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Abstract The main purpose of this study is the modification of the parametric integral equa-
tions systems (PIES) method, to include the NURBS curves into its mathematical formulas.
Wewant to create an opportunity for defining the boundary shape using NURBS curves with-
out the classical discretization process. We present an inclusion of the NURBS curves into
PIES, and its application in process of modeling and solving the boundary value problems,
on Laplace’s equation example. The correctness and accuracy of such modeling is confirmed
by the examples. Obtained solutions are compared with these obtained using linear segments
and B-spline curves. Additionally, we verify the correctness of modeling and modifying the
shape using analytical solutions. The NURBS curves significantly expand the possibilities
and increase the accuracy of the boundary shape modeling which is an important aspect of
the numerical solving of boundary value problems.

Keywords NURBS curves · Boundary value problems · Shape of boundary modeling ·
Parametric integral equations system (PIES) · Laplace’s equation

Mathematics Subject Classification 65D17 · 65N38 · 76M25

1 Introduction

For many years researchers have used boundary integral equations (BIE) to solve bound-
ary value problems (Banerjee and Butterfield 1981; Bonnet 1995). The main interests of
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scientists were related to new developments in the computer technology and software, espe-
cially in the field of effective calculation of singular integrals. Researchers have always been
interested in application of BIE, because boundary value problems are one order reduced
during solving process. It is connected with physical definition of BIE on boundary of the
problem. In other words, the boundary of the problem is defined by contour integral. For
example, two-dimensional Laplace’s equation is solved as one-dimensional problem defined
on boundary only (Banerjee and Butterfield 1981; Brebbia and Walker 1980; Brebbia et al.
1984. However, there are different kinds of problems, for example, defined by Poisson equa-
tion, where integral is calculated on boundary as well as in a domain (Brebbia and Walker
1980; Brebbia et al. 1984). In this paper, we focus only on the problems without integration
over domain.

The boundary of boundary value problem in BIE (at the beginning of development of
its numerical solution) was physically divided on so-called boundary elements. The poly-
nomials of lower degree were used to their mathematical definition and the method which
use such strategy was named boundary element method (BEM) (Banerjee and Butterfield
1981; Brebbia and Walker 1980; Brebbia et al. 1984). New developments in the field of
computer graphics also contributed to new developments of tools for modeling curves, espe-
cially for their modifications in an effective way (Böhm 1982; Farin 1990; Farin et al. 2002;
Rogers and Fog 1989; Bashir and Ali 2016). These are curves such as: Hermite, Bézier or
B-spline. Such curves are composed of segments of lower degree and automatically ensured
appropriate class of continuity in points of segments join. Each segment (Hermite, Bézier or
B-spline) can be easily modified by so-called control points. Therefore, researchers began
to use those segments as an alternative of classical boundary elements (Becker 1992). In
other words, the boundary was divided as usual into boundary elements, but mathemati-
cally were defined as Hermite (Durodola and Fenner 1990; Gray and San Soucie 1993),
Bézier (Nowak et al. 2002) or B-spline (Cabral et al. 1990; Camp and Gipson 1991; John-
ston 1997; Liggett and Salmon 1981; Sen 1995) segments. This way of modeling is very
efficient, because we can effectively modify segments using the control points. This strategy
is mainly applied to the problems of identification of unknown part of boundary [mainly
modeled by one element (Burczyński and Fedeliński 1991)]. In case of modeling this part
by several elements, there is a problem to ensure the continuity in points of elements join
automatically.

Therefore, in BEM this problemwas solved in two stages. First, the boundarywasmodeled
by curves, like in computer graphics.Next, itwas divided into boundary elements in process of
solving BIE. Such way of modeling is a bit ineffective. It makes sense to use all advantages
of automatically ensured continuity (in points of segments join) simultaneously (without
dividing it into two stages). Therefore, to avoid these problems, one of the authors of this
paper modified classical BIE. Mentioned curves were included directly into mathematical
formulas of BIE and the new parametric integral equations system (PIES) (Zieniuk 2003a, b;
Zieniuk and Bołtuć 2006; Zieniuk 2007) was developed.

Recently, for effective modeling of curves and surfaces in engineering practice, very
popular and well-studied CAD system [which also use so-called non-uniform rational B-
spline curves (NURBS) (Piegl and Tiller 1997)] are often applied. NURBS curves are more
effective in modeling the shape of boundary than mentioned classical curves. They allow
for more flexible modeling of different shapes. Therefore, these curves were widely used for
modeling the boundary in process of solving boundary value problems, and such strategy
was named as isogeometric modeling (Cottrell et al. 2009; Hughes et al. 2005; Zhang et al.
2016). In this strategy, the whole boundary is defined by NURBS curve, then it is divided
into elements during numerical solution of BIE.
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In this paper, we consider an application of NURBS curves not during numerical solution
of BIE (like in isogeometric modeling), but in analytical modification of classical BIE. The
modification is strictly connectedwith inclusion ofNURBS curves directly intomathematical
formulas of BIE. Such approach allows us to exploit all of advantages of theNURBS curves in
the process of solving boundary value problems. As the result of this modification, we obtain
the generalized parametric integral equations system (PIES). We also present the method of
numerical solution of generalized PIES as well as the results of numerical tests. Finally, we
compare results of analytical solutions of some examples with ones obtained by generalized
PIES to confirm reliability of PIES solutions. Additionally obtained solutions are compared
with these obtained using linear segments and B-spline curves. We present the impact of
modeling accuracy on obtained solutions, as well.

