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Abstract
This paper presents a new direct adaptive control (DAC) technique using Caputo’s definition of the fractional-order derivative.
This is the first time a fractional-order adaptive law is introduced to work together with an integer-order stable manifold for
approximating the uncertainty of a class of nonlinear systems. The DAC approach uses universal function approximators such
as multi-layer perceptrons with one hidden layer or fuzzy systems to approximate the controller. This paper presents a new
lemma, which elucidates and clarifies the link between the Caputo and the Riemann–Liouville definitions. The introduced
lemma is useful in developing a Lyapunov candidate to prove the stability of using the proposed fractional-order adaptive law.
This is further explained by a numerical example, which is provided to elucidate the practicality of using the fractional-order
derivative for updating the approximator parameters. The main novelty of the results in this paper is a rigorous stability proof
of the fractional DAC approach for a class of nonlinear systems that is subjected to unstructured uncertainty and deals with the
adaptation mechanism using a traditional integer-order stable manifold. This makes the control scheme easier to implement in
practice. The fractional-order adaptation law provides greater degrees of freedom and a potentially larger functional control
structure than the conventional adaptive control. Finally, the paper demonstrates that traditional integer-order DAC is a special
case of the more general fractional-order DAC scheme introduced here.

Keywords Fractional-order control · Direct adaptive control · Function approximation · Control theory

1 Introduction

The main idea of direct adaptive control (DAC) is to directly
modify a set of the control law’s parameters to design a stable
closed-loop system. A direct adaptive controller is estab-
lished by combining both the control and adaptive laws. The
adaptive law instantly estimates the parameters of the control
law, which can be designed from the ideal case, where the
system’s parameters are certain and well defined (Spooner et
al., 2002; Ioannou & Sun, 1996, 1988). Several settings of
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approximator structures, such as neural networks and fuzzy
systems, are discussed in Spooner et al. (2002). By adjusting
their parameters, these structures serve as universal approx-
imators to represent the controller of the system in the direct
adaptive approach. This paper contributes to the control com-
munity by designing a new DAC based on fractional-order
techniques.

Fractional adaptive control research activity is dramati-
cally increasing because of its ability to simulate complex
problems in many modern applications such as AI and
machine learning. The authors in Liu et al. (2017) use the
adaptive fuzzy backstepping control method to compensate
for the uncertainty in a class of fractional-order nonlinear
systems. The backstepping control technique can be further
extended to apply to the fractional-order nonlinear systems.
Fractional-order adaptation laws are obtained as a natural
result of fractional-order derivative of Lyapunov function.
In Yin and Chu (2010), adaptive synchronization of two
chaotic system with unknown parameters modeled by a
fractional-order differential equation was studied while in
Lin and Lee (2011), adaptive fuzzy sliding mode control
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(SMC) is proposed to synchronize two time-delay chaotic
fractional-order systems with uncertainties. The model ref-
erence adaptive control problem is applied to fractional-order
linear and nonlinear systems and investigated in Wei et al.
(2014), where the reference model adaptive control scheme
is extended to fractional-order systems, while in Chen et al.
(2016) indirect model reference adaptive control problem for
fractional-order systems is studied. The estimation of adap-
tive parameter schemes for classes of linear fractional-order
(FO) systemswaspresented inRapaic andPisano (2014). The
work Shen and Lam (2016) has given for non-discrete-time
positive FO delay systems and has provided the sufficient
and necessary condition for stability. It has shown that the
L∞ gain of this system does not depend on the magnitude
of delays and can be determined by the matrices of the sys-
tem. In Lu and Chen (2010), the authors have introduced a
necessary and sufficient condition for the strong asymptotic
stability of systemsmodeled by FO derivative equations with
the order between 0 and 1. They demonstrate the results in
terms of linear matrix inequality (LMI). This paper has been
commented on by the authors of Aguiar et al. (2015). They
have proven that the conditions are sufficient but not nec-
essary. Studying, analyzing or improving the performance
of fractional-order control systems is a promising area of
research. However, fractional-order systems are still insuffi-
ciently utilized in real-life applications.

Despite the fact that there are some systems’ compo-
nents that have fractional properties which entail fractional
phenomena (Li et al., 2009), the physical meaning of a
fractional derivative is still not well understood (Podlubny,
2002).Moreover, most of the systems in the control literature
are already modeled by integer-order differential equations.
However, in many researches, fractional calculus, when used
as a controller, exhibits advantages over its integer-order
counterpart (Aburakhis & Ordóñez, 2018). The authors in
Pan and Das (2012) have shown that the FO PID controller
has better performance compared to the classical PID con-
troller due to its additional degrees of freedom. In Sun and
Ma (2017), the authors used fractional calculus to design a
practical adaptive terminal SMC for tracking problem, and
they have shown that fractional-order sliding mode control
is more accurate and faster when compared with the conven-
tional one. In Ibrahim (2013), fractional calculus has been
used to generalize differential polynomial neural networks
and the author suggests using this method for the model-
ing of complex systems. The results show that the fractional
differential polynomial neural network satisfies a quicker
approximation to the exact value compared to the classi-
cal method. The authors in Ullah et al. (2016) generalize
the sliding mode control method by using fractional calcu-
lus derivatives. They propose to use a fuzzy logic system
to reduce the discontinuous switching gain. Similarly, in Efe
(2008), a fractional integration schemehas beendiscussed for

