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Abstract
This paper presents the development of a dynamical tropical algebra-basedmodel of a vaccination center, which can be used to
control and optimize the admission of users during center’s operation. In addition, an analysis of closed-loop control methods
designed to maximize the system performance in terms of service rate and minimize users’ waiting time, while observing
occupancy constraints due to social distancing protocols recommended by sanitary authorities due to Covid epidemic, is
presented.
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1 Introduction

Since the outbreak of COVID-19 in 2020, scientists andman-
agers of health care systems have been struggling to give a
proper response to the challenges posed by the pandemic.
First, it was the urge to treat the enormous amount of patients
arriving at hospitals and health care centers contaminated
by the SARS-Cov2 virus. Intense care units were suddenly
overflowed with people in critical condition. Shortages of
beds, ventilators, personal protective equipment and other
supplies were reported all over the world (Sen-Crowe et al.,
2021; Almeida et al., 2021; Ranney et al., 2020). Then, sci-
entists were called to develop effective vaccines against the
virus in a time span never seen before (Fang et al., 2022).
Once it was achieved, it came the challenge of distribut-
ing and applying the available doses among the population
in a rapid and safe way. The rush of thousands of people
to the vaccination centers in the search for shots put those
health care facilities under pressure and, in some cases, led to
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internal discoordination which, in turn, resulted in long wait-
ing lines, people agglomeration and other undesirable events
(abcnewsabcnews.go.com/WNT/video/thousands-waiting-
hours-line-covid-19-vaccine-74997524).

Aiming to help softening the burden on health care
structures, experts on science, technology, engineering and
mathematics have been working to design models and sys-
tems intended to optimize the use of the resources available
in many different health care institutions. From the very first
moments after the classification ofCOVID-19 as a pandemic,
mathematicians have presented models that have been used
extensively by policy makers as support in their decision
making process (Padmanabhan et al., 2021). In Gaubert et
al. (2020), for example, the authors present a model capable
of anticipating the evolution of the epidemic based on infor-
mation from emergence calls. In van der Schaar et al. (2021)
it is pointed out how artificial intelligence and machine
learning could help in the management of limited health-
care resources, in the development of personalized treatment
plans for different patients, in the improvement of collab-
oration among people working against COVID-19 and in
enhancing the efficiency and effectiveness of clinical trials.
In Garaix et al. (2022) the authors report four initiatives in
which experts paired with front-line health care workers in
order to design systems intended to improve the operation
of the health care structures dealing with patients in need of
urgent care. In one of those initiatives (Allamigeon et al.,
2021), Petri net-based models were used to predict the nec-
essary staff to handle a swift number of calls to the Medical
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Emergence Services of Paris. The systemwas later improved
in order to deal with new routines implemented by healthcare
workers.

Regarding the problems observed during the vaccination
process, it is safe to say that many of those undesirable events
could be avoided, or at leastmitigated, through a better under-
standing of the vaccination center dynamics. Interestingly,
searches made on scientific bases (Elsevier Science Direct
and IEEE Xplore bases) did not return any work dealing
specificallywith this problem,whichmade it difficult to com-
pare the results presented here with any other result.

Some interesting works related to health care structures
and/or management strategies, that could be related to the
subject of this paper were found, though. Most of them
deal with modelling and simulating the results of differ-
ent vaccination strategies under scenarios like the one saw
during the COVID-19 pandemic. In Kuo et al. (2020), for
example, the authors use graph theory to develop a prob-
abilistic model in order simulate five different vaccination
strategies (random, degree-based, acquaintance-based, first-
neighbour-based and second-neighbour-based) applied to
three different types of networks (small world network, scale
free network and random network), which have different
sensitivity to the initial conditions. The authors show that
the degree-based strategy gives the best results in general,
regardless of the network type. In Karabay et al. (2021), a
particle-based simulation approach is applied to investigate
how people’s hesitancy regarding vaccines impacts the suc-
cess rate of two different vaccination strategies: age-based
(in which elders get vaccinated first) and random (in which
random particles are chosen to get vaccinated regardless of
their ages). The authors show that, generally, the age-based
strategy is more effective in generating herd immunity, but
the difference between the two strategies get less significant
as hesitancy among population increases.

