methods.
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1 Introduction

Since in most areas of physics, mathematics and engineering, nonlinear systems are more
common than linear systems, we usually need to solve nonlinear equations. Examples about
nonlinear systems including Schrödinger equation (Sulem and Sulem 1999) and Ginzburg–
Landau equation (Aranson and Kramer 2002).

Let F : D ⊂ C
n → C

n be a continuously differentiable mapping defined on an open
convex domain D in the n-dimensional complex space Cn , here in this article we consider
the large-scale sparse nonlinear equations:

F(x) = 0. (1)

We assume Jacobian matrix F ′(x) to be large, sparse and complex symmetric, i.e.,

F ′(x) = W (x) + iT (x), (2)

withW (x) and T (x) being both symmetric matrices. Moreover,W (x) is real positive definite
and T (x) is real positive semi-definite matrices, respectively.

Some nonlinear equations can be solved analytically, but most of the nonlinear equations
need to be solved numerically. Such nonlinear systems as (1) often arise in scientific com-
puting and engineering areas. In this paper, we will focus on the iterative numerical solutions
for such systems.

Perhaps the most natural idea for solving (1) is the Newton method,

xk+1 = xk − F ′(xk)−1F(xk), k = 0, 1, 2, . . . , (3)

where x0 is a given initial guess. Thus, it is equivalent to solving the Newton equation

F ′(xk)sk = −F(xk), with xk+1 := xk + sk . (4)

at the kth iteration.
One way is that we use linear iterative methods to solve Newton equation (4), especially

when the scales of problems are large and sparse. In this sense the Newton method is inner-
outer iterative method. For example, when GMRES method is used as an inner solver for
Newton equation (4), the Newton-GMRES method (Bellavia et al. 2001) is obtained and
widely used. Some similar efficient methods have been widely used such as Newton–Krylov
subspace method (Brown and Saad 1994; Knoll and Keyes 2004), Newton-CG (CG means
Conjugate Gradient) method (Sternberg and Hinze 2010) and so on.

Of course the choice of inner iteration methods plays an important role when we use them
to solve Newton equations.

In the past few years, some HSS-based methods (HSS is the abbreviation for the Her-
mitian and skew-Hermitian splitting) have been proposed to solve large-scale sparse linear
systems. In order to solve non-Hermitian positive definite linear systems, Bai et al. (2003)
first introduced the HSS method. Some algorithms, such as preconditioned modified HSS
(PMHSS) method (Bai et al. 2010, 2011) and single step HSS (SHSS) method (Li and Wu
2015), were proposed later to improve the HSS method. Because of the efficiency of these
HSS-based methods, many scholars have done a lot of research in recent years, see Xiao
and Wang (2018); Huang et al. (2018); Siahkolaei and Salkuyeh (2019); Zhang et al. (2019);
Wang et al. (2017, 2018). By applying these methods as inner iterations of Newton methods,
the corresponding Newton-HSS type methods can be obtained, such as Newton-HSSmethod
(Bai and Guo 2010) and Newton-MHSSmethod (Yang andWu 2012), which have been used
and studied widely.
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To promote the efficiency, one can also try to improve the outer iteration to get better
iterative methods. For example the modified Newton method (Darvishi and Barati 2007):{

yk = xk − F ′(xk)−1F(xk),
xk+1 = yk − F ′(xk)−1F(yk), k = 0, 1, 2, . . . .

(5)

With just one more evaluation of F per step, the advantage of the modified Newton method
is that it has at least R-order of convergence three, which is much better than the Newton
method. Using HSS method as the inner iteration of modified Newton method, an effective
method named modified Newton-HSS method (Wu and Chen 2013) which presents better
properties than Newton-HSS method was obtained. Furthermore, the multi-step modified
Newton-HSS method (Li and Guo 2017a, b), which includes the Newton-HSS method and
the modified Newton-HSS method as special cases, outperforms the modified Newton-HSS
method. To our knowledge, there have been a succession of theses showing the efficiency
of such kind of Newton-HSS based methods, see Zhong et al. (2015); Chen and Wu (2018);
Xie et al. (2019) for more examples.

In this paper, we aim to obtain effective iteration methods by applying an FPAE iteration
(Xiao andWang 2018) as the inner iteration of both the Newtonmethod andmodifiedNewton
method. This paper is organized as the following. In Sect. 2, the FPAE iteration (a fixed-point
iteration adding asymptotical error) is reviewed. In Sect. 3, the Newton-FPAE method is
constructed. The local and semi-local convergence properties of the Newton-FPAE method
underLipschitz condition are analyzed inSects. 4 and5.Then inSect. 6, themodifiedNewton-
FPAE method is developed and its convergence properties are proposed. Some numerical
examples are presented to show the computational efficiencies of Newton-FPAEmethod and
modified Newton-FPAE method in Sect. 7. Finally, in Sect. 8, a brief conclusion is given.

2 A review: a fixed-point iteration adding the asymptotical error

In the paper Xiao and Wang (2018), in order to solve the complex symmetric linear system,
Xiao and Wang proposed a fixed-point iteration adding the asymptotical error (FPAE). In
this section, we firstly review the FPAE method.

For any symmetric positive definite matrix V and any α > 0, the fact that V x = V x −
α(Ax − b) = V x − α[(W + iT )x − b] inspires us to construct the iterations

V xk+1 = V xk − α[(W + iT )xk − b]. (6)

That is

V xk+1 = V xk − α(Axk − b).

We can rewrite Eq. (6) as the standard form

xk+1 = M(α, V )xk + N (α, V )b

= M(α, V )k+1x0 +
k∑

i=0

M(α, V )i N (α, V )b, k = 0, 1, 2, . . . ,
(7)

where

M(α, V ) = I − αV−1W − iαV−1T ,

N (α, V ) = αV−1.
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Let

B(α, V ) = 1

α
V and C(α, V ) = 1

α
V − (W + iT ),

then we have

A = B(α, V ) − C(α, V ) and M(α, V ) = B(α, V )−1C(α, V ).

Thus, this splitting matrix B(α, V ) can be utilized as a preconditioner for the complex
matrix A ∈ C

n×n . We naturally hope to adjust B(α, V ) to get smaller spectral radius of the
iterative matrix M(α, V ), so B(α, V ) can be called the FPAE preconditioner.

The convergence analysis of FPAE iteration (Xiao andWang2018) showed that the spectral
radius of the iterative matrix satisfies:

ρ(M(α, V )) ≤
√
max

{(
1 − αλV

min

)2
,
(
1 − αλV

max

)2}+ α2
(
σ V
max

)2 =: δV (α), (8)

where

λV
min = min

λ j∈sp
(
V− 1

2 WV− 1
2

) {λ j
}
, λV

max = max
λ j∈sp

(
V− 1

2 WV− 1
2

) {λ j
}
,

σ V
min = min

λ j∈sp
(
V− 1

2 T V− 1
2

) {λ j
}
, σ V

max = max
λ j∈sp

(
V− 1

2 T V− 1
2

) {λ j
}
.

As long as the parameter α satisfies

0 < α < min

{
2λV

min(
λV
min

)2 + (σ V
max

)2 ,
2λV

max(
λV
max

)2 + (σ V
max

)2
}

, (9)

then δV (α) < 1, i.e. FPAE iteration converges to the exact solution.
In practical implementation, for the sake of convenience, V = W is generally taken. Then

the FPAE iteration reduces to

Wxk+1 = [(1 − α)W − iαT ]xk + αb. (10)

We can rewrite (10) as

xk+1 = M(α)xk + N (α)b,

where M(α) = (1 − α)I − iαW−1T and N (α) = αW−1. Also we define

B(α) = 1

α
W and C(α) = 1 − α

α
W − iT ,

then it holds

A = B(α) − C(α) and M(α) = B(α)−1C(α).

