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Abstract In the paper, the class of nonconvex nonsmooth optimization problems with the
quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized
convexity, namely, the concept of r-invexity with respect to a convex compact set is intro-
duced. Several conditions for quasidifferentiable r-invexity with respect to a convex compact
set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir dual-
ity results are established for the considered nonconvex quasidifferentiable optimization
problem under assumption that the functions constituting it are r-invex with respect to the
same function η and with respect to convex compact sets which are equal to Minkowski sum
of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth
extremum problems, the Lagrange multipliers may not be constant.

Keywords Quasidifferentiable optimization problem · Optimality conditions · Mond–Weir
duality · Quasidifferentiable r-invex function with respect to convex compact set
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1 Introduction

Quasidifferential calculus were developed by Demyanov and Rubinov (1980) and have been
studied in more detail in Demyanov and Rubinov (1986). Since then it has been developed
extensively (see, for example, Craven 1986, 2000; Eppler and Luderer 1987; Demyanov and
Rubinov 1981; Gao 2000a, b; Glover 1992; Kuntz and Scholtes 1993; Luderer and Rosiger
1990; Polyakova 1986; Shapiro 1984; Uderzo 2002; Ward 1991; Xia et al. 2005; Yin and
Zhang 1998, and others). This follows from the fact that quasidifferential calculus plays an
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123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-015-0283-7&domain=pdf


1300 T. Antczak

important role in nonsmooth analysis and optimization. Namely, the concept of quasidiffer-
entiability can be employed to study a wide range of theoretical and practical issues in many
fields, for instance, in nonsmooth analysis, economics, optimal control theory, engineering,
mechanics, etc. (see, Demyanov et al. 1986, 1996; Stavroulakis et al. 1995, and others).
Further, the class of quasidifferentiable functions is fairly broad. It contains not only convex,
concave, and differentiable functions but also convex–concave, D.C. (i.e., difference of two
convex), maximum, and other functions. In addition, it even includes some functions which
are not locally Lipschitz continuous.

In most of the above-mentioned works, the necessary optimality conditions have been
established for quasidifferentiable optimization problems only (see, for example, Demyanov
1986; Kuntz and Scholtes 1993; Luderer and Rosiger 1990; Shapiro 1984; Uderzo 2002;
Ward 1991; Xia et al. 2005, and others). Indeed, it is possible to find sufficient optimality
conditions and duality results in some of the above-mentioned papers, but they have been
established under assumption that the objective and constraint functions are directionally dif-
ferentiable (see, for example, Craven 1986, 2000; Demyanov 1986, and others). In this paper,
our approach in proving the sufficiency of the Karush–Kuhn–Tucker necessary optimality
conditions and duality results for the considered quasidifferentiable optimization problem
differs from those ones mentioned above, in which directionally differentiable generalized
convex functions have been used. We define in this paper a new concept of generalized con-
vexity, namely we introduce the concept of r-invexity with respect to a convex compact set.
Then, we prove several conditions for a quasidifferentiable r-invex function with respect
to a convex compact set. However, the main purpose of this article is to prove the suffi-
cient optimality conditions of the Lagrange multiplier type and various duality results in the
sense of Mond–Weir for a new class of nonconvex quasidifferentiable optimization problems
with inequality constraints. We assume in establishing the results mentioned above that the
functions involved in the considered nonconvex nondifferentiable optimization problem are
quasidifferentiable r-invex with respect to the same function η and with respect to convex
compact sets which are equal to Minkowski sum of their subdifferentials and superdifferen-
tials. We illustrate the sufficient optimality conditions established in the paper by an example
of a nonconvex nonsmooth optimization problem with quasidifferentiable r-invex functions
with respect to such convex compact sets and with respect to the same function η. More-
over, we illustrate also the fact that the Lagrange multipliers may not be constant for such
nonconvex nonsmooth optimization problems.

The paper is organized as follows. In Sect. 2, we recall the definition of a scalar quasidif-
ferentiable function and its fundamental property.We introduce a new concept of generalized
convexity, namely, we give the definition of an r-invex function with respect to a convex com-
pact set. Further, we prove several conditions for a quasidifferentiable function to be r-invex
with respect to a convex compact set. In Sect. 3, we formulate the quasidifferentiable opti-
mization problem that we deal with throughout this paper. Further, we prove the sufficiency
of the Karush–Kuhn–Tucker type necessary optimality conditions under assumptions that the
functions constituting the considered quasidifferentiable optimization problem are r-invex
with respect to the same function η and with respect to convex compact sets which are equal
to Minkowski sum of their subdifferentials and superdifferentials. The results established in
this section are illustrated by the example of a nonconvex quasidifferentiable optimization
problem with quasidifferentiable r-invex functions with respect to such convex compact sets
and with respect to the same function η. Further, in Sect. 4, for the considered quasidifferen-
tiable optimization problem, we define its dual problem in the sense of Mond–Weir and we
prove several duality theorems also using the concept of quasidifferentiable r-invexity with
respect to a convex compact set.
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2 Preliminaries

In this section, we provide some definitions that we shall use in the sequel.

Definition 2.1 We say that a mapping f : Rn → R is directionally differentiable at x̄ ∈ R
n

into a direction d ∈ R
n if the limit

f ′(x̄; d) = lim
t↓0

f (x̄ + td) − f (x̄)

t

exists finite. We say that f is directionally differentiable or semi-differentiable at x̄ , if its
directional derivative f ′(x̄ ; d) exists finite for all d ∈ R

n .

