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Abstract
Complex q-rung orthopair uncertain linguistic set (CQROULS) is a combination of complex
q-rung orthopair fuzzy set (CQROFS) and uncertain linguistic variable set (ULVS) as a
proficient technique to express uncertain and awkward information in real decision theory.
CQROULS contains uncertain linguistic variables, truth and falsity grades, which gives
extensive freedom to decisionmakers for taking a decision as compared to CQROFS and their
special cases. In this article, a new concept of fuzzy set, called CQROULS using CQROFS
and ULVS is explored, and this can examine the qualitative assessment of decision makers
and gives themextensive freedom in reflecting their belief about allowable truth grades. Based
on the established operational laws and comparison methods for CQROULSs, the notions
of complex q-rung orthopair uncertain linguistic weighted-averaging aggregation operator
and complex q-rung orthopair uncertain linguistic weighted geometric aggregation operator
are explored. Some special cases and the desirable properties of the explored operators are
also established and studied. Additionally, the notion of VIseKriterijumska Optimizacija I
KOmpromisno Resenje (VIKOR) method based on CQROULSs is explored, with the help
of a numerical example, it is verified and also its comparative study is established. Moreover,
based on the above analysis, we establish a method to solve the multi-attribute group decision
making problems, in which the evaluation information is shown as CQROULNs. Finally, we
solve some numerical examples using some decision making steps and explain the verity and
proficiency of the explored operators by comparing with other methods, the advantages and
graphical interpretation of the explored work are also discussed.
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1 Introduction

Multi-attribute decision making (MADM) is a proficient technique to solve various problems
in our real-decision environment. MADM is used for the purpose of examining to rank the
family of alternatives and to examine the best one. But due to the increase in day by day com-
plexity and difficulty in the environment of the decision-making process, the decision-maker
cannot face much longer these kind of problems, which are in the form of numerical values.
To solve these kind of problems, the theory of fuzzy set was explored by Zadeh (1965),
as characterized by the grade of truth belonging to the unit interval. Atanassove’s (1999)
modified the theory of FS to explore the idea of intuitionistic FS (IFS), contains the grade of
truth and the grade of falsity with the condition that is the sum of both is restricted to the unit
interval. Various scholars have studied and utilized it in the environment of different areas
(Krishankumar et al. 2020; Seker 2020; Zhang et al. 2020a; Demircioğlu and Ulukan 2020).
But there are various problems where the sum of the truth and falsity grades is exceeded form
unit interval. For example, when a student is qualified for the Ph.D. test, the group of teachers
who set in the interview and indicates their grade whose in the form of yes is 0.6, and in the
form of no is 0.7. It is clear that the sum of both is exceeded form unit interval. To address such
types of problems, Yager (2013) presented the Pythagorean FS (PFS) with the condition that
is the sum of the squares of the both is not exceeded form unit interval. The PFS has utilized
in various areas. For example, the divergence measure for PFS was elaborated by Zhou et al.
(2020). Song et al. (2020) presented the Pythagorean fuzzy analytic hierarchy process. The
Chebyshev distancemeasures for PFSwas explored by Chen (2020). Riaz et al. (2020) exam-
ined the TOPSISmethod by using the Pythagoreanm-polar fuzzy soft sets. Sarkar andBiswas
(2020) established the entropy measure, linear programing and modified technique for ideal
solution by using the PFSs. But these were still a problem, when a group of teaches indicates
their opinion in the form of yes is 0.9 and in the form of no is 0.8, then probably the sum of the
squares of the both is exceeded form the unit interval. For addressing such types of difficulties,
Yager (2016) again explored the q-rung orthopair FS (QROFS) with a condition that is the
sum of q-powers of the truth and falsity grades is not exceeded form unit interval. QROFS
is extensive proficient technique to resolve real-decision activities. QROFS have received
extensive attention form a scholars and various researchers have applied it to in various areas
(Li et al. 2020; Liu and Wang 2020; Tang et al. 2020; Qin et al. 2020; Liu and Huang 2020).

As for the above existing studies, it has been analyzed that they have investigated the
MADM problems under the FS, IFS, PFS, QROFS or its generalizations, which are only able
to deal with the uncertainty and vagueness that exists in preferences given by the decision
makers. None of these models are able to represent the partial ignorance of the data and
its fluctuations at a given phase of time. However, in complex data sets, uncertainty and
vagueness in the data occur concurrently with changes to the phase (periodicity) of the data.
To handle these, Ramot et al. (2002) presented complex FS (CFS), which is characterized
by the grade of truth in the form of complex-valued, whose real and imaginary parts are
belonging to unit interval. Allah and Salleh (2012) modified the theory of CFS is to explore
the idea of complex IFS (CIFS), contains the grade of truth and the grade of falsity in the form
of polar coordinates with a condition that is the sum of the real part (also for the imaginary
part) of the both is restricted to the unit interval. Various scholars have studied and utilized
it in the environment of different areas (Garg and Rani 2020a, b; Ngan et al. 2020). But
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there are various problems where the sum of the real part (also for imaginary part) of the
truth and the real part (also for imaginary part) of the falsity grades is exceeded form unit
interval. For example, when a decision maker gives the grades for yes is 0.7ei2π(0.7) and
for no is 0.6ei2π(0.6). It is clear that the sum of the real part (also for imaginary part) of the
both is exceeded form unit interval. To address such types of problems, Ullah et al. (2019a)
presented the complex PFS (CPFS) with a condition that is the sum of the squares of the
real part (also for imaginary part) of the both is not exceeded form unit interval. The CPFS
have utilized in various areas (Akram and Naz 2019). But these was still a problem, when a
decision maker indicate their opinion in the form of yes is 0.9ei2π(0.9) and in the form of no
is 0.8ei2π(0.8), then probably the sum of the squares of the real part (also for imaginary part)
of the both is exceeded form the unit interval. For addressing such types of difficulties, Liu
et al. (2019a, b) explored the complex QROFS (CQROFS) with a condition that is the sum
of q-powers of the real part (also for imaginary part) of the truth and the real part (also for
imaginary part) of the falsity grades is not exceeded form unit interval. CQROFS is extensive
proficient technique to resolve real-decision activities.

It is actually complicated for a decision maker to give directly the quantitative assessment
data, in various real decision problems. For addressing such kinds of complications, the
theory of linguistic variable (LV) was explored by Zadeh (1974) as an efficient technique
to address with complicated and awkward information. Further, various scholars have
modified the theory of LV is to explore uncertain linguistic variable (Xu 2004). The theory of
intuitionistic fuzzy uncertain aggregation operators was explored by Liu and Jin (2012). Liu
et al. (2014) established the intuitionistic uncertain linguistic Bonferroni mean operators. Liu
and Liu (2017) presented the intuitionistic uncertain linguistic partitioned Bonferroni mean
operators. Lu and Wei (2017) explored the Pythagorean uncertain linguistic aggregation
mean operators. Liu et al. (2017) examined the Pythagorean uncertain linguistic partitioned
Bonferroni mean operators. The q-rung orthopair fuzzy uncertain linguistic aggregation
operators was explored by Liu et al. (2019b).

From the above analysis it is clear that, various researchers have utilized the aggregation
operators in the environment of IFS, PFS, and QROFS (Wang et al. 2012, 2019a, b; Xing
et al. 2019a, b; Ullah et al. 2018a, 2020; Ghorabaee et al. 2017; Shen and Wang 2018; Jana
et al. 2020a, b; Liu et al. 2020b; Wang and Zhang 2012; Zhang et al. 2020b, c, d, e; Zhan
et al. 2020a, b; Jiang et al. 2020) to evaluate the ambiguities which occurred in the problem
of MADM. But there is still a problem when a decision-maker provides the information
in the form of groups and say to find the best one, it is very difficult to find the relation
between them especially when it is in the form of two-dimensional information in a single
set. For instance, when a decision maker gives 0.8ei2π(0.7) for complex-valued truth grade,
0.7ei2π(0.8) for complex-valued falsity grade, and

[
Ṡ2, Ṡ3

]
for uncertain linguistic term, then

the existing notions like IFS, PFS, QROFS, CIFS, CPFS, CQROFS, and their extensions. For
handling such kinds of problems, the aims of this manuscript are summarized as follows:

1. To present the new CQROULS and their special properties.
2. The aggregation operators called averaging and geometric aggregation operators based

on CQROULSs are explored and also studied with their important properties.
3. Moreover, based on the above analysis, we establish a method to solve the multi-attribute

group decision making problems, in which the evaluation information is shown as
CQROULNs.

4. To explore VIKOR method based on novel CQROULNs and compare with some other
methods and to examine the reliability and effectiveness of the explored methods.
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5. Finally,we solve some numerical examples using some decisionmaking steps and explain
the verity and proficiency of the explored operators by comparing with other methods;
the advantages and graphical interpretation of the explored work are also discussed.

The purpose of this article is summarized in the following ways: In Sect. 2, we review
the CQROFSs, and the notion of uncertain linguistic variable set (ULVS) and their basic
properties. In Sect. 3, the novel approach of CQROULS is explored, which is the combi-
nation of CQROFS and ULVS is a proficient technique to express uncertain and awkward
information in real decision theory. CQROULS contains uncertain linguistic variable, truth
and falsity grades, which gives extensive freedom to a decision makers for taking a decision
is compared to CQROFS and their special cases. In this article, a new concept of fuzzy set
is called CQROULS using CQROFS and ULVS is explored, and this can examine the qual-
itative assessment of decision makers and gives them extensive freedom in reflecting their
belief about allowable truth grades. In Sect. 4, based on the established operational laws and
comparison methods for CQROULSs, the notions of complex q-rung orthopair uncertain
linguistic weighted averaging aggregation operator and complex q-rung orthopair uncertain
linguistic weighted geometric aggregation operator are explored. Some special cases and the
desirable properties of the explored operators are also established and studied. Additionally,
the VIKOR method based on CQROULSs are also explored and verified it with the help of
numerical example. In Sect. 5, based on the above analysis, we establish amethod to solve the
multi-attribute groupdecisionmaking problems, inwhich the evaluation information is shown
as CQROULNs. Finally, we solve some numerical examples using some decision making
steps and explain the verity and proficiency of the explored operators by comparingwith other
methods; the advantages and graphical interpretation of the explored work are also discussed.

2 Preliminaries

For better understanding the established work in the next section, we concisely review some
useful notions of CQROFS (Liu et al. 2019a, b; Zadeh 1974) and their operational laws. The
notion of linguistic term set and uncertain linguistic term set are also discussed. Further, the
symbols XU , μ, and η are represented by the universal grade of truth, and the grade of falsity.
Where qSC , δSC ≥ 1.

