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Abstract
Improving the proportion of natural gas consumption of the manufacturing industry would
make significant contributions to the low-carbon and sustainable development of China,
which is one of the largest manufacturers in the world. However, it is very difficult to catch
the trend of natural gas consumption of the concerning manufacturing industry as not enough
trustable data can be collected. To fill this gap, a novel time-delayed fractional grey model is
developed to forecast the natural gas consumption concerning time-delayed effect. Theoret-
ical analysis shows it has more general formulation, unbiasedness and higher flexibility than
the existing similar model. Being optimized by the Particle Swarm Optimization algorithm,
the proposed model presents higher accuracy in four validation cases. Finally, it is used to
forecast the natural gas consumption of the manufacturing industry of China, and the results
show that the proposedmodel significantly outperforms the other seven existing greymodels.
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1 Introduction

The manufacturing industry can directly reflect a country’s productivity level, and energy is
an important material basis for human survival and development. According to Ref National
bureau of statistics (2002), in the past decade, the total energy consumption of the manu-
facturing industry has been on a steady trend, accounting for about 57% of the total energy
consumption of the whole country; however, the gross domestic product (GDP) of the man-
ufacturing industry only accounts for about 31% of the total, showing a sharp downward
trend. It shows that the energy consumed by the manufacturing industry is not proportional
to its contribution to the national GDP, and the consumption structure of the manufacturing
energy needs to be further improved.

Natural gas is a kind of high-quality, efficient, and clean low-carbon energy. With the
reform of natural gas prices and the vigorous promotion of natural gas development in
the 13th five-year plan, the development of natural gas will usher in historic opportunities.
According to Ref National bureau of statistics (2002), in the past decade, the consumption
of natural gas in the manufacturing industry has been on an upward trend, accounting for
about 40% of the national consumption of natural gas, indicating that the 18th national
congress of the communist party of China proposed to vigorously promote the construction
of ecological civilization and play a positive role in promoting the use of natural gas; however,
the consumption of natural gas in manufacturing industry only accounts for about 0.34% of
the total energy consumption in the manufacturing industry, and the natural gas consumption
of manufacturing industry accounts for less than 0.4% of manufacturing GDP. It shows that
the government’s actions on the development of the natural gas manufacturing industry still
needs to be accelerated. As a consequence, China is in the stage of reforming the energy
consumption system, and the situation of the market and economics is changing fast. This
brought more uncertainties to the energy consumption system of China. Meanwhile, under
such circumstances, often the newest few data are available for accurate forecasting of energy
consumption. Thus a tool which is efficient in dealing with uncertainties with small samples
is needed.

Grey system theory proposed by Deng is such a tool which is available to deal with the
problems described above (Ref Julong (1986)), in which the grey models play a key role.
Unlike the white box models, such as the differential equations in Refs Wang et al. (2019),
or the black box models, like the machine learning models in Refs Yang et al. (2019), Pei
et al. (2019), Fan et al. (2019), the grey models essentially try to combine the merits of these
models in order to take most advantages of the infomation. Moreover,it was proved to be
very efficient in small sample modeling for time series forecasting in Ref Lifeng et al. (2013).
Within such priority, the grey models have been applied in a wide variety of fields in recent
years, such as dollar to euro price forecasting in Ref Kayacan et al. (2010), passenger demand
growth forecasting in the air transportation industry in Ref Benítez et al. (2013), the actual
cost and the cost at completion of a project forecasting in Ref San Cristóbal et al. (2015),
the scrapped vehicles forecasting in Ref Ene and Öztürk (2017), short-term freeway traffic
parameter prediction in Ref Bezuglov and Comert (2016) , the e-waste in Washington in Ref
Duman et al. (2019), total natural gas consumption forecasting in Ref Zeng et al. (2020),
pollutant forecasting in Xiong et al. (2020), traffic flow prediction Ref Xiao et al. (2020),
etc. But it was also pointed out by Wu that the conventional grey models based on first-order
accumulation is not flexible enough to deal with more complex sequences; thus the fractional
order accumulation was introduced for grey models in Ref Lifeng et al. (2013). A series of
theoretical analysis was also provided in the following research, such as the sensitivity of
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initial condition in Ref Lifeng et al. (2015), ability of mining new information in Ref Lifeng
and Bin (2017). Within such advantages the fractional grey models soon become popular
and were applied in many new fields in recent years, such as transaction counts forecasting
in Ref Gatabazi et al. (2019), and even the new coronavirus (COVID-19) cases forecasting
in Ref Utkucan and Tezcan (2020).

