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Abstract Phylogeny estimation has been the subject of several researches due to its sig-
nificant importance and numerous applications. The aim of this research is to study the
phylogeny estimation from Single Nucleotide Polymorphism (SNP) haplotypes under the
maximum parsimony criterion (MPPEP-SNP). Previous exact methods have modeled the
mentioned problem as a Mixed Integer Programming (MIP) problem. Since the problem, in
general, proved to be NP-hard which causes MIP models to take long runtime for solving
large-scale instances, the need for non-exact methods is obvious. In this paper, the authors
propose a heuristic algorithm that attempts to find theMPPEP-SNP solution in several stages
by solving a specific MIP model in each stage. Created based on network flows formulation,
MIP models appearing in each stage are very small; therefore, their exact solutions could be
found practically very fast. In order to evaluate the performance of the proposed algorithm,
it has been tested on both simulated and real instances and compared with Pars and Flow-
RM as two of the best known methods. Our numerical experiments show that the proposed
method can compete with the previous methods in terms of accuracy, runtime, and specially
the largeness of the solved instances.
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1 Introduction

According to the theory of evolution, all organisms are inter-related through a common
ancestry. The genetic relationship among species could be indicated by a large evolutionary
tree called the Tree of life. Living organisms, called taxon, are the leaves of the tree, and if we
look back to the root of the tree, we can find their ancestors which lived hundreds of million
years ago. The edges of the tree represent the estimated evolutionary relationships, and the
weight of each edge represents the similarity between the two species or transformation
intervals (Felsenstein 2004).

Phylogeny estimation has emerged at the time of Darwin (Gascuel 2005). In the past,
biologists used to hire morphological data (phenotypes), such as beak shape, the existence
or non-existence of wings, etc. to produce evolutionary trees (Semple and Steel 2003). Then,
molecular data such as DNA sequences, or RNA or protein sequences, were used to do so.
Recently, haplotype of a common area of a gene is used for such a purpose (Catanzaro et al.
2013; Sridhar et al. 2008).

Construction of phylogeny hasmany applications in various research fields such as biosys-
tematics, medical research, drug discovery, and population dynamics (Bruni 2010). Some
applications are predicting the background of human influenza A, understanding the relation-
ships between the virulence and the genetic evolution of HIV, identifying emerging viruses
such as SARS, recreating and investigating ancestral proteins, designing neuropeptides
causing smooth muscle contraction, relating geographical patterns to macro evolutionary
processes; in addition, in disease association studies, reconstructing tumor phylogenies, etc.
(Bruni 2010).

Previous researchers suggested several criteria in order to select one phylogeny out of the
possible phylogenies (Felsenstein 2004). Parsimony, likelihood, and distance-based are three
important criteria that have been considered in several previous studies (Gascuel 2005). Most
of these studies modeled the problem as an optimization problem (Gascuel 2005). Among the
earliest studies carried out on reconstruction of the phylogenetic tree are Hein (1990, 1993).
The first introduced criterion was maximum parsimony (Sforza and Edwards 1964) which
is a simple non-parametric criterion, unlike maximum likelihood models (Felsenstein 2004).
Maximum parsimony plays a significant role and has a great influence among the algorithms
of phylogeny reconstruction (Camin and Sokal 1965; Zheng and Zheng 2015) and has been
used in other methods of phylogenetic network studies (Brooks et al. 2007; Jin et al. 2007).
Based on this criterion, a species is extracted from other species by minimum mutations
(Semple and Steel 2003). The best phylogeny is the one which includes the least number
of changes; in other words, in optimal phylogeny, weighted summation of edges in each
path from one taxon to another is minimum (Graham and Foulds 1982). More specifically,
phylogeny H is optimal if it has the following two conditions:

1. having the shortest length,
2. for every pair of distinct haplotypes (hi , h j ), the length of the path from hi to h j is not

less than the number of differences between them (Catanzaro 2011).

Finding phylogeny that meets the above-mentioned two conditions is known as MPPEP.1

Some of these problems can be solved in polynomial time (Ding et al. 2006; Bonizzoni 2007);
the most important of them is the perfect phylogeny in which each site mutates only once in
the entire tree (Agarwala and Fernández-Baca 1994; Gusfield 1991; Kannan and Warnow,
1997). However, in general, it is proved that this problem is NP-hard (Foulds and Graham

1 Most Parsimonious Phylogeny Estimation Problem.
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1982; Garey and Johnson 1979). This motivates the need for the development of the exact
and non-exact methods for perfect phylogeny problem (Felsenstein 2004; Catanzaro 2009).
Some exact methods model the problem as an Integer Programming (IP) problem (Gusfield
2003).

Several previous studies, namely Pollock et al. (2002), Zwickl and Hillis (2002), Hillis
et al. (2003), Rosenberg and Kumar (2003), Hedtke et al. (2006) and Gatesy et al. (2007)
examined the effect of increasing the number of characters as well as the increase of the
number of taxa on the accuracy of phylogeny. The results obtained by Pollock et al. (2002)
and Zwickl and Hillis (2002) indicated that increasing the number of taxa is more effective
than increasing the characters (Heath et al. 2008). On the other hand, in some applications,
it happens that the number of taxa is much bigger than the number of characters in real
instances. In this paper, we construct the phylogeny on instances with up to more than 1000
taxa and 14 characters in less than 2 min.