2 NURBS curves in modeling the shape of boundary in boundary value
problems

NURBS curve of any degree n is described by control points Pi (i = 0, 1, . . . ,m),
corresponding to particular points weights wi (i = 0, 1, . . . ,m) and knots t j ( j =
0, 1, . . . ,m + n + 1), and is defined by the following formula (Piegl and Tiller 1997):

S(t) =
∑m

i=0 wi Pi Nn
i (t)

∑m
i=0 wi Nn

i (t)
for tn ≤ t ≤ tm+1. (1)

Additionally, the base function Nn
i (t) of n degree is defined as normalized B-spline blend-

ing function and generally presented by the following recursive formula (Piegl and Tiller
1997):

N 0
i (t) =

{
1 for t ∈ 〈ti , ti+1)

0 otherwise
,

Nk
i (t) = t − ti

ti+k − ti
Nk−1
i (t) + ti+k+1 − t

ti+k+1 − ti+1
Nk−1
i+1 (t),

(2)

where 0 ≤ i ≤ m, 1 ≤ k ≤ n, 0
0 := 0.

Correct shape definition is strictly connectedwith proper selection of the control points (its
amount and location) as well as proper definition of weights and knots. Such way of defining
seems to be very sophisticated, however significantly increases the accuracy of modeling and
allows to define even complex shapes by one closed NURBS curve only.

For example, in Fig. 1, the impact of weights (in particular control points) on NURBS
curve of second degree is presented. The curve is defined by nine control points (where
P0 = P8). As we can see, the value of the weight determines the impact of particular point
on the shape of the curve. For lower values of weights, the curve lies far away from the
points, while higher ones shift the curve closer to the points. Additionally, NURBS curve
allows to model the circle shape almost exactly (the radius of the circle is almost equal in
each point of curve, using the weights value equal to 0.707 and the curve of second degree
only (Fig. 1). Such way of modeling allows for very easy and quick modification of the
curve.

Another, very important part, which determine the shape of NURBS curve, are knots.
Knots divide the curve into segments which define the shape. The impact of two values
of knot vector on the curve shape (with shapes of corresponding base functions N ) are
presented in Fig. 2. Similarly as in previous example point P0 = P8. Presented curve is
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Fig. 1 Impact of weights on the
shape of a closed curve
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defined by the following vector of knots: (0, 0, 0, 0.25, 0.25, a, b, 0.75, 0.75, 1, 1, 1), where
knots described as a and b are varied to show their impact on the curve.

First case a = b = 0.5 (Fig. 2a) presents the multiple knots, where the curve intersects
particular control points. The number of intersected control points and how many times the
value of knot should be repeated is strictly connected with the degree of the base functions.
For example, in case of second degree curve, we should use doubled knots. Exceptions are
knots at the start and at the end of the curve, which ensure closure of the curve. In this case,
the number of the same values of knots are increased by one.

The next case a = 0.47, b = 0.53 (Fig. 2b) presents the division of the curve section
(between points P2 and P6) into three subsections (0.25, 0.47), (0.47, 0.53) and (0.53, 0.75).
In this case, the curve no longer intersects the point P4. In the next case (0.36, 0.5) (Fig. 2c),
we can notice unsymmetrical shape of this curve section as well as of its base functions.
The last case a = 0.36, b = 0.64 (Fig. 2d) is defined similarly to the second one, but
with increased central subsection. We should note, that knots are another tool which makes
modeling and modification of the curve much easier.

As presented in Fig. 2, the boundary was modeled by continuous closed NURBS curve,
defined in parametric space with parameter t (0 ≤ t ≤ 1). The endpoints of each segment
are defined by knots. Multiple knots have an impact on continuity of the curve in points
of segments join. Direct application of such way of boundary modeling in BIE results in
automatic adaptation of BIE to modified boundary. It is impossible using NURBS curves
to define boundary elements (previously obtained in process of boundary discretization).
Therefore, the aim of this paper is an analytical application of presented effective way of
boundary modeling instead of boundary integral in classical BIE.

3 The strategy of analytical inclusion of NURBS curves into mathematical
formulas of BIE

We consider a problem described by 2-dimensional Laplace’s equation defined in domain Ω

and bounded by boundary S. BIE for Laplace’s equation can be represented by the integral
identity (Banerjee and Butterfield 1981; Burczyński and Fedeliński 1991):

u(x) =
∫

S

U (x, y)p(y)dS(y) −
∫

S

u(y)Pk(x, y)nk(y)dS(y), (3)
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(a) 0.5, 0.5

(b) 0.47, 0.53

(c) 0.36, 0.5

(d) 0.36, 0.64

P0

P1 P2
P3

P4

P5
P6P7

0 0.25 0.5 0.75 1 t

N

0.5

1

0 0.25 0.53 0.75 1 t

N

0.5

1

0.47

0 0.25 0.64 0.75 1 t

N

0.5

1

0.360 0.25 0.5 0.75 1 t

N

0.5

1

0.36

N0
2

N1
2

N2
2 N4

2

N3
2 N5

2 N7
2

N6
2 N8

2

N0
2

N1
2

N2
2

N4
2

N3
2 N5

2

N7
2

N6
2 N8

2

N0
2

N1
2

N2
2

N4
2

N3
2

N5
2

N7
2

N6
2 N8

2

N0
2

N1
2

N2
2

N4
2

N3
2 N5

2

N7
2

N6
2 N8

2

(b)

(d)

(a)

(c)

Fig. 2 Impact of knots on the shape of a closed curve and corresponding N functions

where the value of u(x) depends on the location of x and is given by following expression:

u(x) =

⎧
⎪⎨

⎪⎩

u(x) for x ∈ Ω

αu(x) for x ∈ S

0 for x /∈ Ω

, (4)

where for smooth boundary α = 0.5. If x ∈ S, then formula (3) is the classical boundary
integral equation (BIE).