On the other hand, the fractional order greymodels are also suitable for energy forecasting
with its high flexibility and effectiveness in small sample modeling. Wu et al. proposed
the FGM(1,1) and made a more accurate prediction of the coal mine drainage volume in
RefLifeng et al. (2014). Shaikh et al. constructedChina’s natural gas consumption forecasting
model by utilizing two optimized nonlinear grey models: the Grey Verhulst Model and the
Nonlinear Grey Bernoulli Model in Ref Shaikh et al. (2017). Wang et al. established a novel
hybrid forecasting model based on an improved grey forecasting mode optimized by a multi-
objective ant lion optimization algorithm and solved the problem of accuracy and stability of
annual power consumption data in Ref Wang et al. (2018). Wu et al. used the GM(1,1) model
with the fractional order accumulation (FGM(1,1)) to predict the future trend of air quality,
and the results can be directly exploited in the decision-making processes for air quality
management in Ref Lifeng et al. (2018). Moonchai et al. proposed a novel method based on
the modification of the multivariate grey forecasting model and applied it to the consumption
forecast of renewable energy in Ref Moonchai and Chutsagulprom (2020). Based on the new
information priority principle and combined with grey buffer operator technology, Zeng B.
realized the scientific forecast of shale gas production inmy country in Ref Zeng et al. (2020).
Utkucan S. built a fractional nonlinear grey Bernoulli model, briefly as FANGBM(1,1) to
forecast of Turkey’s total renewable and hydro energy in Ref Şahin (2020).

However, it should be noticed that the existing fractional order grey models only use
a unified fractional order. As will be discussed in this work, such operation will limit the
advantages of the fractional order accumulation, leading to less flexibility of the fractional
grey models. Io present a more flexible modeling formulation, a time-delayed fractional
discrete grey model with multiple fractional orders (TDF-DGMM ) is established in this
work. The particle swarm optimization (PSO) is used to calculate the optimal orders r1 and
r2 of TDF-DGMM model. Four cases were used to verify the validity and accuracy of the
model. Finally, the TDF-DGMM model is used to predict the gas consumption of China’s
manufacturing industry.

The rest of this paper is organized as follows: Brief overview of background is shown
in Sect. 2; a brief introduction of the fractional grey model (FGM) is presented in Sect. 3;
the representation and modeling procedures of the TDF-DGMM are described in Sect. 4;
relationship and difference between the TDF-DGMM and FTDGM model is analyzed in
Sect. 5; the PSO for optimizing the proposed model is presented in Sect. 6; four case studies
to verify the validity of the model are shown in Sect. 7; the case study of forecasting the
natural gas consumption in China’s manufacturing industry is shown in Sect. 8, and the
conclusions are drawn in Sect. 9.

2 Brief overview of background

By consulting relevant data in Ref National bureau of statistics (2002), we have collected the
development trend of the GDP of various industries, as shown in Fig. 1.

As can be seen from the Fig. 1, the manufacturing industry accounts for a large proportion
of GDP in comparison with other industries, maintaining at about 31%, and its GDP has
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Fig. 1 The gross domestic product change trend of countrywide each industry

Fig. 2 Trends in energy consumption across the countrywide each industry
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Fig. 3 Trends in the ratio of GDP to energy consumption across the country and in various industries

been on a steady rise, but the proportion is declining. Given the great contribution of the
manufacturing industry to GDP, the development trend of national total energy consump-
tion and energy consumption of individual industries is shown in Fig. 2. Compared with
other industries, the manufacturing industry accounts for a very large proportion of the total
energy consumption in China, which is maintained at about 57%, and its energy consumption
shows a sharp rise. It shows that the energy consumed by the manufacturing industry is not
proportional to its contribution to the national GDP, and the consumption structure of the
manufacturing energy needs to be further improved.

The ratio between the GDP of various domestic industries and energy consumption and
its development trend is shown in Fig. 3. It can be seen from Fig. 3 that both the national
ratio and the manufacturing ratio are relatively low. It is precisely because the GDP of the
manufacturing industry, mining industry, and other industries are not in direct proportion
to the energy consumption so that the national GDP is not in direct proportion to the total
energy consumption. For short, although manufacturing contributes a lot to GDP, its energy
consumption is larger. Thus it is clear that its GDP contribution is relatively less inefficient.