fractional SMC. Based on former studies of fractional-order
operators in the area of control engineering, there is signifi-
cant evidence of the superiority of fractional-order compared
to classical integer-order operators in terms of robustness and
performance (Malek&Chen, 2016).However, the fractional-
order adaptive laws for the above studies resulted from taking
the fractional-order derivative of the error manifold. In the
proposed method, we chose the integer-order derivative for
the error manifold. This choice is more practical since the
system we are controlling is already modeled using ordinary
integer-order differential equations. While many past stud-
ies tried to use the fractional-order derivative of the adaptive
law, they had to turn to the error manifold’s fractional-order
derivative. In contrast, we reserve the fractional-order deriva-
tive’s long-term memory benefits solely for updating the
controller’s parameters. In this way, we offer a clearer dis-
tinction and practicality in real-world applications.

In this paper, a novel version of fractional-order (FO)
adaptive law for direct adaptive control is introduced,
together with a rigorous proof of closed-loop stability. The
new FO-DAC is based on Caputo derivative due to its advan-
tages over the Riemann–Liouville derivative, which results
from the integer derivative of the Riemann–Liouville def-
inition. The Riemann–Liouville derivative of a constant is
not zero and also has an initialization problem. When the
Riemann–Liouville derivative is used, zero initial condi-
tions are necessary to avoid singularity problems, but zero
initial conditions cannot be used for the parameter error.
The Caputo derivative avoids these two problems because
its initial conditions take on the same form as for integer-
order derivative (Podlubny, 1998; Xue & Bai, 2017), and
the Caputo derivative of a constant is 0 (Monje et al., 2010;
Diethelm, 2010). Physically, the Caputo derivative is much
better understood and more suitable for real-world problems
(Podlubny, 1998; Xue & Bai, 2017). The technique intro-
duced in this paper is an improvement over existing methods
because it uses an integer-order stable manifold with a FO
adaptive law, which makes this approach implementable in
practice. Since most control systems are already modeled
using integer-order IO differential equations, the integer-
order error manifold is more practical to consider. On the
other hand, the FO derivative for the adaptation law signifi-
cantly increases the design degrees of freedom (Monje et al.,
2010). This advantage can enable the designer to enhance
the controller’s performance beyond that of the approxima-
tor’s structure in classical adaptive control. Specifically, the
fractional-order derivative provides an added degree of free-
dom, offering improved control energy and fast response.
This is in contrast to classical adaptive control methods,
which might primarily focus on optimizing the response
speed through an increase in the controller’s learning rate.
By leveraging the advantages of our method, designers can
achieve better performance than with traditional approxima-
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tor structures. While classical methods often boost response
speed by increasing the controller’s learning rate, as refer-
enced in Noriega and Wang (1998), our method provides
comprehensive improvements to controller functionality.

The paper is formed as follows: Section2 reviews some
of the fundamental FO system concepts and also function
approximation, and Sect. 3 describes the class of nonlinear
systems under consideration. Section4 first goes over DAC
upon which the framework for the main result of the novel
FO-DAC technique is based. Section5 contains an illustrative
example, and finally, Sect. 6 concludes the paper.

2 Preliminaries

Here, fractional-order systems are reviewed and linked to the
paper’s ideas. Firstly, we introduce the Riemann–Liouville
integral that is required to generalize the Lyapunov candidate
function in Section 4.1. Secondly, we introduce the defini-
tions of the Riemann–Liouville and Caputo derivatives. The
Riemann–Liouville derivative is the resultant of from tak-
ing the integer-order derivative to the Lyapunov candidate
function. However, this result needs to be aligned with the
Caputo derivative. Therefore, we introduce a new lemma that
generalizes the equality between the two definitions.

2.1 A Basic Guide to Fractional Calculus

A non-integer-order derivative operator is a generalization
of the classical integer-order derivative operator. There are
toomany definitions for fractional-order derivative (Li, 2015;
Monje et al., 2010), but the most frequently used definitions
are the Riemann–Liouville definition,

Dνh(t) = 1

�(m − ν)

dm

dtm

∫ t

0
(t − u)m−ν−1h(u)du, (1)

where �(·) describes the Gamma function, and the Caputo
definition,

Dν∗h(t) = 1

�(m − ν)

∫ t

0
(t − u)m−ν−1h(m)(u)du, (2)

wherem−1 < ν < m, andm ∈ N+. Both use the Riemann–
Liouville fractional integral operator of order ν, which is
defined as

I νh(t) = 1

�(ν)

∫ t

0
(t − u)ν−1h(u)du, (3)

where t ∈ R
+, ν ∈ R

+ and h : R → R is an m-times con-
tinuously differentiable function (Podlubny, 1998; Diethelm,
2010;Monje et al., 2010). Till now there is not a clear enough
understanding of the physical and geometric meaning of

the fractional-order integration or differentiation (Podlubny,
2002). However, the general interpretation by Pan and Das
(2012) is that the area under the curve,which can be imagined
by the IO integration, varies as time proceeds while the inte-
gral keeps a memory all of the past values in FO integration.
The most important property of this operator is

lim
ν→0+ I νh(·) = h(·).