In identity (3), integrand U (x, y) is known as the fundamental solution for Laplace’s
equation (Burczyński and Fedeliński 1991):

ΔU (x, y) = −δ(x − y) (5)
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and is represented by the following formula (Burczyński and Fedeliński 1991; Brebbia et al.
1984):

U (x, y) = 1

2π
ln
1

r
, (6)

where r = [(x1 − y1)2 + (x2 − y2)2]0.5.
Integrand Pk(x, y) in (3) is the classical singular solution represented by traction kernels

written as follows:

Pk(x, y) = 1

2π

(xk − yk)

r2
, k = 1, 2. (7)

The accuracy of the solutions in domain Ω depends on two factors: (1) approximation
accuracy of the solutions on the boundary and (2) approximation accuracy of the boundary
shape. Hence, it seems reasonable to modify the traditional BIE to separate (in process of
numerical solution) the approximation of boundary from the approximation of unknown func-
tions. In other words, it allows to choose the most convenient methods of boundary modeling
considering its complexity without any intrusion into approximation of boundary functions
and vice versa. Due to the above given reasons, at first, we made analytical modification of
BIE to include the shape of the boundary into mathematical formulas of BIE.

3.1 Analytical modification of classical boundary integral equations (BIE)

To obtain modification of generalized integral identity (3) for 2D potential problemsmodeled
by Laplace’s equation (Zieniuk 2003a, b), we need to apply the Fourier transform. As the
result, we obtained:

û(iξ) =
∫

S

Û (iξ , y)p(y)dS(y) −
∫

S

P̂k(iξ , y)nk(y)u(y)dS(y), (8)

where Û (iξ , y) is the transform of the fundamental solution, whereas P̂k(iξ , y) is the trans-
form obtained in the domain of the Fourier transform, based on fundamental solution. For
Laplace’s equation, these transforms are presented in the following form:

Û (iξ , y) = L(iξ)e−i{ξ1 y1+ξ2 y2}, (9)

P̂k(iξ , y) = −iξk L(iξ)e−i{ξ1 y1+ξ2 y2}, k = 1, 2, (10)

where

L(iξ) = |ξ |−2, |ξ |2 = |ξ21 + ξ22 |. (11)

After substitution (9) and (10) into (8), we obtained the following expression of Fourier
transform in the domain:

û(iξ) = L(iξ) p̃(ξ) + i L(iξ)

2∑

k=1

ξk ũñk(ξ), (12)

where boundary functions p̃(ξ) and ũñk(ξ), k = 1, 2 are represented by means of the
following boundary integrals:
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p̃(ξ) =
∫

S

p(y)e−i{ξ1 y1+ξ2 y2}dS(y), (13)

ũñk(ξ) =
∫

S

u(y)nk(y)e−i{ξ1 y1+ξ2 y2}dS(y). (14)

It should noted, that in Eq. (12), the boundary is separated from the domain. The boundary
is defined in the mathematical formulas of boundary integrals (13) and (14). In our further
considerations integral (14) is used to describe transform ũñk(ξ) on the boundary S. The
unknown identity function u(y) in (14) can be defined by means of the following Fourier
transform:

u(y) = 1

4π2

∫

R2

ei{ω1 y1+ω2 y2}û(iω)dω, ω ≡ (ω1, ω2), (15)

where integrand û(iω) is written as:

û(iω) = α−1
{

L(iω) p̃(ω) + i L(iω)

2∑

k=1

ωk ũñk(ω)

}

. (16)

The formula (16) is particular case of the transform (12) in a smooth boundary.

3.2 The definition of the smooth contour integral by segments

After insertion (15) into (14), we obtained the convolution integral equation in the domain
of the Fourier transform:

ũñk(ξ) =
∫

R2

Kk(ω − ξ )̂u(iω)dω, (17)

where the kernel is:

Kk(γ ) = 1

4π2

∫

S

ei{γ1y1+γ2 y2}nk(y)dS(y), (18)

where γ ≡ {γ1, γ2}, γi = ωi − ξi , while the function û(iω) is presented by the formula (16),
and ξ = ω.

The contour integral in (18) takes into consideration the shape of boundary S. For further
transformation of the above analytical formulas, we need to specify the boundary S. We
assume that the boundary is defined by a finite number of the curved segments Sl (l =
1, 2, . . . , n) with the necessary continuity conditions in points of segments join. During the
process of analytical modification of BIE, we defined these segments using different kinds
of curves widely used in computer graphics (Goshtasby 2005; Mortenson 1985, 1999). The
NURBS curves can be also applied, like in isogeometric analysis (Piegl and Tiller 1997), but
at the level of analytical modification of the identity.

Therefore, considering the boundary geometry (defined by segments) in kernel (18), we
obtain:

Kk(γ ) =
n∑

l=1

K (l)
k (γ ), (19)
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where

K (l)
k (γ ) = 1

4π2

∫

Si

ei{γ1 y1+γ2 y2}n(l)
k (y)dS(y). (20)

Theboundary transforms ũñk(ξ)on the left side of (17)maybe represented in the following
form:

ũñk(ξ) =
n∑

l=1

ũñ(l)
k (ξ), (21)

where

ũñ(l)
k (ξ) =

∫

Sl

e−i{ξ1 y1+ξ2 y2}u(l)(y)n(l)
k (y)dS(y). (22)

We define the boundary transforms p̃(ω) and ũñk(ω) on individual segments on the right
side of (16):

p̃(ω) =
n∑

j=1

p̃( j)(ω), ũñk(ω) =
n∑

j=1

ũñ( j)
k (ω). (23)

After substituting (19), (21) and (23) in (17), we obtain the following system of the
convolution integral equations:

ũñ(l)
k (ξ) =

∫

R2

K (l)
k (ω − ξ)

n∑

j=1

û( j)(iω)dω, (24)

where l = 1, 2, 3, . . . , n, and:

û( j)(iω) = α−1
{

L(iω) p̃( j)(ω) + i L(iω)

2∑

k=1

ωk ũñ
( j)
k (ω)

}

. (25)

Next, we assume that segments Sl(t), which define contours of integrals, are mathemat-
ically defined by parametric functions Sl(t) = [S(1)

l (t), S(2)
l (t)]T with parameter t . Hence,

these functions must be considered in boundary transforms: (20), (22) and (23), in which the
boundary is still defined in a general way by means of segment contour integrals Sl(t).