Definition 1 (Liu et al. 2019a, 2020a; Zadeh 1974) A CQROFS is of the form:

QCQ � {(
μQCQ (x), ηQCQ (x)

)
: x ∈ XU

}
(1)

where μQCQ � μQRP e
i2πWμQI P and ηQCQ � ηQRP e

i2πWηQI P , with a conditions:

0 ≤ μ
qSC

QRP (x) + η
qSC

QI P (x) ≤ 1, 0 ≤ WqSC
μQI P (x) + WqSC

ηQI P (x) ≤ 1. Moreover, ζQCQ (x) �

ζQRP e
i2πWζQI P �

(

1 −
(
μ
qSC

QRP (x) + η
qSC

QI P (x)
) 1

qSC

)

e
i2π

⎛

⎝1−
(
WqSC

μQI P (x)+WqSC
ηQI P (x)

) 1
qSC

⎞

⎠

is

called refusal grade, the complex q-rung orthopair fuzzy number (CQROFN) is represented

by QCQ � (
μQCQ (x), ηQCQ (x)

) �
(
μQRP (x)e

i2πWμQI P (x)
, ηQRP (x)e

i2πWηQI P (x)
)
.

Definition 2 (Liu et al. 2019a, 2020a; Zadeh 1974) For any two CQROFNs

QCQ−1 �
(
μQRP−1(x)e

i2πWμQI P−1 (x)
, ηQRP−1(x)e

i2πWηQI P−1 (x)
)

and QCQ−2 �
(
μQRP−2(x)e

i2πWμQI P−2 (x)
, ηQRP−2(x)e

i2πWηQI P−2 (x)
)
, then
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1.

QCQ−1⊕CQQCQ−2 �

⎛

⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎝μ
qSC

QRP−1 (x) + μ
qSC

QRP−2 (x)−
μ
qSC

QRP−1 (x)μ
qSC

QRP−2 (x)

⎞

⎠

1
qSC

e

i2π

⎛

⎜
⎝
WqSC

μQI P−1 (x) +WqSC
μQI P−2 (x)−

WqSC
μQI P−1 (x)WqSC

μQI P−2 (x)

⎞

⎟
⎠

1
qSC

,

(
ηQRP−1 (x)ηQRP−2 (x)

)
e
i2π

(
WηQI P−1 (x)WηQI P−2 (x)

)

⎞

⎟
⎟⎟⎟⎟⎟
⎠

;

2.

QCQ−1⊗CQQCQ−2 �

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
μQRP−1 (x)μQRP−2 (x)

)
e
i2π

(
WμQI P−1 (x)WμQI P−2 (x)

)

,

⎛

⎝ η
qSC

QRP−1 (x) + η
qSC

QRP−2 (x)−
η
qSC

QRP−1 (x)η
qSC

QRP−2 (x)

⎞

⎠

1
qSC

e

i2π

⎛

⎜
⎝
WqSC

ηQI P−1 (x) +WqSC
ηQI P−2 (x)−

WqSC
ηQI P−1 (x)WqSC

ηQI P−2 (x)

⎞

⎟
⎠

1
qSC

⎞

⎟⎟⎟⎟⎟⎟
⎠

;

3.

QCQ−1δSC �

⎛

⎜
⎜
⎜
⎜⎜
⎝

μδSC

QCQ−1(x)e
i2πW δSC

μQCQ−1
(x)

,

(

1 −
(
1 − η

qSC

QCQ−1(x)(x)
)δSC

) 1
qSC

e
i2π

⎛

⎝1−
(
1−WqSC

ηQCQ−1 (x)

)δSC
⎞

⎠

1
qSC

⎞

⎟
⎟
⎟
⎟⎟
⎠
;

4.

δSCQCQ−1 �

⎛

⎜⎜⎜⎜⎜
⎝

(

1 −
(
1 − μ

qSC

QCQ−1(x)
)δSC

) 1
qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQCQ−1 (x)

)δSC
⎞

⎠

1
qSC

,

ηδSC

QCQ−1(x)e
i2πW δSC

ηQCQ−1
(x)

⎞

⎟⎟⎟⎟⎟
⎠

.

Definition 3 (Liu et al. 2019a, 2020a; Zadeh 1974) For any two CQROFNs

QCQ−1 �
(
μQRP−1(x)e

i2πWμQI P−1 (x)
, ηQRP−1(x)e

i2πWηQI P−1 (x)
)

and QCQ−2 �
(
μQRP−2(x)e

i2πWμQI P−2 (x)
, ηQRP−2(x)e

i2πWηQI P−2 (x)
)
, the score and accuracy function is

given by:

S·

(
QCQ−1

)
�
(
μ
qSC
QRPT L−1

(x) +WμQI PT L−1
(x) − η

qSC
QRPT L−1

(x) − WηQI PT L−1
(x)
)

2
(2)

Ȟ
(
QCQ−1

)
�
(
μ
qSC
QRPT L−1

(x) +WμQI PT L−1
(x) + η

qSC
QRPT L−1

(x) +WηQI PT L−1
(x)
)

2
(3)

Based on the above two notions, the compassion between two CQROFNs is given by:
1. If S·

(QCQ−1
)

> S·
(QCQ−2

)
, the QCQ−1 > QCQ−2;

2. If S·
(QCQ−1

) � S·
(QCQ−2

)
, then:

1. If Ȟ
(QCQ−1

)
> Ȟ

(QCQ−2
)
, the QCQ−1 > QCQ−2;

2. If Ȟ
(QCQ−1

) � Ȟ
(QCQ−2

)
, the QCQ−1 � QCQ−2.

Definition 4 (Xu 2004) For a linguistic term set Ṡ � {
Ṡ j/ j � 0, 1, 2, . . . , z − 1

}
with odd

cardinality, where, z is the cardinality of Ṡ, and Ṡ j is a linguistic variable. A possible linguistic
term set is given by:
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Ṡ � {Ṡ0, Ṡ1, Ṡ2, Ṡ3, Ṡ4, Ṡ5, Ṡ6} � {very poor , poor , slightly poor , f air ,
slightly good , good , very good} by using the values of z � 7, then z − 1 � 6. The
linguistic terms are expressed by Pythagorean fuzzy sets for five and seven terms. Further,
−
Ṡ� {

Ṡθ : θ ∈ R+
}
is called continuous linguistic term sets if the following conditions are

holds true:

1. The ordered set: Ṡθ < Ṡϕ iff θ < ϕ;
2. The negation operator: Neg

(
Ṡθ

) � Ṡϕ such that ϕ � 2z − θ ;
3. if θ ≤ ϕ, then max

(
Ṡθ , Ṡϕ

) � Ṡϕ and min
(
Ṡθ , Ṡϕ

) � Ṡθ .

Definition 5 (Liu and Jin 2012) For an uncertain linguistic variable Ṡ � [
Ṡθ , Ṡϕ

]
,Ṡθ , Ṡϕ ∈ Ṡ

is the upper and lower limits of Ṡ with 0 < θ ≤ ϕ. For any two ULVs Ṡ1 � [
Ṡθ1 , Ṡϕ1

]
and

Ṡ2 � [
Ṡθ2 , Ṡϕ2

]
, δSC ≥ 0, then

Ṡ1 ⊕ Ṡ2 � [
Ṡθ1 , Ṡϕ1

]⊕ [
Ṡθ2 , Ṡϕ2

] �
[
Ṡ

θ1+θ2− θ1θ2
z
, Ṡϕ1+ϕ2− ϕ1ϕ2

z

]
;

Ṡ1 ⊗ Ṡ2 � [
Ṡθ1 , Ṡϕ1

]⊗ [
Ṡθ2 , Ṡϕ2

] �
[
Ṡ θ1×θ2

z
, Ṡ ϕ1×ϕ2

z

]
;

δSC Ṡ1 � δSC
[
Ṡθ1 , Ṡϕ1

] �
[

Ṡ
z−z

(
1− θ1

z

)δSC , Ṡ
z−z

(
1− ϕ1

z

)δSC

]

;

ṠδSC

1 � [
Ṡθ1 , Ṡϕ1

]δSC �
[

Ṡ
z
(
1− θ1

z

)δSC , Ṡ
z
(
1− ϕ1

z

)δSC

]

.

3 Complex q-rung orthopair uncertain linguistic variables

To improve the quality of the proposed work, in this study, we present the novel approach of
CQROULS and their fundamental operational laws. Basically, the CQROULS is a mixture
of CQROFS and ULS to cope with unpredictable and unreliable information in our day to
day life. Based on the existing notion which is discussed in Sect. 2, the explored approaches
are follow as:

Definition 6 A CQROULS is given by

QCQUL � {
x ,
([
Ṡθ(x), Ṡϕ(x)

]
,
(
μQCQUL (x), ηQCQUL (x)

))
: x ∈ R

}
(4)

where μQCQ � μQRP e
i2πWμQI P and ηQCQ � ηQRP e

i2πWηQI P , with

a conditions: 0 ≤ μ
qSC

QRP (x) + η
qSC

QI P (x) ≤ 1, 0 ≤ WqSC
μQI P (x) + WqSC

ηQI P

(x) ≤ 1 with a ULV
[
Ṡθ(x), Ṡϕ(x)

]
. Moreover, ζQCQ (x) � ζQRP e

i2πWζQI P �
(

1 −
(
μ
qSC

QRP (x) + η
qSC

QI P (x)
) 1

qSC

)

e
i2π

⎛

⎝1−
(
WqSC

μQI P (x)+WqSC
ηQI P (x)

) 1
qSC

⎞

⎠

is called refusal

grade, the complex q-rung orthopair uncertain linguistic number (CQROFN)
or complex q-rung orthopair uncertain linguistic variable (CQROULV) is
represented by QCQUL � ([

Ṡθ(x), Ṡϕ(x)
]
,
(
μQCQUL (x), ηQCQUL (x)

)) �(
[
Ṡθ(x), Ṡϕ(x)

]
,

(
μQRP (x)e

i2πWμQI P (x)
,

ηQRP (x)e
i2πWηQI P (x)

))

.
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Definition 7 For any twoCQROULNsQCQUL−1 �
(
[
Ṡθ1(x), Ṡϕ1(x)

]
,

(
μQRP−1 (x)e

i2πWμQI P−1 (x)
,

ηQRP−1 (x)e
i2πWηQI P−1 (x)

))

and QCQUL−2 �
(
[
Ṡθ2(x), Ṡϕ2(x)

]
,

(
μQRP−2(x)e

i2πWμQI P−2 (x)
,

ηQRP−2(x)e
i2πWηQI P−2 (x)

))

, then

1.

QCQUL−1⊕CQULQCQUL−2 �

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

[
PS

θ1(x)+θ2(x)− θ1 (x)θ2 (x)
z

, PS
ϕ1(x)+ϕ2(x)− ϕ1 (x)ϕ2 (x)

z

]
,

⎛

⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎝ μ
qSC

QRP−1 (x) + μ
qSC

QRP−2 (x)−
μ
qSC

QRP−1 (x)μ
qSC

QRP−2 (x)

⎞

⎠

1
qSC

e

i2π

⎛

⎜
⎝
WqSC

μQI P−1 (x) +WqSC
μQI P−2 (x)−

WqSC
μQI P−1 (x)WqSC

μQI P−2 (x)

⎞

⎟
⎠

1
qSC

,

(
ηQRP−1 (x)ηQRP−2 (x)

)
e
i2π

(
WηQI P−1 (x)WηQI P−2 (x)

)

⎞

⎟⎟⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

;

2.