The Caputo derivative operator (Diethelm, 2010; Li, 2015),
which will be utilized in this paper, takes the integer-
order differentiation of the function first, i.e., Dν∗h(t) =
Im−νDmh(t), while the Riemann–Liouville is the opposite
of it, Dνh(t) = Dm Im−νh(t), where m = �ν�, and �·� is
the ceiling function. The largest difference between the two
definitions is the derivative of a constant. It can be noticed
from (1) and (2), the Caputo derivative of a constant is zero,
unlike the Riemann–Liouville operator, which is stated in the
following lemma.

Lemma 1 (Monje et al., 2010; Diethelm, 2010) The Caputo
derivative of a constant is zero. For any constant c ∈ R,

Dν∗c = 0.

For this reason, the Caputo derivative can be used to model
the rate of change. Also, one of the other features of the
Caputo derivative is that the initial conditions of the Caputo-
based fractional differential equations are in the form of
integer derivatives, which is the same form as that of ordi-
nary differential equations. This featuremakes this derivative
more amenable in practical situation. This paper will use
the FO Caputo derivative to represent the FO adaptive
law. However, the stability analysis requires the use of the
Riemann–Liouville derivative, and its relationship to the
Caputo derivative as it will be shown later in Sect. 4.1.

Lemma 2 (Diethelm, 2010) For t, ν, and m defined above,
the relationship between Caputo and Riemann–Liouville
operators is

Dν∗h(t) = Dνh(t) −
m−1∑
k=0

tk−ν

�(k + 1 − ν)
h(k)(0). (4)

The following Lemma generalizes the equality between the
Caputo and Riemann–Liouville derivatives. It will be used
directly in the stability proof.

Lemma 3 For t ∈ R
+, m, m̄ ∈ N+ the Caputo and

Riemann–Liouville derivatives of the continuously differen-
tiable function f (t) = (h(t) − h(0))m̄ are equal. That is,

Dν (h(t) − h(0))m̄ = Dν∗ (h(t) − h(0))m̄ ,
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if m̄ ≥ m, where m − 1 < ν < m, and h : R → R is a
continuously m-times differentiable function.

Proof From Lemma 2, the Caputo derivative and Riemann–
Liouville derivative are equal if the last term of (4) is equal
to zero, which can be ensured if f (0), ḟ (0), . . . , f (m−1)(0)
are equal to zero. By letting

f (t) = (h(t) − h(0))m̄ ,

where m̄ ∈ N+, the initial condition of f (t) and its deriva-
tives up to the (m̄ − 1)th one are also zero since the term in
parenthesis is present in all high order terms. 	

Lemma 4 For t ∈ R

+, when ν = 1 the Caputo derivative
becomes the classical integer-order derivative,

D1∗h(t) = d

dt
h(t).

Proof See Appendix A. 	

Recently, many researchers have delved into the stabil-

ity of fractional-order systems. For example, the stability
of LTI systems is discussed in Monje et al. (2010), while
Li et al. (2009), Li et al. (2010) present a fractional Lya-
punov direct method for fractional-order nonlinear dynamic
systems. Despite the insights offered by these works, our
research takes a different approach. One of the main contri-
butions of our paper is addressing systems in the traditional
integer-order differential equation format while employing
fractional-order derivatives for the adaptation mechanism.

3 Class of Systems

Consider the normal form of an input–output feedback lin-
earizable nonlinear system

q̇ = φ(q, z),

ż = Acz + bc ( f (q, z) + g(q, z)u) ,
(5)

where q ∈ R
d , z ∈ R

nz , nz + d = n,

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
.

.

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
nz×nz

and bc = [0, . . . , 0, 1]� ∈ R
nz (Khalil, 1996).

In this system, q ∈ R
d represents the regulated output

states, while z ∈ R
nz denotes the zero dynamics. Together,

these state vectors describe the complete state of the system.

The functions f (q, z) and g(q, z) represent the nonlinear-
ities of the system. While the exact forms of these functions
might be unknown, they possess certain properties that are
essential for our control approach, such as the lower bound
or the upper bound.

Assumption 1 (Khalil, 1996) The system described in (5) is
locally Lipschitz in [q�, z�]� and piece-wise continuous in
t as per the control law u = v(t, z).

Assumption 1 guarantees the existence and uniqueness of the
trajectory z(t) starting from the initial condition z(0) satis-
fying (5).

Assumption 2 The nonlinear system (5) is minimum phase.

Regulating the error between the output and the reference to
zero is the most common control problem. This error and its
derivative will be used to deduce the control law. The error
manifold is defined as:

e = k1(z1 − r) + ... + knz−1(znz−1 − r (nz−2))

+(znz − r (nz−1)), (6)

where r(t) is the reference signal, and its derivatives
ṙ , . . . , r (nz) are all assumed to be bounded and available,
such as via the use of a reference model. The gains ki are
chosen so that the polynomial

snz + knz−1s
nz−1 + · · · + k1

is Hurwitz. The first derivative of the error manifold is:

ė = �(t, z) + f (q, z) + g(q, z)u, (7)

where�(t, z) = k1(z2−ṙ)+...+knz−1(znz −r (nz−1))−r (nz).

4 Direct Adaptive Control (DAC)

This section is commenced by prefacing integer-order direct
adaptive control for the reader’s convenience, and followed
by the main contribution of the paper, which is a fractional-
order direct adaptive control. The controller can be applied in
practice to physical systemsmodeled by IO differential equa-
tions since only the update law of the controller’s parameters
is FO.