The kernel (20), for the boundary defined by parametric segments, is described by the
following formula (yi = S(i)

l (t), i = 1, 2):

K (l)
k (γ ) = 1

4π2

tl∫

tl−1

e
i
{
γ1S

(1)
l (t)+γ2S

(2)
l (t)

}

n(l)
k (t)Jl(t)dt, (26)

and integral (22) by the following formula:

ũñ(l)
k (ξ) =

tl∫

tl−1

e
−i

{
ξ1S

(1)
l (t)+ξ2S

(2)
l (t)

}

u(l)(t)n(l)
k (t)Jl(t)dt, (27)

123



Modeling the shape of boundary using NURBS curves… 4843

where tl−1, tl are unique values contained in the knot vector and they mean the beginning
and the end of the segment with index l, respectively. The integrand functions:

u(l)(t) = u(l)[S(1)
l (t), S(2)

l (t)],
n(l)
k (t) = n(l)[S(1)

l (t), S(2)
l (t)],

(28)

were obtained after the substitution of curve segments S(i)
l (t) into variable yi , while Jl(t) is

the Jacobian.

4 Generalized parametric integral equations system (PIES)

After application of the inverse Fourier transform and proper transformations into (24), we
obtained the following formula, which requires further integration:

1

4π2

∫

R2

tl∫

tl−1

ei{ξ1λ1+ξ2λ2}u(l)(t)n(l)
k (t)J j (t)dtdξ

= 1

4π2

∫

R2

∫

R2

1

4π2

tl∫

tl−1

ei{ξ1λ1+ξ2λ2}n(l)
k (t)Jl(t)

×e
i
{
ω1S

(1)
l (t)+ω2S

(2)
l (t)

} n∑

j=1

û( j)(iω)dtdωdξ , (29)

where λi = xi − S(i)
l (t), i = 1, 2.

After integrating both sides of Eq. (29) with respect to ξ , we obtained:

tl∫

tl−1

δ(λ1)δ(λ2)u
(l)(t)n(l)

k (t)Jl(t)dt

= 1

4π2

∫

R2

tl∫

tl−1

δ(λ1)δ(λ2)n
(l)
k (t)e

i
{
ω1S

(1)
l (t)+ω2S

(2)
l (t)

} n∑

j=1

û( j)(iω)dtdω.

(30)

Next, to calculate integral with respect to t , we inserted S(1)
l (t) = k into λ1 =

x1 − S(1)
l (t) and assumed, that t = Φ(k). After differentiation of substitution, we obtained

{S(1)
l [Φ(k)]}dt = dk. Finally, after substitution and integration, the formula (30) is presented

as follows:

δ(λ2)u
(l)[Φ(x1)] = 1

4π2 δ(λ2)

∫

R2

e
i
{
ω1S

(1)
l [Φ(x1)]+ω2S

(2)
l [Φ(x1)]

} n∑

j=1

û( j)(iω)dω, (31)

where λ2 = x2 − S(2)
l [Φ(x1)].

To remove the Dirac distribution δ(λ2) from (31), we calculated integrals on both sides of
the equation with respect to x2. After substitution Φ(x1) = t , Eq. (31) finally is defined as:
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u(l)(t) = 1

4π2

∫

R2

e
i
{
ω1S

(1)
l (t)+ω2S

(2)
l (t)

} n∑

j=1

û( j)(iω)dω, (32)

where l = 1, 2, 3, . . . , n.
Further integration of right side of (32) with respect to ω requires definition of integrand

function û( j)(iω) in explicit form. This function is presented by Eq. (25), where p̃( j)(ω) and
ũñ( j)

k (ω) are defined on segments j similarly like in case of l segments in (27):

p̃( j)(ω) =
s j∫

s j−1

e
−i

{
ω1S

(1)
j (s)+ω2S

(2)
j (s)

}

p( j)(s)J j (s)ds, (33)

ũñ( j)
k (ω) =

s j∫

s j−1

e
−i

{
ω1S

(1)
j (s)+ω2S

(2)
j (s)

}

u( j)(s)n( j)
k (s)J j (s)ds, (34)

where s j−1, s j are unique values contained in the knot vector and they mean the beginning

and the end of the segment with index j , respectively, while p( j)(s) = p( j)[S(1)
j (s), S(2)

j (s)],
u( j)(s) = u( j)[S(1)

j (s), S(2)
j (s)] and n( j)

k (s) = n( j)
k [S(1)

j (s), S(2)
j (s)] is the normal vector. The

value J j (s) is the Jacobian determined by the following formula:

J j (s) =
[(

∂S(1)
j (s)

∂s

)2

+
(

∂S(2)
j (s)

∂s

)2]0.5
. (35)

Normal vectors of segments should be directed outside the domain. Declaration of the seg-
ments is reduced to defining control points, their weights and knots only. The way of defining
these points has an impact on the direction of the normal vector.

After substitution (33) and (34) into (25) and next (25) into (32), we obtained the formula
named parametric integral equation system (PIES) (Zieniuk 2003a, b) in the following form:

αu(l)(t) =
n∑

j=1

s j∫

s j−1

{
U

∗
l j (t, s)p

( j)(s) − P
∗
l j (t, s)u

( j)(s)
}
J j (s)ds,

l = 1, 2, 3, . . . , n, tl−1 ≤ t ≤ tl , s j−1 ≤ s ≤ s j . (36)

where J j is Jacobian (35) and the kernels in formula (36) are represented by functions U
∗
l j

and P
∗
l j .

The first integrand U
∗
l j is represented by the following expression:

U
∗
l j (t, s) = −1

16π4

∫

R2

ei{ω1η1+ω2η2}L(iω)dω, (37)

where

η1 = η1(t, s) = S(1)
l (t) − S(1)

j (s),

η2 = η2(t, s) = S(2)
l (t) − S(2)

j (s).
(38)

After calculation of integral (37), we obtained an expression in an explicit form, which
include the shape of boundary into its formulas (by function η(t, s) of two parameters t and
s):
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U
∗
l j (t, s) = 1

2π
ln
1

η
, η = η(t, s) = [

η21 + η22
]0.5

. (39)

As a result of derivations, there were attempts to present (39) in the same form as classical
fundamental solution. Nevertheless, in Eq. (39), η1 and η2 are not simply variables like in
fundamental solution, but they are functions of parameters t and s, like it is presented in (38).
Therefore, Eq. (39), contrary to fundamental solution, include the shape of boundary into its
formulas and was called as a fundamental boundary solution.