Then the spectral radius of iteration matrix ρ(M(α)) is bounded by δ(α), that is,

ρ(M(α)) ≤ δ(α) :=
√

(1 − α)2 + α2ρ2(W−1T ). (11)

If 0 < α <
2

1 + ρ2(W−1T )
, then δ(α) < 1 i .e., the iteration converges. Moreover, the

optimal parameter α∗ which minimize the upper bound of spectral radius δ(α) is given by
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α∗ = 1

1 + ρ2(W−1T )
∈ (0, 1) which leads to

δ(α∗) = ρ(W−1T )√
1 + ρ2(W−1T )

.

3 The Newton-FPAEmethod

In this section, to solve nonlinear equations with complex symmetric Jacobian matrices, we
introduce our Newton-FPAE method.

Applying the FPAEmethod as the inner iteration for theNewtonmethod, then theNewton-
FPAE method for solving nonlinear system (1) can be written as the following:

Algorithm 1 Newton-FPAE method
1.Given an initial guess x0, a positive constant α, and a positive integer sequence {lk}∞k=0.
2. For k = 0, 1, 2, · · · , until ‖F(xk)‖ ≤ tol‖F(x0)‖ do:

2.1. Set dk,0 := 0.
2.2. For l = 0, 1, 2, · · · , lk − 1, apply FPAE method to the linear system (4):

V (xk)dk,l+1 = V (xk)dk,l − α
[
(W (xk) + iT (xk))dk,l + F(xk)

]
,

and obtain dk,lk such that

‖F(xk) + F ′(xk)dk,lk‖ ≤ ηk‖F(xk)‖ for some ηk ∈ [0, 1). (12)

2.3. Set

xk+1 = xk + dk,lk .

By straightforward derivation we can obtain the following uniform expressions of dk,lk
and xk+1,

dk,lk = −
lk−1∑
i=0

M(α, V (xk); xk)i N (α, V (xk); xk)F(xk), (13)

xk+1 = xk −
lk−1∑
i=0

M(α, V (xk); xk)i N (α, V (xk); xk)F(xk)

= xk −
(
I − M(α, V (xk); xk)lk

)
F ′(xk)−1F(xk), (14)

where

M(α, V (x); x) = I − αV (x)−1F ′(x), and N (α, V (x); x) = αV (x)−1.

Since the selection of V (x) affects the calculation and storage, in the practical implemen-
tation, V (x) = W (x) is usually taken for convenience. Then we get

M(α; x) = I − αW (x)−1F ′(x), N (α; x) = αW (x)−1.

If we set

B(α; x) = 1

α
W (x), C(α; x) = 1

α
W (x) − F ′(x),
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then

F ′(x) = B(α; x) − C(α; x),
M(α; x) = B(α; x)−1C(α; x).

4 Local convergence property of the Newton-FPAEmethod

In this section, we prove the local convergence property of the Newton-FPAE method under
Lipschitz condition. In the remainder of this article, x∗ is the solution of F(x) = 0, N (x∗, r)
denotes an open ball centered at x∗ with radius r > 0.

Lemma 1 (Perturbation Lemma) Ortega and Rheinboldt (1970) Let M, N ∈ C
n×n and

assume that M is nonsingular, with ‖M−1‖ ≤ ξ. If ‖M − N‖ ≤ δ and δξ < 1, then N is
also nonsingular, and

‖N−1‖ ≤ ξ

1 − δξ
.

The proof of Lemma 1 can be found in Ortega and Rheinboldt (1970).

Assumption 1 For any x ∈ N(x∗, r) ⊂ N0, assume the following conditions hold
(A1) (The bounded condition) there exist positive constants β and γ such that

max
{
‖W (x∗)‖, ‖T (x∗)‖

}
≤ β and ‖F ′(x∗)−1‖ ≤ γ. (15)

(A2) (The Lipschitz condition) there exist nonnegative constants L1 and L2 such that

‖W (x) − W (x∗)‖ ≤ L1‖x − x∗‖, (16)

‖T (x) − T (x∗)‖ ≤ L2‖x − x∗‖. (17)

Lemma 2 Under Assumption 1, for any x, y ∈ N(x∗, r), if r ∈
(
0, 1

γ L

)
, then F ′(x)−1 exists.

And the following inequalities hold with L := L1 + L2 for any x, y ∈ N(x∗, r):

‖F ′(x) − F ′(x∗)‖ ≤ L‖x − x∗‖,
‖F ′(x)−1‖ ≤ γ

1 − γ L‖x − x∗‖ ,

‖F(y)‖ ≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖,

‖y − x∗ − F ′(x)−1F(y)‖ ≤ γ

1 − γ L‖x − x∗‖
(
L

2
‖y − x∗‖ + L‖x − x∗‖

)
‖y − x∗‖.

Proof For the proof of the first inequality

‖F ′(x) − F ′(x∗)‖ = ‖W (x) + iT (x) − W (x∗) − iT (x∗)‖
≤ ‖W (x) − W (x∗)‖ + ‖i(T (x) − T (x∗))‖
≤ L1‖x − x∗‖ + L2‖x − x∗‖ = L‖x − x∗‖.

From the condition of r ∈
(
0, 1

γ L

)
, then γ L‖x−x∗‖ < 1. Then according to the bounded

condition ‖F ′(x∗)−1‖ ≤ γ and the above formula ‖F ′(x)−F ′(x∗)‖ ≤ L‖x−x∗‖, by Lemma
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1, F ′(x)−1exists and

‖F ′(x)−1‖ ≤ γ

1 − γ L‖x − x∗‖ .

By

‖F ′(x∗)‖ = ‖W (x∗) + iT (x∗)‖ ≤ ‖W (x∗)‖ + ‖iT (x∗)‖ ≤ 2β,

F(y) = F(y) − F(x∗) − F ′(x∗)(y − x∗) + F ′(x∗)(y − x∗)

=
∫ 1

0

(
F ′(x∗ + t(y − x∗)) − F ′(x∗)

)
dt(y − x∗) + F ′(x∗)(y − x∗),

then

‖F(y)‖ ≤
∥∥∥∥
∫ 1

0

(
F ′(x∗ + t(y − x∗)) − F ′(x∗)

)
dt(y − x∗)

∥∥∥∥+ ‖F ′(x∗)(y − x∗)‖

≤ ‖y − x∗‖
∫ 1

0
‖(F ′(x∗ + t(y − x∗)) − F ′(x∗))‖dt + ‖F ′(x∗)(y − x∗)‖

≤ ‖y − x∗‖
∫ 1

0
‖Lt(y − x∗)‖dt + ‖F ′(x∗)(y − x∗)‖

≤ L

2
‖y − x∗‖2 + 2β‖y − x∗‖.

As for the last inequality, since

y − x∗ − F ′(x)−1F(y)

= −F ′(x)−1
(
F(y) − F(x∗) − F ′(x)(y − x∗) + F ′(x)(y − x∗) − F ′(x)(y − x∗)

)

= −F ′(x)−1
∫ 1

0

(
F ′(x∗ + t(y − x∗)) − F ′(x∗)

)
dt(y − x∗)

+ F ′(x)−1 (F ′(x) − F ′(x∗)
)
(y − x∗),

then

‖y − x∗ − F ′(x)−1F(y)‖ ≤ ‖ − F ′(x)−1‖

·
(∫ 1

0
‖F ′(x∗ + t(y − x∗)) − F ′(x∗)‖dt + ‖F ′(x) − F ′(x∗)‖

)
· ‖y − x∗‖

≤ γ

1 − γ L‖x − x∗‖
(
L

2
‖y − x∗‖ + L‖x − x∗‖

)
‖y − x∗‖.