The adaptive control technique is used to deal with the
uncertainties in system (5). There are several schemes of
DAC, minimum variance stochastic, self-tuning controllers,
model reference adaptive control, Goh (1994), Tan et al.
(2013); Mirkin and Gutman (2010). In this paper, adaptation
is done to approximate an unknown stabilizing controller
directly.
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The DAC approach assumes that there exists an unknown
ideal static controller that performs a tracking or regulation
task, where the tracking task merely means regulating the
error between the output and reference to zero. The ideal
controller that drives the error system (6) to zero may be
considered to be a feedback linearizing controller of the form

u∗
FL = −1

g(q, z)
( f (q, z) + � + ke), (8)

where k > 0, and it can be represented within a compact set
S ∈ R

n+nz+1 as

u∗
FL = F(P∗, q, z, r̄) + w(q, z, r̄), (9)

where F(·) is a universal approximator, P∗ ∈ R
p is an

unknown ideal vector of parameters such that the representa-
tion error w(·) is minimized over S and r̄ = [r , ṙ , ..., r (nz)]�
(Spooner et al., 2002).

SinceP∗ is unknown,wewill instead use its estimate P̂(t)
to be updated online. Therefore, the unknown controller will
be estimated using

uFL = F(q, z, r̄ ,P̂), (10)

and r̄ is defined above. The parameter error

P̃ = P̂ − P∗ (11)

is considered as a new state vector that needs to be regulated
to zero or at least be kept inside a compact invariant set.

The error e in (6) denotes the system error, quantifying the
deviation of the system’s state z from the desired reference
trajectory r(t). On the other hand, the term w(q, z, r̄) in (9)
represents the representation error introduced when approx-
imating the ideal controller using a universal approximator,
where it captures the difference between the ideal and the
estimated controller.

Since the DAC approach is based on approximating the
controller itself, then the representation errorw,which results
from the approximator being of finite size p, will be com-
pensated for using a stabilizing term, us . Hence, the control
law will be in the form

u = uFL + us . (12)

By using a linearly parametrized function approximator
with universal approximation properties, such as fuzzy sys-
tems and neural networks (Spooner et al., 2002), we can
express the relationship as given in (10). This becomes:

uFL = P̂�ζ(q, z, r̄), (13)

where ζ(q, z, r̄) is a vector of radial basis functions. Hence,
the control law (12) is chosen as

u = P̂�ζ(q, z, r̄) + us . (14)

Thereby the derivative of the error manifold is

ė = �(t, z) + f (q, z) + g(q, z)[P̂�ζ(q, z, r̄) + us],
= �(t, z) + f (q, z) + g(q, z)[P̂�ζ(q, z, r̄)

− P∗�
ζ(q, z, r̄) + P∗�

ζ(q, z, r̄) + us],
= �(t, z) + f (q, z) + g(q, z)[P̃�ζ(q, z, r̄) + us

− w(q, z, r̄)] − f (q, z) − �(t, z) − ke,

= −ke + g(P̃�ζ(q, z, r̄) + us − w(q, z, r̄)), (15)

where P̂(t) ∈ R
p is the on-line estimation of the constant

but unknownP∗ ∈ R
p.Furthermore, there are some assump-

tions that should be considered.

Assumption 3 The function g: Rn → R is continuously dif-
ferentiable (g ∈ C1). Moreover, there exist constants Lw,
Lgz , g0, and g1, such that when P∗ is used in (9),

‖w(q, z, r̄)‖ ≤ Lw, ∀ [q�, z�]� ∈ S, (16)

and
∥∥∥∥∂g

∂z

∥∥∥∥ ≤ Lgz , 0 < g0 ≤ g(q, z) ≤ g1, ∀ [q�, z�]� ∈ S,

with Lw and Lgz the smallest bounds.

Assumption 4 The constants Lw, Lgz , and g0 are known.
However, Assumption 4 can be dispensed with by estimating
these bounds online.

Theorem 1 (Spooner et al., 2002) Consider the system
described in (5). Let Assumptions 1, 2, 3, 4 hold. The use
of the adaptation law

˙̂P(t) = −γ ζ(q, z, r̄)e, (17)

where γ is the leaning rate, to update the controller param-
eters (14), where

us = −
(
Lw + Lgz

2g20
|e|
)
sgn(e) (18)

is the stabilizing term, guarantees that the error of the system
(6) will be asymptotically stable and parameter’s error (11)
will be bounded.

More details on stability analysis can be found in Spooner
et al. (2002).
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4.1 Fractional-Order Direct Adaptive Control
(FO-DAC)

This section presents the main result and contribution of this
paper. It first provides a rigorous stability analysis of the new
FO-DAC scheme that uses an IO error manifold but a FO
adaptation law with order 0 < ν < 1. Then, it replaces the
discontinuous stabilizing termwith a continuous approxima-
tion and derives its impact on the closed-loop behavior. It is
shown that traditional IO-DAC is a restrictive example of the
general fractional-order direct adaptive control.