Definition 2.2 (Demyanov and Rubinov 1981) A real-valued function f : Rn → R is said to
be quasidifferentiable at x̄ ∈ R

n if f is directionally differentiable and there exists a ordered
pair of convex compact sets D f (x̄) = [∂ f (x̄), ∂ f (x̄)] such that

f ′(x̄; d) = max
v∈∂ f (x̄)

vT d + min
w∈∂ f (x̄)

wT d, (1)

where ∂ f (x̄) and ∂ f (x̄) are called subdifferential and superdifferential of f at x̄ , respectively.
Further, the ordered pair of sets D f (x̄) = [∂ f (x̄), ∂ f (x̄)] is called quasidifferential of the
function f at x̄ .

Let us note that the pair of sets constituting the quasidifferential to a function f at a certain
point x̄ is not unique, because if D f (x̄) = [∂ f (x̄), ∂ f (x̄)] is a quasidifferential of f at x̄ , then,
for any nonempty compact convex set V, the ordered pair of sets [∂ f (x̄) + V, ∂ f (x̄) − V ]
is also its quasidifferential.

Now, we introduce the concept of r-invexity with respect to a convex compact set.

Definition 2.3 Let f : Rn → R be a real-valued function, x̄ ∈ R
n and S f (x̄) be a nonempty

convex compact subset of Rn . If there exist the vector-valued function η : Rn × R
n → R

n

and a scalar r such that the inequality

1

r
er f (x) ≥ 1

r
er f (x̄)[1 + rωT η(x, x̄)], if r �= 0,

f (x) ≥ f (x̄) + ωT η(x, x̄), if r = 0, (2)

holds for all x ∈ R
n and for all ω ∈ S f (x̄), then f is said to be an r-invex function at x̄ on R

n

with respect to S f (x̄) and with respect to η.
If the inequality (2) is strict for all x ∈ R

n , x �= x̄ , then f is said to be a strictly r-invex
function at x̄ on R

n with respect to S f (x̄) and with respect to η.
If, for each x̄ ∈ R

n , there exists a convex compact subset S f (x̄) of Rn such that the
inequality (2) is satisfied at each x̄ with respect to the same function η, then f is said to be
an r-invex function on R

n with respect to convex compact sets S f (x̄) and with respect to η.
If the inequality (2) is satisfied for all x ∈ X, where X is a nonempty subset of Rn , then f

is r-invex at x̄ on X with respect to the convex compact set S f (x̄) and with respect to η.

Remark 2.1 To define an analogous class of (strictly) r-incave functions with respect to a
convex compact set, the direction of each inequality (2) should be reversed.

Remark 2.2 Note that the definition of a 0-invex function f at x̄ with respect to S f (x̄) and
with respect to η is, in fact, the definition of an invex function with respect to S f (x̄) and with
respect to η.
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Remark 2.3 Note that, in the case when f is a locally Lipschitz function at x̄ and S f (x̄) is
equal to the Clarke subdifferential of f at x̄ (see Clarke 1983), then we obtain the definition
of a locally Lipschitz r-invex function introduced by Antczak (2002). Further, in the case r =
0, we obtain the definition of a locally Lipschitz invex function introduced by Reiland (1990)
(see also Kaul et al. 1994). In the case when f is differentiable, then S f (x̄) = {∇f(x̄)} and
the definition of an r-invex function with respect to the convex compact set S f (x̄) reduces
to the definition of a differentiable r-invex function introduced by Antczak (2005) and in the
case r = 0 to the definition of a differentiable invex function introduced by Hanson (1981).

Remark 2.4 All theorems in the further part of this work will be proved only in the case
when r �= 0 (others cases be dealt with likewise since the only changes arise from the form
of inequality defining the class of r-invex functions with respect to a convex compact set
and with respect to η for a scalar r). The proofs in the case r = 0 are easier than in this one.
This follows from the form of inequalities which are given in the Definition 2.3. Moreover,
without limiting generality of considerations, we shall assume that r > 0 (in the case when
r < 0, the direction of some of the inequalities in the proofs of theorems should be changed
to the opposite one).

Now, we present several necessary and sufficient conditions for a quasidifferentiable r-
invex function with respect to a convex compact set.

In Antczak (2005), using the definition of a weighted r-mean, Antczak introduced the
definition of an r-preinvex function. We recall it for a convenience of a common reader.

Definition 2.4 Let a ∈ R
m , q ∈ R

m be vectors whose coordinates are positive and non-
negative numbers, respectively, and let r be any finite real number. If

∑m
i=1 qi = 1, then a

weighted r-mean is defined as follows

Mr (a; q) := Mr (a1, . . . , am; q) =

⎧
⎪⎪⎨

⎪⎪⎩

(
m∑

i=1
qiari

)1/r

if r �= 0,

m∏

i=1
aqii if r = 0.

Definition 2.5 (Antczak 2005) Let X be a nonempty invex (with respect to η : X×X → R
n)

subset of Rn and f : X → R be a real-valued function defined on X . If there exists a real
number r such that, for all x ∈ X and q1 ≥ 0, q2 ≥ 0, q1 + q2 = 1, the following inequality

f (q1u + q2(η(x, u) + u)) ≤ ln
(
Mr (e

f (u), e f (x); q)
)

holds, then f is said to be an r-preinvex function at u on X with respect to η.

If the above inequality is satisfied at any point u ∈ X with respect to the same function η,
then f is said to be r-preinvex with respect to η on X.

If we adopt q2 = λ for any λ ∈ [0,1] (therefore, q1 + q2 = 1 implies that q1 = 1 − λ),
then the definition of an r-preinvex function with respect to η can be re-written as follows:

f (u + λη(x, u)) ≤
{
ln(λer f (x) + (1 − λ)er f (u))1/r if r �= 0,
λ f (x) + (1 − λ) f (u) if r = 0.

