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Abstract There have been only a small number of statistical measures to assess the assor-
tativeness. The present study discusses the applicability of two chance-adjusted agreement
statistics, kappa and AC1 as measures of the assortative transmission of infectious diseases.
First, we show that the so-called assortativity coefficient corresponds to the proportion of
contacts that are spent for within-group mixing in the preferential mixing formulation of het-
erogeneous transmission, and also that the assortative coefficient is identical to the Cohen’s
kappa statistic. Second, we demonstrate that the kappa statistic is vulnerable to the paradoxes
in measuring infectious disease transmission, because the assortative transmission involves
not only contact heterogeneity but also other intrinsic and extrinsic factors including relative
susceptibility and infectiousness. AC1 can be a useful measure due to its paradox resistant
nature, and we discuss the relevance of preferential mixing formulation to the computation
of AC1.
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1 Introduction

Assortativity is defined as a preference for a network’s node to attach to others that have
similar characteristics or in some way different characteristics (Newman 2002). Adding the
assortativity to a mathematical model often helps us to closely capture and approximate
the dynamics in real world, which has been in particular demonstrated in the transmission
dynamics of infectious diseases (Jacquez et al. 1998; Nishiura et al. 2010). Provided that an
infectious disease (e.g. pandemic influenza A (H1N1-2009)) is frequently transmitted within
a group of individuals that share similar characteristics (e.g. school children), the counter
measures of the epidemic should ideally focus on those specific groups or their neighbors to
effectively curb the epidemic (e.g. school closure) (Nishiura et al. 2011; Lam et al. 2011).

The assortativity is not only applicable to individual-based datasets but can also be incorpo-
rated into approximate modeling framework when we employ a population-based dynamic
model, i.e. even when we use a model with discrete type space, the assortativity can be
analytically devised into the model in order to approximately capture the realistic transmis-
sion dynamics (Jacquez et al. 1998; Nold 1996). For instance, an epidemic model with the
so-called “preferential mixing” assumption can be written by a set of ordinary differential
equations (Kiss et al. 2009), and the assortativity is eventually quantified as one of model
parameters based on an epidemic data (Fraser et al. 2009). Of course, not only by fitting
the mathematical model to the epidemiological data but also by conducting a field survey of
socially defined contact in a population, one can compute and quantify the assortative mixing
of the heterogeneous transmission model (Wallinga et al. 2006; Mossong et al. 2008; Del
Valle et al. 2007).

Despite these theoretically useful characteristics, there have been only a few statistical
measures to quantify the assortativeness. The most straightforward measure of assortative-
ness may be the correlation between the degrees of linked pairs of nodes (Newman 2003),
but the correlation coefficient only captures the extent of linear association, rather than the
propensity of assortative mixing. Farrington et al. (2009) therefore, proposed the use of mean-
squared deviation from assortativeness as an index of absolute disassortativeness. However,
the proposed measure has remained as applicable to assess assortativeness in a population
with continuous type space. Although discrete type space (e.g. mixing within and between
age-groups rather than individual network with continuous age) is more relevant to analyzing
widely available empirical data in practical setting (e.g. epidemiological surveillance data
classified by discrete age groups), the measure of assortativity for the discrete data has yet
to be discussed more than the original description by Newman (2002).

In this study, we aim to discuss the applicability of two known chance-adjusted agreement
statistics, kappa and AC1 to measure the assortativeness of infectious disease transmission.
In particular, we aim to show that AC1 statistic can address known paradoxes of kappa, and
thus, perhaps allows us to assess the assortativeness of transmission more appropriately than
kappa. We first review the existing measures of assortativity in the next section, which is
subsequently followed by a description of our motivations and computation of AC1.