This completes the proof of Lemma 2. 
�

Theorem 1 Under the assumptions of Lemma 2, for 0 < α <
2

1 + ρ2(W (x∗)−1T (x∗))
,

suppose that r ∈ (0, r0) and define r0 := min{r1, r2}, where

r1 = min{ τθα

8γ L1 + 4αγ L
,

α

4γ L1
}, r2 = 1 − 2βγ [(τ + 1)θ ]u

3γ L
,

with u = lim infk→∞ lk , and the constant u satisfies

u >

⌊
− ln(2βγ )

ln((τ + 1)θ)

⌋
,
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where the symbol �· is used to denote the smallest integer no less than the corresponding
real number, τ ∈ (0, 1−θ

θ

)
is a prescribed positive constant and

θ := θ (α; x∗) = ‖M(α; x∗)‖ ≤
√

(1 − α)2 + α2ρ2(W (x∗)−1T (x∗)) =: δ(α; x∗) < 1.

Then for 0 < α <
2

1 + ρ2(W (x∗)−1T (x∗))
, any x ∈ N(x∗, r) and any sequences {lk}∞k=0

of positive integers, the iteration sequence {xk}∞k=0 generated by the Newton-FPAE method
is well defined and converges to x∗. Moreover, it holds that

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u),

here we use the notation

g(t; v) = 2γ

1 − γ Lt

(
Lt + β[(τ + 1)θ ]v) , for t ∈ (0, r) and v > u.

Proof First, we try to give an estimate of the iterative matrix M(α; x) of the inner solver: if
x ∈ N(x∗, r), then

‖M(α; x)‖ ≤ (τ + 1)θ < 1.

By the bounded condition and the fact that ‖M(α; x∗)‖ ≤ δ(α; x∗) < 1,

‖B(α; x∗)−1‖ = ‖ (I − M(α; x∗)) F ′(x∗)−1‖
≤ (1 + ‖M(α; x∗)‖) ‖F ′(x∗)−1‖ ≤ 2γ.

Then

B(α; x) − B(α; x∗) = 1
α
(W (x) − W (x∗)),

C(α; x) − C(α; x∗) = 1
α
(W (x) − W (x∗)) − (F ′(x) − F ′(x∗)),

by Lipschitz condition, we have

‖B(α; x) − B(α; x∗)‖ ≤ 1

α
‖W (x) − W (x∗)‖ ≤ L1

α
‖x − x∗‖,

‖C(α; x) − C(α; x∗)‖ ≤ 1

α
‖W (x) − W (x∗)‖ + ‖F ′(x) − F ′(x∗)‖

≤ (
L1

α
+ L)‖x − x∗‖.

Since ‖B(α; x∗)−1‖ ≤ 2γ , by Lemma 1

‖B(α; x)−1‖ ≤ 2γ

1 − 2γ L1
α

‖x − x∗‖
≤ 2αγ

α − 2γ L1‖x − x∗‖ ,

and

M(α; x) − M(α; x∗) = B(α; x)−1C(α; x) − B(α; x∗)−1C(α; x∗)

= B(α; x)−1
((

C(α; x) − C(α; x∗)
)− (B(α; x) − B(α; x∗)

)
M(α; x)

)
,
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then

‖M(α; x) − M(α; x∗)‖ = ‖B(α; x)−1C(α; x) − B(α; x∗)−1C(α; x∗)‖
≤ ‖B(α; x)−1‖ ·

[
‖C(α; x) − C(α; x∗)‖ + ‖B(α; x) − B(α; x∗)‖ · ‖M(α; x∗)‖

]

≤ 2αγ

α − 2γ L1‖x − x∗‖
(
2 · L1

α
+ L

)‖x − x∗‖

= (4γ L1 + 2αγ L)‖x − x∗‖
α − 2γ L1‖x − x∗‖ .

Since ‖x−x∗‖ < r ≤ r1 = min{ τθα

8γ L1 + 4αγ L
,

α

4γ L1
}, then α−2γ L1‖x−x∗‖ ≥ 1

2
α,

obviously

(4γ L1 + 2αγ L)‖x − x∗‖
α − 2γ L1‖x − x∗‖ <

(4γ L1 + 2αγ L)
1
2α

· τθα

8γ L1 + 4αγ L
= τθ.

That is

‖M(α; x) − M(α; x∗)‖ ≤ (4γ L1 + 2αγ L)‖x − x∗‖
α − 2γ L1‖x − x∗‖ < τθ,

‖M(α; x)‖ ≤ ‖M(α; x) − M(α; x∗)‖ + ‖M(α; x∗)‖ < (τ + 1)θ,

this is the estimate of ‖M(α; x)‖.
Since t ∈ (0, r) and r < r2 = 1 − 2βγ [(τ + 1)θ ]u

3γ L
, we get

g(t; v) = 2γ

1 − γ Lt

(
Lt + β[(τ + 1)θ ]v) < g(r0; u) < 1.

Then we prove a recursive relationship of ‖xk − x∗‖ :

‖xk+1 − x∗‖ = ‖xk − x∗ − (I − M(α; x)lk )F ′(xk)−1F(xk)‖
≤ ‖xk − x∗ − F ′(xk)−1F(xk)‖ + ‖M(α; x)lk‖ · ‖F ′(xk)−1F(xk)‖

≤ γ

1 − γ L‖x − x∗‖
3L

2
‖xk − x∗‖2 + [(τ + 1)θ ]lk

γ

1 − γ L‖x − x∗‖
(
L

2
‖xk − x∗‖2 + 2β‖xk − x∗‖

)

= (3 + [(τ + 1)θ ]lk )γ L

2(1 − γ L‖x − x∗‖) ‖xk − x∗‖2 + 2βγ [(τ + 1)θ ]lk
1 − γ L‖x − x∗‖‖xk − x∗‖

≤ 2γ

1 − γ L‖x − x∗‖
(
L‖xk − x∗‖ + β[(τ + 1)θ ]lk

)
· ‖xk − x∗‖

= g (‖xk − x∗‖; lk) · ‖xk − x∗‖
< g(r0; u)‖xk − x∗‖ < ‖xk − x∗‖.

Now we can prove the convergence of {xk} ⊂ N(x∗, r).
First, for k = 0, since ‖x0 − x∗‖ < r < r0, then

‖xk+1 − x∗‖ < ‖xk − x∗‖ < · · · < ‖x0 − x∗‖ < r ,
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i .e. {xk} ⊂ N(x∗, r). since

‖xk+1 − x∗‖ < g(r0; u)‖xk − x∗‖ < r ,

by mathematical induction, assuming for some k = n, xn ∈ N(x∗, r), then

‖xn+1 − x∗‖ < g(r0; u)‖xn − x∗‖ < · · · < g(r0; u)n+1‖x0 − x∗‖ < r ,

which means n → ∞, xn+1 → x∗.
This is the end of proof of Theorem 1. 
�

5 Semi-local convergence property of the Newton-FPAEmethod

In this section, we study the semi-local convergence property of the Newton-FPAE method
after giving some assumptions on F(x).

Assumption 2 For any x0 ∈ N0, assume the following conditions hold.
(A1) (The bounded condition) there exist positive constants β and γ such that

max
{
‖W (x0)‖, ‖T (x0)‖

}
≤ β , ‖F ′(x0)−1‖ ≤ γ and ‖F(x0)‖ ≤ δ. (18)

(A2) (The Lipschitz condition) there exist nonnegative constants L1 and L2 such that for
any x, y ∈ N(x0, r) ⊂ N0

‖W (x) − W (y)‖ ≤ L1‖x − y‖, (19)

‖T (x) − T (y)‖ ≤ L2‖x − y‖. (20)

Lemma 3 Under the condition of Assumption 2, for any x, y ∈ N(x0, r), if r ∈
(
0, 1

γ L

)
, and

we denote L := L1 + L2, then F ′(x)−1 exists and:

‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖,
‖F ′(x)‖ ≤ L‖x − x0‖ + 2β,

‖F(x) − F(y) − F ′(y)(x − y)‖ ≤ L

2
‖x − y‖2,

‖F ′(x)−1‖ ≤ γ

1 − γ L‖x − x0‖ .