The second integrand P
∗
l j in (36) is represented by:

P
∗
l j (t, s) = −i

16π4

∫

R2

ei{ω1η1+ω2η2}L(iω)ωk ñk(ω)dω, (40)

where η1, η2 is given by (38).
After substitution in (40) integrand function L(iω) = L(iξ) (11) (where ω = ξ ) and after

integration, we finally obtained:

P
∗
l j (t, s) = 1

2π

η1n
( j)
1 + η2n

( j)
2

η2
, (41)

where n( j)
k = n( j)

k (s), (k = 1, 2) are the components of normal vector to segment j .
Kernels (39) and (41) allow to include in their mathematical formulas the shape of bound-

ary generated by parametric segments l, j = 1, 2, 3, . . . , n. This segments are defined in
Cartesian coordinates by η(t, s) = [η21 +η22]0.5 and the relations (38), where S(1)

j (s), S(2)
j (s)

are scalar components of the segments S j (s) = [S(1)
j (s), S(2)

j (s)]T and depends on
parameter s.

In PIES, indexes l, j = 1, 2, 3, . . . , n allow to define relationship between boundary
segments of considered boundary value problems. In this paper, we define the shape of
boundary in PIES by NURBS segments. Relationship between segments, that model closed
boundary, was presented by integral equations system. However, PIES was not defined on
boundary like classical BIE, but in the domain of boundary definition (means 0 ≤ t, s ≤ 1).

An important advantage of such modeling is that for any shape of the boundary modi-
fication (as is shown in Sect. 7) it will be defined always in the same domain. This is the
domain of NURBS curve definition, which model closed boundary. In other words, PIES is
automatically adapted to modified shape of boundary without any additional computations.
The modification is connected with the change of control points, their weights and knots
only, like in Sect. 2. These changes result in automatic adaptation of PIES to new shape of
boundary, because NURBS curves are directly included into mathematical formulas of PIES.

Solution of PIES is reduced to finding boundary functions defined on NURBS segments
(included into PIES kernels). Development of global algorithm of solving PIES is much
easier, because PIES is not defined on boundary contrary toBIE. PIES is defined in parametric
reference system corresponding to domain of NURBS curves, which are used to define the
boundary.

5 Modification of integral identity for solutions in domain

After PIES solution, we obtain only solutions on boundary. To obtain solutions in the domain,
proper adaptation of (12) is required, where boundary integrals p̃( j)(ξ) and ũñ( j)

k (ξ) are
represented similarly to (23). Finally Eq. (12) is presented as follows:
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û(iξ) =
n∑

j=1

{

L(iξ) p̃( j)(ξ) + i L(iξ)

2∑

k=1

ξk ũñ
( j)
k (ξ)

}

, (42)

where

p̃( j)(ξ) =
s j∫

s j−1

e
−i

{
ξ1S

(1)
j (s)+ξ2S

(2)
j (s)

}

p( j)(s)J j (s)ds, (43)

ũñ( j)
k (ξ) =

s j∫

s j−1

e
−i

{
ξ1S

(1)
j (s)+ξ2S

(2)
j (s)

}

u( j)(s)n( j)
k (s)J j (s)ds, (44)

and s j−1, s j are unique values contained in the knot vector. They mean the beginning and
the end of the segment with index j , respectively.

After the inverse Fourier transform of (42), we obtained the following expression:

u(x) =
n∑

j=1

s j∫

s j−1

{

Û
∗
j (x, s)p

( j)(s) − P̂
∗
j (x, s)u

( j)(s)

}

J j (s)ds. (45)

The first integrand Û
∗
j (x, s) takes the following form:

Û
∗
j (x, s) = 1

2π
ln

1
←→r , (46)

where ←→r = ←→r (x, s) = [←→r 2
1 + ←→r 2

2]0.5, ←→r i = ←→r i (x, s) = xi − S j (s) and i = 1, 2.

The second integrand P̂
∗
j in (45) is represented by the following expression:

P̂
∗
j (x, s) = 1

2π

←→r 2
1n1 + ←→r 2

2n2←→r 2
. (47)

6 Numerical solution of PIES

Mathematical formulas of PIES is defined in the parametric domain of parametric segments.
They theoretically described the shape of the boundary. The separation of approximation of
the shape of boundary from the approximation of the boundary functions makes possibility to
consider these problems independently. To solve PIES, we can use one of methods dedicated
to solving the classical singular integral equations. We should remember that first we must
define the boundary in PIES.

Solution of PIES (36) is reduced to approximation of the boundary functions p( j)(s) and
u( j)(s) defined on following segments with index j . The given boundary conditions as well
as searched boundary functions are approximated on each segment by the following series:

p( j)(s) =
M−1∑

r=0

p( j)
r T ( j)

r (s), u( j)(s) =
M−1∑

r=0

u( j)
r T ( j)

r (s), (48)

where

– p( j)(s), u( j)(s)—are the given or searched coefficients,
– M—is the number of terms in the series defined in the parametric domain of the segment,
– T ( j)

r (s)—are chosen basis functions—Chebyshev polynomials.
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6.1 The approximation of PIES

After substituting (48) into (36), we obtained approximated expression of PIES for smooth
boundary (where α = 0.5) in the following form:

0.5
M−1∑

r=0

u(r)
l T (r)

l (t) =
n∑

j=1

M−1∑

r=0

⎧
⎪⎨

⎪⎩
p( j)
r

s j∫

s j−1

U
∗
l j (t, s)

−u( j)
r

s j∫

s j−1

P
∗
l j (t, s)

⎫
⎪⎬

⎪⎭
T (r)
j (s)J j (s)ds, l = 1, 2, 3, . . . , n, (49)

where integrands U
∗
l j (t, s), P

∗
l j (t, s) are represented by formulas (39) and (41).