A recent version of MPPEP using SNPs to draw phylogenies is known as MPPEP-SNP.
Sridhar et al. (2007) modeled this problem in the form of an IP. They have introduced a
polynomialmodel aswell as an exponentialmodel for this problem in Sridhar et al. (2008) and
reported that the exponential model is more efficient than the polynomial model in practice.
Misra et al. introduced another IP model for MPPEP-SNP (Misra et al. 2011). Afterward,
Catanzaro et al. introduced a new formulation as well as a series of valid inequalities which
led to the gap reduction between the optimal solution and its non-integral linear programing
bound (Catanzaro et al. 2013).

In this paper, we introduce a heuristic algorithm for the MPPEP-SNP which solves the
problem in several stages by solving a small MIP at each stage. The proposed algorithm is
compared with the MIP model of Catanzaro et al. (2013) as well as to Pars heuristic method
on both simulated and real data. In Sect. 2 of this paper, theMPPEP-SNP is formulated. Then,
the models presented by Sridhar et al. and Catanzaro et al. are briefly described. In Sect. 3,
we introduce a new algorithm for solving MPPEP-SNP, and the fourth section deals with
some numerical experiments in order to investigate the efficiency of the proposed method.
Finally, the fifth section ends the paper with some concluding remarks and future research
directions.

2 Problem modeling

Consider a set H consisting of n haplotypes. Each haplotype comprises m SNPs and is
corresponding to one of the recent species. The purpose is to build a phylogeny which has
the following two conditions:

1. it has the shortest length;
2. for every pair of distinct haplotypes (hi , h j ), the length of the path from hi to h j should

not be less than the number of differences between their SNPs (Catanzaro 2011).

In other words, to construct a phylogeny, two species are adjacent if they have only one
difference in their corresponding haplotypes. According to the definition of adjacency, prob-
ably, there will be a forest after the constitution of phylogeny. Differently stated, the resulting
graph may be disconnected because some intermediate species were extinct or not included
in the species under our investigation. Parsimony criterion searches the minimum number of
haplotypes that lead to the connectivity of the corresponding phylogeny after adding them
to H. This is known as MPPEP-SNP. We call the existing haplotypes real haplotypes and
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the absent haplotypes that need to be added to H in order to meet the connectivity of final
phylogeny, virtual haplotypes.

Since each haplotype is shown by anm-vector including merely zero and one, there are 2m

haplotypes with m columns. As a result, feasible region for the virtual haplotypes includes
2m\|H | members. This exponential number makes it hard to solve the problem. In other
words, according to the above definition of adjacency, all real and virtual haplotypes form
an m-dimensional hypercube such that each node corresponds to one haplotype.

Sridhar et al. (2008) have introduced a polynomial MIP and an exponential MIP for this
problem. Despite a lot of variables and constraints, the exponential model gives better results
in practice (Sridhar et al. 2008). The model is formulated in the following form:

min
∑

u,v

wu,vsu,v

s.t.
∑

v

f tu,v �
∑

v

f tv,u for all t ∈ H\{r}, u /∈ H (1.1)

∑

v

f tr,v � 1 for all t ∈ H\{r} (1.2)

∑

v

f tv,t � 1 ,
∑

v

f tt,v � 0 for all t ∈ H\{r} (1.3)

∑

v

f tu,v �
∑

v

f tv,u for all u, t ∈ H\{r} : u �� t (1.4)

0 ≤ f tu,v ≤ su,v for all (u, v) ∈ E , t ∈ H\{r} (1.5)

su,v ∈ {0, 1} for all (u, v) ∈ E . (1)

In model (1), E is the set of edges and r is the root node which can be any of the real nodes.
This model looks at the problem as a multi-commodity flows problem that sends one unit of
flow from root node to each destination node. All real nodes, except the root node, (H

/ {r}),
are sink nodes. There are two types of variables f tu,v and su,v corresponding to each edge.
Real variable f tu,v indicates the amount of the flow which are sent from edge (u, v) whose
destination is the real node t ∈ H

/ {r}; and the binary variable su,v indicates the presence or
the absence of edge (u, v) at optimality. Constraints set (1.1) and (1.2) are balanced constraints
corresponding to virtual nodes and root node, respectively. The constraints sets (1.3) and (1.4)
play the same role for the rest of the real nodes (H

/ {r}). According to the constraints set
(1.5), every edge throughwhich a flow is sentmust exist in the optimal solution. The objective
function is defined in such a way that the phylogenetic tree has the minimum length. The
weight of edge (u, v) is wu,v which is equal to 1 for each edge in MPPEP-SNP.

Catanzaro et al. (2013) presented the Binary Integer Programming (BIP) model (2) for
MPPEP-SNP.

They considered an upper bound UB and a lower bound LB on the number of virtual
nodes (virtual haplotypes) in their model. Based on UB and LB, the following sets appear:

VH � {1, 2, . . . , n}
VH ′ � {n + 1, n + 2, . . . , n +UB}
Q � {1, 2, . . . , n + LB}
R � {n + LB + 1, n + LB + 2, . . . , n +UB}

CH � {i ∈ C : i ∈ VH } for all C ⊂ V .
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They have considered virtual haplotype’s SNPs as binary variables whose number and
amount would be determined after running themodel. If the ith haplotype exists at optimality,
ui equals 1, and equals zero otherwise. The number of differences in sth SNP of the two
adjacent haplotypes i and j is characterized by zsi j . The set of all variables zsi j is denoted
by Z . The amount of sth SNP of ith haplotype equals to hi (s). The set of all columns after
applying preprocessing techniques described in Sridhar et al. (2008) is Ŝ. Weights ws , in
objective function, are the number of identical columns in input data before processing in
which s ∈ Ŝ. The interested reader is referred to Catanzaro et al. (2013) for more details.