Now, we prove that if f : X → R is an r-preinvex function with respect to η at u ∈ X on X and
f is a quasidifferentiable function at u ∈ X, then it is a quasidifferentiable r-invex function at
u on X with respect to the same function η and with respect to the convex compact set S f (u)

⊂ R
n with S f (u) = ∂ f (u) + w̄, where w̄ ∈ argminw∈∂ f (u) wT η(x, u) for any arbitrary x

∈ X.
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Proposition 2.1 Let X be a nonempty invex (with respect to η) subset of Rn and u ∈ X.
Assume that f : X → R is an r-preinvex function at u ∈ X on X with respect to η and f
is a quasidifferentiable function at u ∈ X. Then, f is a quasidifferentiable r-invex function
at u on X with respect to the same function η and with respect to the convex compact set
S f (u) = ∂ f (u) + w̄, where w̄ ∈ argminw∈∂ f (u) wT η(x, u) for any arbitrary x ∈ X.

Proof Assume that f : X → R is an r-preinvex function at u ∈ X on X with respect to η and,
moreover, r �= 0. Without loss of generality, assume that r > 0. Hence, by Definition 2.5, the
inequality

f (u + λη(x, u)) ≤ ln
(
λer f (x) + (1 − λ)er f (u)

)1/r

holds for all x ∈ X and λ ∈ [0,1]. Thus, we have

er f (x) − er f (u) ≥ er f (u) e
r f (u+λη(x,u))−r f (u) − 1

λ
.

By assumption, f is a quasidifferentiable function at u ∈ X. Then, by Definition 2.2, it follows
that it is directional differentiable at u. By letting λ ↓ 0, we get that the inequality

er f (x) − er f (u) ≥ rer f (u) f ′(u; η(x, u))

holds for all x ∈ X. Thus, the above inequality yields that the inequality

1

r
er f (x) ≥ 1

r
er f (u)[1 + r f ′(u; η(x, u)] (3)

holds for all x ∈ X. Since f is quasidifferentiable, by Definition 2.2, we have that, for any
arbitrary x ∈ X,

f ′(u; η(x, u)) = max
v∈∂ f (u)

vT η(x, u) + min
w∈∂ f (u)

wT η(x, u).

By definition, ∂ f (u) is nonempty and compact. Therefore, for any arbitrary x ∈ X, we
can find w̄ such that w̄ ∈ argminw∈∂ f (u) wT η(x, u). Hence, the relation above implies that
the inequality

f ′(u; η(x, u)) ≥ vT η(x, u) + w̄T η(x, u), ∀v ∈ ∂ f (u) (4)

holds for all x ∈ X. Hence, (3) and (4) yield that the following inequality

1

r
er f (x) ≥ 1

r
er f (u)[1 + rωT η(x, u)], ∀ω ∈ ∂ f (u) + w̄

holds for all x ∈ X. This means, by Definition 2.3, that f is a quasidifferentiable r-invex
function at u on X with respect to S f (u) = ∂ f (u)+ w̄ and with respect to η. This completes
the proof. �


Corollary 2.1 Let X be a nonempty invex (with respect to η) subset ofRn and u ∈ X. Assume
that f : X→ R is an r-preinvex function at u ∈ X on X with respect to η and f is a
quasidifferentiable function at u ∈ X. If ∂ f (u) is a singleton, then f is a quasidifferentiable
r-invex function at u on X with respect to the same function η and with respect to S f (u) =
∂ f (u) + ∂ f (u).

123



1304 T. Antczak

Theorem 2.1 Let u be an arbitrary point of X and f : X → R be a quasidifferentiable r-
invex function at u on X with respect to the set S f (u) = ∂ f (u)+ ∂ f (u). Then, the following
inequality

1

r
er f (x) ≥ 1

r
er f (u)[1 + r f ′(u; η(x, u))], if r �= 0

f (x) ≥ f (u) + f ′(u; η(x, u)), if r = 0 (5)

holds for all x ∈ X.

Proof Let u be an arbitrary point of X. Assume that f : X → R is a quasidifferentiable r-invex
function at u on X with respect to the set S f (u) = ∂ f (u) + ∂ f (u). Then, by Definition 2.3,
the inequality

1

r
er f (x) ≥ 1

r
er f (u)[1 + rωT η(x, u)], if r �= 0,

f (x) ≥ f (u) + ωT η(x, u), if r = 0, (6)

holds for all x ∈ X and for each ω ∈ S f (u) = ∂ f (u) + ∂ f (u). Hence, (6) gives that the
inequality

1

r
er f (x) ≥ 1

r
er f (u)

[
1 + r

(
vT η(x, u) + wT η(x, u)

)]
, if r �= 0,

f (x) ≥ f (u) + vT η(x, u) + wT η(x, u), if r = 0, (7)

holds for all x ∈ X and for any v ∈ ∂ f (u), w ∈ ∂ f (u). Then, for some w(x, u) ∈ ∂ f (u),
(7) yields

1

r
er f (x) ≥ 1

r
er f (u)

[

1 + r

(

max
v∈∂ f (u)

vT η(x, u) + w(x, u)T η(x, u)

)]

, if r �= 0,

f (x) ≥ f (u) + max
v∈∂ f (u)

vT η(x, u) + w(x, u)T η(x, u), if r = 0. (8)

Thus, (8) gives

1

r
er f (x) ≥ 1

r
er f (u)

[

1 + r

(

max
v∈∂ f (u)

vT η(x, u) + min
w∈∂ f (u)

wT η(x, u)

)]

, if r �= 0,

f (x) ≥ f (u) + max
v∈∂ f (u)

vT η(x, u) + min
w∈∂ f (u)

wT η(x, u), if r = 0.