A fractional-order integral sliding surfacewas proposed in
Aghababa (2014), while a fuzzy SMC with fractional-order
dynamics of a class of second-order systems was derived in
Ullah et al. (2016), where the uncertainty was assumed to
be a part of the system. Conversely, this paper assumes that
f (q, z), and g(q, z) are unknown, but instead of approximat-
ing them, a stabilizing controller is directly approximated.
And as mentioned, the error manifold and its integer-order
derivative are utilized, which is more suitable for a system
that is already modeled by an integer-order differential equa-
tion.

Theorem 2 Consider the nonlinear control system (5) that
satisfies Assumptions 1, 2, 3, and 4. Boundedness of all sig-
nals in the closed-loop system is achieved when using the FO
adaptive law

Dν∗P̂ = −γ ζ(q, z, r̄)e (19)

to update the parameters of the controller (14), with

us = −
(
L̂k + Lw + Lgz

2g20
|e|
)
sgn(e), (20)

where L̂k is the estimated value of Lk = max
[q�,z�,r̄�]�∈S

(P̃�
0 ζ ),

and updated using the following additional adaptation law

˙̂Lk = γk |e|. (21)

Moreover, e(t) converges to zero as t → ∞.

Proof Consider the proposed Lyapunov candidate

VFO(e, P̃, L̃k) = 1

2g
e2

+ 1

2γ
I 1−ν

(
P̃(s) − P̃(0)

)� (P̃(s) − P̃(0)
)

+ 1

2γk
L̃2
k,

(22)

where the operator I is defined in (3) with 1 − ν > 0, P̃(0)
is an unknown constant vector, L̃k = L̂k − Lk and Lk is
an unknown upper bound of P�(0)ζ(q, z, r̄) and L̂k is its

estimation, and γ, γk > 0 are the adaptation gains. It can be
noticed that, via a coordinate transformation, the proposed
candidate can be shifted by the initial condition P̃(0) to drive
the equilibrium point to zero. Moreover, since 1 − ν > 0,
the fractional order ν in this paper is confined to the interval
(0, 1). Considering Lemma 3, the integer-order derivative

of I 1−ν
(
P̃(t) − P̃(0)

)� (P̃(t) − P̃(0)
)
is the Riemann–

Liouville derivative, which is equal to the Caputo derivative,

Dν

[(
P̃(t) − P̃(0)

)� (P̃(t) − P̃(0)
)]

=

Dν∗
[(

P̃(t) − P̃(0)
)� (P̃(t) − P̃(0)

)]
. (23)

By taking the first derivative of the Lyapunov candidate
(22) and considering the derivative of the errormanifold (15),
it follows that

V̇FO ≤ − k

g1
e2 + P̃�ζ(z, r̄)e + Lgz

2g20
|e|2 + Lw|e| + use

+ 1

2γ
Dν∗

[(
P̃(t) − P̃(0)

)� (P̃(t) − P̃(0)
)]

+ 1

γk
L̃k

˙̂Lk .

(24)

Now, consider the following lemma.

Lemma 5 Let 	 : R → R
n be continuously differentiable

function, then for t > 0,

Dν∗	�	 ≤ 2	�Dν∗	. (25)

Proof See Appendix B. 	

Lemma 5 is used to show that

Dν∗
[(

P̃(t) − P̃(0)
)� (P̃(t) − P̃(0)

)]

≤ 2
(
P̃(t) − P̃(0)

)�
Dν∗

(
P̃(t) − P̃(0)

)
, (26)

which can be substituted into (24), thus

V̇FO≤ − k

g1
e2+P̃�ζ(q, z, r̄)e+ Lgz

2g20
|e|2 + Lw|e| + use

+ 1

γ

(
P̃ − P̃0

)�
Dν∗P̂ + 1

γk
L̃k

˙̂Lk, (27)

where P̃0 = P̃(0) and Dν∗
(
P̃ − P̃0

)
= Dν∗P̂ (Lemma 1).

Then, using the fractional-order adaptive law (19), we obtain

V̇FO ≤ −k̄e2 + Lgz

2g20
|e|2 + Lw|e| + use + Lk |e| + 1

γk
L̃k

˙̂Lk

= −k̄e2 + Lgz

2g20
|e|2 + Lw|e| + use + L̂k |e|
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− L̃k |e| + 1

γk
L̃k

˙̂Lk, (28)

where k̄ = k/g1. Then, we choose stabilizing term as (20)
and the additional adaptive law as (21). Therefore, (28)
becomes

V̇FO ≤ −k̄e2, (29)

A negative semi-definite upper bound of V̇FO is obtained,
after applying the LaSalle–Yoshizawa theorem (Spooner et
al., 2002)

∥∥[e, (P̃ − P̃0)
�, L̃k]�

∥∥, or ∥∥[e, P̃�, L̃k]�
∥∥ (since

P̃0 is constant) is uniformly bounded, and the error e(t) is
asymptotically stable 	


Remark 1 In general, the parameter vector P∗, which can
be represented as P∗ = P̂(0) − P̃(0), is a weight vector
of the radial basis functions that is used to approximate the
controller, or it can also be an unknown system parameter.
However, inmost physical systems, a priori knowledge could
be obtainable. This knowledge can be exploited to establish
a bounded and convex set 	 such that P∗ ∈ 	, as well
as [q�, z�, r̄�]� ∈ S. If that is the case, the term 1

γk
L̃2
k in

Lyapunov candidate (22) canbe removed, the stabilizing term
becomes

us = −
(
Lk + Lw + Lgz

2g20
|e|
)
sgn(e). (30)

Remark 2 Conversely of Remark 1, we may not have enough
information about the system. In this case, we will estimate
the bounds Lw and Lgz . That can be preformed in the same
way of the estimation of Lk . Then, two more extra adaptive
laws will take place:

˙̂Lw = γw|e|, (31)

˙̂Lw = γgz
|e|
2g20

, (32)

where γw and γgz are positive gains. Therefore, the new sta-
bilizing term will be

us = −
(
L̂k + L̂w + L̂gz

2g20
|e|
)
sgn(e). (33)

However, the RHS of the adaptive laws (21), (31) and (32)
is positive. This could be a problematic in the new stabi-
lizing term (33). Therefore, some technique, for example
σ -Modification, can be used to overcome this problem.