Another very interesting work, more closely related to
the one discussed here, is given in de Souza et al. (2021).
The authors describe the development of a four-pronged tool
capable of helping users and managers to make good choices
in order to improve the services of the Brazilian public health
system. The tool consists of a mobile app, which can route
users in need of health care to appropriate public institutions,
taking into account the institutions’ portfolio of specialties
and the symptoms reported by the user. Instead of report-
ing the symptoms, the user can specify the type of specialist
it is looking for. In a second stage, a data analysis routine
was implemented in order to generate a heat map of users’
requests. The generated information is made available to
the app users and help them to make informed decisions
about which institution to go. The same information help
managers to anticipate increasing demand in specific areas
and reallocate resources, if necessary. All the information is
stored in the cloud. Thus, a cloud computing application was

also developed in order to enable the data analysis. Finally,
a Stochastic Timed Petri Net was implemented in order to
simulate hospital bed demands based on the available data,
allowing managers to plan in advance actions to be taken
under critical scenarios likely to happen.

This work is specially significant because, in some degree,
it showcases features ofwhat it is being proposed here. There,
a Petri net model is used to simulate bed demands while here,
it is used to simulate the dynamical response of a generic
vaccination center. There, the model is associated to a data
analysis tool in order to generate information to support man-
agers decisions. Although we have not yet implemented such
a solution, we point out that a similar system can be devel-
oped (perhaps making use of AI) to coordinate the routing of
users to the vaccination centers of a city, based on a defined
vaccination strategy, stored information and the model pre-
sented here.

In this paper, a tropical algebra-based model is developed
for an elementary vaccination center. Then, a closed-loop
control strategy is implemented in order minimize the time
period of the vaccination cycle and the users’ waiting time,
while maintaining a safe distance between them.

The paper is organized as follows: after this introduction,
Sect. 2 presents a model for the vaccination center that we
are interested in; In Sect. 3, the control strategy is devel-
oped; Sect. 4 presents the results from computer simulation
tests comparing different control strategies; Conclusion is
presented in Sect. 5.

2 Graphical andMathematical Models of a
Vaccination Center

This section presents a graphic model of a vaccination center
using Time Event Graphs (TEG), which is a class of P-time
Petri net (Baccelli et al., 1992). The model presented here
should be seen as a cell that contains the essential elements
of a vaccination center. However, if needed, it can be eas-
ily increased in order to represent more complex vaccination
systems with no change required in the control strategy pre-
sented in the next sections. In the following subsections, a
dynamical tropical model is developed for this system.

2.1 TEG Representation of the Vaccination Center

Figure1 shows a TEG representation of the vaccination cen-
ter to bemodeled,which executes a four-step cycle every time
a vaccine dose is given: admission, personal record review,
wait and injection. The firing of transition x1, which is con-
trolled by the input signal u1, is followed by the insertion of
a token into place A and marks the admission of the user to
the center’s facility. Transition x2, which is controlled by the
input signal u2 and followed by the insertion of a token into
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place PRR, represents the ending of the admission phase and
the beginning of the personal record review process, which
takes tP time units to be finished. The time needed for the
user to get to the personal record review room (once they has
been admitted) is included in tP . Also, it is assumed that a
limited number of booths are available at the record review
room, such that amaximumofm users can be simultaneously
attended in that stage. The remaining places and transitions
shown in Fig. 1 represent the remaining steps of the vacci-
nation cycle and follow the same pattern described so far.
Due to staff and equipment limitation, only n people can be
receiving the vaccine injection at the same time. It should be
noted thatm and n come from physical/personnel limitations
of the vaccination center and are assumed to be constant.

The model presented in Fig. 1 looks quite simple. That,
however, comes to show its strength. It should be noted that
it can represent vaccination centers with immense physical
structures, as long as they adopt the four-step vaccination
cycle described in the last paragraph. The physical structure
of the vaccination center is hidden behind the indexes m and
n. A large vaccination center, with dozens of PRR booths
and injection stations, maybe allocated in different rooms,
and a small one with a single PRR booth and a single vac-
cination station will be represented by the same TEG, only
with different values of m and n.

In order to keep users at a safe distance from each other, it
is important to impose limit to the number of people in all the
places where agglomeration can be created. For example, in
the instance represented in Fig. 1 there is amaximum number
of users that can be allowed in the waiting room (which will
be denoted by NW ) without violating a given limit of peo-
ple density. That is to be done through a proper closed-loop
control strategy.

Another point of interest is the time the users are kept
in the waiting room. The control strategy adopted to limit
the number of people in each room of the vaccination cen-
ter is also expected to keep this waiting time below a given
maximum limit.