min
∑

i, j∈V
i, j∈Z

∑

s∈Ŝ
ws zsi j

s.t. xsi ≤ ui ∀s ∈ Ŝ, i ∈ R
∑

s′∈Ŝ
s′ ��s

zs
′
i j + hi (s) + xsj ≤ ∀s ∈ Ŝ, i ∈ VH , j ∈ VH ′

∑

s′∈Ŝ
s′ ��s

zs
′
i j - hi (s) + xsj ≤ 1 ∀s ∈ Ŝ, i ∈ VH , j ∈ VH ′

∑

s′∈Ŝ
s′ ��s

zs
′
i j+x

s
i −xsj ≤ 1 ∀s ∈ Ŝ, i, j ∈ VH ′ : i,j ∈ Z

∑

s′∈Ŝ
s′ ��s

zs
′
i j−xsi +x

s
j ≤ 1 ∀s ∈ Ŝ, i, j ∈ VH ′ : i,j ∈ Z

∑

s∈Ŝ
zsi j ≤ 1 ∀i,j ∈ V\R:i,j ∈ Z

∑

s∈Ŝ
zsi j ≤ ui ∀i\R,j ∈ V:i,j ∈ Z

∑

s∈Ŝ
zsi j ≤ u j ∀j\R,i ∈ V:i,j ∈ Z

∑

j∈V :
j∈Z

∑

s∈Ŝ
zsi j ≥ 1 ∀i ∈ Q

∑

j∈V :
j∈Z

∑

s∈Ŝ
zsi j ≥ ui ∀i ∈ R

∑

i, j∈C :
i, j∈Z

∑

s∈Ŝ
zsi j ≤

∑

i∈C :i∈R

ui + |CH |−1 ∀C ⊂ V:C ∩ VH �� φ

∑

i, j∈V :
i, j∈Z

∑

s∈Ŝ
zsi j � n + LB +

∑

i∈R

ui−1

ui , x
s
i , z

s
i j , yi j ∈ {0, 1} (2)

123



5686 R. Feizabadi et al.

Catanzaro et al. also introduced a large number of valid inequalities formodel (2) to reduce
the difference between the optimal solution and the solution obtained from the LP relaxation
by cutting the feasible region.

Although these models obtain exact solutions in reasonable time for small instances,
they are not usually effective and do not produce good results for large-scale instances. For
example, the model of Catanzaro et al. (2013) failed to solve some large-scale real instances.

In the next section, we will present a heuristic algorithm for the MPPEP-SNP. Our algo-
rithm obtains the solution of the main problem in several stages by a greedy selection in each
stage. Each stage has two steps, in which the second one solves a small MIP model. Our
experiments on simulated and real data, especially large instances, demonstrate that the new
approach can compete with the previous methods in terms of accuracy and running time.

3 New algorithm

Our algorithm, PULLPRU, begins with a graph of two nodes in the first stage and extends it
to the final phylogeny. In the middle stages, it is possible for a node to be consisted of a set
of haplotypes; in other words, it is not the case that necessarily each node should correspond
to just one haplotype. At every stage, we partition the sets until the last stage in which one
haplotype remains associated with each node. The partitioning is done in m stages. First, we
index haplotype columns from 1 to m. At each stage, a column of haplotypes is considered,
respectively. In the first stage, we skipm−1 last columns and only examine the first column.
This stage partitions the set of haplotypes into two subsets depending on the value of 0 or
1 in their first column. In other words, we put all haplotypes which have 0 in their first
component in the first subset. So the second subset contains all the haplotypes having 1 in
their first position. We plot a graph with two nodes such that each node is corresponding to
one of these subsets. Since in the first stage we consider only one column, the number of
different columns between the two subsets is equal to 1. Therefore, according to the above
adjacency definition, we connect two nodes by one edge. Each stage contains two steps. At
the first step of each stage, a new column is investigated, each node of the graph is divided
into two nodes, and its corresponding set is partitioned into two subsets depending on the
value of the new column in each haplotype. In other words, in the first step of ith stage,
we consider ith SNP, and regarding the value of 0 or 1 of the haplotypes in this SNP, each
of the sets of the corresponding nodes in the graph is partitioned into two subsets. This is
equivalent to providing two copies of the graph. In the first copy, each node corresponds to a
set of haplotypes which has 0 in ith component, and the second copy corresponds to sets of
haplotypes with 1 in ith component.

To each copy of the graph in the previous stage, a column has been added. The number of
different columns between two nodes in one copy has not changed because the added column
has the same value in all nodes of the copy. Thus, it is clear that the adjacency of the nodes in
each of the graph copies is exactly the same as the adjacency of those in previous stage. So if
two nodes are adjacent in the previous stage graph, i.e., have one difference in their columns,
they are also adjacent in each copy. For this reason, the edges’ position and number do not
change in each copy compared to the previous graph.