Since both the gross domestic product and the energy consumption account for a very large
proportion in the manufacturing industry in China, the changing trend of various energy
consumption in the manufacturing industry, and the energy consumption structure in the
manufacturing industry are further considered as shown in Fig. 4. Among them, other energy
includes most of the polluting energy such as coal. As can be seen from the Fig. 4, in the
energy consumption structure of the manufacturing industry, unclean energy sources such as
coal in other energy, coke, crude oil account for a large proportion, while the consumption
of clean energy sources, such as natural gas, accounts for a small proportion. Therefore, the
energy consumption structure of the manufacturing industry is not in an optimal situation.
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Fig. 4 Various energy consumption trends in the manufacturing industry

3 The greymodel with fractional order accumulation

3.1 Definitions of the fractional order accumulation

Definition 1 (See Ref Lifeng et al. (2013)) Let X (0) =
(
x (0)(1), x (0)(2), ..., x (0)(n)

)
be an

original sequence. The corresponding r -order fractional order accumulation (FOA) X (r) =(
x (r)(1), x (r)(2), ..., x (r)(n)

)
is defined as

x (r)(k) =
k∑

i=1

(
k − i + r − 1

k − i

)
x (0)(i), k = 1, 2, ..., n, (1)

where (
k − i + r − 1

k − i

)
= (k − i + r − 1)(k − i + r − 2)...(r + 1)r

(k − i)!
is the general Newton binomial coefficient, and r is the order of the FOA, which is often a
non-negative real number. Particularly,

(r−1
0

) = 1,
(k−1

k

) = 0, k = 1, 2, ..., n.

Definition 2 (See Ref Lifeng et al. (2013)) Let X (0) =
(
x (0)(1), x (0)(2), ..., x (0)(n)

)
be an

original sequence,where x (0)(k) is the value at time.Then the corresponding r-order fractional

order inverse accumulation (IFOA) X (r) =
(
x (r)(1), x (r)(2), ..., x (r)(n)

)
is defined as

x (−r)(k) =
k∑

i=1

(
k − i − r − 1

k − i

)
x (0)(i), k = 1, 2, ..., n, (2)
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where
(
k − i − r − 1

k − i

)
= (k − i − r − 1)(k − i − r − 2)...(−r + 1)(−r)

(k − i)! .

Particularly,
(r−1

0

) = 1,
(k−1

k

) = 0, k = 1, 2, ..., n.

3.2 The fractional order greymodel

Let the r -order accumulation sequence of the non-negative sequence X (0) =
(
x (0)(1),

x (0)(2), ..., x (0)(n)
)
be X (r) =

(
x (r)(1), x (r)(2), ..., x (r)(n)

)
. In Ref Lifeng et al. (2014),

the fractional order additive grey model is represented as the following differential equation:

dx (r)(t)

dt
+ ax (r)(t) = b, (3)

which is often called the whitening equation of the FGM. The discrete form is often repre-
sented as the following difference equation:

x (r)(k) − x (r)(k − 1) + az(r)(k) = b, (4)

where

z(r)(k) = 1

2
[x (r)(k) + x (r)(k − 1)], k = 2, 3, ..., n

is called the background value.
Once given the fractional order r , the linear parameters a, b of the FGMare often estimated

by the least squares method as

[a, b]T = (BT B)−1BT Y , (5)

where

B =

⎡
⎢⎢⎢⎣

−z(r)(2) 1
−z(r)(3) 1

...
...

−z(r)(n) 1

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

x (r)(2) − x (r)(1)
x (r)(3) − x (r)(2)

...

x (r)(n) − x (r)(n − 1)

⎤
⎥⎥⎥⎦ .

Set x (r)(1) = x (0)(1), the solution of the Eq. (4) be given by

x̂ (r)(k) = [x (0)(1) − b

a
]e−ak + b

a
, k = 1, 2, ..., n. (6)

The restored values x̂ (0) can be obtained by the r -order IFOA as

x̂ (0)(k) =
k∑

i=1

(
k − i − r − 1

k − i

)
x̂ (r)(i).

123



263 Page 8 of 30 Y. Hu et al.

4 Time-delayed fractional discrete greymodel withmultiple fractional
order

Let the r1-order accumulation sequence of the non-negative sequence X (0) =
(
x (0)(1), x (0)

(2), ..., x (0)(n)
)
be X (r1) =

(
x (r1)(1), x (r1)(2), ..., x (r1)(n)

)
. Let the r2-order cumulative

sequence of the sequence N (0) = (1, 2, ..., n) be N (r2) =
(
1(r2), 2(r2), ..., n(r2)

)
.

Considering the fractional time-delayed effect, the Eq. (3) can be extended to

dx (r1)(t)

dt
+ ax (r1)(t) = bt (r2) + c. (7)

The derivative in Eq. (7) can be approximated by

dx (r1)(t)

dt

∣∣∣∣∣
t=k

≈ lim
�t→1

�x (r1)(t)

�t

∣∣∣∣∣
t=k

= x (r1)(k + 1) − x (r1)(k)

(k + 1) − k
= x (r1)(k + 1) − x (r1)(k).