2 Existing measures of assortativeness

In the following, we denote the contact rate between host groups i and j by ci j . Let the sum
of all the elements of the contact matrix {ci j } be C , we denote the normalized contact rate
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by ei j . The sums over a single row and single column of the normalized contact matrix are,
respectively, denoted by ai and b j , namely,

ai =
∑

j

ei j , (1)

b j =
∑

i

ei j . (2)

The assortativity coefficient, r , proposed by Newman (2003), is written as:

r =
∑

i eii − ∑
i ai bi

1 − ∑
i ai bi

, (3)

where the trace of matrix {ei j } gives the observed fraction of within-group contacts, while
the product of marginal sums is interpreted as the fraction of within-group contacts that occur
by chance. The assortativity coefficient r typically takes the value from 0 to 1 with r = 1
indicating perfect assortative mixing, while r = 0 means random mixing. The measure is
based on cross-classification of existing contacts. As the probability of within-group contact
is calculated as the product of marginal sums of all columns and rows, it should be noted
that the probability of assortative mixing is evaluated as if all observed contacts may result
in within-group contact by chance.

Prior to the coefficient r , there was an earlier measure in epidemiology, proposed by
Gupta et al. (1989). The earlier measure intended to quantify the impact of mixing patterns
of sexual contacts on the spread of HIV epidemic. The Q statistic, a measure of the degree
of within-group mixing, was proposed as:

Q = 1

m − 1

∑

i

eii − ai bi

ai
, (4)

where m is the number of node types. The measure captures assortativeness, varying between
−1/(m − 1) (minimally disassortative) and 1 (maximally assortative). Q is regarded as an
ad hoc measure of assortativeness, because the quantity is interpreted as the proportion of
contacts that occur along the main diagonal of the contact matrix. However, Q was later
shown to be vulnerable to grouping of hosts used to define the diagonal of the contact matrix
and to be sensitive to different sub-population sizes between different types of host (Newman
2003). Accordingly, we focus on the assortative coefficient r in the following discussion.

An interesting property of r in (3) is that the measure is consistent with the classical pref-
erential mixing formulation in an approximate modeling approach. Let p be the proportion
of contact that is spent for within-group mixing among the total contacts. The contact rate ci j

is then modeled as a simple mixture of an assortative mixing component and a proportionate
mixing component:

ci j ∝
{

(1 − p)ni , if i �= j,
p + (1 − p)ni , if i = j,

(5)

where ni is the relative population size of host i . In order to calculate assortativity coefficient,
we normalize ci j as

ei j ∝
{ (1−p)ni

m , if i �= j,

p+(1−p)ni
m , if i = j,

(6)
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in which it is certain that ei j sums up to 1. It is not difficult to find that the parameter p
exactly corresponds to r , because we have

ai ∝ p + ∑
j (1 − p)ni

m
= p + (1 − p)mni

m
, (7)

where m is again the number of host types, and

b j ∝ p + ∑
i (1 − p)ni

m
= 1

m
, (8)

leading the proportion of contact p to be identical to r . This indicates that the interpretation of
the assortativity coefficient in relation to its underlying contact mechanism can be as simple
as that shown in the mixture model (5) in which only the proportionate mixing component is
expected to explain between-group contact frequency. To be strict, the mixture model (5) is
unlikely to hold in practice, and thus, rather than using the Kronecker delta-type assumption in
(5), the use of distribution to describe the influence of preferential mixing has been proposed
elsewhere (Glasser et al. 2012).

3 Vulnerability of kappa to assortative transmission

When mathematical models are applied to describe infectious disease epidemics, two different
types of matrix should be explicitly distinguished. One is the contact matrix {ci j } describing
the contact rates per unit time within and between groups of host. As described in model (5),
the mixture type assumption may be employed to parameterize {ci j } in the simplest manner.
For clarity, hereafter we refer to the assortativeness of {ci j } as “contact assortativity”.