Proof The proofs of the first and fourth formulas are similar to Lemma 2.2 and will not be
repeated.

Since

‖F ′(x0)‖ = ‖W (x0) + iT (x0)‖ ≤ ‖W (x0)‖ + ‖iT (x0)‖ ≤ 2β,

then

‖F ′(x)‖ ≤ ‖F ′(x) − F ′(x0)‖ + ‖F ′(x0)‖ ≤ L‖x − x0‖ + 2β.

And since

F(x) − F(y) − F ′(y)(x − y) =
∫ 1

0

(
F ′(y + t(x − y)) − F ′(y)

)
dt(x − y),
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then

‖F(x) − F(y) − F ′(y)(x − y)‖ =
∥∥∥∥
∫ 1

0

(
F ′(y + t(x − y)) − F ′(y)

)
dt(x − y)

∥∥∥∥
≤ L

2
‖x − y‖2.


�
We define the following functions:

g(t) = 1

2
at2 − bt + c, h(t) = at − 1,

where a = Lγ (1 + η), b = 1 − η, c = 2γ δ, and η = ηk < 1 is the termination condition
of the inner iteration.

Set t0 = 0, construct a sequence {tk} as follows:

tk+1 = tk − g(tk)

h(tk)
, k = 0, 1, 2, · · · . (21)

Lemma 4 Assume that the above constants satisfy

γ 2δL ≤ (1 − η)2

4(1 + η)
.

Then the sequence {tk} constructed by the above rules is monotonically increasing and

converges to t∗ = b − √
b2 − 2ac

a
.

Proof Since g(t) = 1
2at

2 −bt + c is a quadratic function with a quadratic coefficient greater
than 0, by direct computation it is easy to get the following results.

Set t∗ = b − √
b2 − 2ac

a
, then for t ∈ [0, t∗], the following inequality holds:

g(t) ≥ 0, g′(t) < 0, g′′(t) > 0,

h(t) < g′(t) < 0.

Now we prove that for any k there is tk < tk+1 < t∗ by mathematical induction. Suppose
the above formula holds for k − 1, i.e. tk−1 < tk < t∗.

We set tk+1 − tk = −g(tk)

h(tk)
= U (tk), then

U ′ = −g′h + gh′

h2
,

for tk ∈ [0, t∗], U ′(tk) < 0, U (tk) > U (t∗) > 0, then tk < tk+1.

On the other hand, the function t − g(t)

h(t)
is monotonically decreasing on [0, b

a
] since

−g(tk)

h(tk)
≤ − g(tk)

g′(tk)
,

then tk+1 ≤ t∗ − g(t∗)
g′(t∗)

= t∗.
By mathematical induction, for any k, tk < tk+1 < t∗, then the sequence {tk} is monoton-

ically increasing and converges to t∗. 
�
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Theorem 2 Under the conditions of Assumption 2 and Lemma 4, we define r := min(r1, r2),
where

r1 = min{ τθα

8γ L1 + 4αγ L
,

α

4γ L1
} and r2 = b − √

b2 − 2ac

a
,

and define u = lim infk→∞ lk, and the constant u satisfies

u >

⌊
− ln η

ln ((τ + 1)θ)

⌋
,

τ ∈ (0, 1−θ
θ

)
is a prescribed positive constant, �· represents the smallest integer no less

than the corresponding value, and

θ := θ (α; x0) = ‖M(α; x0)‖ ≤
√

(1 − α)2 + α2ρ2(W (x0)−1T (x0)) =: δ(α; x0) < 1.

Then the iteration sequence {xk} generated by Newton-FPAE method converges to x∗,
which satisfies F(x∗) = 0.

Proof First, similar to the proof in Lemma 2, we obtain the estimate of ‖M(α; x)‖, that for
any x ∈ N(x0, r),

‖M(α; x)‖ ≤ (τ + 1)θ < 1.

We prove the following conclusions by mathematical induction:

⎧⎪⎪⎨
⎪⎪⎩

‖xk − x0‖ ≤ tk − t0,

‖F(xk)‖ ≤ 1 − γ Ltk
γ (1 + η)

(tk+1 − tk),

‖xk+1 − xk‖ ≤ tk+1 − tk .

(22)

First, when k = 0 :

‖x0 − x0‖ = 0 ≤ t0 − t0,

‖F(x0)‖ ≤ δ ≤ 2γ δ

γ (1 + η)
= 1 − γ Lt0

γ (1 + η)
(t1 − t0),

‖x1 − x0‖ = ‖I − M(α; x0)l0‖ · ‖F ′(x0)−1F(x0)‖ ≤ (1 + θ l0)γ δ < 2γ δ = t1 − t0.

Now we have proved that the formula (22) is true when k = 0. Assuming that for any
non-negative integer less than k the formula (22) is true, then we only need to prove that for
k the formula (22) is true.

Since

‖xk − x0‖ ≤ ‖xk − xk−1‖ + ‖xk−1 − x0‖
≤ tk − tk−1 + tk−1 − t0 = tk − t0 < t∗ < r2,
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and

(1 + η)γ ‖F(xk)‖ ≤ (1 + η)γ ‖F(xk) − F(xk−1) − F ′(xk−1)(xk − xk−1)‖
+ (1 + η)γ ‖F(xk−1) + F ′(xk−1)(xk − xk−1)‖

≤ (1 + η)γ L

2
‖xk − xk−1‖2 + (1 + η)γ · η‖F(xk−1)‖

≤ (1 + η)γ L

2
(tk − tk−1)

2 + η(1 − γ Ltk−1)(tk − tk−1)

= g(tk) − g(tk−1) + b(tk − tk−1) − atk−1(tk − tk−1)

+ η(1 − γ Ltk−1)(tk − tk−1)

= g(tk) − g(tk−1) + (1 − γ Ltk−1)
g(tk−1)

−h(tk−1)

< g(tk) = −h(tk)(tk+1 − tk) < (1 − γ Ltk)(tk+1 − tk),

then

‖F(xk)‖ ≤ (1 − γ Ltk)

(1 + η)γ
(tk+1 − tk),

hence

‖xk+1 − xk‖ ≤
∥∥∥I − M(α; xk)lk

∥∥∥ · ∥∥F ′(xk)−1F(xk)
∥∥

≤ (1 + θ lk )‖F ′(xk)−1‖ · ‖F(xk)‖
≤ (1 + η)

γ

1 − γ Ltk
‖F(xk)‖

≤ tk+1 − tk .

Therefore, the above formula holds for any non-negative integer k.
For the reason that sequence {tk} converges to t∗, and

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + ‖xk − x0‖
≤ tk+1 − t0 < t∗ = r2,

then the sequence {xk} converges to x∗. For ‖M(α; x∗)‖ < 1 we have

F(x∗) = 0.

The proof of Theorem 2 is completed. 
�

6 Modified Newton-FPAEmethod

In this section, we apply the FPAE method again as the inner solver for the modified Newton
method (5), then the modified Newton-FPAE method is introduced.

Algorithm 2 Modified Newton-FPAE method
1.Given an initial guess x0, a nonnegative constant α, and two positive integer sequences

{lk}∞k=0, {mk}∞k=0.
2. For k = 0, 1, · · · , until ‖F(xk)‖ ≤ tol‖F(x0)‖ do:

2.1. Set dk,0 = hk,0 := 0.
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2.2. For l = 0, 1, · · · , lk − 1, apply FPAE method to the first equation of (5):

V (xk)dk,l+1 = V (xk)dk,l − α
[
(W (xk) + iT (xk))dk,l + F(xk)

]
,

and obtain dk,lk such that

‖F(xk) + F ′(xk)dk,lk‖ ≤ ηk‖F(xk)‖ for some ηk ∈ [0, 1). (23)

2.3. Set

yk = xk + dk,lk .