Hence, by Definition 2.1, it follows that the inequality (5) holds for all x ∈ X. This
completes the proof of this theorem. �


Now, we recall the definition of a stationary point of a quasidifferentiable function given
by Demyanov and Vasilev (1985).

Definition 2.6 Let X be a nonempty subset of Rn and f : X → R be a quasidifferentiable
function on X. A point u ∈ X is said to be a stationary point of f if −∂ f (u) ⊆ ∂ f (u).

We now prove the necessary and sufficient optimality conditions for a quasidifferentiable
function f : X → R to be r-invex at each point u of X with respect to the convex compact
set S f (u) = ∂ f (u) + ∂ f (u).
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Theorem 2.2 Let X be a nonempty subset of Rn. A quasidifferentiable function f : X →
R is r-invex at each point u ∈ X on X with respect to S f (u) = ∂ f (u) + ∂ f (u) if and only if
every stationary point of f is its global minimizer on X.

Proof Necessity. Let f be a quasidifferentiable r-invex function at each point u ∈ X on X
with respect to S f (u) = ∂ f (u) + ∂ f (u). Further, assume that u ∈ X is a stationary point of
f. Hence, by Definition 2.6, it follows that −∂ f (u) ⊆ ∂ f (u). Then, it is possible to choose
v ∈ ∂ f (u) such that v = −w ∈ −∂ f (u). Hence, by Definition 2.3, it follows that the
inequality f (x) − f (u) ≥ 0 holds for all x ∈ X. Thus, u is a global minimum of f on X.

Sufficiency. Assume that every stationary point of f is its global minimizer on X. Let x,
u be two arbitrary points of X. If f (x) ≥ f (u), then choose η(x, u) = 0. If f (x) < f (u),
then u cannot be a stationary point. Then, for every w ∈ ∂ f (u), we have, by Definition 2.6,
that 0 /∈ w + ∂ f (u). Note, moreover, that any set w + ∂ f (u) is convex and compact. Let us
denote

ω̂w = min
ωw∈w+∂ f (u)

‖ωw‖ > 0 for all w ∈ ∂ f (u).

Hence, by Theorem 2.4.4 (see Bazaraa and Shetty 1976), we have that

ωT
wω̂w ≥ ω̂T

wω̂w ∀w ∈ ∂ f (u) ∀ωw ∈ w + ∂ f (u). (9)

Then, we set
ω̄w = min

w∈∂ f (u)

∥
∥ω̂w

∥
∥ > 0. (10)

Note that, by (9) and (10), we have that, for any w ∈ ∂ f (u),

ωT
wω̄w ≥ ω̄T

wω̄w ∀ωw ∈ w + ∂ f (u). (11)

Then, it should be taken

η(x, u) =
⎧
⎨

⎩

er( f (x)− f (u))−1
r ω̄T

wω̄w
ω̄w if r �= 0,

f (x)− f (u)

ω̄T
wω̄w

ω̄w if r = 0.

Hence, by (11), it follows that, for any w ∈ ∂ f (u), the following relations

1

r
(er( f (x)− f (u)) − 1) − ωT

wη(x, u) = 1

r
(er( f (x)− f (u)) − 1) − er( f (x)− f (u)) − 1

r ω̄T
wω̄w

ωT
wω̄w

≥ 1

r
(er( f (x)− f (u)) − 1) − er( f (x)− f (u)) − 1

r ω̄T
wω̄w

ω̄T
wω̄w = 0, if r �= 0,

f (x) − f (u) − ωT
wη(x, u) = f (x) − f (u) − f (x) − f (u)

ω̄T
wω̄w

ωT
wω̄w

≥ f (x) − f (u) − f (x) − f (u)

ω̄T
wω̄w

ω̄T
wω̄w = 0, if r = 0

hold for every ωw ∈ w + ∂ f (u). Then, by Definition 2.3, it follows that f is a quasidiffer-
entiable r-invex function at each point u ∈ X on X with respect to S f (u) = ∂ f (u) + ∂ f (u)

and with respect to the function η given above.
Since we choose η(x, u) = 0 in the case f (x) ≥ f (u), therefore, also in this case, by

Definition 2.3, it follows that f is a quasidifferentiable r-invex function at each point u ∈ X
on X with respect to S f (u) = ∂ f (u) + ∂ f (u) and with respect to the function η.

Thus, the proof of this theorem is completed. �
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To illustrate the introduced concept of r-invexity with respect to a convex compact set, we
present an example of a quasidifferentiable r-invex function at a point x̄ with respect to the
convex compact set S f (x̄) = ∂ f (x̄) + ∂ f (x̄), that is, with respect to such a convex compact
set which is equal to Minkowski sum of its subdifferential and superdifferential at this point.

Example 2.1 Let f : R
2 → R be a function defined by f (x) = ln(|x1 + |x2|| + 1).

We show that f is a quasidifferentiable 1-invex function at x̄ = (0,0) on R
2 with respect

to the convex compact set S f (x̄) = ∂ f (x̄) + ∂ f (x̄). First, we show that f is a qua-
sidifferentiable function at x̄ . Indeed, we have f ′(x̄; d) = |d1 + |d2|| . Hence, it can be
proved that f ′(x̄; d) = maxv∈co{(0,0),(−2,2),(2,2)}vT d + minw∈co{(−1,−1),(1,−1)}wT d , where
∂ f (x̄) = co{(0, 0), (−2, 2), (2, 2)} and ∂ f (x̄) = co{(−1,−1), (1,−1)}. Hence, by Defi-
nition 2.2, it follows that f is a quasidifferentiable function at x̄ = (0,0). Further, we have
S f (x̄) = ∂ f (x̄)+ ∂ f (x̄) = co{(−1,−1), (−3, 1), (1, 1), (1,−1), (−1, 1), (3, 1)}. Now, let
r =1 and η : X × X → R

n be a vector-valued function η(x, x̄) =
[ |x1+|x2||

2
−|x1+|x2||

2

]

. Hence, by

Definition 2.3, it can be proved that f is a quasidifferentiable 1-invex function at x̄ = (0,0) on
R
2 with respect to the convex compact set S f (x̄) and with respect to η given above.