On the other hand, there is a different matrix K = {ki j }, which is more relevant to the
transmission dynamics, gives the average number of secondary cases in host i generated by
a single primary case of host j throughout its entire course of infectiousness in a fully sus-
ceptible population. The matrix is referred to as the next-generation matrix (Diekmann et al.
2010), mapping the distribution of secondary cases based on that of primary cases, describing
the heterogeneous patterns of transmission in a single generation of transmission event. Each
element ki j is dimensionless. Other than the contact frequency, the frequency of infectious
disease transmission is regulated by susceptibility of exposed individuals, infectiousness of
primary cases and other factors (including biological and non-biological ones), and the next-
generation matrix captures these features as well as the contact heterogeneity. Using the
above-mentioned mixture type of contact, let αi and β j represent age-specific susceptibility
and infectiousness of hosts of type i and j , respectively, {ki j } may be parameterized as

ki j ∝
{

αiβ j (1 − p)ni , if i �= j,
αiβ j p + αiβ j (1 − p)ni , if i = j,

(9)

as was used in practical applications elsewhere (Nishiura et al. 2011; Lam et al. 2011; Fraser
et al. 2009). Hereafter, we refer to the assortativeness of {ki j } as “transmission assortativity”.

Here, the distinction of two different types of assortativity, i.e. contact and transmission,
is made, because the transmission is not only characterized by contact but also by all other
intrinsic and extrinsic factors includingαi andβ j in model (9). For example, when children are
far more susceptible to influenza than adults (which is believed as the case based on empirical
evidence (Nishiura and Oshitani 2011)), the transmission assortativity would be the result
of contact assortativity (with high frequency of child-to-child contacts) weighted by high
relative susceptibility among children due to model (9). In such an instance, the transmission
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Table 1 The age-dependent next generation matrix and the corresponding agreement

Ab Bb Cb

Child Adult Child Adult Child Adult

Child 1.34 0.32 1.61 0.32 1.34 0.02
Adult 0.33 0.83 0.33 0.56 0.64 0.83
obsa 0.767 0.767 0.767
Kappa 0.517 0.459 0.540
AC1 0.548 0.590 0.548

a obs observed agreement
b Examples of the next-generation matrix. In matrix A, the parameters were fixed at nc = 0.32, αc = 2.06,
αa = βc = βa = 1, and θ = 0.50 (Lam et al. 2011). The basic reproduction number is given by the dominant
eigenvalue and calculated as 1.5. Matrices B and C have identical observed agreement values with A, but matrix
B increased the frequency of child-to-child transmission by 1.2 times as that in A and matrix C increased the
frequency of child-to-adult transmission by 1.9 times as that in A

assortativity requires a particular attention in appropriately quantifying the propensity of
within-group contacts that are made by chance.

Here, we consider the chance-adjusted agreement measure. Although not explicitly men-
tioned by Newman (2003), the assortativity coefficient (3) is mathematically identical to the
so-called Cohen’s kappa statistic (Cohen 1960), which is known as the most commonly used
chance-adjusted agreement measure for multiple ratings. In the case of infectious disease
transmission, there are only two raters, i.e. contactor and contactee, with discrete grouping
of choices such as age-groups. In other words, as long as the matrix captures the transmission
between a pair of individuals (i.e. one susceptible and one infectious host) over a single gen-
eration, the agreement statistic can be restricted to the case of two raters. Although Cohen’s
kappa is more robust measure than simple calculation of observed agreement, it is also known
that there are situations in which the kappa yields unexpected results. The phenomenon is
referred to as the paradoxes of kappa (Feinstein and Cicchetti 1990a,b), and this is directly
relevant to considering the transmission assortativity.

The paradoxes can be illustrated by considering the next-generation matrix adapted from
Lam et al. (2011), which employed the mixture-type assumption for contact and also described
the transmission dynamics of pandemic influenza (H1N1-2009) within and between popula-
tions of children and adults using model (9) (Table 1). We consider three different matrices,
A, B and C. As for the baseline matrix A, we follow the parameterization of model (9),
assuming that nc = 0.32, αc = 2.06, αa = βc = βa = 1, and p = 0.50 (Lam et al. 2011),
where subscripts c and a stand for children and adults, respectively. The basic reproduction
number, the average number of secondary cases generated by a single primary case in a fully
susceptible population, is calculated as the dominant eigenvalue of K, and in this example
set at 1.5. Within-group transmission, which is measured by the observed agreement, is seen
in 76.7 % of all secondary transmissions, while the chance-adjusted measure, kappa is calcu-
lated as 0.517. In Matrix B, the frequency of child-to-child transmission is magnified by 1.2
times as compared to matrix A, and the increment of the secondary transmissions among chil-
dren is reduced from adult-to-adult transmission (so that the total of within-group secondary
transmissions is kept as identical to matrix A). Other two elements, between-group transmis-
sion frequencies are unaltered from matrix A. Of course, the observed agreement of matrix B
remains the same as matrix A, because the sum of diagonal elements is unaltered. However,
kappa is calculated as 0.459. Namely, by magnifying the within-group transmission in a
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specific single host type (i.e. children), the chance-adjusted agreement statistic was reduced
without any sensible reason. This is referred to as the kappa’s paradox I.