2.4. Compute F(yk).
2.5. For m = 0, 1, 2, · · · ,mk − 1, apply FPAE method to the second equation of (5):

V (xk)hk,m+1 = V (xk)hk,m − α
[
(W (xk) + iT (xk))hk,m + F(xk)

]
,

and obtain hk,mk such that

‖F(yk) + F ′(xk)hk,mk‖ ≤ η̃k‖F(yk)‖ for some η̃k ∈ [0, 1). (24)

2.6. Set

xk+1 = yk + hk,mk .

Similarly, in practice, V (x) = W (x) is generally taken, then we get:

M(α; x) = I − αW (x)−1F ′(x), N (α; x) = αW (x)−1,

Set

B(α; x) = 1

α
W (x), C(α; x) = 1

α
W (x) − F ′(x).

then

M(α; x) = B(α; x)−1C(α; x),
F ′(x) = B(α; x) − C(α; x).

The equivalent formula of the iteration:

yk = xk −
lk−1∑
i=0

M(α; xk)i N (α; xk)F(xk),

= xk −
(
I − M(α; xk)lk

)
F ′(xk)−1F(xk), (25)

xk+1 = yk −
(
I − M(α; xk)lk

)
F ′(xk)−1F(xk). (26)

By similar demonstration of convergence properties of Newton-FPAE method, we can
derive the following local convergence theorem and semi-local convergence theorem:

Theorem 3 (Local convergence of modified Newton-FPAE method under Lipschitz condi-

tion) Under the condition of Assumption 1, for 0 < α <
2

1 + ρ2(W (x∗)−1T (x∗))
, any

x0 ∈ N(x∗, r) and any positive integer sequences {lk} and {mk}, where r ≤ r0 := {r1, r2},
and

r1 = min{ τθα

8γ L1 + 4αγ L
,

α

4γ L1
}, r2 = 1 − 2βγ [(τ + 1)θ ]u

3γ L
,
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with

u = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk,

and the constant u satisfies

u >

⌊
− ln(2βγ )

ln((τ + 1)θ)

⌋
,

where �· represent for the smallest integer not less than the corresponding value, τ ∈(
0, 1−θ

θ

)
is a positive constant, and

θ := θ (α; x∗) = ‖M(α; x∗)‖ ≤
√

(1 − α)2 + α2ρ2(W (x∗)−1T (x∗)) =: δ(α; x∗) < 1.

We still use the notation

g(t; v) = 2γ

1 − γ Lt

(
Lt + β[(τ + 1)θ ]v) ,

then the iteration sequence {xk} generated by modified Newton-FPAE method converges to
x∗, and

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2.

Proof It is similar to the theorem 1 unless the recursive relationship of ‖xk − x∗‖.
‖yk − x∗‖ = ‖xk − x∗ − (I − M(α; xk)lk )F ′(xk)−1F(xk)‖

≤ ‖xk − x∗ − F ′(xk)−1F(xk)‖ + ‖M(α; xk)lk‖ · ‖F ′(xk)−1F(xk)‖
≤ γ

1 − γ L‖xk − x∗‖
3L

2
‖xk − x∗‖2

+ [(τ + 1)θ ]lk γ

1 − γ L‖xk − x∗‖
(
L

2
‖xk − x∗‖2 + 2β‖xk − x∗‖

)

= (3 + [(τ + 1)θ ]lk )γ L

2(1 − γ L‖xk − x∗‖) ‖xk − x∗‖2 + 2βγ [(τ + 1)θ ]lk
1 − γ L‖xk − x∗‖‖xk − x∗‖

≤ 2γ

1 − γ L‖xk − x∗‖
(
L‖xk − x∗‖ + β[(τ + 1)θ ]lk

)
· ‖xk − x∗‖

= g (‖xk − x∗‖; lk) · ‖xk − x∗‖
< g(r0; u)‖xk − x∗‖ < ‖xk − x∗‖,

‖xk+1 − x∗‖ = ‖yk − x∗ − (I − M(α; x)mk )F ′(xk)−1F(xk)‖
≤ ‖yk − x∗ − F ′(xk)−1F(yk)‖ + ‖M(α; x)mk‖ · ‖F ′(xk)−1F(yk)‖
≤ γ

1 − γ L‖xk − x∗‖
( L
2

‖yk − x∗‖ + L‖xk − x∗‖
)‖yk − x∗‖

+ [(τ + 1)θ ]mk
γ

1 − γ L‖xk − x∗‖
(
L

2
‖yk − x∗‖2 + 2β‖yk − x∗‖

)

≤
(

γ L

1 − γ L‖xk − x∗‖
(
1 + [(τ + 1)θ ]mk

2
‖yk − x∗‖ + ‖xk − x∗‖

)

+ 2βγ [(τ + 1)θ ]mk

1 − γ L‖xk − x∗‖
)

‖yk − x∗‖
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≤ 2γ g(‖xk − x∗‖; lk)
1 − γ L‖xk − x∗‖(

1 + g(‖xk − x∗‖; lk)
2

· L‖xk − x∗‖ + β[(τ + 1)θ ]mk

)
‖xk − x∗‖

<
2γ g(‖xk − x∗‖; lk)
1 − γ L‖xk − x∗‖

(
L‖xk − x∗‖ + β[(τ + 1)θ ]mk

) ‖xk − x∗‖
= g(‖xk − x∗‖; lk)g(‖xk − x∗‖;mk)‖xk − x∗‖
≤ g(‖xk − x∗‖; u)2‖xk − x∗‖
< g(r0; u)2‖xk − x∗‖ < ‖xk − x∗‖.

Then by the analogous derivation of Theorem 1, we conclude that xk converges to x∗, and

lim sup
k→∞

‖xk − x∗‖ 1
k ≤ g(r0; u)2.


�
Theorem 4 (Semi-local convergence of modified Newton-FPAE method under Lipschitz
condition) Under the condition of Assumption 2 and Lemma 4, for 0 < α <

2

1 + ρ2(W (x0)−1T (x0))
and any positive integer sequences {lk} and {mk}. We define

r ≤ r0 := {r1, r2}, where

r1 = min{ τθα

8γ L1 + 4αγ L
,

α

4γ L1
}, r2 = b − √

b2 − 2ac

a
,

define

u = min{l∗,m∗}, l∗ = lim inf
k→∞ lk, m∗ = lim inf

k→∞ mk .

and the constant u satisfies

u >

⌊
− ln(2βγ )

ln((τ + 1)θ)

⌋
,

where �· denotes the smallest integer no less than the corresponding value, τ ∈ (0, 1−θ
θ

)
is

a positive constant and

θ := θ(α; x0) = ‖M(α; x0)‖ ≤ δV (α; x0) < 1,

then the iteration sequence {xk} generated by modified Newton-FPAE method convergence
to x∗, and satisfies

F(x∗) = 0.

Proof It is similar to the proof of theorem 2.
Define the sequences {tk}, {sk} with t0 = 0 :⎧⎪⎨

⎪⎩
sk = tk − g(tk)

h(tk)
,

tk+1 = sk − g(sk)

h(tk)
.

(27)
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Then prove the following conclusion by the similar derivation of (22)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

‖xk − x0‖ ≤ tk − t0,

‖F(xk)‖ ≤ 1 − γ Ltk
γ (1 + η)

(sk − tk),

‖yk − xk‖ ≤ sk − tk,

‖F(yk)‖ ≤ 1 − γ Ltk
(1 + η)γ

(tk+1 − sk),

‖xk+1 − yk‖ ≤ tk+1 − sk .