QCQUL−1⊗CQULQCQUL−2 �

⎛

⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

[
PS θ1 (x)θ2 (x)

z
, PS ϕ1 (x)ϕ2 (x)

z

]
,

⎛

⎜
⎜⎜⎜⎜
⎜
⎝

(
μQRP−1 (x)μQRP−2 (x)

)
e
i2π

(
WμQI P−1 (x)WμQI P−2 (x)

)

,

⎛

⎝ η
qSC

QRP−1 (x) + η
qSC

QRP−2 (x)−
η
qSC

QRP−1 (x)η
qSC

QRP−2 (x)

⎞

⎠

1
qSC

e

i2π

⎛

⎜
⎝
WqSC

ηQI P−1 (x) +WqSC
ηQI P−2 (x)−

WqSC
ηQI P−1 (x)WqSC

ηQI P−2 (x)

⎞

⎟
⎠

1
qSC

⎞

⎟
⎟⎟⎟⎟
⎟
⎠

⎞

⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

;

3.

QCQUL−1δSC �

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

[
PS
z
(

θ1(x)
z

)δSC , PS
z
(

ϕ1(x)
z

)δSC

]

,

⎛

⎜⎜⎜
⎜⎜
⎝

μδSC

QCQ−1(x)e
i2πW δSC

μQCQ−1
(x)

,

(

1 −
(
1 − η

qSC

QCQ−1(x)(x)
)δSC

) 1
qSC

e
i2π

⎛

⎝1−
(
1−WqSC

ηQCQ−1 (x)

)δSC
⎞

⎠

1
qSC

⎞

⎟⎟⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

;

4.

δSCQCQUL−1 �

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

[
PS
z−z

(
1− θ1(x)

z

)δSC , PS
z−z

(
1− ϕ1(x)

z

)δSC

]

,

⎛

⎜
⎜⎜⎜
⎜
⎝

(

1 −
(
1 − μ

qSC

QCQ−1(x)
)δSC

) 1
qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQCQ−1 (x)

)δSC
⎞

⎠

1
qSC

,

ηδSC

QCQ−1(x)e
i2πW δSC

ηQCQ−1
(x)

⎞

⎟
⎟⎟⎟
⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

Definition 8 For any twoCQROULNsQCQUL−1 �
(
[
Ṡθ1(x), Ṡϕ1(x)

]
,

(
μQRP−1 (x)e

i2πWμQI P−1 (x)
,

ηQRP−1 (x)e
i2πWηQI P−1 (x)

))

and QCQUL−2 �
(
[
Ṡθ2(x), Ṡϕ2(x)

]
,

(
μQRP−2(x)e

i2πWμQI P−2 (x)
,

ηQRP−2(x)e
i2πWηQI P−2 (x)

))

, the expectation and

accuracy function is given by:

S·

(
QCQUL−1

)
� Ṡ

(θ1(x)+ϕ1(x))×
(

μ
qSC
QRPT L−1

(x)+WμQI PT L−1
(x)−η

qSC
QRPT L−1

(x)−WηQI PT L−1
(x)

)

4

(5)

Ȟ
(
QCQUL−1

)
� Ṡ

(θ1(x)+ϕ1(x))×
(

μ
qSC
QRPT L−1

(x)+WμQI PT L−1
(x)+η

qSC
QRPT L−1

(x)+WηQI PT L−1
(x)

)

4

(6)
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Based on the above two notions, the compassion between two CQROULNs is given by:
1. If S·

(QCQUL−1
)

> S·
(QCQUL−2

)
, the QCQUL−1 > QCQUL−2;

2. If S·
(QCQUL−1

) � S·
(QCQUL−2

)
, then:

1. If Ȟ
(QCQUL−1

)
> Ȟ

(QCQUL−2
)
, the QCQUL−1 > QCQUL−2;

2. If Ȟ
(QCQUL−1

) � Ȟ
(QCQUL−2

)
, the QCQUL−1 � QCQUL−2.

Theorem 1 For any twoCQROULNsQCQUL−1 �
(
[
Ṡθ1(x), Ṡϕ1(x)

]
,

(
μQRP−1 (x)e

i2πWμQI P−1 (x)
,

ηQRP−1 (x)e
i2πWηQI P−1 (x)

))

and QCQUL−2 �
(
[
Ṡθ2(x), Ṡϕ2(x)

]
,

(
μQRP−2(x)e

i2πWμQI P−2 (x)
,

ηQRP−2(x)e
i2πWηQI P−2 (x)

))

with scalers δSC−1,

δSC−2 ≥ 0, then
QCQUL−1⊕CQULQCQUL−2 � QCQUL−2⊕CQULQCQUL−1;
QCQUL−1⊗CQULQCQUL−2 � QCQUL−2⊗CQULQCQUL−1;
δSC−1

(QCQUL−1⊕CQULQCQUL−2
) � δSC−1QCQUL−2⊕CQULδSC−1QCQUL−1;

δSC−1QCQUL−1⊕CQULδSC−2QCQUL−1 � (
δSC−1 + δSC−2

)QCQUL−1;

QCQUL−1δSC−1⊗CQULQCQUL−2δSC−1 � (QCQUL−1⊗CQULQCQUL−2
)δSC−1

;

QCQUL−1δSC−1⊗CQULQCQUL−1δSC−2 � QCQUL−1
(
δSC−1+δSC−1

)

.

Proof Straightforward.

4 Aggregation operators for CQROULSs

To improve the quality of the proposed work, in this study, we present the aggregation
operators using the CQROULS and also study their special cases. Basically, we explored the
averaging and geometric aggregation and with their weight vector for CQROULS. Based on
the established notions which are discussed in Sect. 3, the explored operators are follow as:

Definition 9 For a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n, the CQROULWA

operator is given by:

CQROULW A
(
QCQUL−1,QCQUL−2, . . . ,QCQUL−n

)
�

n∑

j�1

ωw− jQCQUL− j (7)

where ωw � (
ωw−1, ωw−2, . . . , ωw−n

)T
denotes the weight vectors with a condition∑n

j�1 ωw− j � 1.

Theorem 2 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n, the aggregated

value of the Eq. (7) is again a CQROULN, we have

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
�

n∑

j�1

ωw− jQCQUL− j

123
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�

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏n

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏n
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜
⎜⎜
⎜
⎝

(

1 −∏n
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏n
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏n
j�1 ηωw− j

QRP− j (x)e
i2π

∏n
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟⎟
⎟⎟
⎟
⎠

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

(8)

Proof By using the method of induction, we prove Eq. (8); the steps of the induction is as
follows:

1. For choosing the value of parameter n � 1, then Eq. (8) is hold true.
2. For choosing the value of parameter n � 2 and using def. (7), we have

ωw−1QCQUL−1 �

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

[

Ṡ
z−z

(
1− θ1(x)

z

)ωw−1 , Ṡ
z−z

(
1− ϕ1(x)

z

)ωw−1

]

,

⎛

⎜
⎜⎜
⎜
⎝

(
1 −

(
1 − μ

qSC

QRP−1 (x)
)ωw−1) 1

qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQI P−1 (x)

)ωw−1
⎞

⎠

1
qSC

,

ηωw−1

QRP−1 (x)e
i2πWωw−1

ηQI P−1
(x)

⎞

⎟
⎟⎟
⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

ωw−2QCQUL−2 �

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

[

Ṡ
z−z

(
1− θ2(x)

z

)ωw−2 , Ṡ
z−z

(
1− ϕ2(x)

z

)ωw−2

]

,

⎛

⎜⎜
⎜⎜
⎝

(
1 −

(
1 − μ

qSC

QRP−2 (x)
)ωw−2) 1

qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQI P−2 (x)

)ωw−2
⎞

⎠

1
qSC

,

ηωw−2

QRP−2 (x)e
i2πWωw−2

ηQI P−2
(x)

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

then

ωw−1QCQUL−1⊕CQULωw−2QCQUL−2

�

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

⎡

⎢⎢
⎢⎢
⎢
⎣

Ṡ

z−z
(
1− θ1(x)

z

)ωw−1
+z−z

(
1− θ2(x)

z

)ωw−2
−

⎛

⎝z−z

(
1− θ1(x)

z

)ωw−1
×z−z

(
1− θ2(x)

z

)ωw−2
⎞

⎠

z

,

Ṡ

z−z
(
1− ϕ1(x)

z

)ωw−1
+z−z

(
1− ϕ2(x)

z

)ωw−2
−

⎛

⎝z−z

(
1− ϕ1(x)

z

)ωw−1
×z−z

(
1− ϕ2(x)

z

)ωw−2
⎞

⎠

z

⎤

⎥⎥
⎥⎥
⎥
⎦
,

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜⎜
⎜
⎝

(
1 −

(
1 − μ

qSC

QRP−1 (x)
)ωw−1) qSC

qSC

+

(
1 −

(
1 − μ

qSC

QRP−2 (x)
)ωw−2) qSC

qSC −
(
1 −

(
1 − μ

qSC

QRP−1 (x)
)ωw−1) qSC

qSC ×
(
1 −

(
1 − μ

qSC

QRP−2 (x)
)ωw−2) qSC

qSC

⎞

⎟
⎟⎟
⎟
⎠

e

i2π

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

(
1 −

(
1 − WqSC

μQI P−1 (x)
)ωw−1) qSC

qSC

+

(
1 −

(
1 − WqSC

μQI P−2 (x)
)ωw−2) qSC

qSC −
(
1 −

(
1 − WqSC

μQI P−1 (x)
)ωw−1) qSC

qSC ×
(
1 −

(
1 − WqSC

μQI P−2 (x)
)ωw−2) qSC

qSC

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

ηωw−1

QRP−1 (x)η
ωw−2

QRP−2 (x)e
i2π

(
Wωw−1

ηQI P−1
(x)Wωw−2

ηQI P−2
(x)

)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠
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�

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎣

Ṡ
z−z

(
1− θ1(x)

z

)ωw−1
+z−z

(
1− θ2 (x)

z

)ωw−2
−z

(

1−
(
1− θ1(x)

z

)ωw−1
−
(
1− θ2 (x)

z

)ωw−2
+
(
1− θ1 (x)

z

)ωw−1 (
1− θ2 (x)

z

)ωw−2
),

Ṡ
z−z

(
1− ϕ1 (x)

z

)ωw−1
+z−z

(
1− ϕ2 (x)

z

)ωw−2
−z

(

1−
(
1− ϕ1(x)

z

)ωw−1
−
(
1− ϕ2 (x)

z

)ωw−2
+
(
1− ϕ1(x)

z

)ωw−1 (
1− ϕ2 (x)

z

)ωw−2
)

⎤

⎥⎥⎥
⎦
,

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

⎛

⎜
⎜
⎝

1 −
(
1 − μ

qSC

QRP−1 (x)
)ωw−1

+ 1 −
(
1 − μ

qSC

QRP−2 (x)
)ωw−2

−
(
1 −

(
1 − μ

qSC

QRP−1 (x)
)ωw−1)(

1 −
(
1 − μ

qSC

QRP−2 (x)
)ωw−2)