To solve numerically formula (49), pseudospectral method is used. After applying (49)
for all collocation points t (c), located in the parametric segments tl−1 < t (c) < tl of Sl(l =
1, 2, 3, . . . , n), we obtained the system of algebraic equations in the following form:

Hu = Gp. (50)

The size of the system depends on the number of collocation points. After solving (50), we
obtained values of coefficients of terms (48), represented by vectors [hl j ] or [gl j ] (according
to posed boundary conditions).

The elements ofmatricesH andG are calculated on the basis of the following expressions:

[hl j ] = 0.5δl j

M−1∑

r=0

T (r)
l (t (c)) +

M−1∑

r=0

s j∫

s j−1

P
∗
l j (t

(c), s)T (r)
j (s)J j (s)ds, (51)

[gl j ] =
M−1∑

r=0

s j∫

s j−1

U
∗
l j (t

(c), s)T (r)
j (s)J j (s)ds. (52)

The matrix elements in (50) requires the calculation of strongly and weak singular inte-
grals. After taking into account the boundary conditions in (50) and solving the algebraic
system of equations, we obtained the unknown coefficients u( j)

r or p( j)
r on individual segment

of the boundary.

6.2 Approximation of integral identity for solutions in domain

After solving equations (50), we obtained solutions on the boundary. Solutions in the domain
Ω at point x = (x1, x2) are computed by integral identity (45). After substituting approxi-
mating series (48) into (45), we obtained the identity in the following form:

u(x) =
n∑

j=1

M−1∑

r=0

⎧
⎪⎨

⎪⎩
p( j)
r

s j∫

s j−1

Û
∗
j (x, s) − u( j)

r

s j∫

s j−1

P̂
∗
j (x, s)

⎫
⎪⎬

⎪⎭
T (r)
j (s)J j (s)ds. (53)

The integrands Û
∗
j (x, s), P̂

∗
j (x, s) are represented by (46) and (47). To determine the

solution in the domain, we need to take into account in the formula (53) only coefficients
u( j)
r and p( j)

r for each segment which model the boundary.
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Fig. 3 Boundary of rectangular domain modeled by closed NURBS curve of a first, b second, c third, degree

7 Testing examples

The developed strategy of generalized PIES should be tested in respect of modeling and
solving boundary value problemaccuracy. First,we decided to compare the solutions obtained
using NURBS with solutions obtained formerly in PIES (for linear segments and B-spline
curves).We also verified the efficiency of boundary shapemodification usingNURBS curves.
For this purpose, we were changing the location of control points, their weights and knots of
the NURBS curve. Obtained solutions were compared with analytical ones. The mentioned
tests, on examples of different boundary value problems, were presented below.

7.1 Comparison of the PIES solutions between application of linear segments and
NURBS curves

First, to verify the correctness of boundary shape modeling in PIES by NURBS curves, we
considered example of rectangular domain. modeling of such shape by linear segments as
well as by NURBS curves should be made with the same accuracy. In Fig. 3, we present
the boundary modeling of such domain by NURBS curves of first, second and third degree.
Additionally, we present corresponding normalized B-spline blending functions N .

The weights, in each case (Fig. 3a–c), are equal to one. The vector of knots, for the curve
of first degree, is defined as: (0, 0, 0.25, 0.5, 0.75, 1, 1), for the curve of second degree: (0,
0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1) and for the curve of third degree (0, 0, 0, 0,
0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1). Then, we consider the boundary
value problem with the boundary conditions presented in Fig. 4. We present not only control
points, but also points in domain in which the solutions were obtained.

In Table 1, we presented the solutions of above example (Fig. 4). Solutions are obtained
for different degree of NURBS curves, as shown in Fig. 3 and for linear segments (points
are defined like in Fig. 4) (Zieniuk 2002). The accuracy of the linear segments as well as the
NURBS segments modeling in this case should be the same. Therefore, obtained solutions
(presented in Table 1) are almost the same.
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Fig. 4 Definition of tested
boundary value problem: shape
of boundary and boundary
conditions

1 50

1

7

x1

x2

u
002

= u
0

=

p = 0

p = 0

Table 1 Verification of obtained
solutions in the domain

x y PIES (linear) PIES (NURBS)

I degree II degree III degree

2 5.5 150 150.006 150.006 150.006

3 4 100.003 100.003 100.003 100.003

4 2.5 50.0047 50.002 50.002 50.002

7.2 Comparison of PIES solutions between application of B-spline
and NURBS curves

Next, we check the impact of curvilinear shape modeling accuracy on accuracy of PIES
solutions. For this purpose,we considered curvilinear example presented inHromadka (1987)
based on Laplace’s equation. In this example, on elliptical boundary x21/a

2 + x22/b
2 = 1, the

following Dirichlet boundary conditions were defined:

u(x) = 0.5
(
x21 + x22

)
. (54)

Analytical solutions, for so-defined problem, are presented in Hromadka (1987) in the
following form:

u(x) = x21 + x22
2

− a2b2
( x21
a2

+ x22
b2

− 1
)

a2 + b2
. (55)

The way of the boundary shape modeling, using classical B-spline curves and NURBS
curves, was presented in Fig. 5. Previously in PIES, to define curvilinear shape of boundaryB-
spline curves were used (Zieniuk 2007). These curves, as it is presented in Fig. 5a, are defined
by the de Boor’s approximation control points Di (i = 0, 1, . . . 7). However, in practice, such
shape of boundarymodeling by approximating points is quite difficult. Therefore, only points
located on boundary are defined Pi (i = 0, 1, . . . 7) and then de Boor’s control points were
calculated Di (i = 0, 1, . . . 7).