(28)

The proof of the rest part is omitted. 
�

7 Numerical examples

In this section, we show the validity of Newton-FPAE method and modified Newton-FPAE
method by comparing them with some other existing methods. For example the Newton-
PMHSS method (Zhong et al. 2015). Since the nonlinear HSS-like method in Bai and Yang
(2009), the two-stage relaxation method in Bai (1997a) and Bai (1997b) can also solve the
weekly nonlinear systems in our numerical examples, we compare our methods with these
methods as well. In our experiments, we take V (x) = W (x) as preconditioner of Newton-
FPAE method, modified Newton-FPAE method and modified Newton-PMHSS method. The
number of iteration steps (denoted as “IT”) and CPU running time (denoted as “CPU time”)
are compared. One of the important issues is how to choose the parameters. In our experiment,
we use the experimental optimal parameters α∗ which minimize the corresponding iteration
steps and errors. The numerical results were computed using MATLAB Version R2017b, on
a laptop with Core AMD A8-7100 and 8.00 GB of RAM. The CPU running time is recorded
by the command “tic-toc”.

Example 7.1 Consider the following nonlinear Helmholtz equation:

− u + σ1u + iσ2u = −eu, (29)

where σ1 and σ2 are real coefficient. Here u satisfies the Dirichlet boundary condition in the
rectangular region D = [0, 1] × [0, 1]. By making the finite difference on the N × N grid
withmesh size h=1/(N+1) to discretize the differential equation, complex nonlinear equations
corresponding of the following form can be derived:

F(x) = Mx + �(x) = 0, (30)

where

M = (K + σ1 I ) + iσ2 I ,

�(x) = (ex1 , ex2 , · · · , exn )T ,

with

K = I ⊗ BN + BN ⊗ I ,

and

BN = 1

h2
tridiag(−1, 2,−1) ∈ RN×N .
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Table 1 The experimental
optimal values α∗ for the three
iterations in Example 7.1

N η MN-PMHSS Newton-FPAE MN-FPAE

30 0.1 0.95 0.82 0.83

0.2 0.95 0.82 0.83

0.4 0.95 0.82 0.82

60 0.1 0.96 0.82 0.83

0.2 0.96 0.82 0.83

0.4 0.96 0.82 0.82

90 0.1 0.97 0.82 0.83

0.2 0.97 0.82 0.83

0.4 0.97 0.82 0.82

Table 2 Numerical results for N = 30 in Example 7.1

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 2.50981E-07 0.1868 3 39

Newton-FPAE 1.32885E-07 0.1402 6 18

MN-FPAE 1.28237E-07 0.0702 3 18

0.2 MN-PMHSS 3.59795E-07 0.1988 4 38

Newton-FPAE 7.65677E-07 0.1611 8 16

MN-FPAE 7.60165E-07 0.0967 4 16

0.4 MN-PMHSS 1.75257E-07 0.2404 7 40

Newton-FPAE 3.22567E-07 0.1993 9 17

MN-FPAE 5.63450E-08 0.1595 5 19

In this numerical experiment, we take σ1 = 1, σ2 = 10. The initial guess is x0 = 0, with
0 being the zero vector, and the termination condition of the outer iteration is

‖F(xk)‖
‖F(x0)‖ ≤ 10−6.

The prescribed tolerance ηk and η̃k for controlling the accuracy of the inner iteration are
both set to be η. Which means that the stopping criterions for the inner iterations of modified
Newton-PMHSS (MN-PMHSS), modified Newton-FPAE (MN-FPAE), and Newton-FPAE
methods are set to be

‖F ′(xk)dk,lk + F(xk)‖2
‖F(xk)‖2 ≤ η.

In this numerical experiment, we choose ηk = η̃k = η = 0.1, 0.2, 0.4. The size of the
grids are N = 30, 60, 90, respectively.

The experimental optimal iteration parametersα∗ forMN-PMHSSmethod,Newton-FPAE
method and MN-FPAE method with different η at N = 30, 60, 90 are given in Table 1. And
the experimental results of the three methods at N = 30, 60, 90 are given in Tables 4, 5, 6,
respectively. In these tables, “Outer IT” denotes the outer iteration steps, and the “Inner IT”
denotes the total inner iteration steps.

As can be seen fromTables 2, 3, and 4, Newton-FPAEmethod andMN-FPAEmethod have
significant advantages in the number of iterations when solving this problem with respect
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Table 3 Numerical results for N = 60 in Example 7.1

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 3.14305E-07 1.2588 3 39

Newton-FPAE 1.29804E-07 1.5986 6 18

MN-FPAE 1.25233E-07 0.7687 3 18

0.2 MN-PMHSS 4.48765E-07 1.7348 4 38

Newton-FPAE 7.48641E-07 1.9229 8 16

MN-FPAE 7.43116E-07 1.0055 4 16

0.4 MN-PMHSS 2.20213E-07 2.3717 7 40

Newton-FPAE 3.14918E-07 2.2518 9 17

MN-FPAE 5.50139E-08 1.3294 5 19

Table 4 Numerical results for N = 90 in Example 7.1

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 3.36959E-07 7.2284 3 39

Newton-FPAE 1.28917E-07 8.0094 6 18

MN-FPAE 1.24372E-07 4.4942 3 18

0.2 MN-PMHSS 4.80706E-07 9.1789 4 38

Newton-FPAE 7.43660E-07 10.4603 8 16

MN-FPAE 7.38146E-07 5.0191 4 16

0.4 MN-PMHSS 2.36545E-07 11.8301 7 40

Newton-FPAE 3.12794E-07 11.3904 9 17

MN-FPAE 5.46331E-08 6.5548 5 19

Table 5 Numerical results for
nonlinear HSS-like method in
Example 7.1

N α∗ Error estimates CPUs IT

30 272 9.13751E-07 0.2010 89

60 508 9.79188E-07 1.4877 166

90 736 9.65113E-07 12.2094 241

to MN-PMHSS method. For example, the inner iteration steps of Newton-FPAE and MN-
FPAE are about half of those of MN-PMHSS. The CPU time of Newton-FPAE is a little
longer than MN-PMHSS, but the CPU time decrease to just a little more than half the time
of Newton-FPAE and MN-PMHSS when MN-FPAE method is used.

The reason why inner iteration steps of Newton-FPAEmethod andMN-FPAEmethod are
less than MN-PMHSS method is mainly because the inner iteration of the two methods is
better. That is, FPAE iteration has a higher efficiency than PMHSS iteration. Since modified
Newton method is superior than Newton method, the CPU time of Newton-FPAE is a little
longger than MN-PMHSS. While when using MN-FPAE method, the CPU time reduced a
lot. So we can conclude that modified Newton-FPAE method has much advantage in solving
this example.

Table 5 shows the experimental optimal iteration parameters of nonlinearHSS-likemethod
and its numerical results. Table 6 displays the numerical results of two-stage relaxation
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Table 6 Numerical results for
two-stage relaxation method in
Example 7.1

N (ω, γ ) Error estimates CPUs IT

30 (1.0,1.0) 9.92782E-07 0.3151 1206

(1.2,1.2) 9.99203E-07 0.2078 802

(1.5,1.5) 9.61181E-07 0.1042 398

60 (1.0,1.0) 9.97675E-07 3.0250 4670

(1.2,1.2) 9.96496E-07 2.2695 3112

(1.5,1.5) 9.95718E-07 1.1754 1552

90 (1.0,1.0) 9.97707E-07 18.4373 10392

(1.2,1.2) 9.98494E-07 13.1831 6926

(1.5,1.5) 9.94268E-07 7.4382 3460

method with parameter (ω, γ ) = (1.0, 1.0), (1.2, 1.2), (1.5, 1.5), respectively. For simplic-
ity’s sake, here in the two-stage relaxation method we set B = M, C = O, D = diag(B),
L,U are the strictly lower, strictly upper triangular matrices of (−B), and s = 2. It is obvious
that our methods are superior in this example.