(8)

Substituting Eq. (8) into Eq. (7), we have

x (r1)(k + 1) − x (r1)(k) + ax (r1)(k) = bk(r2) + c,

that is

x (r1)(k + 1) = (1 + a)x (r1)(k) + bk(r2) + c.

Let β1 = 1 + a, β2 = b, β3 = c; then we get the basic form of TDF-DGMM as

x (r1)(k + 1) = β1x
(r1)(k) + β2k

(r2) + β3, k = 2, 3, ..., n − 1. (9)

Once given the fractional order r1 and r2, the linear parameters β1, β2, β3 of the TDF-
DGMM can be estimated by the least squares method as

[β1, β2, β3]T = (BT B)−1BT Y , (10)

where

B =

⎡
⎢⎢⎢⎣

x (r1)(1) 1(r2) 1
x (r1)(2) 2(r2) 1

...
...

...

x (r1)(n − 1) (n − 1)(r2) 1

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣

x (r1)(2)
x (r1)(3)

...

x (r1)(n)

⎤
⎥⎥⎥⎦ .

Set x̂ (r1)(1) = x (0)(1); by recursively solving the Eq. (9), the discrete response function
of TDF-DGMM can be obtained as

x̂ (r1)(k + 1) = β̂k
1 x

(0)(1) + β̂2

k∑
i=1

β̂k−i
1 i (r2)+1 − β̂k

1

1 − β̂1
β̂3, k = 2, 3..., n − 1. (11)

The restored values x̂ (0)(k) can be obtained using the r1-order IFOA as

x̂ (0)(k) =
k∑

i=1

(
k − i − r1 − 1

k − i

)
x̂ (r1)(i). (12)

The detailed computational processes are summarized in Algorithm 1.
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Algorithm 1 The algorithm of TDF-DGMM to calculate the prediction values.

Require: An original sequence, X (0); A sequence of natural Numbers, K (0) = (1, 2, ..., n);
Ensure: The best fractional order, r1&r2;
1: Calculate the accumulative sequence X (r1) of the r1-order of X (0) by the Eq. (1);
2: Calculate the accumulative sequence K (r2) of the r2-order of K (0) by the Eq. (1);
3: The least square method was used to estimate the parameters of [β̂1, β̂2, β̂3]T by the Eq. (10);

4: Predict the values of X̂ (r1) =
(
x̂(r1)(1), x̂(r1)(2), ..., x̂(r1)(n)

)
by the Eq. (11);

5: Calculate the restored values of X̂ (r1) with r1-order by the Eq. (12);

6: return the restored values X̂ (0) =
(
x̂(0)(1), x̂(0)(2), ..., x̂(0)(n)

)
;

5 Relationship and difference between the TDF-DGMM and FTDGM
model

As described above, the proposed TDF-DGMM is derived from a whitening equation of a
grey system using the discrete modeling technique. To further analyze the properties of this
model, another similar time-delayed model FTDGM in Ref Ma et al. (2019) is used for
theoretical comparison, including the modeling mechanism, unbiasedness, and flexibility.

5.1 Difference inmodelingmechanism

For convenience, themodeling details of the FTDGM inRefMa et al. (2019) and the proposed
TDF-DGMM are summarized in Table 1.

First, it can be noticed that the TDF-DGMM is essentially a more general formulation of
FTDGM as it can yield FTDGMwhen r1 = r2. And this generality will make it more flexible
which will be discussed in the last subsection in this section.

Second, the basic form of the FTDGM is obtained by integrating and discretizing the two
ends of its whitening equation. However, the basic form of the TDF-DGMM is obtained by
discretizing the derivatives of its whitening equation. This will make themodeling procedures
of the TDF-DGMM easier to implement. As shown in the last second row, the solution of the
FTDGM is obtained by solving the whitening equation through the general solution formula
of the ordinary differential equation, and its discrete-time response function is obtained from
this solution by a numerical formula. However, the solution of the TDF-DGMM is obtained
by recursing its basic form directly, making it more convenient for practical application.

5.2 Difference in unbiasedness

Actually, a general analysis of the unbiasedness of the fractional discrete multivariate grey
model has been proved in Ref Ma et al. (2019). Similarly, the analysis method can also be
used in this work as the proposed model TDF-DGMM also used a similar methodology,
namely, the discrete modeling technique and fractional order accumulation.