In case of NURBS curves (Fig. 5b), to model the boundary shape, we should define the
points Pi (i = 0, 1, . . . 7), where only Pi (i = 0, 2, 4, 6) are located on boundary. In addition,
weights wi (i = 0, 1, . . . 7) for each point and knots vector (0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4)
are defined. In this example, normalized B-spline blending functions are the same as those
presented in Fig. 3b. The only difference is the location of control points. Additionally, in
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Fig. 5 The example of modeling the boundary shape using a B-spline curves, b NURBS curves

Table 2 Solutions of tested boundary value problem: analytical (ua), BEM, PIES using B-spline and NURBS
curves

(x, y) ua PIES NURBS Error (%) PIES B-spline Error (%) BEM Error (%)

(0, 0) 0.8 0.79999 0.0013 0.80038 0.04812 0.80168 0.16279

(0.5, 0) 0.875 0.8750 0.00274 0.87532 0.03668 0.87651 0.15254

(1, 0) 1.1 1.09996 0.0036 1.09968 0.02909 1.10056 0.11489

(1.5, 0) 1.475 1.4750 0.00136 1.47281 0.14847 1.47376 0.05465

(0, 0.25) 0.7813 0.7813 0.00064 0.78162 0.04787 0.78295 0.16131

(1.5, 0.25) 1.4563 1.4562 0.00137 1.45434 0.13116 1.4541 0.0981

(0, 0.5) 0.725 0.7250 0.00193 0.72534 0.04717 0.72668 0.15326

(0.5, 0.5) 0.8 0.8000 0.00363 0.80054 0.06762 0.8011 0.18976

(1, 0.5) 1.025 1.0249 0.00878 1.02559 0.05756 1.02602 0.13439

(0, 0.75) 0.6313 0.6313 0.00792 0.63148 0.03644 0.63252 0.08259

Average relative error (%) 0.00333 0.06502 0.13043

case of points P1, P3, P5 and P7 we define weights w1 = w3 = w5 = w7 = 0.707 to
improve the accuracy of the elliptical boundary modeling. In B-spline application (Zieniuk
2007) the third degree curves were used, while in NURBS the second degree curve only.

PIES solutions for both ways of modeling with BEM and analytical solutions were pre-
sented in Table 2. Additionally, in Table 2, we present percentage relative error of numerical
solutions in domain with respect to analytical solutions.

Average relative error of PIES solutions, in comparison to analytical ones, is much smaller
in case of NURBS curves application than in B-spline curves. BEM often used linear shape
functions and it is assumed, that for the engineering purposes obtained solutions are satis-
factory. However, based on presented tests, we should noted that the accuracy of boundary
shape modeling has an significant impact on the accuracy of obtained solutions. Therefore,
it is reasonable to use contemporary methods of the boundary shape modeling.

7.3 Modification of the boundary using control points and weights

Next, the authors were focused on the opportunities connected with the inclusion of NURBS
curves into mathematical formulas of PIES, i.e., easy and convenient way of modeling as
well as modifying the shape of boundary in PIES. The mathematical formulas of PIES
automatically adapts to the changes of input values such as control points, their weights
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Fig. 6 Examples of modeling and modifying the shape of boundary using NURBS curves

and knots. First, to illustrate easiness of the boundary shape modification, we considered
examples presented in Fig. 6.

Presented examples are obtained as a result of elliptic shape modifications (Fig. 5) using
control points and their weights. Therefore, the shape is still defined as closed curve of
second degree. We decided to change only control points and their weights. The knot vector
remains the same. Therefore, functions N are presented similarly to ones in Fig. 3b. In Fig. 6
we marked knots and only these weights, which values are different than one. In Fig. 6a
the weights of points P1 and P7 are equal to 1. In the next example, presented in Fig. 6b,
to shift the curve closer to points P1 and P3, their weights were increased to 3. The other
modifications, necessary to obtain these shapes presented in Fig. 6 from ellipse (Fig. 5b),
assumed changes of coordinates of control points only.

To verify the accuracy of more sophisticated shapes modeling, we decided to compare
PIES solutions of boundary value problem with analytical ones. Boundary shape definitions
of the examples were presented in Fig. 6. The boundary value problems were modeled by
Laplace’s equation. We used the function:

u(x) = x21 − 5x2 + x1 − x22 , (56)

which satisfies Laplace’s equation. Based on this function we can obtain the Dirichlet and
Neumann boundary conditions for any considered shape of boundary.

In examples presented in Fig. 6, we considered the Dirichlet boundary conditions u(x).
Solutions in the domain were obtained in the same cross-section, where x2 = 3.5 and x1 was
changed from 1.5 to 6.5. The points of cross-section are presented in Fig. 6. The analytical
solutions (ua) and PIES ones (Fig. 6a, b) are presented in Table 3.

7.4 Modification of the boundary using control points, weights and knots

Solutions of problems presented in Fig. 6 were satisfactory. Therefore, we decided to tests
examples, where all of NURBS curve input data (control points, their weights and knots
vector) were changed. Such modification (based on ellipse, as well) and corresponding N
functions are presented in Fig. 7.