⎞

⎟
⎟
⎠

1
qSC

e

i2π

⎛

⎜⎜
⎜
⎜
⎝

1 −
(
1 − WqSC

μQI P−1 (x)
)ωw−1

+ 1 −
(
1 − WqSC

μQI P−2 (x)
)ωw−2

−
(
1 −

(
1 − WqSC

μQI P−1 (x)
)ωw−1)

×
(
1 −

(
1 − WqSC

μQI P−2 (x)
)ωw−2)

⎞

⎟⎟
⎟
⎟
⎠

1
qSC

,

ηωw−1

QRP−1 (x)η
ωw−2

QRP−2 (x)e
i2π

(
Wωw−1

ηQI P−1
(x)Wωw−2

ηQI P−2
(x)

)

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢
⎣

Ṡ
z−z

(
1− θ1(x)

z

)ωw−1(
1− θ2(x)

z

)ωw−2 ,

Ṡ
z−z

(
1− ϕ1(x)

z

)ωw−1(
1− ϕ2(x)

z

)ωw−2

⎤

⎥
⎦,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
1 −

(
1 − μ

qSC

QRP−1(x)
)ωw−1(

1 − μ
qSC

QRP−2(x)
)ωw−2) 1

qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQI P−1 (x)

)ωw−1(
1−WqSC

μQI P−2 (x)

)ωw−2
⎞

⎠

1
qSC

,

ηωw−1

QRP−1(x)η
ωw−2

QRP−2(x)e
i2π

(
Wωw−1

ηQI P−1
(x)Wωw−2

ηQI P−2
(x)

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

�

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏2

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏2
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜⎜⎜⎜
⎝

(

1 −∏2
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏2
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏2
j�1 ηωw− j

QRP− j (x)e
i2π

∏2
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

The Eq. (8) is truly holds for n � 2. Further we check for n � k

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−k

)

�

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏k

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏k
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜⎜⎜⎜
⎝

(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏k
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏k
j�1 ηωw− j

QRP− j (x)e
i2π

∏k
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

Moreover, we have to check for n � k + 1, then

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−k+1

)

� CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−k

)
⊕CQULωw−k+1QCQUL−k+1
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�

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏k

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏k
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜
⎜
⎜⎜
⎜
⎝

(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏k
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏k
j�1 ηωw− j

QRP− j (x)e
i2π

∏k
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟
⎟
⎟⎟
⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

⊕CQUL

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[

Ṡ
z−z

(
1− θk+1(x)

z

)ωw−k+1 , Ṡ
z−z

(
1− ϕk+1(x)

z

)ωw−k+1

]

,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(

1 −
(
1 − μ

qSC

QRP−k+1(x)
)ωw−k+1

) 1
qSC

e
i2π

⎛

⎝1−
(
1−WqSC

μQI P−k+1 (x)

)ωw−k+1
⎞

⎠

1
qSC

,

ηωw−k+1

QRP−k+1(x)e
i2πWωw−k+1

ηQI P−k+1
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Ṡ

z−z
∏k

j�1

(
1− θ j (x)

z

)ωw− j

+z−z
(
1− θk+1(x)

z

)ωw−k+1
−

⎛

⎝z−z
∏k

j�1

(
1− θ j (x)

z

)ωw− j

×z−z

(
1− θk+1(x)

z

)ωw−k+1
⎞

⎠

z

,

Ṡ

z−z
∏k

j�1

(
1− ϕ j (x)

z

)ωw− j

+z−z
(
1− ϕk+1(x)

z

)ωw−k+1
−

⎛

⎝z−z
∏k

j�1

(
1− ϕ j (x)

z

)ωw− j

×z−z

(
1− ϕk+1 (x)

z

)ωw−k+1
⎞

⎠

z

⎤

⎥
⎥⎥⎥⎥⎥
⎦

,

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜⎜
⎝

(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) qSC

qSC

+

(

1 −
(
1 − μ

qSC

QRP−k+1 (x)
)ωw−k+1

) qSC

qSC

−
(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) qSC

qSC

×
(

1 −
(
1 − μ

qSC

QRP−k+1 (x)
)ωw−k+1

) qSC

qSC

⎞

⎟⎟⎟⎟⎟⎟
⎠

e

i2π

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎝

(

1 −∏k
j�1

(
1 − WqSC

μQI P− j (x)
)ωw− j

) qSC

qSC

+

(

1 −
(
1 − WqSC

μQI P−k+1 (x)
)ωw−k+1

) qSC

qSC

−
(

1 −∏k
j�1

(
1 − WqSC

μQI P− j (x)
)ωw− j

) qSC

qSC

×
(

1 −
(
1 − WqSC

μQI P−k+1 (x)
)ωw−k+1

) qSC

qSC

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎠

,

∏k
j�1 ηωw− j

QRP− j (x)η
ωw−k+1

QRP−k+1 (x)e
i2π

(
∏k

j�1 W
ωw− j
ηQI P− j

(x)Wωw−k+1
ηQI P−k+1

(x)

)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

�

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

Ṡ

z−z
∏k

j�1

(
1− θ j (x)

z

)ωw− j

+z−z
(
1− θk+1(x)

z

)ωw−k+1
−z

⎛

⎜
⎜⎜
⎝

1 −∏k
j�1

(
1 − θ j (x)

z

)ωw− j

−
(
1 − θk+1(x)

z

)ωw−k+1

+

∏k
j�1

(
1 − θ j (x)

z

)ωw− j (
1 − θk+1(x)

z

)ωw−k+1

⎞

⎟
⎟⎟
⎠

,

Ṡ

z−z
∏k

j�1

(
1− ϕ j (x)

z

)ωw− j

+z−z
(
1− ϕk+1(x)

z

)ωw−k+1
−z

⎛

⎜⎜
⎜
⎝

1 −∏k
j�1

(
1 − ϕ j (x)

z

)ωw− j

−
(
1 − ϕk+1(x)

z

)ωw−k+1

+

∏k
j�1

(
1 − ϕ j (x)

z

)ωw− j (
1 − ϕk+1(x)

z

)ωw−k+1

⎞

⎟⎟
⎟
⎠

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜
⎝

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

+ 1 −
(
1 − μ

qSC

QRP−k+1 (x)
)ωw−k+1

−
(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

)

×
(

1 −
(
1 − μ

qSC

QRP−k+1 (x)
)ωw−k+1

)

⎞

⎟⎟
⎠

e

i2π

⎛

⎜⎜
⎜
⎜⎜
⎝

1 −∏k
j�1

(
1 − WqSC

μQI P− j (x)
)ωw− j

+ 1 −
(
1 − WqSC

μQI P−k+1 (x)
)ωw−k+1

−
(

1 −∏k
j�1

(
1 − WqSC

μQI P− j (x)
)ωw− j

)

×
(

1 −
(
1 − WqSC

μQI P−k+1 (x)
)ωw−k+1

)

⎞

⎟⎟
⎟
⎟⎟
⎠

,

∏k
j�1 ηωw− j

QRP− j (x)η
ωw−k+1

QRP−k+1 (x)e
i2π

(
∏k

j�1 W
ωw− j
ηQI P− j

(x)Wωw−k+1
ηQI P−k+1

(x)

)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠
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�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

Ṡ
z−z

∏k
j�1

(
1− θ j (x)

z

)ωw− j (
1− θk+1(x)

z

)ωw−k+1 ,

Ṡ
z−z

∏k
j�1

(
1− ϕ j (x)

z

)ωw− j (
1− ϕk+1(x)

z

)ωw−k+1

⎤

⎥
⎥
⎥
⎦
,

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

(

1 −∏k
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j (

1 − μ
qSC

QRP−k+1(x)
)ωw−k+1

) 1
qSC

e
i2π

⎛

⎝1−∏k
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j (
1−WqSC

μQI P−k+1 (x)

)ωw−k+1
⎞

⎠

1
qSC

,
∏k+1

j�1 ηωw− j

QRP− j (x)e
i2π

∏k+1
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

�

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏k+1

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏k+1
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜⎜⎜⎜
⎝

(

1 −∏k+1
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏k+1
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏k+1
j�1 ηωw− j

QRP− j (x)e
i2π

∏k+1
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

The result has been proved. Further, we evaluate some properties for CQROULNs like
idempotency, monotonicity and boundedness.

Theorem 3 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n and QCQUL �
(
[
Ṡθ(x), Ṡϕ(x)

]
,

(
μQRP (x)e

i2πWμQI P (x)
,

ηQRP (x)e
i2πWηQI P (x)

))

, if QCQUL− j � QCQUL , then

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
� QCQUL .

Proof Suppose QCQUL− j � QCQUL , then by using Eq. (8), we have

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)

�

⎛

⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏n

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏n
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜
⎜⎜
⎜⎜
⎝

(

1 −∏n
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏n
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏n
j�1 ηωw− j

QRP− j (x)e
i2π

∏n
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟
⎟⎟
⎟⎟
⎠

⎞

⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

[

Ṡ
z−z

∏n
j�1

(
1− θ(x)

z

)ωw , Ṡ
z−z

∏n
j�1

(
1− ϕ(x)

z

)ωw

]

,

⎛

⎜⎜⎜
⎝

(
1 −∏n

j�1

(
1 − μ

qSC

QRP (x)
)ωw) 1

qSC

e
i2π

(

1−∏n
j�1

(
1−WqSC

μQI P (x)

)ωw) 1
qSC

,

∏n
j�1 ηωw

QRP (x)e
i2π

∏n
j�1 W

ωw

ηQI P
(x)

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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�
(
[
Ṡθ(x), Ṡϕ(x)

]
,

(
μQRP (x)e

i2πWμQI P (x)
,

ηQRP (x)e
i2πWηQI P (x)

))

� QCQUL

The result has been proved.