Obviously, it is also desirable to keep the system through-
put, that is, its vaccination rate, as high as possible. The search
for a good compromise between the operational restrictions
and the system throughput is the core of the control problem.

The problem just presented is generally classified as a
queueing problem. The typical queueing problem consists
of customers arriving at a server requesting some kind of
service, waiting if they cannot be immediately attended and
leaving after being served (Shortle et al., 2018). An exten-
sive theory has been developed, aiming to provide models
capable of predicting the behavior of such systems, mostly
of which deal with random demands (Bolch et al., 2006).
Traffic control of cars, airplanes, phone calls, scheduling of
customers attendance in a hospital, of machines operation in
a manufacturing line, of operations executed by a computer

Fig. 1 Model of a vaccination center with 4 stages: admission (A),
personal record review (PRR), wait (W) and injection (I)

processor are examples of problems successfully addressed
in the context of that theory (Shortle et al., 2018).

Queueing theory is a methodology that leads to com-
putational simplification of Markovian models with many
(even infinite) states. According to (Cassandras & Lafortune,
2008), queueing theory has as itsmain goal the determination
of a system’s performance under certain operating condi-
tions, rather than the determination of the operating policies
to be used in order to achieve the best possible performance.
Its mission has been largely to develop “descriptive” tools for
studying queueing systems, rather than “prescriptive” tools
for controlling their behavior in an ever-changing dynamic
and uncertain environment.

In the investigation of the vaccination center behavior, we
have chosen an approach that leads to a formulation relatable
to the classical system and control theories. The vaccination
center is modelled as a Discrete Event System (DES), graph-
ically represented by a Timed Event Graph (TEG). The point
of using this formulation is that it provides a mathematical
description which is analogous to the classical state-space
description of continuous-time time systems. That not only
leads to a simple and concise representation of the system
under analysis, but also may cast light on nuanced aspects of
the TEG behavior by comparison to the well known classical
system and control theories (De Schutter et al., 2020). In fact,
the use of tropical algebra in the study of dynamical DES is
a lively branch of research with many open questions. That
adds an important layer to the work presented here: besides
the application itself, the result presented in Sect. 3.4 is a new
contribution to this area of research.

2.2 Mathematical Description Based on Tropical
Algebra

Tropical Algebra, also known as the tropical semi-ring, is
an algebraic structure defined by the set Rmax ≡ (R ∪
−∞,⊕,⊗), in which ⊕ and ⊗ denote the basic operations
of tropical sum and tropical multiplication, respectively,
defined as follows (Maia et al., 2011):

x ⊕ y ≡ max(x, y)

x ⊗ y ≡ x + y
(1)

The operation⊕ is associative, commutative and idempotent,
meaning that a ⊕ a = a,∀a ∈ (R ∪ −∞), and has neutral
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element denoted by 0̄ = −∞. The operation⊗ is associative
and distributive on the left and on the right with respect to
⊕ and has neutral element denoted by 1̄ = 0. Also, a ⊗ 0̄ =
0̄ ⊗ a = 0̄,∀a ∈ (R ∪ −∞), that is, 0̄ is absorbing with
respect to ⊗.

Generally, any GET can be represented by a set of matrix
equation as the following:

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k)

y(k) = C ⊗ x(k)
(2)

Here, u(k) ∈ R
p
max, y(k) ∈ R

q
max and x(k) ∈ R

r
max are vec-

tors that represent the date of the kth fire of input transition,
output transition and internal transitions, respectively. A, B
and C are matrices of proper dimensions with elements in
Rmax . The matrix operations indicated in (2) are carried out
in the same way as in the regular algebra.

Another idea that tropical algebra inherits from the classi-
cal algebra is the concept of eigenvalue and eigenvector. For
a given tropical matrix A, if A⊗ v = λ ⊗ v, then λ is said to
be an eigenvalue of A and v a corresponding eigenvector.

There is a very important connection between eigenvalues
and cycle means of a system. It has been shown (Baccelli et
al., 1992) that, if a system can be represented by a strongly
connected graph, then its A matrix has only one eigenvalue
(but possibly several eigenvectors) and this eigenvalue is
numerically equal to the maximum cycle mean of the sys-
tem.

