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Abstract
In this paper, we construct a method to find approximate solutions to fractional differential
equations involving fractional derivatives with respect to another function. The method is
based on an equivalence relation between the fractional differential equation and theVolterra–
Stieltjes integral equation of the second kind. The generalized midpoint rule is applied to
solve numerically the integral equation and an estimation for the error is given. Results of
numerical experiments demonstrate that satisfactory and reliable results could be obtained
by the proposed method.

Keywords Fractional differential equation · Volterra–Stieltjes integral equation ·
Generalized midpoint rule

Mathematics Subject Classification 26A33 · 45D05 · 34K28 · 65R20

1 Introduction

Fractional differential equations are a generalization of ordinary differential equations, where
integer-order derivatives are replaced by fractional derivatives. Over the last decade, these
equations have attracted a lot of attention from researchers from different areas, since frac-
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tional derivatives provide an excellent tool for the description of memory and hereditary
properties of various materials and processes (Atanackovic and Stankovic 2009; Carpinteri
and Mainardi 2014; Demir et al. 2012; Kulish and Lage 2002; Meerschaert 2011; Podlubny
1999; Rezazadeh et al. 2018; Tariq et al. 2018; Vazquez 2005). Several types of fractional
derivatives have been suggested to describemore accurately real-world phenomena, each one
with their own advantages and disadvantages (Djida et al. 2017; Kilbas et al. 2006; Osman
2017; Osman et al. 2019; Podlubny 1999; Rezazadeh et al. 2019). A more general unify-
ing perspective to the subject was proposed in Agrawal (2010), Klimek and Lupa (2013),
Malinowska et al. (2015), by considering fractional operators depending on general kernels.
In this work, we follow the special case of this approach that was developed in Almeida
(2017a, b), Almeida et al. (2018, 2019), Garra et al. (2019), Kilbas et al. (2006), Yang and
Machado (2017). Namely, we focus on nonlinear fractional differential equations involv-
ing a Caputo-type fractional derivative with respect to another function, called ψ-Caputo
derivative. These types of equations have been successfully used to model the world pop-
ulation growth (Almeida 2017a, b) and gross domestic product (Almeida 2017b). On the
other hand, it is well known that fractional differential equations often have to be solved
numerically (Arqub and Maayah 2018; Arqub and Al-Smadi 2018a, b; Diethelm 2010; Ford
and Connolly 2006; Lubich 1985; Morgado et al. 2013; Sousa and Oliveira 2019). Therefore,
knowing the usefulness of theψ-Caputo fractional derivative, an important issue is to discuss
the numerical methods for differential equations with this derivative.

Motivated by the above discussion, in this paper, we provide a numerical scheme to solve
fractional differential equations with theψ-Caputo derivative. The main idea is to rewrite the
considered equation as the Volterra–Stieltjes integral equation and then apply the generalized
midpoint rule that was developed by Asanov et al. (2011b). Regarding integral equations,
the best general reference is the handbook by Polyanin and Manzhirov (2008). Results on
nonclassical Volterra integral equations of the first kind can be found in Apartsyn (2003).
In Asanov (1998), problems of regularization, uniqueness and existence of solutions for
Volterra integral and operator equations of the first kind are studied. Some properties of
Voltera and Volterra–Stieltjes integral operators are given in Bukhgeim (1999), and Banas
and Regan (2005). In Banas et al. (2000) and Federson and Bianconi (2001), quadratic
integral equations of Urysohn–Stieltjes type and their applications are investigated. Various
numerical solution methods for integral equations are presented in Asanov et al. (2011a, b),
Asanov and Abdujabbarov (2011), Asanov et al. (2016), Delves andWalsh (1974), Federson
et al. (2002). In particular, the generalized trapezoid rule and the generalized midpoint rule
to evaluate the Stieltjes integral approximately by employing the notion of derivative of a
function by means of a strictly increasing function (Asanov et al. 2011a, b; Asanov 2001),
the generalized trapezoid rule for linear Volterra–Stieltjes integral equations of the second
kind (Asanov et al. 2016), and the generalized midpoint rule for linear Fredholm–Stieltjes
integral equations of the second kind (Asanov and Abdujabbarov 2011).

The paper is organized as follows. First, in Sect. 2, we review some necessary concepts and
results on fractional calculus. In Sect. 3, we state an initial value problem with the ψ-Caputo
fractional derivative of order α > 1 and prove several results concerning this problem which
will be needed in the forthcoming sections. Then, in Sect. 4, using the generalized midpoint
rule, we exhibit a numerical procedure to solve the Volterra–Stieltjes integral equation that
corresponds to the given fractional differential equation. An upper bound formula for the
error in our approximation is derived. Results of numerical experiments are presented in
Sect. 5. We verify the accuracy and analyse the stability of the numerical scheme. Section 6
provides conclusions and suggestions for future work and thus completes this work.
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2 Preliminaries on fractional calculus

Let α > 0 be a real number and x : [a, b] → R a function. Given another function ψ ∈
C1[a, b] such thatψ is increasing andψ ′(t) �= 0, for all t ∈ [a, b], theψ-Riemann–Liouville
fractional integral of x , of order α, is defined as

I α,ψ
a+ x(t) = 1

Γ (α)

∫ t

a
ψ ′(τ )(ψ(t) − ψ(τ))α−1x(τ ) dτ,

where Γ (·) is the Gamma function, i.e., Γ (z) = ∫ ∞
0 t z−1e−tdt , z > 0. The ψ-Riemann–

Liouville fractional derivative of x , of order α, is defined as

Dα,ψ
a+ x(t) =

(
1

ψ ′(t)
d

dt

)n

I n−α,ψ
a+ x(t),

where n = [α] + 1. The other important definition, which will be used in this work, is the
ψ-Caputo fractional derivative of x of order α:

C Dα,ψ
a+ x(t) = Dα,ψ

a+

[
x(t) −

n−1∑
k=0

x [k]
ψ (a)

k! (ψ(t) − ψ(a))k

]
,

where

n = [α] + 1 for α /∈ N, n = α otherwise,

and

x [k]
ψ (t) =

(
1

ψ ′(t)
d

dt

)k

x(t).