To determine the adjacency between corresponding nodes of two copies, note that every
node of the graph of i− 1th stage contains a set of haplotypeswhich are exactly the same in the
first i − 1 SNP. Adding column i probably partitions this set into two subsets; one containing
the haplotypes with 0 at their ith component, and the other containing all haplotypes with 1
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Fig. 1 Initial graph

Fig. 2 The graph is constructed
by duplication of G1 and
connecting their corresponding
nodes in two copies

at their ith component. Therefore, some of them are placed in the first copy and the others in
the second one. Now the number of distinct components between members of one subset and
another is changed from zero to one which shows the adjacency between them. Therefore, we
connect two corresponding nodes in two copies by an edge. We name this step as pullulation
that includes duplicating the graph of the previous stage, partitioning the sets of haplotypes,
and connecting two copies.

In transition from stage i − 1 to i, we partition the haplotypes set corresponding to each
node into two subsets with different ith component. Especially in the final stages, it is very
likely that one of these subsets be empty. In other words, between real haplotypes, there exists
no haplotype whose first i nucleotide site corresponds to that node. In this case, it is possible
to remove the empty nodes and edges emanating from them, as long as the connectivity
of the under construction graph is not violated. Hence, if the number and the location of
the nodes of this kind are in such a way that removing them leads to losing connectivity,
we have to ignore the removal of some of these nodes and add their corresponding virtual
haplotypes. According to the parsimony criteria, the number of nodes of this type should be
minimized. We call this step pruning which involves removing maximum number of empty
nodes, provided that the connectivity is maintained.

For more details, the first stage partitions haplotypes set into two subsets. Figure 1 depicts
the corresponding graph. Node 0 contains all of the haplotypes with 0 at their first nucleotide
site, and node 1 includes all the haplotypes with 1 at their first nucleotide site. We assume
that none of the nodes are empty.

The pullulation step of the second stage provides two copies of the graph G1, in one of
which all haplotypes whose second nucleotide site equals to 0 are placed, and the other one
contains the haplotypes whose second nucleotide site is equal to 1. Corresponding nodes in
two copies are connected by an edge. These edges are plotted with dotted line in Fig. 2.

Now suppose that the two first nucleotide sites of all given haplotypes are 01 or 10, i.e.,
there is no haplotype with the first nucleotide site 00 or 11 among the real haplotypes. So, the
corresponding sets to nodes 00 and 11 are empty. These virtual nodes are shown with gray
circles in Fig. 2. If we remove both virtual nodes in pruning step, the graph which is made
from merely real haplotypes has the two nodes 10 and 01 which are disconnected. To have a
connected graph, it is necessary to preserve one of the nodes 00 or 11. This also occurs in the
next stages. However, in the next stages, the number of virtual nodes may be so high that in
order to preserve the connectivity of the graph, we have to solve an optimization problem to
be able to choose the minimum number of virtual nodes according to parsimony criterion. So
the pruning stage needs to solve an optimization problem. We present two different models
for pruning stage as follows:

(a) We model the problem as a multi-commodity flows problem. Consider a network N
corresponding to the graph G so that each edge is replaced with two arcs. Suppose V is
the set of all nodes, and set A contains all arcs of N. We partition node set V into three
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subsets: one of the real nodes that can be selected arbitrarily is distinguished from other
nodes as the source node s, other real nodes as sink nodes are placed in set C, and all
of the virtual nodes in set VV . We consider one commodity corresponding to each of
the nodes in C with the same index, and one unit of flow of each commodity must be
sent from source node s to its corresponding sink node in C. Continuous variable f ki j
exhibits the value of the kth commodity sent from node i to node j. Each binary variable
x j is corresponding to one of the graph’s nodes and also to a set of haplotypes. If node
j is present at optimality, x j is equal to 1; otherwise it is equal to 0. According to above
definitions the model is as follows:

min
∑

j∈V
x j

s.t. f ki j ≤ x j ∀(i, j) ∈ A, ∀k ∈ C (3.1)
∑

{i :(s,i)∈A}
f ksi −

∑

{i :(i,s)∈A}
f kis � 1 ∀k ∈ C (3.2)

∑

{ j :( j,k)∈A}
f kjk −

∑

{ j :(k, j)∈A}
f kk j � 1 ∀k ∈ C (3.3)

∑

{ j :( j,k)∈A}
f tjk −

∑

{ j :(k, j)∈A}
f tk j � 0 ∀k, t ∈ C, k �� t (3.4)

∑

{i :(i, j)∈A}
f ki j −

∑

{i :( j,i)∈A}
f ki j � 0 ∀k ∈ C, ∀ j ∈ VV (3.5)

x j ∈ {0, 1} ∀ j ∈ V

f ki j ≥ 0 ∀k ∈ C, ∀ (i, j) ∈ A. (3)

The constraints set (3.1) states that if some of the commodities pass through an arc, its
terminal nodes must be present in the optimal solution. Source node s supplies |C| kinds
of commodity to the other real nodes in set C. This is guaranteed by the constraints set
(3.2). The ith real node in C demands one unit of commodity i. This demand is satisfied
by the constraints set (3.3). Mass balance constraints in (3.4) manage the supply and
demand for other commodities in real nodes C; similarly, constraints set (3.5) plays the
same role in virtual nodes.
Sending flows from real node s to all other real nodes guarantees the existence of a route
between all real nodes at optimality that means the connectivity of the optimal graph.
The objective function minimizes the number of nodes in the optimal graph.