Both shapes are defined by the same weights values except for points P1 and P5. To shift
the curve closer to points P1 and P5 we increased their weights to value 3 (Fig. 7a) and to
value 5 (Fig. 7b). Next difference between shapes presented in Fig. 7a, b is the location of
P1 and P5 control points and changes of some values in knots vector. Double knots t3−4 and
t5−6 in Fig. 7a have been changed in Fig. 7b to single knots t3, t4, t5 and t6. The impact of
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Table 3 Comparison between
analytical (ua) and PIES
solutions of problems presented
in Fig. 6

x ua Fig. 6a Error (%) Fig. 6b Error (%)

1.5 −26 −25.999 0.00 −25.980 0.08

2 −23.75 −23.750 0.00 −23.732 0.08

2.5 −21 −21.000 0.00 −20.961 0.18

3 −17.75 −17.750 0.00 −17.656 0.53

3.5 −14 −14.000 0.00 −13.926 0.53

4 −9.75 −9.750 0.00 −9.824 0.76

4.5 −5 −5.000 0.01 −5.107 2.13

5 0.25 0.250 0.09 0.261 4.38

5.5 6 6.001 0.02 6.022 0.37

6 12.25 12.251 0.01 12.222 0.23

6.5 19 19.006 0.03 18.990 0.05

Average relative error 0.01 0.85

P2
P3
P4 P5, w=5

P1, w=5
P7,w=0.707

P6

P0

3 4 5 6 7 8 9

1

3

2

4

5

6
t t, 9-110-2

t3

t7-8
x1

x2

t4

t6
t5

(a) (b)

0.5 1 1.5 2 2.5 3 3.5 4 ti
0.1

0.3
0.2

0.4
0.5
0.6
0.7
0.8
0.9
1
Ni

2

0.5 1 1.5 2 2.5 3 3.5 4 ti
0.1

0.3
0.2

0.4
0.5
0.6
0.7
0.8
0.9
1
Ni

2

P2
P3
P4 P5, w=3

P1, w=3 P7, w=0.707

P6

P0

1 21 2 3 4 5 6 7 8 9

1

3

2

4

5

6
t t, 9-110-2

t3-4

t5-6

t7-8
x1

x2

Fig. 7 Examples of modification of boundary using the NURBS curves with corresponding N functions

such modification on the N functions we present under corresponding examples in Fig. 7.
We should noted, that N functions for other values of knots (t7−11) remained unchanged.

In next example (Fig. 8a) we changed the weight of the point P1 into value 3. Other
weights did not modify the shape, therefore all of them were equal to 1. To smooth the curve
in points P2, P4 and P6, three double knots were split into six single knots. Therefore, the
curve does not intersect points P2, P4 and P6, contrary to the case of double knots. In the
example presented in Fig. 8b the weight of P1 was also increased (w1 = 3), while the weight
of P6 remained unchanged. Other weights did not modify the shape, therefore all of them
were equal to 1, as well. This example presents splitting of two double knots in points P2
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Fig. 8 Modification of the shape by NURBS curves and corresponding N functions

and P6. Therefore, the curve does not intersect these two points. This results in a smooth
connection between segments.

Abovementioned examples clearly present, that NURBS curve is an easy tool for defining
linear as well as curvilinear segments of the boundary shape using only one closed curve. In
addition, changes of values in knots vector are shown as the chart of N functions (respectively
to shapes in Figs. 7 and 8). To verify the modeling as well as implementation of NURBS
curves in PIES, we solved boundary value problems presented in Figs. 7 and 8. The Dirichlet
boundary conditions were defined by (56). Obtained solutions in domain, in cross-section
shown in Figs. 7 and 8 as dotted line, are presented in Table 4.

In case of all examples presented in Figs. 6, 7 and 8 the average relative error of PIES
solutions in domain, with respect to analytical solutions, is very small. We should noted,
that numerical solutions of PIES almost match the analytical solutions, even in the case of
more sophisticated shapes of the boundary. Therefore, application of NURBS curves into
mathematical formulas of PIES, results in high accuracy of solutions as well as more accurate
shape of boundary modeling. In addition, it seems to be very easy and functional tool for
modeling and modification of the boundary shape.

8 Conclusions

In this paper, as result of NURBS curves insertion (widely applied for the shape of boundary
modeling) directly into mathematical formulas of classical BIE, the generalized PIES were
obtained. It is a differentway comparing to known from literature application ofNURBSat the
stage of numerical solution of BIE (called as isogeometric modeling in BEM). Application
of NURBS curves in mathematical formulas of generalized PIES have a great advantage
over direct application of curves to define boundary elements. The changes of the shape of
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Table 4 Comparison between analytical (ua) and PIES solutions of problems presented in Figs. 7 and 8

x ua Fig. 7a Error (%) Fig. 7b Error (%) Fig. 8a Error (%) Fig. 8b Error (%)

1.5 −26 −26.090 0.35 −25.953 0.18 −26.003 0.01 −25.972 0.11

2 −23.75 −24.146 1.67 −23.812 0.26 −23.951 0.85 −23.732 0.08

2.5 −21 −21.372 1.77 −21.065 0.31 −21.284 1.35 −20.976 0.11

3 −17.75 −17.919 0.95 −17.750 0.00 −17.414 1.89 −17.684 0.37

3.5 −14 −14.033 0.24 −13.994 0.04 −13.492 3.63 −13.906 0.67

4 −9.75 −9.7490 0.01 −9.754 0.04 −9.957 2.13 −9.713 0.38

4.5 −5 −5.0001 0.00 −5.000 0.01 −5.202 4.05 −5.038 0.76

5 0.25 0.250 0.02 0.250 0.07 0.292 16.62 0.214 14.46

5.5 6 6.0001 0.00 6.000 0.01 6.009 0.14 5.999 0.02

6 12.25 12.250 0.00 12.250 0.00 12.237 0.10 12.261 0.09

6.5 19 19.012 0.06 19.012 0.06 18.974 0.14 19.006 0.03

Average relative error 0.46 0.09 2.81 1.55

boundary in PIES, using control points, theirweights and knots, result in automatic adaptation
of PIES to modified shape of boundary.

Proposed application of NURBS curves in PIES allows us to define the shape of boundary
more accurately. We have noted a significant increase in accuracy of obtained solutions com-
paring to ones previously obtained by application of B-spline curves in PIES. Additionally,
for modeling ellipse we can use the second degree NURBS curve only, while in case of B-
spline curves cubic segments should be used. Next advantage is the opportunity of modeling
of continuous shape of boundary using only one closed curve. Therefore, the application
of NURBS in PIES increased the accuracy of modeling of the shape of boundary (it also
increase the accuracy of the solutions), as well as creates opportunity of easy and uniform
way of defining the shape of boundary.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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