We see at once that, if α = m ∈ N, then the ψ-Caputo fractional derivative coincides with
the ordinary derivative

C Dm,ψ
a+ x(t) = x [m]

ψ (t),

while if α ∈ N and x ∈ Cn[a, b], then

C Dα,ψ
a+ x(t) = 1

Γ (n − α)

∫ t

a
ψ ′(τ ) (ψ(t) − ψ(τ))n−α−1 x [n]

ψ (τ) dτ.

Important relations between the two fractional operators are as follows (Almeida et al. 2018):

1. If x ∈ C[a, b], then
C Dα,ψ

a+ Iα,ψ
a+ x(t) = x(t).

2. If x ∈ Cn−1[a, b], then

Iα,ψ
a+ C Dα,ψ

a+ x(t) = x(t) −
n−1∑
k=0

x [k]
ψ (a)

k! (ψ(t) − ψ(a))k .
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3 Fractional differential equations

In this section, we consider the following nonlinear fractional differential equation with the
ψ-Caputo derivative:

C Dα,ψ
a+ x(t) = F(t, x(t)) + f (t), t ∈ [a, b], (1)

subject to the initial conditions

x(a) = xa, x [k]
ψ (a) = xka , k = 1, . . . , n − 1, (2)

where

1. 1 < α /∈ N and n = [α] + 1,
2. xa and xka , for k = 1, . . . , n − 1, are fixed reals,
3. F : [a, b] × R → R is continuous and F(t, 0) = 0, for all t ∈ [a, b],
4. f : [a, b] → R is continuous.

Regarding the existence and uniqueness of solutions for nonlinear fractional differential
equation with the ψ-Caputo derivative of type (1), we refer the reader to Almeida et al.
(2018). For stability results, we suggest the work of Almeida et al. (2019).

We shall prove some preparatory results providing a basis for the later development of
a numerical method for solving the initial value problem (1) and (2). First, let us recall
that problem (1) and (2) can be rewritten as the Volterra–Stieltjes integral equation, i.e., a
Volterra-type integral equation involving the Riemann–Stieltjes integral.

Theorem 1 Almeida et al. (2018) A function x ∈ Cn−1[a, b] is a solution to problem (1) and
(2) if and only if x satisfies the following Volterra–Stieltjes integral equation:

x(t) = Iα,ψ
a+ F(t, x(t)) + g(t), t ∈ [a, b], (3)

where

Iα,ψ
a+ F(t, x(t)) = 1

Γ (α)

∫ t

a
(ψ(t) − ψ(τ))α−1F(τ, x(τ )) dψ(τ),

g(t) =
n−1∑
k=0

xka
k! (ψ(t) − ψ(a))k + Iα,ψ

a+ f (t), t ∈ [a, b]. (4)

In what follows we assume that:

(H1) Function F is Lipschitz with respect to the second variable, that is, there exists a
positive constant L such that

|F(t, x1) − F(t, x2)| ≤ L|x1 − x2|, ∀t ∈ [a, b], ∀x1, x2 ∈ R.

(H2) There exist nonnegative constants L1 and β ∈ (0, 1] such that
|F(t1, x) − F(t2, x)| ≤ L1|t1 − t2|β |x |, ∀t1, t2 ∈ [a, b], ∀x ∈ R.

Lemma 1 Let α > 1 and s1, s2 ∈ [c, d], where 0 ≤ c < d. Then, |sα
1 − sα

2 | ≤ c0|s1 − s2|,
where c0 = αdα−1.

Proof The proof follows from the mean value theorem. Let σ(t) = tα , t ∈ [c, d]. Then,
|sα
1 − sα

2 | ≤ sup
t∈(c,d)

|σ ′(t)| · |s1 − s2| ≤ αdα−1|s1 − s2|.
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For a given function ϕ ∈ C[a, b], let ‖ · ‖C denote the usual norm:

‖ϕ‖C = sup
t∈[a,b]

|ϕ(t)|.

Lemma 2 Let α > 1, f ∈ C[a, b], and x ∈ C[a, b] be the solution to Eq. (3). Then, under
assumption (H1) it holds that

‖x‖C ≤ L0‖g‖C , (5)

where

L0 = exp

{
L(b − a)

Γ (α)
(ψ(b) − ψ(a))α−1‖ψ ′‖C

}
,

and g is defined by (4).

Proof Since F(t, 0) = 0, it follows that

|F(τ, x(τ ))| = |F(τ, x(τ )) − F(τ, 0)| ≤ L|x(τ )|.
Hence, by (3), we obtain

|x(t)| ≤ L

Γ (α)
(ψ(b) − ψ(a))α−1‖ψ ′‖C

∫ t

a
|x(s)|ds + ‖g‖C , t ∈ [a, b].