(b) Again, we model the problem as a network flows problem, but this time as a single-
commodity flows problem. The definitions of node s and sets C and VV are the same as
(a). In this case, source node s supplies |C| units of flows, and each of the real nodes in
set C demands one unit of flows. The binary variable corresponding to node j is x j , and
the continuous variable fi j exhibits the amount of flows passing through arc (i, j). The
model is as follows:

min
∑

j∈V
x j

s.t. fi j ≤ Mx j ∀(i, j) ∈ A (4.1)
∑

{i :(s,i)∈A}
fsi −

∑

{i :(i,s)∈A}
fis � |c| (4.2)
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∑

{ j :(k, j)∈A}
fk j −

∑

{ j :( j,k)∈A}
f jk � −1 ∀k ∈ C (4.3)

∑

{i :(i, j)∈A}
fi j −

∑

{i :( j,i)∈A}
f j i � 0 ∀ j ∈ VV (4.4)

x j ∈ {0, 1} ∀ j ∈ V

fi j ≥ 0 ∀ (i, j) ∈ A. (4)

The constraints set (4.1) guarantees that if some flows pass through an arc, its terminal
nodes must be present in the optimal solution. Since x j is binary but fi j is continuous
and may be greater than one, we multiply x j by M that is sufficient to be |C| which is
the maximum flows in the network. The constraint (4.2) expresses that source node s
supplies |C| units of the flow. Constraints set (4.3) meets the demand of each real node in
C.Mass balance constraints for virtual nodes are guaranteed by (4.4). Likemodel (3), the
objective function counts the number of nodes in each solution that must be minimum
at optimal solution and the length of the final phylogeny is obtained by subtracting one
from the optimal value.

It is clear that the nodes containing real haplotypes must exist at optimality, and the value
of their corresponding variable should be 1. Therefore, to have simpler models, we can assign
1 to these variables before implementing either of the models (3) or (4).

By eliminating the binary variables corresponding to the real nodes, the number of binary
variables in models (3) and (4) is equal to the number of the virtual nodes in the current
graph, and this number would not be high because the graph is pruned in each stage. Since
the number of the discrete variables determines the hardness of the MIP models, the models
we face in each stage have fewer discrete variables and thus run faster.

Model (3) assigns |C| continuous variables to each arc; therefore, it has |C| × |A| contin-
uous variables in general, but Model (4) assigns just one continuous variable to each arc, and
it has |A| continuous variables. This difference is significant because |C| is approximately
equal to the number of haplotypes, and some instances have thousands of haplotypes.

The number of constraints in model (3) is equal to |C|(|V | + |A|) and in model (4) is equal
to |V|+ |A|.

It should be noted that the output of the algorithm may not be a tree, but this is not
so important. If drawing a phylogenetic tree is desired, it can be obtained by one of the
minimum spanning tree algorithms such as Kruskal or Prim. Moreover, the edges of the
produced graph are weightless that provide the possibility of using more efficient algorithms
to extract a minimum spanning tree. However, the bottleneck operation of the algorithm is
not to extract a minimum spanning tree.

In the following, we introduce a few techniques that affect the runtime and accuracy of
PULLPRU.

3.1 Prune skipping

We attempt to remove the maximum number of virtual nodes in the pruning step of each
stage based on the parsimony criterion. But Pruning is done on a small graph instead of an
m-dimensional hypercube that may cause the wrong removal of some of the nodes in the final
phylogeny. This probability can be reduced by ignoring pruning in some stages. Therefore,
the final solution would probably be more accurate if we prune the graph once in several
stages instead of once in each stage. Although ignoring some of the pruning steps causes to
reduce runtime, it also enlarges the graph in the next stages, and this will increase the size of
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the MIP model in the first stage that we have to prune which requires more time. Sometimes,
especially in the final stages, these small changes in size are such that it is impossible to solve
the problem in reasonable time, but using this technique in the early stages seems reasonable
and can improve accuracy and runtime simultaneously. The number of virtual nodes in the
graph can be a good criterion for pruning decision.

3.2 Different permutations of SNPs

As explained above, we indexed SNPs from left to right and from 1 to m, and the ith SNP
is examined in the ith stage. Changing SNPs permutation before implementation of the
algorithm strongly affects the accuracy and the runtime. Unfortunately, a particular change
does not have the same effect on all instances, i.e., whereas one index changing improves the
accuracy and runtime of one instance, it is likely to produce the opposite result on another
instance. However, some permutations generally have positive effects on the accuracy and
runtime. One type of permutation for columns is to have an assessment on the unexamined
columns in the beginning of each stage in order to make sure which column(s) would produce
a better result in the final phylogeny. This process is done by assigning scores to unexamined
columns.

To score the tth column, we consider the corresponding sets of the nodes of the graphs
obtained from the previous stage. For every set Sk , one unit will be added to the score of tth
column if the two following condition satisfy:

1. Sk has more than one member,
2. all the members in Sk have the same value in their tth SNPs.

For the first stage, we study the columnwhich has the least difference between the number
of its 0s and 1s, and if there are some columns of this kind having the same least difference,
we choose one of them randomly. Examining columns with higher score in each stage was
experimentally proved to give proper results. The reason behind such scoring system is to
postpone examining the columns that lead to further expansion of the graph to the final stages.
Because during the expansion of the graph, there may be somemore virtual nodes to be added
to the graph. Adding these nodes in the early stages will allow them to be pullulation more
quickly (regardless of pruning stages, the replication rate of a virtual node added in the ith
would be 2m−i). Clearly, pruning stages will not prune them all. However, by adding virtual
nodes in the final stages, they would be less duplicated. Therefore, it would be logical to
try to impose less virtual nodes to the network in the early stages, and this would occur if
we prevent the expansion of real nodes as far as possible. With regard to the scoring system
defined above, if in a stage the tth column is examined and this column receives one score from
Sk set, the Sk will not be partitioned. Therefore, partitioning the set Sk will be postponed,
which is desirable. Therefore, in each stage, we should examine the columns with higher
score.