Example 7.2 Considering the following nonlinear system⎧⎨
⎩
ut − (α1 + iβ1)(uxx + uyy) + �u = −(α2 + iβ2)u

4
3 , in (0, 1] × �,

u(0, x, y) = u0(x, y), in �,

u(t, x, y) = 0, on (0, 1] ∈ ∂�,

where � = (0, 1) × (0, 1), ∂� is the boundary of �, and � is a positive constant used
to measure the magnitudes of the reaction term. By applying the centered finite difference
scheme on the equidistant discretization grid with the stepsize t = h = 1

N+1 , the system
of nonlinear equations (1) is obtained with following form

F(u) = Mu + (α2 + iβ2)ht�(u) = 0, (31)

where N is a prescribed positive integer,

M = h(1 + �t)In + (α1 + iβ1)
t

h
(AN ⊗ IN + IN ⊗ AN ),

�(u) = (u
4
3
1 , u

4
3
2 , · · · , u

4
3
n )T ,

with AN = tr idiag(−1, 2,−1). Here, ⊗ the Kronecker product symbol, and n = N × N .
Then the Jacobian matrix is

F ′(u) = M + 4

3
(α2 + iβ2)htdiag(u

1
3
1 , u

1
3
2 , · · · , u

1
3
n ).

Obviously, u∗ = 0 is a solution of (31), so F ′(u∗) = M , then the following inequality
holds,

‖F ′(u) − F ′(u∗)‖ ≤ 4

3

√
α2 + β2ht‖u − u∗‖ 1

3 .

In actual computations, the coefficients are set to be α1 = 1, β1 = 0.1, α2 = 1, β2 = 0.1.
The initial guess is u0 = 1. The stopping criterion for the outer iteration is set to be

‖F(uk)‖2
‖F(u0)‖2 ≤ 10−6,
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Table 7 The experimental
optimal values α∗ in Example 7.2

N � MN-PMHSS Newton-FPAE MN-FPAE

30 1 0.77 0.99 0.99

10 0.79 0.99 0.99

200 1.01 0.99 0.99

60 1 0.80 0.99 0.99

10 0.81 0.99 0.99

200 1.01 0.99 0.99

90 1 0.81 0.99 0.99

10 0.81 0.99 0.99

200 1.01 0.99 0.99

Table 8 Numerical results for N = 30 in Example 7.2

� Method Error estimates CPU time(s) Outer IT Inner IT

1 MN-PMHSS 1.55123E-07 0.2015 3 36

Newton-FPAE 8.34072E-07 0.1215 6 6

MN-FPAE 8.34154E-07 0.0714 3 6

10 MN-PMHSS 2.00845E-07 0.2062 3 36

Newton-FPAE 8.03259E-07 0.1299 6 6

MN-FPAE 8.03336E-07 0.0728 3 6

200 MN-PMHSS 1.75257E-07 0.2020 3 40

Newton-FPAE 3.94971E-07 0.1364 6 6

MN-FPAE 3.95022E-07 0.0717 3 6

and the stopping criterions for the inner iterations of MN-PMHSS, MN-FPAE, and Newton-
FPAE methods are set to be

‖F ′(uk)dk,lk + F(uk)‖2
‖F(uk)‖2 ≤ η = 0.1.

The experimental optimal iteration parametersα∗ forMN-PMHSSmethod,Newton-FPAE
method and MN-FPAE method at N = 30, 60, 90 are given in Table 7.

Tables 8, 9, 10 have shown the numerical results of MN-PMHSS method, Newton-
FPAE method and MN-FPAE method. Here “Outer IT” denotes the outer iteration steps,
and the “Inner IT” denotes the total inner iteration steps just like Example 7.1. Table 11
is about the optimal parameters of nonlinear HSS-like method and its numerical results.
Table 12 shows the numerical results of two-stage relaxation method with parameter
(ω, γ ) = (1.0, 1.0), (1.2, 1.2), (1.5, 1.5), respectively. Here we take B = M, C = O ,
D = diag(B), s = 2, and L,U are strictly upper triangular matrices of (−B), respectively.

As can be seen from the above tables, in Example 7.2, our methods showed the similar
advantages in Example 7.1 when compared with MN-PMHSS method and nonlinear HSS-
like method. But when compared with the two-stage relaxation method, although the number
of iteration are still much less than the two-stage relaxation method, sometimes it takes more
CPU running time. That is mainly because that the computation in the two-stage relaxation
method is faster when the command “sparse()” is used to store and compute huge-scale
matrices in the iteration.
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Table 9 Numerical results for N = 60 in Example 7.2

� Method Error estimates CPU time(s) Outer IT Inner IT

1 MN-PMHSS 1.53825E-07 1.4698 3 36

Newton-FPAE 8.94563E-07 1.7418 6 6

MN-FPAE 8.94577E-07 0.8242 3 6

10 MN-PMHSS 1.75169E-07 1.4836 3 36

Newton-FPAE 8.84853E-07 1.8039 6 6

MN-FPAE 8.84866E-07 0.8390 3 6

200 MN-PMHSS 3.35051E-07 1.5302 3 38

Newton-FPAE 7.09695E-07 1.8124 6 6

MN-FPAE 7.09709E-07 0.8965 3 6

Table 10 Numerical results for N = 90 in Example 7.2

� Method Error estimates CPU time(s) Outer IT Inner IT

1 MN-PMHSS 1.50961E-07 8.2178 3 36

Newton-FPAE 9.17469E-07 8.6392 6 6

MN-FPAE 9.17474E-07 4.0082 3 6

10 MN-PMHSS 1.63762E-07 8.1886 3 36

Newton-FPAE 9.12741E-07 8.2455 6 6

MN-FPAE 9.12746E-07 3.9465 3 6

200 MN-PMHSS 3.17050E-07 8.0615 3 37

Newton-FPAE 8.20722E-07 8.5117 6 6

MN-FPAE 8.20727E-07 4.0542 3 6

Table 11 Numerical results for
nonlinear-HSS like method in
Example 7.2

N � Error estimates CPUs IT

30 1 8.66856E-07 1.1601 64

10 9.46539E-07 1.1894 59

200 6.97031E-07 0.6336 31

60 1 9.40867E-07 6.8114 96

10 9.98607E-07 6.1244 91

200 9.90582E-07 4.0692 54

90 1 9.29277E-07 22.9441 120

10 9.13462E-07 21.3678 116

200 9.26512E-07 14.0985 75

Example 7.3 Considering the nonlinear system F(x) = 0, where x = (x1, x2, ..., xn)T

and F = (F1, F2, ..., Fn)T , with

Fj (x) = ((5 + i) − (2 + i)x j
)
x j − x j−1 − x j+1 + 1, j = 1, 2, ..., n,

and x0 = xn+1 = 0.
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Table 12 Numerical results for
two-stage relaxation method with
N = 30 in Example 7.2

� (ω, γ ) Error estimates CPUs IT

1 (1.0,1.0) 9.88434E-07 0.2356 436

(1.2,1.2) 9.67420E-07 0.1479 290

(1.5,1.5) 9.30799E-07 0.0828 142

10 (1.0,1.0) 9.69892E-07 0.1918 378

(1.2,1.2) 9.18557E-07 0.1416 252

(1.5,1.5) 9.79132E-07 0.0765 122

200 (1.0,1.0) 9.42988E-07 0.0700 106

(1.2,1.2) 9.86338E-07 0.0657 70

(1.5,1.5) 8.82875E-07 0.0516 36

Table 13 Numerical results for
two-stage relaxation method with
N = 60 in Example 7.2