Applying the Grönwall inequality we get (5). 	

Lemma 3 Let α ∈ (1, 2), s1, s2 ∈ [c, d], where 0 ≤ c < d, p > 1 such that p(2 − α) < 1,
and 1

p + 1
q = 1. Then,

|sα−1
1 − sα−1

2 | ≤ c1|s1 − s2|
1
q ,

where

c1 = (α − 1)

(
1

1 − p(2 − α)

) 1
p (

d1−p(2−α) − c1−p(2−α)
) 1

p
.

Proof Let s1, s2 ∈ [c, d], with s2 > s1. Then, by the Hölder inequality,

sα−1
2 − sα−1

1 = (α − 1)
∫ s2

s1

1

τ 2−α
dτ ≤ (α − 1)

(∫ s2

s1
τ−p(2−α)dτ

) 1
p
(∫ s2

s1
dτ

) 1
q

= c1|s2 − s1|
1
q .

	

Theorem 2 Let α > 1 and x ∈ C[a, b] be the solution to Eq. (3). Then, under assumption
(H1), it holds that

|x(t2) − x(t1)| ≤ c2|t2 − t1|, ∀t1, t2 ∈ [a, b],
where

c2 = ‖ψ ′‖C
Γ (α)

(ψ(b) − ψ(a))α−1[L0L‖g‖C + ‖ f ‖C ]

+
n−1∑
k=1

|xka |
(k − 1)! (ψ(b) − ψ(a))k−1 ‖ψ ′‖C ,

and L0 as defined in Lemma 2.
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Proof Let α > 1 and t2 > t1, where t1, t2 ∈ [a, b]. Then, by Eqs. (3) and (4) and Lemma 2,
we have

|x(t2) − x(t1)| ≤ L0L‖g‖C
Γ (α)

∫ t1

a

[
(ψ(t2) − ψ(τ))α−1 − (ψ(t1) − ψ(τ))α−1]dψ(τ)

+ LL0‖g‖C
Γ (α)

∫ t2

t1
(ψ(t2) − ψ(τ))α−1dψ(τ)

+
n−1∑
k=1

|xka |
k!

[
(ψ(t2) − ψ(a))k − (ψ(t1) − ψ(a))k

]

+ ‖ f ‖C
Γ (α)

∫ t1

a

[
(ψ(t2) − ψ(τ))α−1 − (ψ(t1) − ψ(τ))α−1] dψ(τ)

+ ‖ f ‖C
Γ (α)

∫ t2

t1
(ψ(t2) − ψ(τ))α−1dψ(τ).

Computing the integrals and applying the mean value theorem, we get

|x(t2) − x(t1)| ≤ L0L‖g‖C
αΓ (α)

[
(ψ(t2) − ψ(a))α − (ψ(t1) − ψ(a))α − (ψ(t2) − ψ(t1))

α

+(ψ(t2) − ψ(t1))
α
] + ‖ f ‖C

αΓ (α)

[
(ψ(t2) − ψ(a))α

−(ψ(t1) − ψ(a))α − (ψ(t2) − ψ(t1))
α + (ψ(t2) − ψ(t1))

α
]

+
n−1∑
k=1

|xka |
(k − 1)! (ψ(b) − ψ(a))k−1‖ψ ′‖C (t2 − t1).

Finally, by Lemma 1 (with d = ψ(b) − ψ(a)) and the mean value theorem, we obtain

|x(t2) − x(t1)| ≤ L0L‖g‖C
Γ (α)

(ψ(b) − ψ(a))α−1‖ψ ′‖C (t2 − t1)

+ ‖ f ‖C
Γ (α)

(ψ(b) − ψ(a))α−1‖ψ ′‖C (t2 − t1)

+
n−1∑
k=1

|xka |
(k − 1)! (ψ(b) − ψ(a))k−1‖ψ ′‖C (t2 − t1).

	

Theorem 3 Let x ∈ C[a, b] be the solution to Eq. (3), G = {(t, τ ) : a ≤ τ ≤ t ≤ b} and

k(t, τ ) = 1

Γ (α)
(ψ(t) − ψ(τ))α−1 F(τ, x(τ )). (6)

Under assumptions (H1) and (H2) the following hold:

1. If α > 2 and β = 1, then

|k(t, τ1) − k(t, τ2)| ≤ c3|τ1 − τ2|, (7)
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for all (t, τ1), (t, τ2) ∈ G, where

c3 = 1

Γ (α)
(ψ(b) − ψ(a))α−2

× [
(L0L1‖g‖C + Lc2)(ψ(b) − ψ(a)) + (α − 1)LL0‖g‖C‖ψ ′‖C

]
.

2. If α ∈ (1, 2), p > 1 with p(2 − α) < 1, 1
p + 1

q = 1, and γ = min{β, 1
q }, then

|k(t, τ1) − k(t, τ2)| ≤ c4|τ1 − τ2|γ , (8)

for all (t, τ1), (t, τ2) ∈ G, where

– for β ≥ 1
q

c4 = 1

Γ (α)

[
L0L1(ψ(b) − ψ(a))α−1(b − a)

β− 1
q ‖g‖C

+ Lc2(ψ(b) − ψ(a))α−1(b − a)
1− 1

q

+ LL0(α − 1)

(
1

1 − p(2 − α)

) 1
p

(ψ(b) − ψ(a))
1
p (1−p(2−α))‖g‖C‖ψ ′(t)‖c

]
;

– for β < 1
q

c4 = 1

Γ (α)

[
L0L1(ψ(b) − ψ(a))α−1‖g‖C

+Lc2(ψ(b) − ψ(a))α−1(b − a)1−β + LL0(α − 1)

(
1

1 − p(2 − α)

) 1
p

×(ψ(b) − ψ(a))
1
p (1−p(2−α))‖g‖C‖ψ ′‖C (b − a)

1
q −β

]
.