In Matrix C, the frequency of child-to-adult transmission is magnified by 1.9 times to
that of matrix A. The sum of anti-diagonal elements is kept identical to matrices A and B,
and the diagonal elements are unaltered from matrix A. Again, the observed agreement of
matrix C is calculated as 76.7 %, identical to those from matrices A and B. However, kappa
is calculated as 0.540. By introducing the bias in between-group transmission, the kappa
statistic was elevated. This increase in kappa owing to the bias in non-diagonal elements is
referred to as the kappa’s paradox II.

These paradoxes may be unlikely to matter a lot for contact assortativity, while the intro-
duction of host-specific characteristics such as αi and β j in model (9) to describing the
transmission assortativity can easily lead to observing the paradoxes (see below). In other
words, the assortativity coefficient (3) (which is mathematically identical to kappa statistic)
could be vulnerable as a measure of transmission assortativity, especially when the assorta-
tivity of transmission introduces the sources of paradoxes I and II to the contact matrix.

4 Comparison between kappa and AC1

As a paradox-resistant measure of agreement, Gwet (2010) has proposed the so-called AC1
statistic in which AC stands for “agreement coefficient”. Let γ be the coefficient of trans-
mission assortativity given by the AC1, and is written as:

γ =
∑

i eii − pe

1 − pe
, (10)

where pe is the chance agreement probability. The right-hand side of (10) is conceptually
the same as Cohen’s kappa in which pe was calculated as a summation of the product of two
marginal sums. In the case of AC1 statistic, it is calculated as

pe = 1

m − 1

m∑

k=1

πk(1 − πk), (11)

where πk is the average of marginal sum over row k and column k, i.e.,

πk =
∑

j kk j + ∑
i kik

2
∑

i
∑

j ki j
. (12)

The chance agreement for AC1 is calculated as shown in (11), because AC1 considers the
chance agreement as the product of (i) the probability that two raters agree given that the
subject being rated was assigned a non-deterministic score (i.e. the probability of simple
chance agreement is 1/m) and (ii) the propensity that a rater will assign a non-deterministic
score, which is estimated by the ratio:

∑m
k=1 πk(1 − πk)/(1 − 1/m).

Kappa statistic regards the chance agreement probability as if all observed ratings may
yield an agreement by chance. However, Gwet 2010 pointed out that this may lead to unpre-
dictable results with agreement data that actually have a rather small propensity for chance
agreement. This may be in many instances the case for the transmission of infectious diseases.
The AC1 statistic considers the chance agreement as proportional to the portion of ratings and
conditional on the random rating. By appropriately accounting for the propensity of chance
agreement, AC1 successfully reduces the chance agreement to the right magnitude. Further
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Fig. 1 Comparison between kappa and AC1 statistics by the product of relative susceptibility and relative
infectiousness among children

details, theoretical properties and examples related to the AC1 statistic are given elsewhere
(Gwet 2008, 2010).