4 Numerical experiments

To give a better description of PULLPRU, in this section, first, we solve a small example;
then we discuss the results for both simulated and real large-scale instances.
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Fig. 3 Graph of the first stage

Fig. 4 Graphs of the second stage. a The graph obtained from pullulation step. b The graph obtained from
pruning step

Fig. 5 Graphs of the third stage. a The graph obtained from pullulation step. b The graph obtained from
pruning step

4.1 Small example

Suppose H � {00111, 01101, 01110, 11010} is a given set of haplotypes, and estimating a
phylogenetic network on H is desired. Corresponding phylogenetic networks would be built
in five stages. We call the final graph of stage i, Gi and indicate the virtual nodes with gray
circles in all figures.
Stage 1. The graph of the first stage is depicted in Fig. 3 where S0 � {00111, 01101, 01110}
and S1 � {11010}. Since none of S0 and S1 is empty, this stage does not need the pruning
step. Stage 2. In the second stage, we provide two copies ofG1 and connect the corresponding
nodes in the two copies to each other. Then, we partition haplotypes into four nodes according
to their first and second columns properly. The resulting graph is depicted in Fig. 4.a where
S00 � {00111}, S01 � {01101, 01110}, S11 � {11010} and S10 � {}. Since S10 is empty,
it can be removed from the graph without losing the connectivity. Therefore, we have the
graph G2 in Fig. 4b at the end of the second stage. Stage 3. Figure 5a shows the initial
graph in the third stage obtained by duplicating G2 and connecting the corresponding nodes
in two copies where S000 � {}, S010 � {}, S110 � {11010}, S001 � {00111}, S111 � {}
and S011 � {01101, 01110}. Because sets S000, S010 and S111 are all empty, we can remove
their corresponding nodes from the graph. But this will cause losing the connectivity of G3.
According to parsimony criterion, we have to keep the least number of virtual haplotype(s)
in the graph. From Fig. 5a, it is clear that there is no need to solve an optimization problem,
and the addition of only virtual haplotype 010 meets this need. As a result, the final graph of
the third stage is demonstrated in Fig. 5b. Stage 4. The graph obtained from the pullulation
step of the fourth stage is depicted in Fig. 6a where S0010 � {}, S0110 � {01101}, S0100 � {},
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Fig. 6 Graphs of the forth stage. a The graph obtained from pullulation step. b The graph obtained from
pruning step

S1100 � {}, S0011 � {00111}, S0111 � {01110}, S0101 � {} and S1101 � {11010}. Since
the sets S0010, S0100, S1100 and S0101 are empty, real haplotypes alone do not constitute a
connected graph. But at the end of the fourth stage, adding only the virtual haplotype 0101
results in the connected graph demonstrated in Fig. 6b. Stage 5. The graph resulted from
the pullulation step of the fifth stage is depicted in Fig. 7a. Except S00111, S01101, S01110,
S11010 that each one contains haplotypes equal to their indices, other sets are empty and their
corresponding nodes have the potential to be removed from the graph. We use model (4) for
pruning step in order to identify virtual haplotypes needed to establish the connectivity. Each
node is labeled by a number in Fig. 7a which specifies binary variable index in the model.
Real node 1, as the source node, supplies three units of flows, and every real node 2, 3 and
4 demands one unit of flow. Input flows must be equal to output flows in virtual nodes 5–10.
Note that there are only 3 units of flows on the network. This number 3 specifies coefficients
of x j in the first set of constraints. Model (5) formulates the pruning step of this stage as
follows:

min
10∑

j�1

x j

s.t.
∑

{i :(i, j)∈A}
fi j ≤ 3x j j � 1, . . . , 10

f15 + f17 − f51 − f71 � 3

f26 + f27 − f62 − f72 � −1

f35 + f36 + f37 + f39 − f53 − f63 − f73 − f93 � −1

f49 + f4,10 − f94 − f10,4 � −1

f51 + f53 − f15 − f35 � 0

f62 + f63 − f26 − f36 � 0

f71 + f72 + f73 + f78 − f17 − f27 − f37 − f87 � 0

f87 + f89 + f8,10 − f78 − f98 − f10,8 � 0

f93 + f94 + f98 − f39 − f49 − f89 � 0

f10,4 + f10,8 − f4,10 − f8,10 � 0

fi j ≥ 0 ∀ (i, j) ∈ A

x j ∈ {0, 1} j � 1, . . . , 10 (5)

The optimal solution of model (5) is x1 � 1, x2 � 1, x3 � 1, x4 � 1, x5 � 0, x6 �
0, x7 � 1, x8 � 0, x9 � 1 and x10 � 0.

Thus, Fig. 7.b shows the final phylogeny, where 01111 and 01010 are virtual haplotypes
which have been added in order to meet connectivity.
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Fig. 7 Graphs of the fifth stage. a The graph obtained from pullulation step. b The final phylogeny

4.2 Experimental results

Herewe compare PULLPRUwithwell-known Pars program of Phylip version 3.695 (Felsen-
stein 2005) and model (2) as one of the best exact models on several simulated and real
instances. Comparison is done in terms of accuracy, runtime, and largeness of datasets.