According to RefMa et al. (2019), a greymodel which is an unbiasedmodel should satisfy
the condition that its response function should satisfy its discrete formulation. For FTDGM,
there should hold equality when substituting its discrete function to its basic form. However,
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ĉ,
k

=
1,
2.

..
n

R
es
to
re
d
va
lu
e

x̂(
0)

(k
)
=

∑
k i=

1
( k−

i−
r 1

−1
k−

i

) x̂(
r 1

) (
i)

x̂(
0)

(k
)
=

∑
k i=

1
( k−

i−
r−

1
k−

i
) x̂(

r)
(i

)

123



Forecasting manufacturing industrial natural gas... Page 11 of 30 263

the left-side of the FTDGM is actually

LC (k) = x (r)(k + 1) − x (r)(k) + az(r)(k)

= x (r)(k + 1) − x (r)(k) + a

2
[x (r)(k + 1) + x (r)(k)]

= a + 2

2

(
x (0)(1)e−ka +

k∑
s=1

1

2
[ f (s + 1) + f (s)]ea(s−k− 1

2 )
)

+ a − 2

2

(
x (0)(1)ea(1−k) +

k−1∑
s=1

1

2
[ f (s + 1) + f (s)]ea(s−k+ 1

2 )
)

= a + 2

2

(
x (0)(1)e−ka +

k−1∑
s=1

1

2
[b(s + 1)(r) + bs(r) + 2c]ea(s−k− 1

2 )

+ 1

2
[b(k + 1)(r) + bk(r) + 2c]e− 1

2 a
)

+ a − 2

2

(
x (0)(1)e−kaea +

k−1∑
s=1

1

2
[b(s + 1)(r) + bs(r) + 2c]ea(s−k+ 1

2 )ea
)

= [a + 2

2
+ a − 2

2
ea]

(
x (0)(1)e−ka +

k−1∑
s=1

1

2
[b(s + 1)(r) + bs(r) + 2c]ea(s−k− 1

2 )
)

+ a + 2

4
[b(s + 1)(r) + bs(r) + 2c]e a

2

And the right-side of the FTDGM basic form in Table 1 is

RC (k) = bm(r)(k) + c

= b

2
[k(r) + (k + 1)(r)] + c

= 1

2
[bk(r) + b(k + 1)(r) + 2c]

Obviously, we have

LC (k) �= RC (k).

And when |a| is small, the discrete response function the FTDGM approximates its basic
form. On the contrary, when |a| is larger, the discrete response function is more different
from its basic form, which leads to the larger error of the FTDGM. Thus it is obvious that
the FTDGM is a biased model.

Similarly, we can also check the unbiasedness of the proposed TDF-DGMM . Substituting
discrete solution into the left-side of the TDF-DGMM basic form in Table 1, there is
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Fig. 5 Testing MAPEs of FTDGM with different values of r and a

LD(k) = x (r1)(k + 1) − β1x
(r1)(k)

= βk
1 x

(0)(1) + β2

k∑
i=1

βk−i
1 i (r2)+1 − βk

1

1 − β1
β3

− β1[βk−1
1 x (0)(1) + β2

k−1∑
i=1

βk−i−1
1 i (r2)+1 − βk−1

1

1 − β1
β3]

= β2

k∑
i=1

βk−i
1 i (r2)−β2

k−1∑
i=1

βk−i
1 i (r2)+1 − βk

1

1 − β1
β3 − β1 − βk

1

1 − β1
β3

= β2k
(r2) + β3

= RD(k)

In short we have:

LD(k) = RD(k).

The above discussions mean that the solution and the basic form of the TDF-DGMM are
equivalent. Thus the TDF-DGMM is an unbiased model.

For a better explanation, several numerical tests are presented to show the unbiasedness
of these two models. For FTDGM, the original series X (0) is generated using its response
function in Table 1 as the ideal data. The parameters a is given in the interval[-2,2] by the
step of 0.01, and r is given in the interval[0.01,2] by the step of 0.01, respectively. The other
parameters b and c are randomly generated in the interval(0,5) by the uniform distribution,
and the initial point x (0)(1) is randomly generated in the interval(0,1) by the uniform distri-
bution, respectively. Ten points are generated for each series, in which the first six points are
used for modeling, and the rest four points are used for testing. Then the FTDGM models
are established based on these ideal data, and the mean absolute percentage error (MAPE)
for testing is as shown in Fig. 5.