Remark 3 The proposed Lyapunov candidate (22) can be
considered as a general form of the integer-order one intro-
duced in Spooner et al. (2002), where

lim
ν→0

I ν
(
P̃(t) − P̃(0)

)� (P̃(t) − P̃(0)
)

=
(
P̃(t) − P̃(0)

)� (P̃(t) − P̃(0)
)

, (34)

and

D1∗P̂ = ˙̂P. (35)

Remark 4 Fractional-order adaptation provides clear benefits
when comparedwith integer-order adaptation: the fractional-
order derivative effectively possesses memory, to a larger
degree than the integer order derivative. The extent to which
this additional memory is used can be chosen via the deriva-
tive order ν, which serves in practice as an additional degree
of freedom that the control system designer can use to
improve performance. Crucially, as our simulation exam-
ple in Section 5 illustrates, the improvement in performance
that FO adaptation provides (considering both tracking error
and control energy) cannot be trivially obtained by simply
increasing the adaptation gain in the IO case.

Remark 5 The results reached in the above paragraphs are
proof of the stability of using the fractional-order DAC for
the case where ν ∈ (0, 1). The generalization of the stability
proof of FO-DAC of order ν > 1 is still an open problem, to
our knowledge.

4.1.1 Smoothing the Controller

High-frequency switching may occur due to the discontinu-
ous stabilizing term (20). The unwanted chattering can cause
problems in the Lipschitz condition, which can affect the
uniqueness and existence of the solution. In practical applica-
tions, undesirable outcomes arise from both high-frequency
switching and excessive gain in the control. For these reasons,
the usage of the sgn function is not practical. Therefore, to
suppress the undesired chattering, the sat function,

sat(�) =

⎧⎪⎨
⎪⎩
1, if � > 1,

�, if | � |≤ 1,

−1, if � < −1,

(36)

may be used instead of the sgn function in (20). Particularly,
the sign function (sgn(e)) is replacedwith the saturation func-
tion

(
sat( 1

ϒ
e)
)
, where ϒ > 0 in (20). This change leads to

different stability results, as shown next.
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Fig. 1 Block diagram denoting the B&B system

Before picking the stabilizing term, the derivative of (22)
is

V̇FO ≤ −k̄e2 + Lgz

2g20
|e|2 + Lw|e| + use + L̂k |e|. (37)

When |e| > ϒ , sat( 1
ϒ
e) = sgn(e), then the inequality (29)

is obtained. When |e| ≤ ϒ , sat(e) = e
ϒ
and

V̇FO ≤ �(e),

where

v(e) =
((
Lw + L̂k

)
−
(
Lw

ϒ
+ L̂k

ϒ
+k̄− Lgz

2g20

)
|e|

− Lgz

2ϒg20
|e|2

)
|e|. (38)

Note that�(e) equals zero at e = {±ϒ̄}, greater than zero
when |e| < ϒ̄, and less than zero otherwise, where ϒ̄ is the
root of (38). Therefore, the set
 = {e ∈ R : |e| ≤ ϒ̄} can be
defined as a positively invariant set. Hence, lim

t→∞|e(t)| ≤ ϒ̄

since {e ∈ R : |e| = ϒ̄} is also invariant set. At the end, we
obtain UUB. Notice that

ϒ̄ = ϒg20
Lgz

(
−
(
Lw

ϒ
+ L̂k

ϒ
+ k̄ − Lgz

2g20

)

+
√√√√
(
Lw

ϒ
+ L̂k

ϒ
+k̄− Lgz

2g20

)2

+ 2Lgz

ϒg20

(
Lw + L̂k

)
⎞
⎟⎠ ,

(39)

which can be suitably calibrated with the appropriate selec-
tion of gains to minimize the area of the convergence.

5 Numerical Example

In this section, the ball and beam example is solved using the
proposed technique, which is also compared with traditional
IO adaptive control.

Fig. 2 The schematic diagram of the B&B system

5.1 Ball and Beam (B&B)

The ball and beam (B&B) control system is usually used as
a benchmark to evaluate and investigate the performance of
the controller structure, where its dynamics are an example
of high nonlinearity and it is ultimately unstable even when
the beam is near the horizontal.

The experiment involves several components, such as a
rigid ball, cantilever beam, DC motor, and various sensors.
The schematic diagram in Fig. 2 illustrates that the structure
of the B&B system is created by attaching the beam to the
motor, with a rigid rolling ball resting on the beam. The pri-
mary idea behind this setup is to utilize the motor’s torque to
regulate the position of the ball on the beam. Furthermore,
the studywill be extended by introducing a disturbance to the
input signal, with the aim of analyzing the system’s robust-
ness and its ability to maintain stable control in the presence
of external disturbances. This approach will provide insights
into the system’s performance and its potential for real-world
applications.