Theorem 4 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

and QCQUL−∗ j �
(
[
Ṡθ∗ j (x), Ṡϕ∗ j (x)

]
,

(
μQRP−∗ j (x)e

i2πWμQI P−∗ j (x),

ηQRP−∗ j (x)e
i2πWηQI P−∗ j (x)

))

, j � 1, 2, . . . , n, if Ṡθ j (x) ≤ Ṡθ∗ j (x),

Ṡϕ j (x) ≤ Ṡϕ∗ j (x), μQRP− j (x) ≤ μQRP−∗ j (x), WμQI P− j (x) ≤ WμQI P−∗ j (x) and ηQRP− j

(x) ≥ ηQRP−∗ j (x), WηQI P− j (x) ≥ WηQI P−∗ j (x), then

CQROULW A
(
QCQUL−1, QCQUL−2, . . . ,

QCQUL−n
)

≤ CQROULW A
(
QCQUL−∗1, QCQUL−∗2, . . . , QCQUL−∗n)

Proof Based on Eq. (8), we know that

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)

�

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏n

j�1

(
1− θ j (x)

z

)ωw− j , Ṡ
z−z

∏n
j�1

(
1− ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜
⎜⎜⎜
⎜
⎝

(

1 −∏n
j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏n
j�1

(
1−WqSC

μQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

,

∏n
j�1 ηωw− j

QRP− j (x)e
i2π

∏n
j�1 W

ωw− j
ηQI P− j

(x)

⎞

⎟
⎟⎟⎟
⎟
⎠

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

and

CQROULW A
(
QCQUL−∗1, QCQUL−∗2, . . . , QCQUL−∗n)

�

⎛

⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

⎡

⎢
⎣Ṡ

z−z
∏n

j�1

(
1− θ∗ j (x)

z

)ωw− j , Ṡ
z−z

∏n
j�1

(
1− ϕ∗ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜
⎜⎜
⎜
⎝

(

1 −∏n
j�1

(
1 − μ

qSC

QRP−∗ j (x)
)ωw−∗ j) 1

qSC

e
i2π

⎛

⎝1−∏n
j�1

(
1−WqSC

μQI P−∗ j (x)

)ωw−∗ j⎞
⎠

1
qSC

,

∏n
j�1 ηωw−∗ j

QRP−∗ j (x)e
i2π

∏n
j�1 W

ωw−∗ j
ηQI P−∗ j (x)

⎞

⎟⎟
⎟⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

First, we have to study the uncertain linguistic parts Ṡθ j (x) ≤ Ṡθ∗ j (x) and Ṡϕ j (x) ≤ Ṡϕ∗ j (x),
we have

Ṡ θ j (x)
z

≤ Ṡ θ∗ j (x)
z

⇒ 1 − Ṡ θ j (x)
z

≤ 1 − Ṡ θ∗ j (x)
z

⇒ z
n∏

j�1

(
1 − Ṡ θ j (x)

z

)
≥ z

n∏

j�1

(
1 − Ṡ θ∗ j (x)

z

)

⇒ z − z
n∏

j�1

(
1 − Ṡ θ j (x)

z

)
≥ z − z

n∏

j�1

(
1 − Ṡ θ∗ j (x)

z

)
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Hence Ṡθ j (x) ≤ Ṡθ∗ j (x), similarly, we can prove that Ṡϕ j (x) ≤ Ṡϕ∗ j (x). Next, we discuss
the real part of the complex-valued truth grade μQRP− j (x) ≤ μQRP−∗ j (x), WμQI P− j (x) ≤
WμQI P−∗ j (x), we have

μ
qSC

QRP− j (x) ≤ μ
qSC

QRP−∗ j (x) ⇒ 1 − μ
qSC

QRP− j (x) ≥ 1 − μ
qSC

QRP−∗ j (x)

⇒
n∏

j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

≥
n∏

j�1

(
1 − μ

qSC

QRP−∗ j (x)
)ωw−∗ j

⇒ 1 −
n∏

j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

≤ 1 −
n∏

j�1

(
1 − μ

qSC

QRP−∗ j (x)
)ωw−∗ j

⇒
⎛

⎝1 −
n∏

j�1

(
1 − μ

qSC

QRP− j (x)
)ωw− j

⎞

⎠

1
qSC

≤
⎛

⎝1 −
n∏

j�1

(
1 − μ

qSC

QRP−∗ j (x)
)ωw−∗ j

⎞

⎠

1
qSC

The imaginary part of the complex-valued truth grade is same. Next, we prove the real part
of the complex-valued falsity grade ηQRP− j (x) ≥ ηQRP−∗ j (x), WηQI P− j (x) ≥ WηQI P−∗ j (x),
we have

ηQRP− j (x) ≥ ηQRP−∗ j (x) ⇒
n∏

j�1

ηωw− j

QRP− j (x) ≥
n∏

j�1

ηωw−∗ j
QRP−∗ j (x)

Hence the expectation values of the
CQROULW A

(QCQUL−1, QCQUL−2, . . . , QCQUL−n
) � A and CQROULW A(QCQUL−∗1, QCQUL−∗2, . . . , QCQUL−∗n) � B then by using the Def. (8), we have

If S·
(QCQUL−1

)
> S·

(QCQUL−2
)
, the QCQUL−1 > QCQUL−2. If S·

(QCQUL−1
) � S·

(QCQUL−2
)
, then: If Ȟ

(QCQUL−1
)

> Ȟ
(QCQUL−2

)
, theQCQUL−1 > QCQUL−2 because

Ṡθ j (x) ≤ Ṡθ∗ j (x), Ṡϕ j (x) ≤ Ṡϕ∗ j (x), μQRP− j (x) ≤ μQRP−∗ j (x), WμQI P− j (x) ≤ WμQI P−∗ j
(x) and ηQRP− j (x) ≥ ηQRP−∗ j (x), WηQI P− j (x) ≥ WηQI P−∗ j (x). So by using the above
properties, we have get the result, such that

CQROULW A
(
QCQUL−1, QCQUL−2, . . . ,

QCQUL−n
)

≤ CQROULW A
(
QCQUL−∗1, QCQUL−∗2, . . . , QCQUL−∗n)

The result has been proved.

Theorem 5 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

j � 1, 2, . . . , n, if Q−CQUL− j �
⎛

⎝
[
Ṡθ−

j (x), Ṡϕ−
j (x)

]
,

⎛

⎝μ−
QRP− j (x)e

i2πW−
μQI P− j

(x)
,

η−
QRP− j (x)e

i2πW−
ηQI P− j

(x)

⎞

⎠

⎞

⎠ and Q+CQUL− j �
⎛

⎝
[
Ṡθ+j (x)

, Ṡϕ+
j (x)

]
,

⎛

⎝μ+
QRP− j (x)e

i2πW+
μQI P− j

(x)
,

η+QRP− j (x)e
i2πW+

ηQI P− j
(x)

⎞

⎠

⎞

⎠, then

Q−CQUL− j ≤ CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
≤ Q+CQUL− j

Proof It is clear that
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Ṡminθ j (x) ≤ Ṡθ j (x) ≤ Ṡmaxθ j (x), Ṡminϕ j (x) ≤ Ṡϕ j (x) ≤ Ṡmaxϕ j (x), minμQRP− j

(x) ≤ μQRP− j (x) ≤ maxμQRP− j (x), minWμQI P− j (x) ≤ WμQI P− j (x) ≤ maxWμQI P− j

(x), maxηQRP− j (x) ≥ ηQRP− j (x) ≥ minηQRP− j (x) and maxWηQI P− j (x) ≥ WηQI P− j

(x) ≥ minWηQI P− j (x), then by using the theorem 3 and theorem 4, such that

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)

≥ CQROULW A
(
Q−CQUL−1

, Q−CQUL−2
, . . . , Q−CQUL−n

)
� Q−CQUL− j

CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)

≤ CQROULW A
(
Q+CQUL−1, Q+CQUL−2, . . . , Q+CQUL−n

)
� Q+CQUL− j

therefore

Q−CQUL− j ≤ CQROULW A
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
≤ Q+CQUL− j

The result has been proved.

Remark 1 If we choose the values of imaginary part as zero in Eq. (8), then Eq. (8) is reduced
for q-rung orthopair uncertain linguistic sets. Similarly, if we choose the values of qSC � 2
in Eq. (8), then Eq. (8) is reduced for complex Pythagorean uncertain linguistic sets and if
we choose the values of qSC � 1 in Eq. (8), then Eq. (8) is reduced for complex intuitionistic
uncertain linguistic sets.

Definition 10 For a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n, the CQROULWG

operator is given by:

CQROULWG
(
QCQUL−1,QCQUL−2, . . . ,QCQUL−n

)
�

n∏

j�1

(
QCQUL− j

)ωw− j

(9)

where ωw � (
ωw−1, ωw−2, . . . , ωw−n

)T
denotes the weight vectors with a condition∑n

j�1 ωw− j � 1.

Theorem 6 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n, the aggregated

value of the Eq. (9) is again a CQROULN, we have

CQROULWG
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
�

n∏

j�1

(
QCQUL− j

)ωw− j
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�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎣Ṡ

z
∏n

j�1

(
θ j (x)
z

)ωw− j , Ṡ
z
∏n

j�1

(
ϕ j (x)

z

)ωw− j

⎤

⎥
⎦,

⎛

⎜⎜
⎜
⎜
⎜
⎝

∏n
j�1 μωw− j

QRP− j (x)e
i2π

∏n
j�1 W

ωw− j
μQI P− j

(x)
,

(

1 −∏n
j�1

(
1 − η

qSC

QRP− j (x)
)ωw− j

) 1
qSC

e
i2π

⎛

⎝1−∏n
j�1

(
1−WqSC

ηQI P− j (x)

)ωw− j
⎞

⎠

1
qSC

⎞

⎟⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

(10)

Proof Straightforward. (Similar to Theorem 2).

Further, we evaluate some properties for CQROULNs like idempotency, monotonicity
and boundedness.

Theorem 7 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

, j � 1, 2, . . . , n and QCQUL �
(
[
Ṡθ(x), Ṡϕ(x)

]
,

(
μQRP (x)e

i2πWμQI P (x)
,

ηQRP (x)e
i2πWηQI P (x)

))

, if QCQUL− j � QCQUL , then

CQROULWG
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
� QCQUL

Proof Straightforward. (Similar to Theorem 3).

Theorem 8 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

and QCQUL−∗ j �
(
[
Ṡθ∗ j (x), Ṡϕ∗ j (x)

]
,

(
μQRP−∗ j (x)e

i2πWμQI P−∗ j (x),

ηQRP−∗ j (x)e
i2πWηQI P−∗ j (x)

))

, j � 1, 2, . . . , n, if Ṡθ j (x) ≤ Ṡθ∗ j (x),

Ṡϕ j (x) ≤ Ṡϕ∗ j (x), μQRP− j (x) ≤ μQRP−∗ j (x), WμQI P− j (x) ≤ WμQI P−∗ j (x) and ηQRP− j

(x) ≥ ηQRP−∗ j (x), WηQI P− j (x) ≥ WηQI P−∗ j (x), then

CQROULWG
(
QCQUL−1, QCQUL−2, . . . ,

QCQUL−n
)

≤ CQROULWG
(
QCQUL−∗1, QCQUL−∗2, . . . , QCQUL−∗n)

Proof Straightforward. (Similar to Theorem 4).

Theorem 9 Suppose a collection CQROULNs QCQUL− j �(
[
Ṡθ j (x), Ṡϕ j (x)

]
,

(
μQRP− j (x)e

i2πWμQI P− j (x),

ηQRP− j (x)e
i2πWηQI P− j (x)

))

j � 1, 2, . . . , n, if Q−CQUL− j �
⎛

⎝
[
Ṡθ−

j (x), Ṡϕ−
j (x)

]
,

⎛

⎝μ−
QRP− j (x)e

i2πW−
μQI P− j

(x)
,

η−
QRP− j (x)e

i2πW−
ηQI P− j

(x)

⎞

⎠

⎞

⎠ and Q+CQUL− j �
⎛

⎝
[
Ṡθ+j (x)

, Ṡϕ+
j (x)

]
,

⎛

⎝μ+
QRP− j (x)e

i2πW+
μQI P− j

(x)
,

η+QRP− j (x)e
i2πW+

ηQI P− j
(x)

⎞

⎠

⎞

⎠, then

123



Aggregation operators and VIKOR method based on complex q-rung orthopair uncertain... Page 17 of 44 306

Q−CQUL− j ≤ CQROULWG
(
QCQUL−1, QCQUL−2, . . . , QCQUL−n

)
≤ Q+CQUL− j

.