Proof Observe that, for all (t, τ1), (t, τ2) ∈ G, we have

k(t, τ2) − k(t, τ1) = 1

Γ (α)

[
(ψ(t) − ψ(τ2))

α−1 − (ψ(t) − ψ(τ1))
α−1] F(τ2, x(τ2))

+ 1

Γ (α)
(ψ(t) − ψ(τ1))

α−1 [F(τ2, x(τ2)) − F(τ1, x(τ2))]

+ 1

Γ (α)
(ψ(t) − ψ(τ1))

α−1 [F(τ1, x(τ2)) − F(τ1, x(τ1))] . (9)

Applying Lemmas 1 and 2, and Theorem 2, we can assert that
∣∣∣∣ 1

Γ (α)
(ψ(t) − ψ(τ1))

α−1[F(τ2, x(τ2)) − F(τ1, x(τ2))]
∣∣∣∣

≤ L0L1

Γ (α)
(ψ(b) − ψ(a))α−1‖g‖C |τ1 − τ2|β, (10)

∣∣∣∣ 1

Γ (α)
(ψ(t) − ψ(τ1))

α−1[F(τ1, x(τ2)) − F(τ1, x(τ1))]
∣∣∣∣

≤ Lc2
Γ (α)

(ψ(b) − ψ(a))α−1|τ1 − τ2|, (11)
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and ∣∣∣∣ 1

Γ (α)
[(ψ(t) − ψ(τ2))

α−1 − (ψ(t) − ψ(τ1))
α−1]F(τ2, x(τ2))

∣∣∣∣
≤ LL0(α − 1)

Γ (α)
(ψ(b) − ψ(a))α−2‖ψ ′‖C‖g‖C |τ1 − τ2|, α > 2. (12)

If α > 2 and β = 1, then taking into account (10)–(12), from (9) we obtain (7). On the
other hand, if α ∈ (1, 2), p > 1, p(2 − α) < 1, 1

p + 1
q = 1, then by Lemmas 2 and 3, and

Theorem 2 it follows that∣∣∣∣ 1

Γ (α)

[
(ψ(t) − ψ(τ1))

α−1 − (ψ(t) − ψ(τ2))
α−1

]
F(τ2, x(τ2))

∣∣∣∣

≤ LL0

Γ (α)
(α − 1)

(
1

1 − p(2 − α)

) 1
p

(ψ(b) − ψ(a))
1
p (1−p(2−α))‖g‖C‖ψ ′‖C |τ1 − τ2|

1
q .

(13)

In this case, taking into account (10)–(11) and (13), from (9) we obtain (8). 	


4 Numerical method and error analysis

The purpose of this section is to construct a method to find approximate solutions to frac-
tional initial value problems of type (1) and (2). We use an equivalence relation between
problem (1), (2) and integral equation (3). Then, the approximation routine is based on the
generalized midpoint rule that was first developed by Asanov et al. (2011b). They proposed
an approximation of the Stieltjes integral with the use of the notion of the derivative of a
function with respect to the strictly increasing function (see Asanov 2001). The generalized
midpoint rule summarizes the midpoint rule (Kalitkin 1978), and here we use this method to
solve numerically the integral equation (3).

For n ∈ N, let

h = b − a

2n
, tk = a + kh, k = 0, 1, 2, . . . , 2n.

We substitute t = tk , k = 0, 1, 2, . . . , 2n into integral equation (3) and examine the following
system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t0) = g(t0), t0 = a

x(t1) =
∫ t1

a
k(t1, τ )dψ(τ) + g(t1)

x(t2i ) =
∫ t2i

a
k(t2i , τ )dψ(τ) + g(t2i ), i = 1, . . . , n

x(t2 j+1) =
∫ t2 j+1

a
k(t2 j+1, τ )dψ(τ) + g(t2 j+1), j = 1, . . . , n − 1,

(14)

where k(t, τ ) is defined by (6). Using the generalized midpoint rule for integrals in system
(14) we get

123



Fractional differential equations… Page 9 of 21 160

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t2i

a
k(t2i , τ )dψ(τ) =

i∑
m=1

k(t2i , t2m−1)[ψ(t2m) − ψ(t2m−2)]

+
i∑

m=1

R(2n)
m (x, i), i = 1, . . . , n

∫ t1

a
k(t1, τ )dψ(τ) = k(t1, t0)[ψ(t1) − ψ(t0)] + R(0)

0 (x)∫ t2 j+1

a
k(t2 j+1, τ )dψ(τ) =

∫ t1

a
k(t2 j+1, s)dψ(s)+

∫ t2 j+1

t1
k(t2 j+1, τ )dψ(τ)

= k(t2 j+1, t0)[ψ(t1) − ψ(t0)] + R(0)
j (x) +

j∑
m=1

k(t2 j+1,t2m)