We implemented PULLPRU in Matlab 32-bit 7.14.0.739 linked to GAMS version 24.1.2
using the MIP solver Cplex. Both PULLPRU and Pars program were run on a Core i5-
2430 M, 2.40 GHz, equipped with 2.69 GByte RAM and operating system win7 32-bit. The
authors of Catanzaro et al. (2013) implemented their model by means of Mosel 64-bit 3.2.0
of Xpress-MP, Optimizer version 22, running on a Pentium 4, 3.2 GHz, equipped with 2
GByte RAM and operating system Gentoo release 7 (kernel linux 2.6.17).

In Sridhar et al. (2008) the authors offered some preprocessing techniques for theMPPEP-
SNP. These techniques are applied on input data before solving the problem which reduces
the size of the data without losing the optimality. Thus, before running PULLPRU, we used
two preprocessing techniques that will be explained in the following:

1. If there are duplicate haplotypes, we can eliminate all except one, since all of them are
in one node in phylogeny which is constructed;

2. moreover, if there exists a nucleotide site with the same amount in all haplotypes which
are under investigation, this nucleotide site can be eliminated. Needless to say, the cor-
responding nucleotide site value in the virtual haplotypes and the real haplotypes will be
equal.

Interestingly, it happens sometimes that the number of haplotypes is much bigger than the
number of SNPs in real instances (Catanzaro et al. 2013). They attempted to solve model (2),
called Flow-RM, on such datasets. So, they simulated instances of the MPPEP-SNP having
up to 300 haplotypes and 10 SNPs, and succeeded to solve Flow-RM within 3 h. However,
it took less than 3 s for PULLPRU to solve on simulated instances having up to more than
1000 haplotypes and 10 SNPs.

We simulated the instances similar to Catanzaro et al. (2013). They, In order to create
a haplotype which is a vector containing randomly generated 0 and 1, first determined the
number of its 1’s sites by generating a random number; then, randomly specified the sites of
these SNPs. This process is repeated until n haplotypes of one instance are generated. We
simulated 120 random instances.

Table 1 contains ten groups of datasets: each group contains ten instances, and each
instance has 10 SNPs. The instances of the groups 1–10 have 100, 200, 300, 400, 500,
600, 700, 800, 900, and 1000 haplotypes, respectively (before preprocessing). We compared
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Table 2 Comparison of the
performance of PULLPRU with
Pars on simulated data with 14
SNPs

|H| Ins |H| post
…

Pars PULLPRU

L Time L Time

2000 1 1069 1101 477.76 1104 34.56

2 1036 1065 347.31 1063 30.33

3 1012 1043 494.62 1044 30.11

4 1028 1063 516.57 1063 30.20

5 1050 1079 428.39 1081 32.65

3000 1 1377 1393 1801.52 1391 56.80

2 1361 1380 1598.14 1380 55.10

3 1329 1355 1719.23 1355 52.31

4 1349 1371 2028.80 1371 52.53

5 1364 1380 1716.05 1381 55.72

4000 1 1637 1645 3180.52 1645 79.57

2 1620 1626 4777.36 1626 81.97

3 1620 1626 4703.13 1626 77.98

4 1640 1650 3650.10 1648 80.24

5 1620 1626 4609.73 1626 77.99

5000 1 1844 1846 6240.15 1845 102.87

2 1867 1869 10,001.56 1867 107.19

3 1856 1857 10,535.78 1857 105.57

4 1844 1846 6395.93 1845 102.79

5 1844 1846 6353.11 1845 104.36

PULLPRU with Pars program of Phylip on this dataset. In using Pars, we did not change its
default settings except ‘number of trees to save’ which was decreased from 100 to 1 in order
to have a better runtime. In implementing PULLPRU, we performed the pruning step only
in stages 4, 8 and 10, using model (4).

The column ‘|H | post reduction’ shows the number of haplotypes in each instance after
preprocessing. After applying the preprocessing techniques, the number of columns did not
change. The column ‘L’ refers to the length of the obtained phylogeny, and column ‘Time’
reports the runtime in second for the corresponding method. In 47 instances out of 100 (i.e.,
in almost half of the instances) PULLPRU obtained better solution compared to Pars, while
Pars obtained better result only in one instance which is instance 10 in the group of 200
haplotypes. In 20 instances of the groups of 100 and 200 haplotypes, Pars ran faster than
PULLPRU, but in 80 other instances PULLPRU was superior.

Obviously, the runtime increases by increasing the instance size. The difference of the
average runtime of group 1 instances and that of group 10 instances in Pars is 28.26 s while
it is just 1.05 s for PULLPRU. This means that increasing the instance size has little impact
on PULLPRU runtime.

Table 2 contains four groups of simulated data, each group consists of five instances,
each instance have 14 SNPs, and each instance in each group consists of more than 1000
haplotypes. The initial settings of Pars and PULLPRU are the same as the initial settings of
Table 1, except in implementing PULLPRU, we skipped pruning the graphs with less than
110 virtual nodes. 20 instances were studied in Table 2. In 7 instances, PULLPRU obtained
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Table 3 Comparison between Pars and PULLPRU in terms of accuracy and runtime

Dataset Input
(before)

Input
(after)