Proof Straightforward. (Similar to Theorem 5).

Remark 2 If we choose the values of imaginary part is zero in Eq. (10), then the Eq. (10)
is reduced for q-rung orthopair uncertain linguistic sets. Similarly, if we choose the values
of qSC � 2 in Eq. (10), then the Eq. (10) is reduced for complex Pythagorean uncertain
linguistic sets and if we choose the values of qSC � 1 in Eq. (10), then the Eq. (10) is
reduced for complex intuitionistic uncertain linguistic sets.

4.1 VIKORmethod for complex q-Rung orthopair uncertain linguistic MADM
problems

The VIKOR approach, pioneered for multi-attribute optimization problems, concentrate on
ranking the alternatives and considered a compromise solution.Thedecisionmakingproblem,
which can be solve by VIKOR, is express as follows.

Considered them alternatives and n attributes X1, X2, . . . , Xm and
	̃

A1,
	̃

A2, . . . ,
	̃

An with

respect to weight vectors such thatw � (w1, w2, . . . , wn)
h	,
∑n

j�1 wi � 1, the compromise
ranking by VIKOR methods is started with the form of L p-metric (He et al. 2019).

L pi �
⎧
⎨

⎩

n∑

j�1

[(
R∗
j − Ri j

R∗
j − R−

j

)]b⎫⎬

⎭

1
b

, 1 ≤ b ≤ ∞, i � 1, 2, . . . ,m (11)

In the VIKOR method, the maximum group utility can be gotten by minSi and minimum
individual regret can be gotten by minS

′
i , where Si � L1, i , and S

′
i � L∞, i .

The steps of the VIKOR method is follow as:
Step 1: Computing the virtual positive ideal x∗

j and the virtual negative ideal x−
j values

under the attributes
	̃

A j , we have

x∗
j � maxi

(
xi j
)
, x−

j � mini
(
xi j
)

(12)

Step 2: Computing the values of group utility Si and S
′
i , we have

Si �
∑n

j�1 w j‖R∗
j − Ri j‖

‖R∗
j − R−

j ‖ (13)

S
′
i � max jw j‖R∗

j − Ri j‖
‖R∗

j − R−
j ‖ (14)

Step 3: Computing the values of Qi , i � 1, 2, . . . , m, we have

Qi � v(Si − S∗)
(
S− − S∗) +

(1 − v)
(
S

′
i − S

′ ∗)

(
S′− − S′ ∗) (15)

where S∗ � mini (Si ), S− � maxi (Si ), S
′ ∗ � mini

(
S

′
i

)
and S

′− � maxi
(
S

′
i

)
, the

symbol v is the balance parameter which can balance the group of utility and individual
regret. There are three possibilities:
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1. If v > 0.5 represents the maximum group utility is more thanminimum individual regret.
2. If v < 0.5 represents the minimum individual regret is more than maximum group utility.
3. If v � 0.5 represents the maximum group utility andminimum individual regret are same

importance.

Step 4: Using the values of S, S
′
and Q and ranking the alternatives, then we will obtain

the compromise solution.
Step 5:Whenwe get the compromise solution X (1) in steps 4, then it satisfied the following

two conditions.
Condition 1: Acceptable advantages: Q

(
X (2)

)− Q
(
X (1)

) ≥ 1
m−1 , where Q

(
X (2)

)
is the

Q value in the second position of all ranking alternatives produced by the value of Q and m
number of alternatives.

Condition 2: Acceptable stability: Alternative X (1) must also in the first position of all
ranking alternatives produced by the values of S or S

′
.

If one of the above condition is not met, then we collected the compromise alternatives
and not one compromise solution.

1. If condition 2 is not hold, then we will examine the alternatives X (1) and X (2) should be
compromise solution.

2. If condition 2 is not hold, then the maximum M eximane by the formula Q
(
X (M)

)− Q(
X (1)

)
< MQ � 1

m−1 , we examined the alternatives X (1), X (2), . . . , X (M) are compro-
mise solution.

Based on the above analysis, we will construct the VIKOR method for CQROULSs.

4.2 VIKORmethod for CQROULSs

Let X � {X1, X2, . . . , Xm} be a collection of m alternatives,
	̃

A �
{

	̃

A1,
	̃

A2, . . . ,
	̃

Am

}

be the collection of attributes with respect to weight vectors w � (w1, w2, . . . , wn)
h	,

∑n
j�1 wi � 1. The decision matrix for CQROULSs is follow as: R

′ �
(
r Ljk

)

n×m
,

where the Complex q-rung orthopair uncertain linguistic number is represented by r Ljk �
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)
,

ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)

⎞

⎠

⎞

⎠, the aim of VIKOR method is fol-

low as:
Step 1: Normalize the decision matrix, there are two types of attribute such as benefits B

and cost C types attributes, the normalized can be done by the following formula;

RL
DM �

(
r Ljk

)

m×n
�
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)
,

ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)

⎞

⎠

⎞

⎠ (16)

RL
DM �

(
r Ljk

)

m×n
�
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝ ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)
,

μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)

⎞

⎠

⎞

⎠ (17)

Step 2: Computing the virtual positive ideal x∗
k and the virtual negative ideal x−

k values

under the attributes
	̃

A j , we have

x∗
k � max j

(
r Ljk

)
, x−

k � min j

(
r Ljk

)
(18)
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Step 3: Computing the values of group utility Si and S
′
i , we have

Si �
∑n

j�1 w j

(
‖R∗

j − Ri j‖
)

(
‖R∗

j − R−
j ‖
) (19)

S
′
i �

max jw j

(
‖R∗

j − Ri j‖
)

(
‖R∗

j − R−
j ‖
) (20)

where ‖Ri , R j‖ represents the distance between two CQROULNs, which is defined as:

d
(
Ri , R j

) � ‖Ri − R j‖

� 1

2

n∑

i�1

⎛

⎜⎜
⎝

∣∣∣
∣μ

L
QRP−i

q SC − μL
QRP− j

q SC
∣∣∣
∣ +
∣∣∣
∣η

L
QRP−i

q SC − ηL
QRP− j

q SC
∣∣∣
∣

+

∣
∣∣∣W

L
μQI P−i

q SC − WL
μQI P− j

q SC
∣
∣∣∣ +
∣
∣∣∣W

L
ηQI P−i

q SC − WL
ηQI P− j

q SC
∣
∣∣∣

⎞

⎟⎟
⎠

×
(
ṠLϕ j

− ṠLθi

)
(21)

Step 4: Computing the values of Qi , i � 1, 2, . . . , m, we have

Qi � v(Si − S∗)
(
S− − S∗) +

(1 − v)
(
S

′
i − S

′ ∗)

(
S′− − S′ ∗) (22)

where S∗ � mini (Si ), S− � maxi (Si ), S
′ ∗ � mini

(
S

′
i

)
and S

′− � maxi
(
S

′
i

)
, the

symbol v is the balance parameter which can balance the group of utility and individual
regret. There are three possibility:

1. If v > 0.5 represents the maximum group utility is more thanminimum individual regret.
2. If v < 0.5 represents the minimum individual regret is more than maximum group utility.
3. If v � 0.5 represents the maximum group utility andminimum individual regret are same

importance.

Step 4: Using the values of S, S
′
and Q and ranking the alternatives, then we will obtain

the compromise solution.
Step 5:Whenwe get the compromise solution X (1) in steps 4, then it satisfied the following

two conditions.
Condition 1: Acceptable advantages: Q

(
X (2)

)− Q
(
X (1)

) ≥ 1
m−1 , where Q

(
X (2)

)
is the

Q value in the second position of all ranking alternatives produced by the value of Q and m
number of alternatives.

Condition 2: Acceptable stability: Alternative X (1) must also in the first position of all
ranking alternatives produced by the values of S or S

′
.

Example 1 We take the method from Ref. (Garg et al. 2020) which is a invest selection
problem (Table 1). The investment company want to in with one of the following company
is denoted by Xi (i � 1, 2, 3, 4) and measured by four attributes, whose detail is discussed
in Table 7.

The attributes in Table 2, is the form of CQROULNs, with weight vectors w �
(0.35, 0.25, 0.3, 0.1). based on VIKOR method, we solve the following matrix (Table 3).

Step 1: We normalize the Table 2 using the Eqs. (16) and (17), then the new decision
matrix is follow as:
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Table 1 Representation of different attributes

Symbols A1 A2 A3 A4

Representations Anti-risk ability Growth ability Social impact Environment impact

Step 2:We computing the virtual positive ideal x∗
j and the virtual negative ideal x

−
j values

under the attributes
	̃

A j using the Eq. (18), then

x∗ �
⎧
⎨

⎩

⎛

⎝
[
Ṡ2, Ṡ4

]
,

(
0.7ei2π(0.8), 0.3ei2π(0.22)

)

⎞

⎠,

⎛

⎝
[
Ṡ3, Ṡ4

]
,

(
0.62ei2π(0.88), 0.24ei2π(0.13)

)

⎞

⎠,

⎛

⎝
[
Ṡ3, Ṡ4

]
,

(
0.87ei2π(0.86), 0.14ei2π(0.13)

)

⎞

⎠,

⎛

⎝
[
Ṡ3, Ṡ4

]
,

(
0.75ei2π (0.9), 0.24ei2π (0.13)

)

⎞

⎠

⎫
⎬

⎭

x− �
⎧
⎨

⎩

⎛

⎝
[
Ṡ1, Ṡ2

]
,

(
0.63ei2π(0.73), 0.4ei2π(0.3)

)

⎞

⎠,

⎛

⎝
[
Ṡ1, Ṡ3

]
,

(
0.55ei2π(0.70), 0.43ei2π(0.33)

)

⎞

⎠,

⎛

⎝
[
Ṡ1, Ṡ2

]
,

(
0.55ei2π(0.71), 0.42ei2π(0.34)

)

⎞

⎠,

⎛

⎝
[
Ṡ1, Ṡ3

]
,

(
0.6ei2π (0.62), 0.44ei2π (0.39)

)

⎞

⎠

⎫
⎬

⎭

Step 3: We compute the values of group utility Si and S
′
i using the Eqs. (19), (20) and

(21), if we ignoring the values of uncertain linguistic terms, then
Step 4:We compute the values of Qi , i � 1, 2, . . . , m using the Eq. (22), then (Tables 4,

5)
Step 5: Using the values of S, S

′
and Q and ranking the alternatives, then we will obtain

the compromise solution see Table 5.
Step 6:We obtain the compromise results using the condition 1 and condition 2, such that

Q(X4) � 0, and the second position is Q(X3) � 0.39, then MD � 1
m−1 � 1

4−1 � 0.333, so

Q(X3) − Q(X4) � 0.39 > 0.333 which holds the conditions Q(X3) − Q(X4) ≥ 1
4−1 , but

the alternative X4 is the best ranked by S and S
′
, which holds the condition 1. By calculating,

we get

Q(X3) − Q(X4) � 0.39 > 0.333

Q(X2) − Q(X4) � 1 > 0.333

Q(X1) − Q(X4) � 0.41 > 0.333

So, the condition 1 holds accurately, therefore by condition 1, X1, X2, X3 and X4 are
the compromise solutions. When condition 1 cannot hold, we used condition 2 and solved
the problems. The comparison between the proposed methods and existing methods for
numerical example (1), are discussed in Table 6.