×[ψ(t2m+1) − ψ(t2m−1)] +
j∑

m=1

R(2n−1)
m (x, j), j = 1, . . . , n − 1,

(15)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(0)
0 (x) =

∫ t1

a
[k(t1, τ ) − k(t1, t0)]dψ(τ)

R(0)
j (x) =

∫ t1

a
[k(t2 j+1, τ ) − k(t2 j+1, t0)]dψ(τ), j = 1, . . . , n − 1

R(2n)
m (x, i) =

∫ t2m

t2m−2

[k(t2i , τ ) − k(t2i , t2m−1)]dψ(τ), m = 1, . . . , i

R(2n−1)
m (x, j) =

∫ t2m+1

t2m−1

[k(t2 j+1, τ ) − k(t2 j+1, t2m)]dψ(τ), m = 1, . . . , j .

(16)

If α > 2 and β = 1, then on the strength of Theorem 3 for R(2n)
m (x, i) and R(2n−1)

m (x, j) we
obtain the following estimates:

{
|R(2n)

m (x, i)| ≤ c3h[ψ(t2m) − ψ(t2m−2)], m = 1, . . . , i

|R(2n−1)
m (x, j)| ≤ c3h[ψ(t2m+1) − ψ(t2m−1)], m = 1, . . . , j,

(17)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n − 1 (cf. Corollary 2 in Asanov et al. 2011b). Then
taking into account (16) and (17), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
i∑

m=1

R(2n)
m (x, i)

∣∣∣∣∣ ≤ c3h[ψ(t2i ) − ψ(a)], i = 1, . . . , n

|R(0)
0 (x)| ≤ c3h[ψ(t1) − ψ(a)]

|R(0)
j (x)| ≤ c3h[ψ(t1) − ψ(a)]∣∣∣∣∣∣
j∑

m=1

R(2n−1)
m (x, j)

∣∣∣∣∣∣ ≤ c3h[ψ(t2 j+1) − ψ(t1)], j = 1, . . . , n − 1.

(18)

If α ∈ (1, 2), p > 1 with p(2 − α) < 1, 1
p + 1

q = 1, γ = min{β , 1
q }, then on the strength

of Theorem 3, for R(2n)
m (x, i) and R(2n−1)

m (x, j), we obtain the following estimates:
{

|R(2n)
m (x, i)| ≤ c4h

γ [ψ(t2m) − ψ(t2m−2)], m = 1, . . . , i

|R(2n−1)
m (x, j)| ≤ c4h

γ [ψ(t2m+1) − ψ(t2m−1)], m = 1, . . . , j,
(19)
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for i = 1, 2, . . . , n, j = 1, 2, . . . , n − 1 (cf. Corollary 2 in Asanov et al. 2011b). Then,
taking into account (16) and (19), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
i∑

m=1

R(2n)
m (x, i)

∣∣∣∣∣ ≤ c4h
γ [ψ(t2i ) − ψ(a)], i = 1, . . . , n

|R(0)
0 (x)| ≤ c4h

γ [ψ(t1) − ψ(a)]
|R(0)

j (x)| ≤ c4h
γ [ψ(t1) − ψ(a)]∣∣∣∣∣∣

j∑
m=1

R(2n−1)
m (x, j)

∣∣∣∣∣∣ ≤ c4h
γ [ψ(t2 j+1) − ψ(t1)], j = 1, . . . , n − 1.

(20)

Combining relations (6) and (15) we can rewrite (14) as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t0) = g(t0), t0 = a

x(t1) = 1

Γ (α)
(ψ(t1) − ψ(t0))

α−1F(t0, x(t0))[ψ(t1) − ψ(t0)] + g(t1) + R(0)
0 (x)

x(t2i ) = 1

Γ (α)

i∑
m=1

(ψ(t2i ) − ψ(t2m−1))
α−1F(t2m−1, x(t2m−1))

×[ψ(t2m) − ψ(t2m−2)] + g(t2i ) +
i∑

m=1

R(2n)
m (x, i), i = 1, . . . , n

x(t2 j+1) = 1

Γ (α)
(ψ(t2 j+1) − ψ(t0))

α−1F(t0, x(t0))(ψ(t1) − ψ(t0))

+ 1

Γ (α)

j∑
m=1

(ψ(t2 j+1) − ψ(t2m))α−1F(t2m, x(t2m))[ψ(t2m+1) − ψ(t2m−1)]

+g(t2 j+1) + R(0)
j (x) +

j∑
m=1

R(2n−1)
m (x, j), j = 1, . . . , n − 1.

(21)

Omitting

i∑
m=1

R(2n)
m (x, i), R(0)

0 (x), R(0)
j (x),

j∑
m=1

R(2n−1)
m (x)

in equations of system (21) and writing the sought solution x at the nodes tk , we get the
system of equations in terms of xk :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = g(t0), t0 = a

x1 = 1

Γ (α)
(ψ(t1) − ψ(t0))

α−1F(t0, x0)[ψ(t1) − ψ(t0)] + g(t1)

x2i = 1

Γ (α)

i∑
m=1

(ψ(t2i ) − ψ(t2m−1))
α−1F(t2m−1, x2m−1)

×[ψ(t2m) − ψ(t2m−2)] + g(t2i ), i = 1, . . . , n

x2 j+1 = 1

Γ (α)
(ψ(t2 j+1) − ψ(t0))

α−1F(t0, x0)(ψ(t1) − ψ(t0))

+ 1

Γ (α)

j∑
m=1

(ψ(t2 j+1) − ψ(t2m))α−1F(t2m, x2m)[ψ(t2m+1) − ψ(t2m−1)]
+g(t2 j+1), j = 1, . . . , n − 1,

(22)
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where x0 = x(a) and xi ≈ x(ti ), for i = 1, 2, . . . , 2n.
Now, we make the truncation error and convergent order analysis for the proposed numer-

ical scheme. Let x be the solution to integral equation (3). As before, an approximation for
x(tk) at a node tk is denoted by xk .