Pars PULLPRU Opt

L Time L Time

Human
chromo-
some
Y

150 ×49 14 ×15 16 0.51 16 1.20 16

Bacterial
mtDNA

17 ×1510 12 ×89 96 0.05 96 159.70 96

Chimpanzee
mtDNA

24 ×1041 19 ×61 63 0.33 63 106.86 63

Chimpanzee
chromo-
some
Y

15 ×98 15 ×98 99 0.14 99 240.82 99

Human
mtDNA

40 ×52 32 ×52 73 1.98 74 20.53 73

Human
mtDNA

395 ×830 34 ×39 53 14.61 53 9.45 53

Human
mtDNA

13 ×390 13 ×42 48 0.29 48 23.02 48

Human
mtDNA

33 ×405 27 ×39 43 0.30 43 5.87 43

Table 4 Comparison between flow-RM, Pars and PULLPRU

Dataset Input
(before)

Input
(after)

Flow-RM Pars PULLPRU

Block
size

Time L Time L Time

f1 63 ×16,569 50 × 234 15 10,286.1 289 9.78 289 998.11

i2 40 × 977 31 × 113 10 781.85 198 0.29 227 205.15

k3 100 × 757 55 × 110 13 588.38 228 19.22 289 426

m4 26 × 48 23 × 36 10 5 43 0.15 43 9.08

p5 21 ×16,548 20 × 158 10 22,283.4 181 0.16 193 551

better solutions compared to Pars, however, the results obtained by Pars were better than
PULLPRU’s in 4 other instances; and in 9 instances the lengths of the obtained tree are equal
in both methods. PULLPRU solved the problem in less than 2 min for all the instances,
while the runtime of Pars was between 5 min and 3 h. The average runtime of each group is
consistent with the results of Table 1 about the impact of size of instances on the runtime.

While implementing PULLPRUon instances of Tables 3 and 4,we used the scoring system
which has been defined in Sect. 3.1 in order to determine the permutation of the columns.

Table 3 contains eight real instances ofMPPEP-SNP. These instances include human chro-
mosome Y constituted of 150 haplotypes with 49 SNPs in each; bacterial DNA constituted
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of 17 haplotypes with 1510 SNPs in each; chimpanzee mitochondrial DNA constituted of 24
haplotypes with 1041 SNPs in each; chimpanzee chromosomeY constituted of 15 haplotypes
with 98 SNPs in each; and a set of four humanmitochondrial DNA fromHapMap constituted
f 40 haplotypes with 52 SNPs each, 395 haplotypes with 830 SNPs in each, 13 haplotypes
with 390 SNPs in each, and 33 haplotypes with 405 SNPs in each, respectively.

In Table 3, we have reported the output of PULLPRU compared with Pars program of
Phylip. The second column shows the number of haplotypes and SNPs in each instance before
preprocessing, and the third column shows them after preprocessing. The last column is the
optimal solution. The columns ‘L’ and ‘Time’ report the length and runtime of phylogenetic
tree obtained from each method. As we see, PULLPRU has gained the exact solution in all
instances, except in the fifth instance, in which it has one difference between the optimal
solution and the length of obtained phylogeny. Pars gained the exact solution in all instances.
In the sixth instance, PULLPRU ran faster than Pars, but in other instances Pars had better
runtime.

In Table 4, we have investigated five real instances, namely f1 constituted of 63 haplotypes
having 16,569 SNPs in each haplotype, i2 constituted of 40 haplotypes having 977 SNPs in
each haplotype, k3 constituted of 100 haplotypes having 757 SNPs in each haplotype, m4
constituted of 26 haplotypes having 48 SNPs in each haplotype, and p5 constituted of 21
haplotypes having 16,548 SNPs. Flow-RM fail to solve these instances due to the large
number of SNPs. So instead of solving the instances in general, the authors in Catanzaro
et al. (2013) partitioned each instance to some blocks with the same number of haplotypes
and the number of SNPs equal to 10, 13, and 15, and solved only one of these blocks as the
most difficult block. The maximum number of SNPs for each instance that they were able to
solve and their corresponding runtimes are given in the fourth and fifth columns of Table 4.
Similar to Table 3, the second and third columns refer to the number of haplotypes and SNPs
in each instance before and after preprocessing, respectively. The columns ‘L’ and ‘Time’,
respectively, report the length of the phylogenetic tree and runtime of estimating process for
each method.

The runtime of Pars is meaningfully less than those of Flow-RM and PULLPRU in all
instances, and except in instances f1 and m4, Pars has obtained more accurate solutions than
PULLPRU. The results of Tables 3 and 4 are corresponding to instances with small number
of taxa for real instances we found in the literature. The simulation results approved that
if there exist real instances with a large number of taxa (up to thousands), then PULLPRU
would be more efficient.

5 Conclusion

In this paper, we have proposed a heuristic algorithm for most parsimonious phylogeny
estimation problems from single nucleotide polymorphism (SNP) haplotypes (MPPEP-SNP)
which is called PULLPRU. It solves the problem in several stages and each stage contains
two steps of pullulation and pruning. Although pruning step requires finding the solution of a
mixed integer programming (MIP), usually those MIPs are of small sizes, and their optimal
solution can be found in a short time. We have evaluated the performance of PULLPRU on
several simulated and real instances and compared the results with those of Pars heuristic
programof Phylip and Flow-RMas one of the best exactmodels in terms of accuracy, runtime,
and largeness of datasets. The numerical results show that PULLPRUcan solve the large-scale
simulated datasets with up to more than 1000 taxa, more efficiently than Pars. This would
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be beneficial for improving the accuracy of phylogeny estimation by increasing the number
of taxa. The adjustment of PULLPRU on multi-state character data and its performance
evaluation could be the subjects of further studies.
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