A slightly different state space formulation for GETs is
given by the next set of equations, in which the vector x(k)
is defined as a function of itself. For that reason, it is said to
be an implicit equation.

x(k) = A0 ⊗ x(k) ⊕ A1x(k − 1) ⊕ B0 ⊗ u(k)

y(k) = C ⊗ x(k)
(3)

If the eigenvalue of A0 is non-negative, then it can be shown
(Baccelli et al., 1992) that

x(k) = A∗
0 ⊗ A1x(k − 1) ⊕ A∗

0 ⊗ B0 ⊗ u(k) (4)

where A∗
0 is the Kleene star of A0. This is equivalent to the

standard representation shown in (2), with A = A∗
0 ⊗ A1 and

B = A∗
0 ⊗ B0.

The next set of max-plus equations describe the behavior
of the system represented in Fig. 1.

x1(k) = u1(k)

x2(k) = u2(k) ⊕ x1(k) ⊕ x3(k − m)

x3(k) = tP ⊗ x2(k)

x4(k) = u3(k) ⊕ x3(k) ⊕ y(k − n)

y(k) = tI ⊗ x4(k)

(5)

It shows that in the open-loop system, transition x1(k) is fired
at the same time as u1(k). It also shows that x3(k) happens
tP time units after x2(k), and so on. In order to get a standard
representation for the system, like those shown in (2) and
(3), (NW + m − 1) auxiliary variables are necessary. These
variables are defined as shown below.

w1(k) = x3(k − 1)

w2(k) = w1(k − 1)

...

wm−1(k) = x3(k − m + 1)

z1(k) = x4(k − 1)

z2(k) = z1(k − 1)

...

zn−1(k) = x4(k − n + 1)

...

zNW (k) = x4(k − NW )

(6)

The set of equations (5) can then be rewritten as:

x1(k) = u1(k)

x2(k) = x1(k) ⊕ wm−1(k − 1) ⊕ u2(k)

x3(k) = tP x2(k)

x4(k) = x3(k) ⊕ tI zn−1(k − 1) ⊕ u3(k)

w1(k) = x3(k − 1)

w2(k) = w1(k − 1)

w3(k) = w2(k − 1)

...

wm−1(k) = wm−2(k − 1)

z1(k) = x4(k − 1)

z2(k) = z1(k − 1)

z3(k) = z2(k − 1)

...

zn−1(k) = zn−2(k − 1)

...

zNW (k) = zNW−1(k − 1)

y(k) = tI x4(k)

(7)

Here, the ⊗ symbol was omitted, as is usually done with
the × symbol in regular algebraic expressions. Now, (7) can
be written as:
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⎡
⎣
x(k)
w(k)
z(k)

⎤
⎦ =

⎡
⎣
A0xx A0xw A0xz

A0wx A0ww A0wz

A0zx A0zw A0zz

⎤
⎦

⎡
⎣
x(k)
w(k)
z(k)

⎤
⎦⊕

⎡
⎣
A1xx A1xw A1xz

A1wx A1ww A1wz

A1zx A1zw A1zz

⎤
⎦

⎡
⎣
x(k − 1)
w(k − 1)
z(k − 1)

⎤
⎦ ⊕

⎡
⎣
Bx

Bw

Bz

⎤
⎦ u(k)

y(k) = [
Cx Cw Cz

]
⎡
⎣
x(k)
w(k)
z(k)

⎤
⎦

(8)

For the system represented in Fig. 1, it is straightforward
to verify that

A0xx =

⎡
⎢⎢⎣
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄
0̄ tP 0̄ 0̄
0̄ 0̄ 1̄ 0̄

⎤
⎥⎥⎦ A1xw =

⎡
⎢⎢⎣
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 1̄
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 0̄

⎤
⎥⎥⎦

A1xz =

⎡
⎢⎢⎣
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . tI

⎤
⎥⎥⎦ A1wx =

⎡
⎢⎢⎢⎢⎢⎣

0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 0̄
...

...
...

...

0̄ 0̄ 0̄ 0̄

⎤
⎥⎥⎥⎥⎥⎦

A1ww =

⎡
⎢⎢⎢⎢⎢⎣

0̄ 0̄ ... 0̄
1̄ 0̄ ... 0̄
0̄ 1̄ ... 0̄
...

...
. . .

...

0̄ 0̄ ... 0̄

⎤
⎥⎥⎥⎥⎥⎦

A1zx =

⎡
⎢⎢⎢⎢⎢⎣

0̄ 0̄ 0̄ 1̄
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 0̄
...

...
...

...