Table 1 shows the estimates of AC1 corresponding to each of the matrices A, B and A.
Using the baseline matrix A, AC1 is estimated at 0.548. When the within-child transmission
is increased (matrix B), AC1 is calculated as 0.590. When the bias of between-group trans-
mission is introduced (matrix C), AC1 remains to be 0.548. The variation of AC1 was within
10 %, and perhaps more importantly, AC1 was not underestimated even when the matrix
which induces paradox I is analyzed. As there is no perfect chance-adjusted agreement, AC1
is also not the perfect measure (i.e. not entirely free from conceptual error), but this statistic is
regarded as far less vulnerable to known paradoxes of kappa statistic and can be strictly inter-
preted as the conditional probability that two randomly selected raters agree given that there
is no agreement by chance (Gwet 2008). As long as the measure of assortativity employs the
chance-adjusted agreement coefficient, the biggest concern of the transmission assortativity
is the possibility to appropriately account for chance agreement, which indicates that AC1
suits to measure the transmission assortativity.1

As a numerical comparison between kappa and AC1, Fig. 1 shows the sensitivities of
these measures to the product of relative susceptibility and infectiousness in the formulation
(9). As α and β among children are elevated, observed and actual within-group transmission
would increase among the total of secondary transmissions. kappa is greatly influenced by
paradoxes, especially paradox I due to a representation of child-to-child transmission. kappa

1 The chance-adjusted agreements of secondary transmissions, derived from the next-generation matrix, are
shown as a function of the product of relative susceptibility and relative infectiousness among children (αc
and βc). The solid line shows the AC1, whereas the Cohen’s kappa is drawn in dashed line. Other parameters
for the next-generation matrix were fixed at nc = 0.32, αa = 1, βa = 1 and p = 0.5 among which p refers to
the proportion of contacts that are spent for within-group mixing (Lam et al. 2011). It should be noted that the
elements of the next-generation matrix are the frequencies of between- and within-group contacts weighted
by relative susceptibility and relative infectiousness (and thus, the kappa value is different from 0.50) and here
we examine the impact of kappa’s paradox I (i.e. domination of child-to-child transmission) on the resulting
chance-adjusted agreement coefficients.
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Fig. 2 Comparison between kappa and AC1 statistics by the proportion of children in a population

even decreases with the increase in the product of α and β among children. Nevertheless,
the increasing feature of within-group transmission is captured by AC1 in Fig. 1, avoiding
underestimation of chance-adjusted agreement due to paradox I. Similarly, Fig. 2 examines
the sensitivity of chance-adjusted agreement coefficients to the proportion of children in the
population. As the fraction of child population size increases, the chance agreement increases,
and thus, kappa and AC1 decrease. However, as the child-to-child transmission increases with
an increase in the fraction of children, the kappa experiences greater decline than AC1 does
due to paradox I.

AC1 statistic is regarded as more valid measure than kappa to evaluate the transmission
assortativity, and its usefulness in practice may extend to the contact assortativity, especially
in the case we observe clusters of contact only among specific types of host (e.g. clustering
only among school-age children). However, kappa (or the classical assortativity coefficient)
may be preferred for measuring the contact assortativity, because kappa has been known to
mechanistically correspond to p, i.e. the proportion of contacts that are spent for within-group
mixing, in the simplest form of preferential mixing assumptions (5). It is thus important to
explore the relationship between p and computation of AC1 in the simplest model (5) of the
contact assortativity.2

In the case of m different types of host, AC1 is written as

γ =
∑

i eii − 1
m−1

∑m
k=1 πk(1 − πk)

1 − 1
m−1

∑m
k=1 πk(1 − πk)

, (13)

2 The chance-adjusted agreement of secondary transmissions, derived from the next-generation matrix, are
shown as a function of the fraction of children in the population (nc). The solid line shows the AC1, whereas
the Cohen’s kappa is drawn in dashed line. Other parameters for the next-generation matrix were fixed at
αc = 1, αa = 1, βc = 2.06, βa = 1 and p = 0.5 among which p refers to the proportion of contacts that are
spent for within-group mixing (Lam et al. 2011). It should be noted that the elements of the next-generation
matrix are the frequencies of between- and within-group contacts weighted by relative susceptibility and
relative infectiousness (and thus, the kappa value is different from 0.50) and here we examine the sensitivity
of chance-adjusted agreement coefficients to differing proportion of the population.
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where
∑

i

eii ∝ mp + (1 − p), (14)

and

πk(1 − πk) ∝ [p + m(1 − p)nk + 1]
(

1 − p + m(1 − p)nk + 1

2

)
. (15)

Although we cannot come up with further insightful analytical findings, one can notice
that there are several special cases. If there is only a single type of host (m = 1) constituting
a population, both γ and p are not practically relevant measures, but they agree to be 1. If
all the contacts are spent for within-group mixing (p = 1), the corresponding AC1 statistic
γ would also be 1.