Remark 2.5 Note that the function η given in Example 2.1 is not a unique function with
respect to which the function f considered in Example 2.1 is quasidifferentiable 1-invex at

x̄ = (0,0) on R
2 with respect to S f (x̄). Indeed, if we set η̃(x, x̄) =

[ |x1+|x2||
3
0

]

, then, by

Definition 2.3, it can be shown that f is also a quasidifferentiable 1-invex function at x̄ =
(0,0) on R

2 with respect to the convex compact set S f (x̄) and with respect to η̃ given above.

3 Optimality conditions for nonsmooth optimization problems with
quasidifferentiable r-invex functions

In the paper, consider the following nonsmooth optimization problem:

(P)

f (x) → min
s.t. g j (x) ≤ 0, j ∈ J = {1, . . . ,m} ,

x ∈ R
n,

where f : Rn → R, g j : Rn → R, j ∈ J, are quasidifferentiable functions on R
n . Thus,

problem (P) may be referred as a quasidifferentiable optimization problem.
For the purpose of simplifying our presentation, we will introduce some notations, which

will be used frequently throughout this paper.
Let X := { x ∈ R

n : g j (x) ≤ 0, j ∈ J } be the set of all feasible solutions in problem
(P). Further, we denote by J(x̄) the set of inequality constraint indexes that are active at point
x̄ ∈ X, that is, J (x̄) := { j ∈ J : g j (x̄) = 0 }.

In Gao (2000a), Gao presented the following necessary optimality conditions for non-
smooth optimization problemswith the inequality constraints in which the functions involved
are quasidifferentiable.

Theorem 3.1 (Karush–Kuhn–Tuker type necessary optimality conditions) Let x̄ ∈ X be an
optimal solution for the considered nonsmooth optimization problem (P). Further, assume
that f is quasidifferentiable at x̄ , with the quasidifferential D f (x̄) = [∂ f (x̄), ∂ f (x̄)], each
g j , j ∈ J , is quasidifferentiable at x̄ , with the quasidifferential Dg j (x̄) = [∂g j (x̄), ∂g j (x̄)].
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If the constraint qualification Kuntz and Scholtes (1993) is satisfied at x̄ for problem (P),

then, for any sets of w0 ∈ ∂ f (x̄) and w j ∈ ∂g j (x̄), j ∈ J , there exist scalars λ̄ j (w) ≥ 0,
j ∈ J , not all zero, such that

0 ∈ ∂ f (x̄) + w0 +
m∑

j=1

λ̄ j (w)(∂g j (x̄) + w j ), (12)

λ̄ j (w)g j (x̄) = 0, j ∈ J, (13)

λ̄ j (w) ≥ 0, j ∈ J, (14)

where λ̄1(w), . . . , λ̄m(w) are dependent on the specific choice of w = (w0, w1, . . ., wm).

Now, we prove the sufficient optimality conditions for the given feasible solution in the
considered quasidifferentiable optimization problem (P) under assumptions that the functions
involved are quasidifferentiable r-invex functionswith respect to the same functionη andwith
respect to convex compact sets which are equal to Minkowski sum of their subdifferentials
and superdifferentials.

Theorem 3.2 (Sufficient optimality conditions) Let x̄ be a feasible solution in the considered
optimization problem (P) and the Karush–Kuhn–Tuker type necessary optimality conditions
(12)–(14) be satisfied at x̄ . Further, assume that f is a quasidifferentiable r-invex function at
x̄ on X with respect to S f (x̄) = ∂ f (x̄) + ∂ f (x̄) and with respect to η and, moreover, each
g j , j ∈ J (x̄), is a quasidifferentiable r-invex function at x̄ on X with respect to Sg j (x̄) =
∂g j (x̄) + ∂g j (x̄) and with respect to η. Then, x̄ is an optimal solution in problem (P).

Proof Assume that x̄ is such a feasible point in problem (P) at which the Karush–Kuhn–
Tuker type necessary optimality conditions (12)–(14) are satisfied. This means that, for given
sets of w0 ∈ ∂ f (x̄) and w j ∈ ∂g j (x̄), j ∈ J , there exist λ̄0(w) ∈ R and λ̄(w) ∈ R

m such
that the conditions (12)–(14) are satisfied. Hence, by the Karush–Kuhn–Tuker type necessary
optimality condition (12), it follows that there exist v0 ∈ ∂ f (x̄) and v j ∈ ∂g j (x̄), j ∈ J ,
such that

0 = v0 + w0 +
m∑

j=1

λ̄ j (w)(v j + w j ). (15)

By hypotheses, f is a quasidifferentiable r-invex function at x̄ onRn with respect to S f (x̄) =
∂ f (x̄)+ ∂ f (x̄) and with respect to η, g j , j ∈ J (x̄), is a quasidifferentiable r-invex function
at x̄ on X with respect to Sg j (x̄) = ∂g j (x̄) + ∂g j (x̄) and with respect to η. Hence, by
Definition 2.3, the following inequalities

1

r
er f (x) ≥ 1

r
er f (x̄)

[
1 + rωT

0 η(x, x̄)
]

, ∀ ω0 ∈ S f (x̄), (16)

1

r
erg j (x) ≥ 1

r
erg j (x̄)