Theorem 4 Let α > 2 and β = 1. Under assumptions (H1) and (H2) it holds that

|x(tk) − xk | ≤ c6h, k = 0, 1, . . . , 2n, (23)

as n → ∞, where

c6 = c3[ψ(b) − ψ(a)]ec5(b−a), c5 = L

Γ (α)
(ψ(b) − ψ(a))α.

Proof Let the error be denoted by

zk = x(tk) − xk, k = 0, 1, . . . , 2n.

Taking into account (21) and (22), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = 0
z1 = R(0)

0 (x)

z2i = 1

Γ (α)

i∑
m=1

(ψ(t2i ) − ψ(t2m−1))
α−1[F(t2m−1, x(t2m−1))

−F(t2m−1, x2m−1)](ψ(t2m) − ψ(t2m−2)) +
i∑

m=1

R(2n)
m (x, i), i = 1, . . . , n

z2 j+1 = 1

Γ (α)

j∑
m=1

(ψ(t2 j+1) − ψ(t2m))α−1[F(t2m, x(t2m))

−F(t2m, x2m)](ψ(t2m+1) − ψ(t2m−1))

+R(0)
j (x) +

j∑
m=1

R(2n−1)
m (x, j), j = 1, . . . , n − 1.

(24)

From this, by (18), we conclude that
{ |z1| ≤ R(h)

|zk | ≤ R(h) + c5h
∑k−1

j=1
|z j |, k = 2, . . . , 2n,

(25)

where
R(h) = c3[ψ(b) − ψ(a)]h. (26)

Now, let us consider the system

εk = R(h) + c5h
k−1∑
j=1

|ε j |, k = 2, . . . , 2n, (27)

and ε1 = R(h) as an initial condition. It is easily seen that |zk | ≤ εk for k = 1, . . . , 2n.

Indeed, this can be verified by mathematical induction as follows: for k = 1 it is obvious.
Let |z j | ≤ ε j for j = 1, . . . , k − 1. Then, by inequality (25), we get

|zk | ≤ R(h) + c5h
k−1∑
j=1

ε j = εk .
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Observe that ε j , j = 1, . . . , 2n, given by

ε j = R(h)[1 + c5h] j−1,

satisfy system (27). In fact, using the inequality

(1 + γ )k−1 − 1 = γ

k−1∑
j=1

(1 + γ ) j−1, k ≥ 2,

and taking γ = c5h we obtain

R(h) + c5h
k−1∑
j=1

ε j = R(h)

⎧⎨
⎩1 + c5h

k−1∑
j=1

(1 + c5h) j−1

⎫⎬
⎭

= R(h){1 + [(1 + c5h)k−1 − 1]} = εk, k ≥ 2.

Consequently, we get the following estimates:

|zk | ≤ R(h)(1 + c5h)k−1, k = 1, . . . , 2n. (28)

Using the fact that (1 + t)
1
t is increasing and approaches the number e as t → 0+ we get

(1 + c5h)k−1 ≤ (1 + c5h)
b−a
h = [(1 + c5h)

1
c5h ]c5(b−a) ≤ ec5(b−a)

for k ≤ b−a
h . This together with (26) and (28) gives (23). 	


Theorem 5 Let α ∈ (1, 2), p > 1 with p(2 − α) < 1,

1

p
+ 1

q
= 1, γ = min

{
β,

1

q

}
, γ0 = L

Γ (α)
(ψ(b) − ψ(a))α < 1.

Under assumptions (H1) and (H2) it holds that

|x(tk) − xk | ≤ c7h
γ , k = 0, 1, . . . , 2n, (29)

as n → ∞, where

c7 = c4
1 − γ0

[ψ(b) − ψ(a)].

Proof Using the conditions of Theorem 5 and the estimates (20), from (24) we obtain fol-
lowing inequalities for zk :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z1| ≤ c4h
γ [ψ(b) − ψ(a)]

|z2i | ≤ L

Γ (α)
(ψ(b) − ψ(a))α−1 sup

k=1,...,2i−1
|zk |

i∑
m=1

[ψ(t2m) − ψ(t2m−2)]
+c4h

γ [ψ(t2i ) − ψ(a)], i = 1, . . . , n

|z2 j+1| ≤ L

Γ (α)
(ψ(b) − ψ(a))α−1 sup

k=2,...,2 j
|zk |

j∑
m=1

[ψ(t2m+1) − ψ(t2m−1)]
+c4h

γ [ψ(t2 j+1) − ψ(t1)], j = 1, . . . , n − 1.