The system is composed of an inner loop and an outer loop
as shown in Fig. 1.

The state space equations of the inner loop are:

⎡
⎣ẋ1ẋ2
ẋ3

⎤
⎦ =

⎡
⎣0 1 0
0 0 1
0 a1 a2

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦+

⎡
⎣ 0
b1
b2

⎤
⎦ ui (40)

yi = [
1 0 0

]
⎡
⎣x1x2
x3

⎤
⎦ , (41)
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where the input of the inner loop is defined as ui (t) = i(t),
representing the input current used by the motor. The output
of the inner loop is the angle of the beam, denoted by yi (t) =
ϑ(t) = x1, with x2 representing the angular acceleration of
the beam and x3 denoting the angular acceleration of the
beam. The parameters b1 = 280.12, b2 = −18577.14, a1 =
−87885.84, and a2 = −1416.4 are used in this context.
The desired position of the ball is denoted by r . Additional
details on this topic can be found inOrdonez et al. (1997). The
Newton’s second law will be used to model the outer-loop
system for small angle ϑ (sin ϑ ≈ ϑ),

ẋ4 = x5,

ẋ5 = f (x) + g(x)uo,
(42)

where x4 is the ball position on the beam, x5 is the velocity of
the ball on the beam, f (x) = a4 tan−1(100x5)(e−104x25 − 1),
and g(x) = a3 = −514.96. In the inner loop, the propor-
tional integral derivative controller controls the position of
the beam to the reference angle by actuating the motor. The
input of the controller is the error ϑe, which is the differ-
ence between the beam angle ϑ and the reference angle. By
well-designing the inner-loop controller, its motion will be
quicker compared to the outer one. Here, we choose a PID
controller with gains kp = 20, ki = 10, and kd = 0.1. The
FO-DACwill be implemented for the outer-loop system (42),
where we consider the ball position yo = x4 to be the output
of the system and the beam angle uo = ϑ = x1 is the system
input. By referring to Assumption 3, there are g, g such that
−∞ < g ≤ g ≤ g ≤ 0, and | ġ(x) |≤ Lgx < ∞. In this
example, we will set g = −10 and Lgx = 0.001. As men-
tioned the proposed technique will keep the error manifold
in input–output form. The goal is to track the reference r by
the output x4, and then, the tracking error is:

e = k1(x4 − r) + x5 − ṙ . (43)

The reference will be specified to be a constant, r = 4, which
is measured from the left edge of the beam, hence,

ė = � + f (x) + g(x)u,

where � = k1x5. Note that in this case g is negative. The
derivative of the error manifold is

ė = −ke + g(P̃�ζ(x, r̄) + us − w(x, r̄)). (44)

Therefore, the control law is

u = P̂�ζ(x, ē) + us,

Fig. 3 The ball position on the beam yo when using FO-DAC (ν =
0.6, 0.8 and 0.9) and IO-DAC w.r.t. time

Table 1 Mean-squared error and control energy for different choices
of order ν

Order ν 0.6 0.8 0.9 1

MSE (cm2) 2.888 2.308 2.343 2.575

CE (N m) 1.667 2.01 2.561 2.993

where ē = −� − ke, the adaptation law is

Dν∗P̂ = γ ζ(x, ē)e,

and

˙̂Lk = γk |e|,

where γ = 0.08, and γk = 0.001, and the stabilizing term is

us = −
(
L̂k + Lw + Lgx

2g2
|e|
)
sat

(
1

ϒ
e

)
,

where the parameters ϒ = 0.1 and Lw = 0.01. Moreover,
NNs are applied to approximate the controller with a radial
basis function ϕ(s) = exp(− s2

γ 2
s
), where γs = 1. Four radial

basis functions scaled by 0.25 are chosen for each input,
x ∈ R

2 and ē ∈ R, to implement the multilayer percep-
tron approximator with one hidden layer. Hence, p = 34

parameters. The Matlab Simulink toolbox is used to solve
this example numerically, where the fractional-order inte-
grator is implemented using FOMCON (Fractional Order
Modeling and Control Toolbox). Figure3 shows the output
behavior yo = x4 for ν = 0.6, 0.8, 0.9 and ν = 1 (IO). Table
1 presents the control energy and the mean-squared error for
different orders of ν, including the integer-order case.
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Fig. 4 Comparing the ball position on the beam yo when using FO-
DAC, ν = 0.02 and 0.8, w.r.t. time

There exists a trade-off between the mean-squared error
(MSE) and the control energy, as demonstrated in Table 1.
This relationship allows for effectivemanagement of the con-
trol energy; specifically, to achieve a certain acceptable error
level, one can select an optimal value formean-squared error,
such as ν = 0.8. By noticing Fig. 4, if one has flexibility with
the steady-state error and control energy, then the low order
ν = 0.02 can be chosen.

This example illustrates the advantages of using the FO-
DAC technique. The additional degree of freedom provided
by ν yields flexibility in the trade-off between control energy
and fast response.

