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Abstract The time-fractional heat conduction equation with the Caputo derivative and with
heat absorption term proportional to temperature is considered in a sphere in the case of
central symmetry. The fundamental solution to the Dirichlet boundary value problem is
found, and the solution to the problem under constant boundary value of temperature is
studied. The integral transform technique is used. The solutions are obtained in terms of
series containing the Mittag-Leffler functions being the generalization of the exponential
function. The numerical results are illustrated graphically.
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1 Introduction

The classical parabolic heat conduction equation with the source term proportional to tem-
perature

∂T

∂t
= a�T − bT (1)
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was considered, e.g., in Carslaw and Jaeger (1959), Crank (1975), Nyborg (1988), Polyanin
(2002). Here, T is temperature, t is time, a stands for the thermal diffusivity coefficient, �
denotes the Laplace operator, the coefficient b describes the heat absorption (heat release).

In the last few decades, differential equations with derivatives of non-integer order attract
the attention of the researchers as such equations provide a very suitable tool for description
of many important phenomena in physics, geophysics, chemistry, biology, engineering and
solid mechanics (see, for example, Gafiychuk et al. 2008; Herrmann 2011; Magin 2006;
Mainardi 2010; Povstenko 2015a; Sabatier et al. 2007; Tarasov 2010; Tenreiro Machado
2011; Uchaikin 2013).

In this paper, we consider the time-fractional equation

∂αT

∂tα
= a�T − bT, 0 < α ≤ 1, (2)

where

dα f (t)

dtα
=

⎧
⎪⎪⎨

⎪⎪⎩

1

Γ (m − α)

∫ t

0
(t − τ)m−α−1 d

m f (τ )

dτm
dτ, m − 1 < α < m,

dm f (t)

dtm
, α = m,

(3)

is the Caputo fractional derivative (Kilbas et al. 2006; Podlubny 1999).
Equation (2) results from the time-nonlocal generalization of the Fourier law with the

“long-tail” power kernel. Such a generalization can be interpreted in terms of derivatives and
integrals of non-integer order. Equation (2) takes into consideration the memory effects with
respect to time. The interested reader is also referred to Povstenko (2011, 2015a).

In the literature, there are papers devoted to investigation of Eq. (2) in the case of one
Cartesian spatial coordinate (Damor et al. 2016; Ferrás et al. 2015; Qin and Wu 2016; Vitali
et al. 2017). Here, we study Eq. (2) in a spherical domain 0 ≤ r < R in the case of central
symmetry under Dirichlet boundary condition.

The paper is organized as follows. In Sect. 2, we find the fundamental solution to the
Dirichlet boundary value problem using the Laplace transform with respect to time t and
the finite sin-Fourier transform with respect to the spatial coordinate r . The corresponding
problem under constant boundary value of temperature at the surface r = R is investigated
in Sect. 3. In both cases, the numerical results are illustrated graphically. Conclusions are
presented in Sect. 4.

2 The fundamental solution to the Dirichlet problem

We consider the time-fractional heat conduction equation with heat absorption term in spher-
ical coordinates in the case of central symmetry

∂αT (r, t)

∂tα
= a

[
∂2T (r, t)

∂r2
+ 2

r

∂T (r, t)

∂r

]

− bT (r, t), (4)

in the domain 0≤r < R, 0< t<∞with a>0 and the order of the Caputo derivative 0<α≤1.
Equation (4) is studied under zero initial condition

t = 0 : T (r, t) = 0 (5)

and the Dirichlet boundary condition

r = R : T (r, t) = p0δ(t) (6)
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with δ(t) being the Dirac delta function. The constant multiplier p0 is introduced in (6) to
obtain the non-dimensional quantities used in numerical calculations [see Eq. (17)].