[
1 + rωT

j η(x, x̄)
]
, ∀ ω j ∈ Sg j (x̄) , j ∈ J (x̄) (17)

hold for all x ∈ X. Since (16) and (17) are fulfilled for any sets ω0 ∈ S f (x̄) and ω j ∈ Sg j (x̄),
j ∈ J (x̄), respectively, by the definitions of S f (x̄) and Sg j (x̄), they are also fulfilled for
ω0 = v0 + w0 ∈ S f (x̄) and ω j = v j + w j ∈ Sg j (x̄). Thus, (16) and (17) yield

1

r

[
er( f (x)− f (x̄)) − 1

]
≥

(
vT0 + wT

0

)
η(x, x̄), (18)
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1

r

[
er(g j (x)−g j (x̄)) − 1

]
≥

(
vTj + wT

j

)
η(x, x̄), j ∈ J (x̄). (19)

Using x ∈ X and x̄ ∈ X together with the definition of J(x̄), we get g j (x) ≤ g j (x̄), j ∈ J(x̄).
Hence, we have that the following inequalities

1

r

[
er(g j (x)−g j (x̄)) − 1

]
≤ 0, j ∈ J (x̄) (20)

hold for all x ∈ X. Thus, (19) and (20) yield
(
vTj + wT

j

)
η(x, x̄) ≤ 0, j ∈ J (x̄). (21)

Since λ̄ j (w) > 0, j ∈ J (x̄), and λ̄ j (w) = 0, j /∈ J(x̄), therefore, (21) yields

m∑

j=1

λ̄ j (w)
(
vTj + wT

j

)
η(x, x̄) ≤ 0. (22)

By (15) and (22), it follows that
(
vT0 + wT

0

)
η(x, x̄) ≥ 0. (23)

Combining (18) and (23), we get that the following inequality

1

r

[
er( f (x)− f (x̄)) − 1

]
≥ 0 (24)

holds for all x ∈ X. Thus, by (24), we conclude that also the inequality f (x) ≥ f (x̄) holds for
all x ∈ X. This means that x̄ is an optimal solution in the considered optimization problem
(P). Hence, the proof of the theorem is complete. �


In order to illustrate the sufficient optimality conditions established in Theorem 3.2, we
consider the example of a nonsmooth optimization problem in which the involved functions
are quasidifferentiable r-invex with respect to the same function η and with respect to convex
compact sets which are equal to Minkowski sum of their subdifferentials and superdifferen-
tials.

Example 3.1 Consider the following nondifferentiable optimization problem:

f (x) = ln(x21 − 3x1 + 3 |x2 − x1| + 4) → min

(P1) s.t. g1(x) = ln(|x2 + |x1|| + 1) ≤ 0,

x ∈ R
2.

Note that X = { x ∈ R
2 : ln(|x2 + |x1|| + 1) ≤ 0 } and x̄ = (0,0) is a feasible solution in

problem (P1). Further, it can be proved that f and g1 are quasidifferentiable at x̄ . Indeed, by
Definition 2.1, we have that f ′((0, 0); d) = −3d1 + 3|d2 − d1| and, therefore,

f ′((0, 0); d) = max vT d
v∈co{(−3,3),(3,−3)}

+ maxwT d
w∈{(−3,0)}

,

where ∂ f (0, 0) = co{(−3, 3), (3,−3)}, ∂ f (0, 0) = {(−3, 0)}. Hence, by Definition 2.2, f
is a quasidifferentiable function at x̄ = (0,0). Further, by Definition 2.2, we have g′

1(x̄; d) =
|d2 + |d1|| and, therefore,

g′
1(x̄; d) = max

v∈co{(0,0),(−2,2),(2,2)} v
T d + min

w∈co{(−1,−1),(1,−1)} w
T d,
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where ∂g1(x̄) = co{(0, 0), (−2, 2), (2, 2)} and ∂g1(x̄) = co{(−1,−1), (1,−1)}.
It can be proved that the Karush–Kuhn–Tucker necessary optimality conditions are ful-

filled at x̄ . Indeed, it can be shown that, for any sets of w0 ∈ ∂ f (x̄) and w1 ∈ ∂g1(x̄), there
exists λ̄1(w) > 0 such that the conditions (12)–(14) are satisfied. Namely, if w0 = (−3, 0)
and w1 = (1,−1), then, if we put λ̄1(w) = 1, the condition (12) is satisfied. However, if
w0 = (−3, 0) and w1 = (−1,−1), then, if we put λ̄1(w) = 2, the condition (12) is also
satisfied. The conditions (13) and (14) are obvious.

Since the Karush–Kuhn–Tucker necessary optimality conditions are fulfilled at x̄ , there-
fore, to prove by Theorem 3.2 that x̄ is optimal in problem (P1), we have to show that f
and g1 are quasidifferentiable r-invex functions at x̄ on X with respect to the same func-
tion η and with respect to convex compact sets which are equal to Minkowski sum of their
subdifferentials and superdifferentials at this point.

Let S f (x̄) = ∂ f (x̄) + ∂ f (x̄), Sg1(x̄) = ∂g1(x̄) + ∂g1(x̄), η : X × X → R
2 be a vector-

valued function defined by η(x, x̄) =
[ |x1|+x2

4|x1|+x2
4

]

.

Then, by Definition 2.3, it follows that f is a quasidifferentiable 1-invex function at x̄ on
X with respect to S f (x̄) and with respect to η and also g1 is a quasidifferentiable 1-invex
function at x̄ on X with respect to Sg1(x̄) and with respect to the same function η. Hence,
since all hypotheses of Theorem 3.2 are fulfilled at x̄ , therefore, x̄ is an optimal solution in
the considered nonsmooth optimization problem.