When each subpopulation is equally distributed so that ni = 1/m for any i , this would
greatly simplify the chance agreement (15). The trace of the contact matrix is given by (14),
and the chance agreement would be zero. Since the sum of all the elements of contact matrix
is m, the AC1 is calculated as

γ =
∑

i eii

m
= p + 1 − p

m
. (16)

Two important messages from Eq. (16) are that (i) it indicates that γ is greater than p as long
as the population is equally distributed. This may be regarded as consistent with the numerical
results in Figs. 1 and 2. (ii) When there are so many different types of host (so that m → ∞),
the difference between γ and p would be diminished and the two are approximated.

5 Discussion

The present study discussed the use of chance-adjusted agreement coefficients to measure the
assortativity of contact and transmission of infectious diseases. We have demonstrated that
p in the preferential mixing in infectious disease modeling has excellently corresponded to
the Newman’s assortativity coefficient (or Cohen’s kappa). Subsequently, we have explicitly
distinguished the transmission assortativity from contact assortativity, because the former
captures not only the contact heterogeneity but also many other intrinsic and extrinsic factors
characterizing the frequency of within- and between-group transmission. The distinction
between the contact and the transmission was made, because kappa statistic is vulnerable to
the paradoxes which are likely to be the case to assess the transmission assortativity. In such
an instance, AC1 statistic, a relatively new chance-adjusted agreement coefficient, computed
in similar way to kappa and not very computationally intensive measure, was shown to be
paradox resistant. However, AC1 was shown to be less interpretable than kappa, and does
not easily correspond to the mechanistically interpretable mixture model to describe the
preferential mixing.

There is no doubt that each of the currently available agreement coefficients involves a
variety of technical problems, and none has been regarded as perfect measure. In fact, it is well
known that Cohen’s kappa does not adjust for both chance agreement and misclassification
errors. Although AC1 was shown to be paradox resistant, the statistic is not entirely free from
the paradoxes, and moreover, our application has shown that it does not lead to useful mixing
assumption in parameterizing the kinetics (i.e. mechanistic features) of transmission due to a
difficulty in eliminating the relative population size in the chance agreement (15). In the future,
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it is likely that multiple measures will be required to assess different aspects of the assortative
network. In the context of assortativity, the strength may be measured by chance-adjusted
agreement or correlation, and the propensity of contact (e.g. the distance between two different
types of host) should also be measured by absolute disassortativeness (Farrington et al. 2009).
The direction of the contact would also be an important issue in appropriately capturing
the transmission dynamics on an explicit network (Meyers et al. 2006). The relevance of
these topological aspects to mathematical formulation of the approximate heterogeneous
transmission dynamics has yet to be explored (Ejima et al. 2012a,b).

As quantified in social contact surveys (Wallinga et al. 2006; Mossong et al. 2008; Del
Valle et al. 2007), the actual heterogeneous mixing has been shown not to be well captured
by classical model such as classical preferential mixing in model (5). As seen in an effort to
capture the age-dependent heterogeneity using a contact surface (Farrington and Whitaker
2005), the model to be applied to empirically observed data needs to capture more realistic
features than the mechanistic mixture model (9) does. As seen in an attempt by Glasser et al.
(2012), more mathematical formulations would be required to express the assortative mixing
as a measurable quantity so that we can implement the statistical estimation. However, it
is also true that one of the simplest models to be employed and fitted to the early outbreak
data with a discrete group structure would be the one-parameter preferential mixing model
(Fraser et al. 2009). For this reason, we believe that this study has satisfied an essential need
to emphasize the importance of measuring transmission assortativity using paradox-resistant
change-adjusted agreement measure.
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