Figure 5 clearly illustrates the biasedness of the FTDGM. It also clear that when |a| is
small, errors of FTDGM are smaller with smaller |a|, and they are larger with larger |a|.
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Fig. 6 Testing MAPEs by TDF-DGMM with different values of r(= r1 = r2) and β1

Similar to the above experiment of FTDGM, the series X (0) is generated by the discrete
solution of the TDF-DGMM as ideal data. To make the verification results comparable and
more intuitive, the fractional order is set to be equivalent r = r1 = r2. Then the parameter
β1 is given in the interval[-2,2] by the step of 0.01, and r is given in the interval[0.01,2] by
the step of 0.01, respectively. The other parameters β2 and β3 are randomly generated in the
interval(0,5) by the uniform distribution, and the initial point x (0)(1) is randomly generated
in the interval(0,1) by the uniform distribution, respectively. Data scale and divisions for
modeling and testing are set to be the same as the above experiment. Then the TDF-DGMM

models (r = r1 = r2) are established for these ideal data, and the MAPEs for testing are as
shown in Fig. 6. It can be clearly seen that all the MAPEs of TDF-DGMM are smaller than
10−8, which are only truncated errors caused by computer precision. And the parameters do
not affect the accuracy of the TDF-DGMM .

5.3 Difference in flexibility

As mentioned above, the multiple fractional order will make the TDF-DGMM more flexible.
This subsectionmainly discusses the flexibility of themultivariate fractional order of FTDGM
to illustrate the flexibility of the multivariate fractional order of TDF-DGMM . Recalling the
analysis in Ref Ma et al. (2019) that the fractional time-delayed term is actually a function
more than integer order polynomials, i . e.

k(r) =
⎧⎨
⎩

k r = 0
1
2k(k + 1) r = 1

1
6k(k + 1)(k + 2) r = 2

(13)

It can be noticed that if the r is completely free, then the form of k(r) can be richer, and
this will make the model more flexible. However, the FTDGM uses a unified fractional order
for the time-delayed term k(r) and x (r), this makes the variation of the time-delayed term not
be a free polynomial, and further limits the flexibility of the FTDGM.

For more intuitive analysis, a simple example is illustrated to show such flexibility with
multiple fractional orders of these two models. Figure 7 plots the cases of these two models
with unified fractional order and multiple fractional order. Out of interest, we also tried
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Fig. 7 Output series by FTDGM and TDF-DGMM when r2 = r1 and r2 �= r1

to make FTDGM with multiple orders in this case. It is clear to see that if the r2 of the
time-delayed term changes the produced curves of both FTDGM and TDF-DGMM have
more shapes, and this property will provide more possibilities for the models to better fit the
sample data. Further, it can be easily deduced that this property can make the models more
flexible and make them capable to deal with more complex time series.

6 Optimization of the fractional order r1 and r2 based on particle
swarm optimization

6.1 Formulating the nonlinear optimization problem for r1 and r2

The main idea of finding the optimal value of r1 and r2 is to minimize the errors of the
TDF-DGMM with independent fractional orders. Generally, we use the MAPE as the main
criteria and then the optimization problem for finding the optimal r1 and r2 can be formulated
as
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min J (r1, r2) = 1

V

V∑
k=1

| x̂
(0)(k) − x (0)(k)

x (0)(k)
|×100%

s. t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[β1, β2, β3]T = (BT B)−1BT Y

B =
⎡
⎣
x (r1)(1) x (r1)(2) · · · x (r1)(n − 1)
1(r2) 2(r2) · · · (n − 1)(r2)

1 1 · · · 1

⎤
⎦
T

Y = [x (r1)(2), x (r1)(3), . . . , x (r1)(n)]T
x (r1)(k + 1) = β1x (r1)(k) + β2k(r2) + β3, k = 1, 2, ..., n − 1

x̂ (r1)(k + 1) = β̂1
k
x (0)(1) + β̂2

∑k−1
i=0 β̂1

i
(k − i)(r2)

+ 1−β̂1
k

1−β̂1
β̂3, k = 2, 3, ..., n − 1

x̂ (0)(k) = ∑k
i=1 C

k−i
k−i−r1−1 x̂

(r1)(i), k = 1, 2, ..., n

, (14)

where V represents the number of data points used for estimating parameters β1, β2, and β3,
that is used for modeling.

It can be seen that the objective function is a nonlinear function of r1 and r2, and there
exist several nonlinear constraints; thus this optimization problem is essentially nonlinear
programming. The explicit expression of the objective function and the constraints are very
complex, and thus it cannot be solved analytically. It should be noticed that such formulation
is often used for the optimization of the existing nonlinear grey models in Ref Pei et al.
(2018), Zheng-Xin (2014).