� (ω, γ ) Error estimates CPUs IT

1 (1.0,1.0) 9.98701E-07 1.7133 1020

(1.2,1.2) 9.86189E-07 1.1544 680

(1.5,1.5) 9.82248E-07 0.6448 338

10 (1.0,1.0) 9.78312E-07 1.4642 930

(1.2,1.2) 9.65557E-07 1.0514 620

(1.5,1.5) 9.65852E-07 0.6244 308

200 (1.0,1.0) 9.82064E-07 0.6260 334

(1.2,1.2) 8.99199E-07 0.4671 224

(1.5,1.5) 8.32602E-07 0.3235 112

Table 14 Numerical results for
two-stage relaxation method with
N = 90 in Example 7.2

� (ω, γ ) Error estimates CPUs IT

1 (1.0,1.0) 9.98102E-07 7.6837 1620

(1.2,1.2) 9.93031E-07 5.5195 1080

(1.5,1.5) 9.65734E-07 3.2922 540

10 (1.0,1.0) 9.88568E-07 7.1732 1512

(1.2,1.2) 9.83501E-07 5.2777 1008

(1.5,1.5) 9.99028E-07 3.0967 502

200 (1.0,1.0) 9.84010E-07 3.4644 642

(1.2,1.2) 9.78949E-07 2.7618 428

(1.5,1.5) 9.52589E-07 1.8376 214

Then the Jacobian matrix of F(x) is

F ′(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(5 + i) − (4 + 2i)x1 −1 · · · 0 0
−1 (5 + i) − (4 + 2i)x2 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · (5 + i) − (4 + 2i)xn−1 −1
0 0 · · · −1 (5 + i) − (4 + 2i)xn

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Table 15 The experimental
optimal values α∗ for the three
iterations in Example 7.3

n η MN-PMHSS Newton-FPAE MN-FPAE

500 0.1 0.55 0.88 0.89

0.2 0.55 0.93 0.93

0.4 0.55 0.91 0.90

1000 0.1 0.55 0.88 0.89

0.2 0.55 0.93 0.83

0.4 0.55 0.94 0.90

2000 0.1 0.55 0.88 0.89

0.2 0.55 0.93 0.93

0.4 0.55 0.94 0.90

Table 16 Numerical results for n = 500 in Example 7.3

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 2.74003E-14 0.0786 7 56

Newton-FPAE 9.31586E-13 0.0748 11 24

MN-FPAE 1.98863E-13 0.0485 6 26

0.2 MN-PMHSS 3.97058E-14 0.1022 9 54

Newton-FPAE 2.94931E-13 0.0790 11 22

MN-FPAE 9.43801E-14 0.0501 6 24

0.4 MN-PMHSS 6.72543E-13 0.1321 12 48

Newton-FPAE 4.27360E-13 0.1562 22 22

MN-FPAE 7.51904E-13 0.0865 11 22

We set the initial guess x (0) = (−1, ...,−1)T . Now we solve this nonlinear equation by
MN-PMHSS, Newton-FPAE method and MN-FPAE method. The stopping criterion for the
outer iteration is set to be

‖F(x (k))‖2
‖F(x (0))‖2 ≤ 10−12,

and the stoping criterion of the inner iteration is

‖F ′(x (k))dk,lk + F(x (k))‖2
‖F(x (k))‖2 ≤ η.

Here x (k) is the results after k-th iteration. We set the inner stop critierion ηk = η̃k = η =
0.1, 0.2, 0.4, the dimension of the problem n = 500, 1000, 2000. Of course, the experimen-
tally optimal parameters α are used in MN-PMHSS, Newton-FPAE andMN-FPAEmethods.
Table 15 shows the experimental optimal parameters.

From Tables 16, 17, 18, we can see that the number of iterations in Newton-FPAE and
MN-FPAE method are less than MN-PMHSS. And especially the modified Newton-FPAE
takes less CPU running time, which is similar to the example 1.

But when compared with the nonlinear HSS-like method in Table 19 and the two-stage
relaxation method in Table 20, they don’t take much advantages. In our opinion, the MN-
FPAEmethod andNewton-FPAEmethod are very suitable for those problemswhose Jacobian
matrices’s image parts are not so big comparedwith real parts. But, if in practical computation
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Table 17 Numerical results for n = 1000 in Example 7.3

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 2.67269E-14 0.2299 7 56

Newton-FPAE 9.34032E-13 0.2444 11 24

MN-FPAE 1.99429E-13 0.1607 6 26

0.2 MN-PMHSS 3.80045E-14 0.2739 9 54

Newton-FPAE 2.95735E-13 0.2779 11 22

MN-FPAE 9.46363E-14 0.1603 6 24

0.4 MN-PMHSS 6.42365E-13 0.3529 12 48

Newton-FPAE 4.41273E-13 0.4256 21 22

MN-FPAE 7.53893E-13 0.2878 11 22

Table 18 Numerical results for n = 2000 in Example 7.3

η Method Error estimates CPU time(s) Outer IT Inner IT

0.1 MN-PMHSS 2.63833E-14 0.7259 7 56

Newton-FPAE 9.35254E-13 1.0579 11 24

MN-FPAE 1.99712E-13 0.9995 6 26

0.2 MN-PMHSS 3.71235E-14 0.9073 9 54

Newton-FPAE 2.96136E-13 1.0620 11 22

MN-FPAE 9.47642E-14 1.0065 6 24

0.4 MN-PMHSS 6.26710E-13 1.2192 12 48

Newton-FPAE 4.41851E-13 1.7988 21 22

MN-FPAE 7.54887E-13 1.9397 11 22

Table 19 Numerical results for
nonlinear HSS-like method in
Example 7.3

n α∗ Error estimates CPUs IT

500 5.4 4.70416E-13 0.0254 13

1000 5.4 3.65304E-13 0.0699 13

2000 5.4 2.99108E-13 0.2535 13

Newton-FPAEmethod and MN-FPAEmethod are not superior than some other methods, we
can use some preconditioner techniques or modifiedmethods in the inner iteration to improve
them. For example, see Section 3 of Xiao and Wang (2018), the PFPAE method.

8 Conclusions

Iterative methods for solving nonlinear systems are of great significance in practical applica-
tions. For nonlinear systems with complex symmetric Jacobian matrices, the most classical
iterative scheme is theNewtonmethod. In this paper, by applying an FPAEmethod as an inner
iteration of the Newton method and modified Newton method, the corresponding Newton-
FPAE method and the modified Newton-FPAE method are obtained, respectively. Local and
semi-local convergence of the two iterative schemes under Lipschitz conditions are proved.
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Table 20 Numerical results for
two-stage relaxation method in
Example 7.3

n (ω, γ ) Error estimates CPUs IT

500 (0.8,0.8) 1.60530E-13 0.0276 18

(1.0,1.0) 4.10482E-13 0.0229 24

(1.2,1.2) 4.88807E-13 0.0276 46

(1.5,1.5) – – –

1000 (0.8,0.8) 1.61573E-13 0.0734 18

(1.0,1.0) 2.90385E-13 0.0776 24

(1.2,1.2) 9.82478E-13 0.0797 44

(1.5,1.5) – – –

2000 (0.8,0.8) 1.62093E-13 0.2710 18

(1.0,1.0) 2.05380E-13 0.2782 24

(1.2,1.2) 6.94873E-13 0.2835 44

(1.5,1.5) – – –

The numerical experiments show that the modified Newton-FPAE methods have obvious
advantages over some other methods in terms of the number of iterations and CPU time.
Our methods make some progress in the improving of efficiency when solving this kind
of nonlinear systems. In practical use, we can also take some preconditioner techniques or
modified methods in the inner iteration to improve the efficiency.
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