Based on VIKOR methods for existing and proposed approach, the best alternative is
	̃

A4.
The methods introduced in this manuscript express a wider range of fuzzy information,

and they can ask for the sum of square of real part (Also for imaginary) of membership
degree and the sum of square of real part (Also for imaginary) of non-membership degree is
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1
,
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Ṡ 4
] ,

( 0.
82

ei
2π

(0
.8
3)
,
0.
24

ei
2π

(0
.2
3)
)
)

(
[ Ṡ
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Table 4 Values of the group utility Symbols Values Symbols Values

S1 0.22 S
′
1 0.16

S2 0.51 S
′
2 0.26

S3 0.35 S
′
3 0.2

S4 0.17 S
′
4 0.14

Table 5 Ranking results of the Table 4

Symbols X1 X2 X3 X4 Ranking Compromise solution

S 0.22 0.51 0.35 0.17 	̃
A4 ≥ 	̃

A1 ≥ 	̃
A3 ≥ 	̃

A2
X4

S
′

0.16 0.26 0.2 0.14 	̃
A4 ≥ 	̃

A1 ≥ 	̃
A3 ≥ 	̃

A2
X4

Q 0.41 1 0.39 0 	̃
A4 ≥ 	̃

A3 ≥ 	̃
A1 ≥ 	̃

A2
X4

Compromise solution X1, X2, X3, X4

greater than one. Our proposed methods are more general and more effective. Because the
VIKOR methods for CIULS and CPULS are all the special case of the VIKOR methods for
CQROULS.When parameter q � 1 theVIKORmethods for CQROULS reduces the VIKOR
methods for CIULS. When parameter q � 2 the VIKOR methods for CQROULS reduces
the VIKORmethods for CPULS. Besides, our approach is more flexible, and decisionmakers
can choose different values of parameter q according to the different risk attitudes.

According to the comparisons and analysis above, the VIKOR methods based
on CQROULS proposed in this paper are better than the existing other methods for aggre-
gating the complex intuitionistic uncertain linguistic information and complex Pythagorean
uncertain linguistic information. Therefore, they are more suitable to solve the difficult and
complicated problems.

5 MADMbased on CQROULSs

The purpose of this communication is to explore the MADM problem by using the aver-
aging and geometric aggregation operators based on CQROULSs, to improve the quality
of the explore approach. Based on the above analysis, we consider the family of the
alternatives and the family of attributes, whose representations are stated as: AAl �
{AAl−1, AAl−2, . . . , AAl−m}, CAT � {CAT−1, CAT−2, . . . , CAT−n}. For these informa-

tions, we choose a matrix RL
DM �

(
r Ljk

)

m×n
, whose every entities are in the form of

CQROF2-TLNs provide by the decision maker DDE−L (L � 1, 2, .., t) for alternatives
AAl− j ( j � 1, 2, 3, .., m) and their attributes CAT−k(k � 1, 2, 3, . . . , n), where r Ljk �
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)
,

ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)

⎞

⎠

⎞

⎠, L � 1, 2, 3, .., l, whose related

information is given in Sect. 4. The steps of the MADM problem based on CQROULNs are
follow as:
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Step 1: By using the CQROULNs is to construct the decision matrix RL
DM �

(
r Ljk

)

m×n
,

and then normalized it with the help of two methods which are discussed below:

1. When the values of attributes CAT−k , k � 1, 2, . . . , m in the form of benefit kinds, then

RL
DM �

(
r Ljk

)

m×n
�
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)
,

ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)

⎞

⎠

⎞

⎠ (23)

2. When the values of attributes CAT−k , k � 1, 2, . . . , m in the form of cost kinds, then

RL
DM �

(
r Ljk

)

m×n
�
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝ ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)
,

μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)

⎞

⎠

⎞

⎠ (24)

Step 2: To integrate the decision matrix, by using the CQROULWA operator or
CQROULWG operator, which is explored below:

CQROULW A
(
QCQUL− jk

1 ,QCQUL− jk
2 , . . . ,QCQUL− jk

l

)

�

⎛

⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢
⎢
⎣Ṡ

z−z
∏l

L�1

(

1− θLjk (x)

z

)ωw−L , Ṡ
z−z

∏l
L�1

(

1− ϕLjk (x)

z

)ωw−L

⎤

⎥
⎥
⎦,

⎛

⎜
⎜⎜
⎜⎜
⎝

(

1 −∏l
L�1

(
1 − μ

qSC

QRP− jk

L
(x)

)ωw−L) 1
qSC

e
i2π

⎛

⎝1−∏l
L�1

(
1−WqSC

μQI P− jk

L
(x)

)ωw−L
⎞

⎠

1
qSC

,

∏l
L�1 ηωw−L

QRP− jk

L
(x)e

i2π
∏l

L�1 W
ωw−L
ηQI P− jk

L
(x)

⎞

⎟
⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(25)

or

CQROULWG
(
QCQUL− jk

1 ,QCQUL− jk
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(26)

Step 3:With the aggregated values in step 2, we examine the expectation values by using
the Eq. (5).

Step 4:The expectation values, which we obtained in the step 3, rank to all the alternatives
and find the best one.

Step 5: The end.

Example 2 To examine the people of which city is more effected form Coronavirus disease
(COVID-19) in the duration of lockdown. To resolve the issues of security, which city is
more securable form COVID-19 and which is in the dangerous zone and it may be passable
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the effected people form COVID-19 is increases day by day in the duration of lockdown.
For this mission the Pakistan telecom authority (PTA) gives the responsibility of the follow-
ing four cities which is possible to effect the people of that areas form COVID-19, whose
representation is follow as:

AAl−1: Islamabad Areas;
AAl−2: Rawalpindi Areas;
AAl−3: Karachi Areas;
AAl−4: Gilgit Areas.
The information of the effected people form COVID-19 of four cities is collected by the

four attributes, whose representation is follow as:
CAT−1: Food distribution during at lockdown;
CAT−2: Water Supply during at lockdown;
CAT−3: Electric Supply during at lockdown;
CAT−4: Money distribution during at lockdown;
For evaluating these types of problems, we consider the weight vector, whose information

is of the form ωw � (0.4, 0.3, 0.1, 0.2)T , with a condition
∑n

j�1 ωw− j � 1. Addition-

ally, the linguistic terms set is stated by Ṡ � {
Ṡ0, Ṡ1, Ṡ2, Ṡ3, Ṡ4, Ṡ5

}
. The examining

information is considered in the form of CQROULVs, whose expression is follows: r Ljk �
⎛

⎝
[
ṠLθ jk (x), Ṡ

L
ϕ jk (x)

]
,

⎛

⎝μL
QRP− jk (x)e

i2πWL
μQI P− jk

(x)
,

ηL
QRP− jk (x)e

i2πWL
ηQI P− jk

(x)

⎞

⎠

⎞

⎠, L � 1, 2, 3, .., l. The complex

q-rung orthopair uncertain linguistic decision information is available in Table 7.
The steps of the MADM problem based on CQROULNs are follow as:

Step 1: By using the CQROULNs is to construct the decision matrix RL
DM �

(
r Ljk

)

m×n
,

whose information are available in Table 1. Further, we normalized the decision matrix with
the help of two methods which are discussed in Eqs. (23) and (24), the information of the
normalized decision matrix is discussed in Table 8, which is follow as:

Step 2: To integrate the decision matrix, by using the Eqs. (25) and (26) based on the
CQROULWAoperator or CQROULWGoperator, the aggregated values are discussed below:

Step 3: The aggregated values in step 2, we examine the expectation values by using the
Eq. (5), which is follow as:

S· (AAl−1) � Ṡ0.5252, S· (AAl−2) � Ṡ0.5565, S· (AAl−3) � Ṡ0.4868, S· (AAl−4) � Ṡ0.5298,

(for weighted averaging)
S· (AAl−1) � Ṡ0.3866, S· (AAl−2) � Ṡ0.3698, S· (AAl−3) � Ṡ0.3484, S· (AAl−4) � Ṡ0.3835,

(for weighted geometric)
Step 4: The expectation values, which we are obtains in the step 3, rank to all the alter-

natives and we find the best one, which is follow as:
AAl−2 ≥ AAl−4 ≥ AAl−1 ≥ AAl−3, (for weighted averaging)
AAl−1 ≥ AAl−4 ≥ AAl−2 ≥ AAl−3, (for weighted geometric).
Form the above discussion, we obtain the result the city Islamabad and Rawalpindi are

more effected form corona various diseases 2019, which is AAl−2 and AAl−1, by using
weighted averaging and weighted geometric aggregation operators, which is Islamabad and
Rawalpindi areas. It is required for government of Pakistan to supply the necessities’ of the
people in the duration of lockdown and strictly say to the people of the effected city stay at
home to save our life (Table 9).

Step 5: The end.
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3
,
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3
,
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Ṡ 4
] ,

(
0.
54

ei
2π

(0
.5

)
,

0.
21

ei
2π

(0
.3
2 )

)
⎞ ⎠

⎛ ⎝

[ Ṡ
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Ṡ 4
] ,

(
0.
6e

i2
π

(0
.7

)
,

0.
3e

i2
π

(0
.2

)

)
⎞ ⎠

A
A
l−

2
⎛ ⎝

[ Ṡ
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3
,
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2
,
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2
,
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Table 9 By using the Eqs. (25, 26), we get the values of weighted averaging and weighted geometric based on
explored ideas

Symbol CQROULWA operator Symbol CQROULWG operator

AAl−1
⎛

⎝

[
Ṡ2.83, Ṡ5

]
,(

0.49ei2π(0.55),
0.18ei2π(0.24)

)
⎞

⎠
AAl−1

⎛

⎝

[
Ṡ2.77, Ṡ4.13

]
,(

0.48ei2π(0.54),
0.27ei2π(0.27)

)
⎞

⎠

AAl−2
⎛

⎝

[
Ṡ3.59, Ṡ5

]
,(

0.50ei2π(0.55),
0.20ei2π(0.28)

)
⎞

⎠
AAl−2

⎛

⎝

[
Ṡ2.95, Ṡ4.41

]
,(

0.49ei2π(0.52),
0.28ei2π(0.32)

)
⎞

⎠

AAl−3
⎛

⎝

[
Ṡ2.20, Ṡ5

]
,(

0.47ei2π(0.59),
0.26ei2π(0.26)

)
⎞

⎠
AAl−3

⎛

⎝

[
Ṡ1.72, Ṡ4.28

]
,(

0.45ei2π(0.58),
0.32ei2π(0.26)

)
⎞

⎠

AAl−4
⎛

⎝

[
Ṡ1.48, Ṡ5

]
,(

0.55ei2π(0.60),
0.27ei2π(0.32)

)
⎞

⎠
AAl−4

⎛

⎝

[
Ṡ1.28, Ṡ4.09

]
,(

0.54ei2π(0.58),
0.31ei2π(0.33)

)
⎞

⎠

Fig. 1 Graphical representation using the information of Table 10

The comparison of the elaborated approach in this manuscript are examined with the help
of some existing operators are discussed in Table 10, whose information is discussed in Table
9, which is stated below.