(30)

Set ‖z‖ = supk=0,...,2n |zk |. Then, by (30), we have

|z2i | ≤ L

Γ (α)
(ψ(b)−ψ(a))α−1‖z‖[ψ(t2i )−ψ(a)]+c4h

γ [ψ(t2i )−ψ(a)], i = 1, . . . , n,
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and

|z2 j+1| ≤ L

Γ (α)
(ψ(b) − ψ(a))α−1‖z‖ [

ψ(t2 j+1) − ψ(a)
]

+c4h
γ

[
ψ(t2 j+1) − ψ(t1)

]
, j = 1, . . . , n − 1.

Hence

‖z‖ ≤ L

Γ (α)
(ψ(b) − ψ(a))α‖z‖ + c4h

γ [ψ(b) − ψ(a)],
what finishes the proof. 	


5 Numerical examples

In the following examples, to show the efficiency of the proposed numerical method, we
approximate the solutions for some fractional differential equations of order α > 1. In all
examples, corresponding systems of algebraic equations of type (22) are solved using the
command fsolve in Maple. In tables, we present the absolute error

E = max
i=0,1,...,2n

|xi − x(ti )|,
and the elapsed CPU time in seconds of the proposed numerical scheme (22).

Example 1 Consider the following fractional differential equation:

C D5/2,ψ
0+ x(t) = x3(t)

1 + x2(t)
− 1

2
, t ∈ [0, 1], (31)

with the initial conditions and kernel

x0 = 1, x10 = x20 = 0 and ψ(t) = t + t
√
t, (32)

respectively. Therefore, in integral equation (3) we have α = 5
2 and

F(t, x) = x3

1 + x2
, g(t) = 1 − 1

2Γ ( 72 )

(
t + t

√
t
) 5

2
.

In this case, conditions (H1) and (H2) are satisfied for L = 9/8, L1 = 0, and β = 1. Note
that, the exact solution to (31) and (32) is x(t) = 1, t ∈ [0, 1]. The exact and numerical
solutions for n = 20, 40, 60, as well as the evolution of the error, are shown in Fig. 1. The
maximum of absolute error for different values of n and the elapsed CPU time in seconds
are displayed in Table 1. As expected, as n increases, the error decreases.

Example 2 Consider the following fractional differential equation:

C D3/2,ψ
0+ x(t) = x5(t)

(1 + x2(t))2
− 243

100
, t ∈ [0, 1], (33)

with the initial conditions and kernel

x0 = 3, x10 = 0 and ψ(t) = 2t + t
4
3 , (34)

respectively. Therefore, in integral equation (3) we have α = 3
2 and

F(t, x) = x5

(1 + x2)2
, g(t) = 3 − 243

100Γ
(
5
2

) (
2t + t

4
3

) 3
2
.
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Fig. 1 Comparison of the exact and numerical solutions (left), and errors (right) in Example 1

Table 1 Maximum of the
absolute error and elapsed CPU
time in seconds for the numerical
scheme (Example 1)

n 20 40 60

E 0.000419022 0.000101614 0.000044441

Time 0.375 3.046 10.000

Fig. 2 Comparison of the exact and numerical solutions (left), and errors (right) in Example 2

In this case, conditions (H1) and (H2) are met for L = 125/108, L1 = 0, and β = 1. Note
that the exact solution to (33) and (34) is x(t) = 3, t ∈ [0, 1]. The exact and numerical
solutions for n = 20, 40, 60, as well as the evolution of the error, are shown in Fig. 2. The
maximum of absolute error for different values of n and the elapsed CPU time in seconds
are displayed in Table 2.

Example 3 Consider the following fractional differential equation:

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5],
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Table 2 Maximum of the
absolute error and elapsed CPU
time in seconds for the numerical
scheme (Example 2)

n 20 40 60

E 0.172337940 0.059299298 0.031882101

Time 0.453 3.515 11.718

Fig. 3 Comparison of the exact and numerical solutions (left), and errors (right) in Example 3

Table 3 Maximum of the
absolute error and elapsed CPU
time in seconds for the numerical
scheme (Example 3)

n 20 40 60

E 0.002572167258 0.000904114 0.000490134258

Time 0.046 0.203 0.515

with the initial conditions and kernel

x0 = 0, x10 = 0, ψ(t) = √
t + 1,

respectively. Therefore, in integral equation (3) we have α = 3
2 and

F(t, x) = x, g(t) =
(√

t + 1 − 1
) 3
2

Γ
(
5
2

) .

Once C D3/2,ψ
0+ E3/2(ψ(t)−ψ(0))3/2 = (ψ(t)−ψ(0))3/2, where E3/2(·) denotes theMittag–

Leffler function of order α = 3/2, we conclude that the solution to this problem is x(t) =
E3/2(ψ(t) − ψ(0))3/2 − 1, t ∈ [0, 5]. The exact and numerical solutions for n = 20, 40, 60,
as well as the evolution of the error, are shown in Fig. 3. The maximum of absolute error for
different values of n and the elapsed CPU time in seconds are displayed in Table 3.

In the next examples, we analyse the stability of the proposed numerical method.