Now, for the considered nonsmooth optimization problem, we illustrate the fact that the
Lagrange multiplier λ̄1(w) depends on the chosen w. In fact, we illustrate that, for the given
chosen w, the Karush–Kuhn–Tucker necessary optimality conditions are not fulfilled at x̄
with the same Lagrange multiplier λ̄1(w) as in the case of another chosen w. We denote
by Ww the set appearing in the Karush–Kuhn–Tucker optimality condition (12), that is,
Ww = ∂ f (x̄)+w0+ λ̄1(w)(∂g1(x̄)+w1) for the given chosenw = (w0, w1) and, therefore,
depending on the Lagrange multiplier λ̄1(w) (see Figs. 1, 2).

1. w′ = (w0, w1) = ((−3, 0); (1,−1)), let λ̄1(w
′) = 1, then Ww′ = co{(−5, 2), (−3, 4),

(−7, 4), (1,−4), (3,−2), (−1,−2)}

Ww′

-1-7

-4

-5 -3 3

-2

4

x2

x1

2

Fig. 1 The set Ww′ when w′ is chosen and if λ̄1(w
′) = 1. Note that 0 ∈ Ww′ , in other words, the Karush–

Kuhn–Tucker optimality condition (12) is satisfied
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Ww″ Ww″

(a) (b)
-4

-9 -5-7 -3 1

-2

4

x2

x1

-5

-12 -8 -6 -4 -2

-1

5

x2

x12x1

Fig. 2 a The set Ww′′ when w′′ is chosen and if we set λ̄1(w′′) = 1. Note that 0 /∈ Ww′′ , in other words, the
Karush–Kuhn–Tucker optimality condition (12) is not satisfied. b The set Ww′′ when w′′ is chosen and if we
set λ̄1(w′′) = 2. Note that 0 ∈ Ww′′ , in other words, the Karush–Kuhn–Tucker condition (12) is satisfied

2. Let us choose another w:

w′′ = (w0, w1) = ((−3, 0); (−1,−1)); let λ̄1(w
′′) = 1, then

Ww′′ = co{(−7, 2), (−5, 4), (−9, 4).(−1,−4), (1,−2), (−3,−2)}
w′′ = (w0, w1) = ((−3, 0); (−1,−1)); let λ̄1(w

′′) = 2, then

Ww′′ = co{(−8, 1), (−4, 5), (−12, 5).(−2,−5), (2,−1), (−6, 1)}.

4 Mond–Weir duality

In this section, we define Mond–Weir type dual problem for the considered nonsmooth
optimization problem (P) as follows:

(D) f (y)→max

subject to (y, λ) ∈ �,

where � is the set of all pairs (y, λ) with y ∈ R
n and λ : R

m+1 → R
m , λ(w) =

(λ1(w), . . . , λm(w)), satisfying, for any sets of w0 ∈ ∂ f (y) and w j ∈ ∂g j (y), j ∈ J,
the following conditions:

0 ∈ ∂ f (y) + w0 +
m∑

j=1

λ j (w)(∂g j (y) + w j ), (25)

λ j (w)g j (y) ≥ 0, j ∈ J, (26)

y ∈ R
n, λ j (w) ≥ 0, j ∈ J, (27)

where w = (w0, w1, . . ., wm). Then, � is the set of all feasible solutions in Mond–Weir type
dual problem (D) and, moreover, we denote by Y = prRn� the projection of the set � on
R
n .
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Theorem 4.1 (Weak duality) Let x and (y, λ) be any feasible solutions in the considered
optimization problem (P) and its Mond–Weir type dual problem (D), respectively. Further,
assume that f is a quasidifferentiable r-invex function at y on X ∪Y with respect to S f (y) =
∂ f (y) + ∂ f (y) and with respect to η, each g j , j ∈ J (y), is a quasidifferentiable r-invex
function at y on X ∪ Y with respect to Sg j (y) = ∂g j (y) + ∂g j (y) and with respect to η.
Then, f (x) ≥ f (y).

Proof Let x and (y, λ) be any feasible solutions in the considered optimization problem
(P) and its Mond–Weir type dual problem (D), respectively. This means that λ(w) =
(λ1(w), . . . , λm(w)) ∈ R

m and, moreover, for the given sets of w0 ∈ ∂ f (y) and w j ∈
∂g j (y), j ∈ J , the constraints (25)–(27) are fulfilled.

Suppose, contrary to the result, that

f (x) < f (y). (28)

By hypotheses, f is a quasidifferentiable r-invex function at y on X∪Y with respect to
S f (y) = ∂ f (y) + ∂ f (y) and with respect to η, each g j , j ∈ J(y), is a quasidifferentiable
r-invex function at y on X∪Y with respect to Sg j (y) = ∂g j (y) + ∂g j (y) and with respect to
η. Hence, by Definition 2.3, the following inequalities

1

r
er f (x) ≥ 1

r
er f (y)

[
1 + rωT

0 η(x, y)
]
, ∀ ω0 ∈ S f (y), (29)

1

r
erg j (x) ≥ 1

r
erg j (y)

[
1 + rωT

j η(x, y)
]
, ∀ ω j ∈ Sg j (y), j ∈ J (y) (30)

hold. Combining (28) and (29), we get

ωT
0 η(x, y) < 0, ∀ ω0 ∈ S f (y). (31)

By x ∈ X , y ∈ Y and the constraint (26) of dual problem (D), it follows that

λ j (w)g j (x) ≤ λ j (w)g j (y), j ∈ J. (32)

Since λ j (w) > 0, j ∈ J(y), therefore, we re-write (30) in the following form

1

r

(

e
r

λ j (w)
(λ j (w)g j (x) − λ j (w)g j (y)) − 1

)

≥ ωT
j η(x, y), ∀ ω j ∈ Sg j (y), j ∈ J (y).