Through a comparison of the input–output (IO) and

feedback-output (FO) adaptive laws expressed as ˙̂P =
γ f (ζ, e) and DνP̂ = γ f (ζ, e), respectively, with the same
learning rate of γ , it has been observed that the performance
of FO-DAC, specifically for a value of ν = 0.8, surpasses
that of IO-DAC. This is due to the additional parameter, ν,
which activates the time factor t1−ν , thereby enabling reten-
tion of all prior values. However, the optimal value of ν that
results in the best performance, is yet to be determined and
is an ongoing research topic addressed in this paper.

To evaluate the robustness of our proposed control tech-
nique, we will add white noise to the input of our system.
White noise added to the input in a real experiment can
represent various disturbances and uncertainties, such as
measurement noise, actuator noise, parameter uncertainty,
and external disturbances. By testing our controller’s perfor-
mance under such noisy and uncertain conditions, we can
improve its robustness and effectiveness.

In conclusion, we simulated the system for a longer period
of time (t = 5 sec) as shown in Fig. 5 and found that our pro-
posed control technique is able to effectively deal with both

Fig. 5 Ball position on the beam (yo) over time, obtained using FO-
DAC (ν = 0.6, 0.8, and 0.9) and IO-DAC with noise present

the uncertainty of the model and the added noise. The results
show that our adaptive law has the ability to accurately esti-
mate the unknown parameters of the system and compensate
for the effects of the added noise on the measured ball posi-
tion. This demonstrates the robustness and effectiveness of
our proposed control technique in dealing with noisy and
uncertain conditions. Overall, our study provides a valuable
contribution to the field of control systems and highlights the
importance of developing robust and adaptive control tech-
niques for real-world applications.

6 Conclusion

In this paper, we have introduced a new direct adaptive con-
trol method for a class of nonlinear input–output feedback
linearizable systems that uses a fractional-order derivative
to update the controller’s parameters. This technique is an
improvement over existing methods in the literature because
it keeps the integer-order derivative of the error manifold and
uses a fractional-order adaptive law, which possesses longer-
term memory compared with the integer-order adaptive law.
This feature may also have the advantage of reducing the
complication of having to use a large number of approximator
parameters. The FO update law uses the Caputo derivative,
as opposed to the Riemann–Liouville definition. The Caputo
derivative is more suitable in practice because it represents
the rate of change and allows conventional initial conditions
to be incorporated in themodeling of the systemby the differ-
ential equations.We show that the conventional integer-order
direct adaptive law (ν = 1) is a special case of the fractional-
order one (0 < ν < 1). We present a simulation example
to illustrate the performance improvement and extra flexi-
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bility provided by the FO adaptive law, as compared with
the integer case. The results demonstrate the robustness and
effectiveness of our adaptive law in accurately estimating the
unknown parameters of the system and compensating for the
effects of the added noise on the measured ball position. The
proof of stability using the FO adaptive law to approximate
the uncertainty is a paradigm shift in the field of adaptive
control because, everything else being equal, more capabil-
ity can be provided by changing the derivative order.

Appendix A: Proof of Lemma 4

Proof From the Caputo definition (2), for m = 1,

Dν∗h(t) = 1

�(1 − ν)

∫ t

0
(t − s)−ν ḣ(u)ds.

Then by using integration by parts where u = ḣ(u) and
dv = (t − s)−νds, we get

Dν∗h(t) = 1

�(2 − ν)

(
(t − u)1−ν ḣ(u)

∣∣∣∣
0

t

+
∫ t

0
(t − u)1−ν ḧ(u)du

)

= 1

�(2 − ν)

(
t1−ν ḣ(0) +

∫ t

0
(t − u)1−ν ḧ(u)du

)
.

Now, by letting ν = 1,

D1∗h(t) = 1

�(1)

(
ḣ(0) +

∫ t

0
ḧ(u)du

)
.

Finally, we obtain

D1∗h(t) = ḣ(0) +
∫ t

0
ḧ(u)du

= ḣ(0) + ḣ(u)

∣∣∣∣
t

0

= ḣ(t).

	


Appendix B: Proof of Lemma 5

Proof The proof can be easily done by using the Caputo
definition (2) for Dν∗	�	 and Dν∗	 and substituting them in
(25),

1

�(1 − ν)

∫ t

0
(t − u)−ν

(
2	�(u)	̇(u)

−2	(t)�	̇(u)
)
du ≤ 0.

The integration by parts where u = (t − u)−ν and dv =
2	�(u)	̇(u) − 2	(t)�	̇(u) can be used to arrive at

(	(u) − 	(t))� (	(u) − 	(t))

(t − u)ν

∣∣∣∣
t

0

−ν

∫ t

0
(t − u)−ν (	(u)−	(t))� (	(u) − 	(t)) du≤0.

(B2)

Using L’Hôpital’s rule to find the limit of

(	(u) − 	(t))� (	(u) − 	(t))

(t − u)ν

when s tendu to t ,

lim
s→t

(2	(u) − 	(t))�
(
	̇(u)

)
−ν(t − u)ν−1 = 0.

Thus, the inequality (B2) becomes

− (	(0) − 	(t))� (	(0) − 	(t))

tν
−

ν

∫ t

0
(t − u)−ν (	(u) − 	(t))� (	(u) − 	(t)) du ≤ 0.

So, theLHS is always negative,which completes the lemma’s
proof. 	
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