Example 4 Consider the two fractional differential equations with initial conditions:

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = 0, x10 = 0 (35)
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Fig. 4 Comparison of functions X and E , for μ = 0.1 (left) and μ = 0.2 (right) in Example 4

Table 4 Approximate values of
x(5), where x is the solution to
(36), for different values of μ and
n in Example 4

x(5) n = 20 n = 40 n = 60

μ = 0.1 2.232897331 2.230742939 2.230209768

μ = 0.2 2.527240325 2.524599595 2.523947221

μ = 0.3 2.821583318 2.818456250 2.817684672

and
C D3/2,ψ

0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = μ, x10 = 0. (36)

The kernel is given by ψ(t) = √
t + 1 and μ is a real number. Let x and x be solutions of

(35) and (36), respectively. In this case, F(t, x) = x for both equations and function g is
given by

g(t) =
(√

t + 1 − 1
) 3
2

Γ
(
5
2

) and g(t) = μ +
(√

t + 1 − 1
) 3
2

Γ
(
5
2

) ,

respectively. By the Grönwall inequality (cf. Almeida et al. 2019; Sousa and Oliveira 2019),
we conclude that

|x(t) − x(t)| ≤ |μ|E3/2

((√
t + 1 − 1

)3/2)
, t ∈ [0, 5].

Consider the two functions

X : t �→ |x(t) − x(t)| and E : t �→ |μ|E3/2

(
(
√
t + 1 − 1)3/2

)
.

In Fig. 4, we present the plots for two values of μ. It can be observed that the proposed
numerical scheme preserves the underlying structural stability of the initial value problem,
with respect to small perturbation of the initial conditions.

In Table 4, we display approximate values of x(5) for different values of μ and n.
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Fig. 5 Numerical solutions of Eq. (37) for n = 40 and with respect to perturbations of parameters: μ1 (left),
μ2 (center) and μ3 (right). (Example 5)

Example 5 Let us now consider the following fractional differential equation:

C D3/2+μ3,ψ
0+ x(t) = sin((μ1 − 1)x(t)) + x(t) + μ1, t ∈ [0, 5], (37)

with initial conditions
x0 = μ2, x10 = 0,

where μ1, μ2, μ3 ∈ R are three parameters. Let ψ(t) = √
t + 1. In this case, we have

F(t, x) = sin((μ1 − 1)x) + x, g(t) = μ2 + μ1(
√
t + 1 − 1)

3
2+μ3

Γ
(
5
2 + μ3

) .

To analyse the stability of the numerical method, we consider perturbations of parameters
μ1, μ2, μ3. First, we fix μ2 = 0 = μ3 and we analyse the numerical solutions of the two
following equations:

C D3/2,ψ
0+ x(t) = sin((μ1 − 1)x(t)) + x(t) + μ1, t ∈ [0, 5], x0 = 0, x10 = 0, (38)

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = 0, x10 = 0, (39)
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Table 5 Numerical results for
equations (38) and (39), with
n = 40, in Example 5

μ1 − 1 maxi |x(ti ) − x(ti )|
−0.2 0.503263941

−0.1 0.260315080

0.1 0.278317099

0.2 0.574119985

Table 6 Numerical results for
equations (40) and (41), with
n = 40, in Example 5

μ2 maxi |x(ti ) − x(ti )|
0.1 0.3018276927

0.2 0.587713310

0.3 0.881569965

0.4 1.175426619

Table 7 Numerical results for
Eqs. (42) and (43), with n = 40,
in Example 5

μ3 maxi |x(ti ) − x(ti )|
0.1 0.103558302

0.2 0.207116085

0.3 0.309937744

0.4 0.411352999

for μ1 ∈ {0.8, 0.9, 1, 1.1, 1.2}. Let x and x be solutions of (38) and (39), respectively.
Figure 5 (left) shows x for different values of μ1 and n = 40. In Table 5, we display
maxi |x(ti )− x(ti )|. Next, we assume thatμ1 = 1,μ3 = 0, and consider numerical solutions
to equations:

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = μ2, x10 = 0, (40)

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = 0, x10 = 0, (41)

for μ2 ∈ {0, 0.1, 0.2, 0.3, 0.4}. Let x and x be solutions of (40) and (41), respectively.
Numerical results, for different values of μ2, are presented in Fig. 5 (center) and Table 6.

Finally, we fix μ1 = 1, μ2 = 0, and analyse numerical solutions to equations:

C D3/2+μ3,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = 0, x10 = 0, (42)

C D3/2,ψ
0+ x(t) = x(t) + 1, t ∈ [0, 5], x0 = 0, x10 = 0, (43)

for μ3 ∈ {0, 0.1, 0.2, 0.3, 0.4}. Let x and x be solutions of (42) and (43), respectively.
Numerical results, for different values of μ3, are presented in Fig. 5 (right) and Table 7.

6 Conclusions

Recently, the Caputo derivative with respect to a kernel functionψ was proposed and applied
to some real-world processes (Almeida 2017a, b; Voyiadjis and Sumelka 2019). As usual,
an important issue is to develop numerical methods for fractional differential equations with
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this new type of derivative. In this paper, such a numerical scheme is presented and its error
bound is investigated. The idea is based on an equivalence relation between the fractional
differential equation with ψ-Caputo derivative and the Volterra–Stieltjes integral equation.
To the latter equation, the generalized midpoint rule is applied. The numerical simulations
show that the proposed numerical scheme preserves the underlying structural stability of the
initial value problem, with respect to small perturbation of the initial data, and satisfactory
and reliable results could be obtained. It means that the approximation routine presented in
(Asanov et al. 2011b) for Stieltjes integral can also be successfully applied to solve fractional
differential equations, where the fractional derivative operator depends on an increasing
function. Nevertheless, as mentioned in Introduction, there exist various numerical methods
for integral equations. Therefore, we expect that some of those methods could be adopted
for fractional differential equations with ψ-Caputo derivative. This important issue will be
considered in a forthcoming paper.
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