In the general case, the Caputo fractional derivative has the following Laplace transform
rule

L
{
dα f (t)

dtα

}

= sα f ∗(s) −
m−1∑

k=0

f (k)(0+)sα−1−k, m − 1 < α < m, (7)

where the asterisk denotes the Laplace transform, s is the transform variable.
In what follows, we will use the finite sin-Fourier transform with respect to the spatial

coordinate r in the domain 0 ≤ r ≤ R (see, for example, Povstenko 2015b):

F{ f (r)} = f̃ (ξk) =
∫ R

0
r f (r)

sin(rξk)

ξk
dr (8)

with the inverse transform

F −1{ f̃ (ξk)} = f (r) = 2

R

∞∑

k=1

ξk f̃ (ξk)
sin(rξk)

r
, (9)

where

ξk = kπ

R
. (10)

This transform is the convenient reformulation of the sin-Fourier series and is used for
Dirichlet boundary condition with the prescribed boundary value of a function, since for the
Laplace operator in the case of central symmetry we have

F
{
d2 f (r)

dr2
+ 2

r

d f (r)

dr

}

= −ξ2k f̃ (ξk) + (−1)k+1R f (R). (11)

Applying the integral transforms to (4) under the initial condition (5) and boundary con-
dition (6) gives in the transform domain:

T̃ ∗ (ξk, s) = (−1)k+1 ap0R
1

sα + aξ2k + b
. (12)

Inversion of the Laplace and finite sin-Fourier transforms results in the sought-for funda-
mental solution:

T (r, t) = 2ap0tα−1

r

∞∑

k=1

(−1)k+1ξk Eα,α

[− (
aξ2k + b

)
tα

]
sin(rξk). (13)

To obtain (13) the following formula

L−1
{

sα−β

sα + b

}

= tβ−1 Eα,β(−btα) (14)

has been used, where Eα,β(z) is the Mittag-Leffler function in two parameters α and β

described by the series representation (Gorenflo et al. 2014; Kilbas et al. 2006; Podlubny
1999)

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, α > 0, β > 0, z ∈ C. (15)

For b = 0, the fundamental solution Eq. (13) coincides with the solution obtained in
Povstenko (2008, 2015b).
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In the particular case α = 1, the Mittag-Leffler function E1,1(z) = ez ; hence, the funda-
mental solution to the Dirichlet problem for the classical heat conduction equation with heat
absorption has the form

T (r, t) = 2ap0
r

∞∑

k=1

(−1)k+1ξk exp
[− (

aξ2k + b
)
t
]
sin(rξk). (16)

Introducing the non-dimensional quantities

T = t

p0
T, r̄ = r

R
, κ =

√
atα/2

R
, b̄ = btα, ξ̄k = Rξk = kπ, (17)

we get the solution in the general case

T (r̄ , κ) = 2κ2

r̄

∞∑

k=1

(−1)k+1ξ̄k Eα,α

[− (
κ2ξ̄ 2

k + b̄
)]
sin(r̄ ξ̄k) (18)

and for the classical heat conduction

T (r̄ , κ) = 2κ2

r̄

∞∑

k=1

(−1)k+1ξ̄k exp
[− (

κ2ξ̄ 2
k + b̄

)]
sin(r̄ ξ̄k), (19)

respectively.
The results of numerical calculations are shown in Figs. 1, 2, 3, and 4.
Numerical results demonstrate the significant influence of the order of fractional deriva-

tive α and the absorption parameter b on the heat conduction process. When the fractional
derivative of order 0 < α < 1 replaces the standard first-order time derivative in the diffu-
sion (heat conduction) equation, this leads to slow diffusion (see, for example, Chen 2017;
Kimmich 2002; Metzler and Klafter 2004). Figures show evidently the slower diffusion with
decreasing α. Heat absorption also results in slower heat diffusion.