6.2 Solving the nonlinear programming using particle swarm optimization

Particle swarm optimization is a population-based stochastic optimization technique devel-
oped by Eberhart and Kennedy in 1995, inspired by the social behavior of bird flocking or
fish schooling. In the past several years, the PSO has been successfully applied in many
research and application areas. It is demonstrated that the PSO gets better results in a faster
and cheaper way compared with other methods. Another reason for choosing PSO is that
there are few parameters to adjust. One version with slight variations works well in a wide
variety of applications.

In each iteration, the particle updates its speed and position through the individual
extremum and the group extremum. The change of them is defined as

B =
{
V k+1
id + c1r1(Pk

id − Xk
id) + c2r2(Pk

gd − Xk
id)

Xk+1
id = Xk

id + V k+1
id

(15)

where ω is the weight of inertia, d = 1, 2, ..., D, i = 1, 2, ..., n, k is the current itera-
tion number, Vid is the speed of the particle, c1 and c2 are non-negative constant which
was called the acceleration factor, and set to c1 = c2 = 2 normally, the random number
of r1 and r2 distribution in the interval[-2,2]. To prevent the blind searching of parti-
cles, it is generally recommended to limit their position and speed to a certain range
[−Xmax , Xmax ], [−Vmax ,−Vmax ].

The overall calculation steps of the TDF-DGMM model based on the PSO can be briefly
summarized in Fig. 8.
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Fig. 8 The flowchart of TDF-DGMM model based on the PSO

7 Validation

In this paper, the parameter optimization problem has changed from the one-dimensional
nonlinear programming problem of FGM to the multi-dimensional nonlinear programming
problem of TDF-DGMM , which makes parameter optimization more difficult. So we used
four cases to verify the validity and accuracy of the TDF-DGMM . For all cases, the PSO will
be compared with Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA), and the TDF-
DGMM will be compared to other grey models, including the FTDGM, the time-delayed
fractional discrete grey model with unique fractional order (TDFDGMU ), the fractional non-
homogeneous discrete grey model (FNDGM), the fractional discrete grey model (FDGM),
theGM(1,1), the nonhomogeneous discrete greymodel (NDGM), and the discrete greymodel
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Table 2 Raw data and relevant information of the four validation cases

NO. Raw data Source Modeling
points

Predicted
points

Case 1 247.839, 273.021, 289.014, 285.208,
288.818, 297.078, 293.662,
290.404, 279.143

In Ref Lifeng (2015) 8 1

Case 2 4998.00, 5309.01, 6029.88, 6510.94,
7182.10, 7942.88, 8696.55,
9997.47, 11242.85, 12264.55,
13471.50, 15160.90, 16674.30

In Ref Xin (2016) 6 7

Case 3 809.340, 867.550, 965.830, 1099,
1291.402, 1501.924, 1734.832,
2013.674, 2095.019, 2343.846,
2691.520, 2984.904

In Ref Han (2014) 6 6

Case 4 15.93, 18.38, 21.35, 23.60, 25.87,
28.00, 29.14, 30.66, 32.50, 34.80

In Ref Shiquan et al. (2014) 8 2

Fig. 9 The optimal parameters and MAPE of TDF-DGMM in each trial of Case 1

(DGM). Its data sources are shown in Table 2. The population size of PSO is set at 30, the
maximum number of iterations is taken as the stop condition and set as 100 times, and each
experiment is repeated 100 times. The GWO andGA parameter settings are the same as PSO.
All the calculations have been done in Matlab 2015a.

To compare the performance of the PSO, GWO, and GA, the minimum MAPE and the
corresponding r1 and r2 of the TDF-DGMM among the 100 trials obtained by the three
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Fig. 10 The optimal parameters and MAPE of TDF-DGMM in each trial of Case 2

Fig. 11 The optimal parameters and MAPE of TDF-DGMM in each trial of Case 3
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Fig. 12 The optimal parameters and MAPE of TDF-DGMM in each trial of Case 4

algorithms are presented in Table 3. Meanwhile, the average time of 100 experiments is also
given in the table. Besides, the optimal parameters and MAPE in each trial are shown in
Figs. 9, 10, 11, and 12.

From Table 3, it can be seen that the PSO can achieve the best optimization effect and
smaller objective function value in the same 100 trials, which shows that its convergence
is better than the GWO and GA. In the four cases, the average test time of PSO is shorter,
which shows that its convergence speed is faster than the GWO and GA. It can be seen from
Figs. 10, 11, and 12 that the PSO has a bit slightly higher stability than GWO and GA in
Case 2, Case 3, and Case 4. It is interesting to see in Fig. 9 that fluctuations of MAPE by
PSO, GWO, and GA are similar, but that of PSO is more stable with smaller MAPE values.