(33)
Combining (32) and (33), we get

ωT
j η(x, y) ≤ 0, ∀ ω j ∈ Sg j (y), j ∈ J (y). (34)

Taking into account the constraint (27) of dual problem (D), we obtain

m∑

j=1

λ j (w)ωT
j η(x, y) ≤ 0, ∀ ω j ∈ Sg j (y), j ∈ J. (35)

Hence, (31) and (35) yield
[

λ0(w) ωT
0 +

m∑

j=1
λ j (w)ωT

j

]

η(x, y) < 0, ∀ ω0 ∈ S f (y)

∀ ω j ∈ Sg j (y) ∀ω0 ∈ ∂ f (y) + w0, ω j ∈ ∂g j (y) + w j
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This means, by the definitions of S f (y) and Sg j (y) j ∈ J, that, for any sets of w0 ∈ ∂ f (y)

and w j ∈ ∂g j (y), j ∈ J, the following inequality
⎡

⎣vT0 + wT
0 +

m∑

j=1

λ j (w)
(
vTj + wT

j

)
⎤

⎦ η(x, y) < 0 (36)

holds for every v0 ∈ ∂ f (y) and v j ∈ ∂g j (y), j ∈ J. However, by the constraint (25) of dual
problem (D), for any sets of w0 ∈ ∂ f (y) and w j ∈ ∂g j (y), j ∈ J, there exist v0 ∈ ∂ f (y) and
v j ∈ ∂g j (y), j ∈ J such that the following inequality

⎡

⎣vT0 + wT
0 +

m∑

j=1

λ j (w)
(
vTj + wT

j

)
⎤

⎦ η(x, y) = 0

holds, which contradicting (36). This completes the proof of this theorem.
It turns out that, under stronger r-invexity hypothesis imposed on the objective function,

it is possible to prove the stronger result.

Theorem 4.2 (Weak duality) Let x and (y, λ) be any feasible solutions in the considered
optimization problem (P) and its Mond–Weir type dual problem (D), respectively. Further,
assume that f is a strictly quasidifferentiable r-invex function at y on X ∪ Y with respect to
S f (y) = ∂ f (y) + ∂ f (y) and with respect to η, each g j , j ∈ J (y), is a quasidifferentiable
r-invex function at y on X ∪ Y with respect to Sg j (y) = ∂g j (y) + ∂g j (y) and with respect
to η. Then f (x) > f (y).

Theorem 4.3 (Direct duality) Let x̄ be an optimal solution in the considered optimization
problem (P). Further, assume that there exists the function λ̄ : Rm+1 → R

m such that (x̄, λ̄)

is feasible in its Mond–Weir type dual problem (D). Further, if all hypotheses of the weak
duality theorem (Theorem 4.1) are fulfilled, then (x̄, λ̄) is optimal in Mond–Weir type dual
problem (D).

Proof Assume that x̄ is an optimal solution in the considered optimization problem (P) and,
moreover, that there exists the function λ̄ :Rm+1 →R

m such that (x̄, λ̄) is feasible in itsMond–
Weir type dual problem (D). Since x̄ ∈ X , by weak duality (Theorem 4.1), it follows that

f (x̄) ≥ sup{ f (y) : (y, λ) ∈ �}.
This means that (x̄, λ̄) is optimal in Mond–Weir type dual problem (D).

Remark 4.1 Note that the feasibility of (x̄, λ̄) in Mond–Weir type dual problem (D) does not
follow from theKarush–Kuhn–Tucker necessary optimality conditions (12)–(14). To confirm
the feasibility of (x̄, λ̄) inMond–Weir type dual problem (D), the Lagrangemultiplier λ̄ ∈ R

m

should be the same for any sets of w0 ∈ ∂ f (y) and w j ∈ ∂g j (y), j ∈ J. Indeed, if we assume
that f and g j , j ∈ J, are locally Lipschitz in a neighbourhood of x̄ and quasidifferentiable at
x̄ , then the above-mentioned property holds.

Theorem 4.4 (Converse duality) Let (ȳ, λ̄) be an optimal solution in Mond–Weir type dual
problem (D) and ȳ ∈ X. Further, assume that f is a quasidifferentiable r-invex function at ȳ
on X ∪Y with respect to S f (ȳ) = ∂ f (ȳ)+∂ f (ȳ) and with respect to η, each g j , j ∈ J (ȳ), is
a quasidifferentiable r-invex function at ȳ on X∪Y with respect to Sg j (ȳ) = ∂g j (ȳ)+∂g j (ȳ)
and with respect to η. Then, ȳ is optimal in the considered nonsmooth optimization problem
(P).

Proof Proof of this theorem follows directly from the weak duality theorem (Theorem 4.1).
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5 Conclusions

In this paper, a new class of nonconvex quasidifferentiable optimization problems with
inequality constraints has been considered. Namely, all functions constituting the considered
nonconvex nonsmooth optimization problems are quasidifferentiable r-invex with respect
to convex compact sets. Under the hypotheses that the functions involved are r-invex with
respect to the same function η and with respect to convex compact sets which are equal
to Minkowski sum of their subdifferentials and superdifferentials, the sufficient optimal-
ity conditions and several duality results have been proved for such nonconvex nonsmooth
optimization problems.

However, some interesting topics for further research remain. It would be of interest to
investigate whether it is possible to prove similar results for a larger class of nonconvex
nonsmooth extremum problems with quasidifferentiable functions and/or for other types of
nonsmooth optimization problems. We shall investigate these questions in the subsequent
papers.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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