3 The constant boundary value of temperature

Now we solve the time-fractional heat conduction equation with the heat absorption term
under zero initial condition and the Dirichlet boundary condition with the constant boundary
value of temperature:

Fig. 1 The fundamental solution
to the Dirichlet problem; b̄ = 0.5,
κ = 0.25
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Fig. 2 The fundamental solution
to the Dirichlet problem; r̄ = 0.5,
κ = 0.25

Fig. 3 The fundamental solution
to the Dirichlet problem; r̄ = 0.5,
b̄ = 0

Fig. 4 The fundamental solution
to the Dirichlet problem; r̄ = 0.5,
α = 0.5

∂αT (r, t)

∂tα
= a

[
∂2T (r, t)

∂r2
+ 2

r

∂T (r, t)

∂r

]

− bT (r, t), (20)

t = 0 : T (r, t) = 0, (21)

r = R : T (r, t) = T0. (22)

As above, the Laplace transform with respect to time t and the finite sin-Fourier transform
with respect to the spatial coordinate r give the solution in the transform domain:
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T̃ ∗ (ξk, s) = (−1)k+1 aT0R
1

s
(
sα + aξ2k + b

) . (23)

In connection with

1

s
(
sα + aξ2k + b

) = 1

aξ2k + b

(
1

s
− sα−1

sα + aξ2k + b

)

, (24)

we obtain

T̃ ∗ (ξk, s) = (−1)k+1 aT0R
1

aξ2k + b

(
1

s
− sα−1

sα + aξ2k + b

)

(25)

and after inverting the integral transforms we arrive at

T (r, t) = 2aT0
r

∞∑

k=1

(−1)k+1 ξk

aξ2k + b

{
1 − Eα

[− (
aξ2k + b

)
tα

]}
sin(rξk). (26)

In this case Eα(z) is the Mittag-Leffler function in one parameter α having the series
representation

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C. (27)

Taking into account the following series (Prudnikov et al. 1986)

∞∑

k=1

(−1)k+1 k

k2 + c2
sin(kx) = π

2

sinh(xc)

sinh(πc)
, (28)

we get

T (r, t) = T0R
r

{
sinh(r

√
b/a)

sinh(R
√
b/a)

− 2

R

∞∑

k=1

(−1)k+1 ξk

ξ2k + b/a
Eα

[− (
aξ2k + b

)
tα

]
sin (rξk)

}

.

(29)

The advantage of the solution (29) is that the first term satisfies the boundary condition (22),
whereas the second term vanishes at r = R.

Fig. 5 Solution to the Dirichlet
problem with the constant
boundary value of temperature;
b̄ = 0.1, κ = 0.25
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In terms of non-dimensional quantities, we have

T (r̄ , κ) = 1
r̄

{
sinh

(
r̄
√
b̄/κ

)

sinh
(√

b̄/κ
)

− 2κ2
∞∑

k=1

(−1)k+1 ξ̄k

ξ̄2k + b̄
Eα

[− (
κ2ξ̄ 2

k + b̄
)]
sin

(
r̄ ξ̄k

)
}

,

(30)

where T = T/T0, other non-dimensional parameters are the same as in (17).

Fig. 6 Solution to the Dirichlet
problem with the constant
boundary value of temperature;
r̄ = 0.5, κ = 0.25

Fig. 7 Solution to the Dirichlet
problem with the constant
boundary value of temperature;
r̄ = 0.5, b̄ = 0.1

Fig. 8 Solution to the Dirichlet
problem with the constant
boundary value of temperature;
α = 0.5, b̄ = 0.1
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Figures 5, 6, 7, and 8 present the solution (30) for different values on non-dimensional
quantities.

4 Conclusions

In this paper, we have investigated the time-fractional heat conduction equation with the
Caputo derivative of order 0 < α ≤ 1 and the heat absorption term proportional to tem-
perature. The fundamental solution to the Dirichlet boundary problem and the solution to
the problem with constant boundary value of temperature have been found. The solutions
have been obtained in terms of series containing the Mittag-Leffler functions being the gen-
eralization of the exponential function. To evaluate the Mittag-Leffler functions Eα(z) and
Eα,α(z) we have used the algorithms proposed in Gorenflo et al. (2002) (see also the Matlab
programs that implement these algorithmsMatlab File Exchange 2005). The obtained results
can be generalized in the future works for isotropic fractal media within the framework of
the non-integer dimensional space approach.
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