Also, a set of optimization results in 100 trials is shown in Fig. 13. According to the
experimental results from Fig. 13, the PSO has the fastest convergence speed and best
convergence comparing with GWO and GA. This shows that the PSO needs fewer iterations
to converge to the optimal value.

Above all, the PSO is finally selected to optimize the r1 and r2 of the above four cases.
To make the grey models comparative, the PSO is used to optimize the parameters of the
above eight grey models. The initial population size is set as 30, the stop criteria is set as
10−6, and the maximum number of iteration is set as 500 times. Among them, the processes
of r1 and r2 for optimizing TDF-DGMM parameters by PSO are shown in Fig. 14. Then we
calculated the MAPEs of fitting and prediction of the eight models, and the MAPEs of fitting
and prediction of each case were obtained, as shown in Table 4.

According to Table 4, except for the fitting error of case4, the MAPEs of fitting and
prediction of the discrete grey model with the independent fractional time-delayed term is
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Fig. 13 The change of MAPE of TDF-DGMM in the process of PSO, GWO, and GA

lower than that of the other models in the above four cases. So the discrete grey model with
the independent fractional time-delayed term is more appropriate for the four cases.

8 Application in forecasting natural gas consumption of the
manufacturing industry of China

The raw data are collected from the statistics of energy consumption by industry in China’s
statistical yearbook in the range of 2007–2017 (http://www.stats.gov.cn/tjsj/ndsj/).

Table 5 indicates that the consumption of natural gas in the nationalmanufacturing industry
is increasing year by year. The data from2006 to 2010will be used to build themodels, and the
data from 2011 to 2015 will be used to test their out-of-sample performance. The minimum
MAPE and the corresponding r1 and r2 of the TDF-DGMM among the 100 trials obtained
by the three algorithms are presented in Table 6. Also, the average time of 100 experiments
is given in the table.

It can be seen in Table 6 that the PSO has higher accuracy than GWO and GA, and the
PSO has faster convergence speed. The optimized parameters of TDF-DGMM , FTDGM,
TDFDGMU , FNDGM, FDGM by PSO are r1=2, r2=-0.8679, r=-0.1156, r=-0.3203, r=-2,
r=0.8565, respectively. The fitting and prediction results of the eight models are shown in
Table 7. And the absolute value of fitting error and prediction error of the eight models are
shown in Fig. 15.
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Fig. 14 The change of r1 and r2 of TDF-DGMM in the process of PSO

Table 7 shows that the MAPE of TDF-DGMM is smaller than that of the others. Figure 15
shows that the errors of theTDF-DGMM are better than that of the others. So theTDF-DGMM

ismore appropriate for forecasting the data of nationalmanufacturing gas consumption. Thus,
the fitting and prediction results of the eight models are plotted in Fig. 15.

Figure 16 further illustrates the details of the fitting effect and prediction performance of
these models. It is clear to see that the predicted values of TDF-DGMM are much closer to
the raw data, while most other models failed to catch the overall trend of the testing values. It
is also very interesting to see that all these models perform quite well in fitting, especially the
fitting errors of TDFDGMU are smaller than 1e − 2%. Thus it is obvious that these models
have over-fitted the sample data. On the contrast, this further presents the higher generality
of the TDF-DGMM .

9 Conclusions

In this paper, a novel time-delayed fractional grey model with multiple fractional order,
abbreviated as TDF-DGMM , was proposed and the PSO algorithm was employed to select
its optimal values of two independent fractional orders. Results of the numerical validation
with four real-world data sets were used to show the effectiveness of PSO and the priority of
TDF-DGMM over the seven existing grey models.
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Fig. 15 The absolute value of fitting error and prediction error of the eight models

Real-world application of forecasting the natural gas consumption of the manufacturing
industry of China was executed with real-world data. The results showed that the proposed
TDF-DGMM model was significantly better than the other seven existing models. And it is
also very interesting to see that the TDF-DGMM was also more effective than its special
form TDFDGMU with unified fractional order. Further the results obtained in this paper
illustrated that the TDF-DGMM was eligible to forecast the natural gas consumption of the
manufacturing industry of China.

What’s more, the methodology used to build the TDF-DGMM model can also be regarded
as a new way of the fractional grey modeling technique, which can be expected to build more
fractional grey models with higher accuracy in the future.
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Fig. 16 Plots of fitting and forecasting values of the natural gas consumption of the manufacturing industry
of China by the eight models
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