Form the above discussion, we obtain the result the cities which is more effected form
corona various diseases 2019 are AAl−2 and AAl−1, by using weighted averaging and
weighted geometric aggregation operators, which is Islamabad and Rawalpindi areas. It is
required for government of Pakistan to supply the necessities’ of the people in the duration of
lockdown and strictly say to the people of the effected city stay at home to save our life. The
graphical interpretation of the information, which is discussed in Table 10, are understand
with the help of Fig. 1.

5.1 Advantages and comparative analysis with graphical representations

The CQROULS is a mixture of CQROFS and ULVS is a proficient technique to express
uncertain and awkward information in real decision theory is explored. The advantage of the
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Ṡ 0

.9
17
5
,
S ·( A

A
l−

2
)

�
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Ṡ 0

.7
55
,
S ·( A

A
l−

4
)

�
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Fig. 2 Graphical representation using the information of Table 12

CQRULS is that it contains the uncertain linguistic variable, truth and falsity grades with a
conditions that is the sum of q-power of the real parts (also for imaginary parts) of the truth
and falsity grades are not exceeded from unit interval. Further, to explore the proficiency
and validity of the established operators based on the novel CQROULVs, we choose some
existing operators based on intuitionistic uncertain linguistic variables (Liu and Jin 2012),
Pythagorean uncertain linguistic variables (Lu and Wei 2017), q-rung orthopair uncertain
linguistic variables (Liu et al. 2019b), complex intuitionistic uncertain linguistic variables
(Special case of the explored operators), complex Pythagorean uncertain linguistic variables
(Special case of the explored operators), and complex q-rung orthopair uncertain linguistic
variables. Further, we choose the complex Pythagorean uncertain linguistic information,
which is discussed in Table 11, and solve it by using some existing methods (Liu and Jin
2012; Lu and Wei 2017; Liu et al. 2019b).

The aggregated values of the normalized decision matrix, whose information is given
in Table 11, are discussed in Table 6. The comparison of the elaborated approach in this
manuscript are examined with the help of some existing operators are discussed in Table 12,
whose information is discussed in Table 11, which is stated below.

Form the above discussion, we obtain the result the cities which is more effected form
coronavarious diseases 2019 areAAl−2, byusingweighted averaging andweightedgeometric
aggregation operators, which is Rawalpindi areas. It is required for government of Pakistan
to supply the necessities’ of the people in the duration of lockdown and strictly say to the
people of the effected city stay at home to save our life. The graphical interpretation of the
information, which is discussed in Table 12, are understand with the help of Fig. 2.

Further, we choose the complex q-rung orthopair uncertain linguistic information, which
is discussed in Table 13, and solve it by using some existing methods (Liu and Jin 2012; Lu
and Wei 2017; Liu et al. 2019b).

The aggregated values of the normalized decision matrix for qSC � 7, whose information
is given in Table 13, are discussed in Table 14. The comparison of the elaborated approach
in this manuscript are examined with the help of some existing operators are discussed in
Table 14, whose information is discussed in Table 13, which is stated below

Form the above discussion, we obtain the result the cities which is more effected form
coronavarious diseases 2019 areAAl−1, byusingweighted averaging andweightedgeometric
aggregation operators, which is Islamabad areas. It is required for government of Pakistan
to supply the necessities’ of the people in the duration of lockdown and strictly say to the
people of the effected city stay at home to save our life. The graphical interpretation of the
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Ṡ 5
] ,

(
0.
62

ei
2π

(0
.8
2 )
,

0.
42

ei
2π

(0
.2
2 )

)
⎞ ⎠

⎛ ⎝

[ Ṡ
2
,
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Ṡ 0

.8
98
2
,
S ·( A

A
l−

4
)

�
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1
,
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Ṡ 4
] ,

(
0.
63

ei
2π

(0
.8
3 )
,

0.
83

ei
2π

(0
.2
3 )

)
⎞ ⎠

⎛ ⎝

[ Ṡ
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Fig. 3 Graphical representation using the information of Table 14

information, which is discussed in Table 8, are understood with the help of Fig. 3. For further
improvement of this manuscript, we consider the example from Ref. (Liu and Jin 2012),
and solve it by using the established operator and existing operators, whose discussion is
explained below.

Example 3 This example is taken form Ref. (Liu and Jin 2012), example 5. The authors
have chosen four alternatives and four attributes and their weight vectors is follow as: ωw �
(0.32, 0.26, 0.18, 0.24)T . For these information, the decision matrix which is taken form
Ref. (Liu and Jin 2012) is discussed below. The authors chose the intuitionistic uncertain
linguistic information, which is discussed in Table 15, and solved it by using some existing
methods (Liu and Jin 2012; Lu and Wei 2017; Liu et al. 2019b).

Form the above analysis, its clear that ei2π(0.0) � e0 � 1, then with the information of
the Table 15, we converted it to the information of the Table 16, which is in the form of polar
co-ordinates.

The aggregated values of the normalized decision matrix, whose information is given
in Table 16, are discussed in Table 17. The comparison of the elaborated approach in this
manuscript is examined with the help of some existing operators as discussed in Table 17,
whose information is discussed in Table 16, which is stated below.

Form the above discussion, we obtained the result in the cities which is more affected
by COVID-19 are AAl−1 and AAl−2, by using weighted-averaging and weighted-geometric
aggregation operators, which is Islamabad and Rawalpindi areas. It is required by the gov-
ernment of Pakistan to supply the necessities’ of the people in the duration of lockdown and
strictly inform the people of the affected city to stay at home to save their lives. The graphical
interpretation of the information, which is discussed in Table 17, can be understood with the
help of Fig. 4.

From the above discussions, we get the result; our established approach is more refillable
and extensive consistence then existing methods (Liu and Jin 2012; Lu and Wei 2017; Liu
et al. 2019b), due to its constraints. Therefore, the established approaches in this manuscript
aremore reliable andmore efficient then CIFS and CPFS to copewith uncertain and awkward
information in realistic decision theory.
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Ṡ 6
] ,

(0
.5
,
0.
5 )
)

([
Ṡ 3
,
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Ṡ 3
,
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Ṡ 3
] ,

(0
.3
,
0.
6 )
)

123



306 Page 38 of 44 T. Mahmood, Z. Ali

Ta
bl
e
16

D
ec
is
io
n
m
at
ri
x,

w
ho

se
in
fo
rm

at
io
n
is
in

th
e
fo
rm

of
co
m
pl
ex

in
tu
iti
on

is
tic

un
ce
rt
ai
n
lin

gu
is
tic

nu
m
be
rs

Sy
m
bo

ls
C A

T
−1

C A
T

−2
C A

T
−3

C A
T

−4

A
A
l−

1
⎛ ⎝

[ Ṡ
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Ṡ 3
] ,

(
0.
4e

i2
π

(0
.0

) ,
0.
6e

i2
π

(0
.0

)

)
⎞ ⎠

⎛ ⎝

[ Ṡ
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Ṡ −

0.
38
73
,

S ·( A
A
l−

3
)

�
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Fig. 4 Graphical representation using the information of Table 17

6 Conclusion

Various theories have developed in the environment of fuzzy sets. But, one of the most
important theory is not explored till date, which is effectively dealing with some issues, no
notions deal with such kinds of issues. For instance, when a decisionmaker gives the complex
q-rung orthopair uncertain linguistic types of information. For coping such kinds of issues,
in this paper, the theory of complex q-rung orthopair uncertain linguistic set (CQROULS)
is a combination of complex q-rung orthopair fuzzy set (CQROFS) and uncertain linguistic
variable set (ULVS) is a proficient technique to express uncertain and awkward informa-
tion in real decision theory is explored. CQROULS contains uncertain linguistic variable,
truth, and falsity grades, which gives extensive freedom to a decision makers for taking a
decision is compared to CQROFS and their special cases. CQROULS can examine the qual-
itative assessment of decision makers and gives them extensive freedom in reflecting their
belief about allowable truth grades. Based on the established operational laws and compar-
ison methods for CQROULSs, the notions of complex q-rung orthopair uncertain linguistic
weighted averaging aggregation operator and complex q-rung orthopair uncertain linguistic
weighted geometric aggregation operator are explored. Some special cases and the desir-
able properties of the explored operators are also established and studied. Additionally, the
VIKOR method based on CQROULSs are also explored and verified it with the help of
numerical example. Moreover, based on the above analysis, we establish a method to solve
the multi-attribute group decision making problems, in which the evaluation information is
shown as CQROULNs. Finally, we solve some numerical examples using some decision
making steps and explain the verity and proficiency of the explored operators by comparing
with other methods, the advantages and graphical interpretation of the explored work are also
discussed.

In the future, we will evaluate some more aggregation operators (Ullah et al. 2018a, 2020;
Ghorabaee et al. 2017; Shen and Wang 2018), similarity measures (Jana et al. 2020a, b; Liu
et al. 2020b; Wang and Zhang 2012; Wang et al. 2012; Zhang et al. 2020b, c, d, e; Zhan et al.
2020a, b; Jiang et al. 2020), and different methods (He et al. 2019; Garg et al. 2020; Ali and
Mahmood 2020a, b; Jan et al. 2020; Ali et al. 2020; Mahmood et al. 2019; Ullah et al. 2018b,
2019b; Quek et al. 2019) solved by using the complex q-rung orthopair uncertain linguistic
information.

123



306 Page 42 of 44 T. Mahmood, Z. Ali

References

Akram M, Naz S (2019) A novel decision-making approach under complex Pythagorean fuzzy environment.
Math Comput Appl 24(3):73

Ali Z, Mahmood T (2020a) Maclaurin symmetric mean operators and their applications in the environment of
complex q-rung orthopair fuzzy sets. Comput Appl Math 39:161

Ali Z, Mahmood T (2020) Complex neutrosophic generalised dice similarity measures and their application
to decision making. CAAI Trans IntellTechnol

Ali Z, Mahmood T, Yang M-S (2020) Complex T-spherical fuzzy aggregation operators with application to
multi-attribute decision making. Symmetry 12:1311

Alkouri AMDJS, Salleh AR (2012) Complex intuitionistic fuzzy sets. In AIP Conference Proceedings. Amer-
ican Institute of Physics, 1482(1):464–470

Atanassov KT (1999) Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp 1–137). Physica, Heidelberg
Chen TY (2020) New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple

criteria decision analysis using an extended ELECTRE approach. Expert Syst Appl 147:113164
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