0̄ 0̄ 0̄ 0̄

⎤
⎥⎥⎥⎥⎥⎦

A1zz =

⎡
⎢⎢⎢⎢⎢⎣

0̄ 0̄ ... 0̄
1̄ 0̄ ... 0̄
0̄ 1̄ ... 0̄
...

...
. . .

...

0̄ 0̄ ... 0̄

⎤
⎥⎥⎥⎥⎥⎦

A0xw = [
0̄
]
4×(m−1)

A0xz = [
0̄
]
4×NW

A0wx = [
0̄
]
(m−1)×4

A0ww = [
0̄
]
(m−1)×(m−1)

A0wz = [
0̄
]
(m−1)×NW

A0zx = [
0̄
]
NW×4

A0zw = [
0̄
]
NW×(m−1)

A0zz = [
0̄
]
NW×NW

A1xx = [
Ī
]
4×4

A1wz = [
0̄
]
(m−1)×NW

A1zw = [
0̄
]
NW×(m−1)

(9)

Fig. 2 Critical firing sequence of x3 and x4 that do not violate the
restriction of the maximum number of people in the waiting room

Bx =

⎡
⎢⎢⎣
1̄ 0̄ 0̄
0̄ 1̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 1̄

⎤
⎥⎥⎦ Bw =

⎡
⎢⎢⎢⎣

0̄ 0̄ 0̄
0̄ 0̄ 0̄
...

...
...

0̄ 0̄ 0̄

⎤
⎥⎥⎥⎦

Bz =

⎡
⎢⎢⎢⎣

0̄ 0̄ 0̄
0̄ 0̄ 0̄
...

...
...

0̄ 0̄ 0̄

⎤
⎥⎥⎥⎦

Cx = [
0̄ 0̄ 0̄ tI

]

Cw = [
0̄ 0̄ . . . 0̄

]

Cz = [
0̄ 0̄ . . . 0̄

]

3 System Control

In this section, a controller for the vaccination center is devel-
oped. We start by coding mathematically the restrictions due
to maximum patients allowed in the waiting room as well as
the maximum waiting time.

3.1 Occupancy andWaiting Time Constraints

The model presented in the last section captures the most
important features of the open-loop system behavior. Only
physical restrictions were modeled. As a result, the system
will violate the non-physical restrictions if inputs u1, u2 and
u3 are not controlled. The two non-physical restrictions being
considered here are the maximum number of people allowed
in the waiting room (NW ) and the maximum waiting time
(tW ). The number of people in the waiting room depends on
the firing of transitions x3 and x4, which are controlled by
inputs u2 and u3. Figure2 shows the critical firing sequence
of transitions x3 and x4 that still ensures no violation of the
restriction related to NW .

It can be seen that, in order to restrict the number of people
in the waiting room to NW , the firing date of x4(k) must be
less or equal to the firing date of x3(k+NW ).Mathematically,
this restriction can be expressed as:

x4(k) 
 x3(k + NW )

x4(k − NW ) 
 x3(k) ⇒ zNW (k) 
 x3(k)
(10)

The restriction regarding the maximum waiting time can be
easily expressed if one assumes that the system operates
based on a first in, first out policy. Thus, the time the kth
user spends in the waiting room is given by x4(k) − x3(k)
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and the related restriction be written as:

x4(k) 
 tW x3(k)

x4(k) 
 (tW + tP )x2(k)

−(tW + tP )x4(k) 
 x2(k)

(11)

The restrictions defined in equations (10) and (11) can be
expressed inmatrix form asEx 
 x, in whichE is the system
restriction matrix. For the system considered in this work

E =
⎡
⎣
Exx Exw Exz

Ewx Eww Ewz

Ezx Ezw Ezz

⎤
⎦ (12)

for which

Exx =

⎡
⎢⎢⎣
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ −(tW + tP )

0̄ 0̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄

⎤
⎥⎥⎦

Exz =

⎡
⎢⎢⎣
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 0̄
0̄ 0̄ . . . 1̄
0̄ 0̄ . . . 0̄

⎤
⎥⎥⎦

(13)

All the remaining sub-matrices shown in (12) are max-
plus zero matrices with proper dimensions. If all the circuit
weights of E are non-positive, it can be shown (Baccelli et
al., 1992) that

Ex(k) 
 x(k) ⇐⇒ E∗x = x

E∗x = x ⇐⇒ x ∈ ImE∗ (14)

From equation (4), it can be seen that

A0x(k) 
 x(k) (15)

It follows that thematrix which express all the system restric-
tions is given by

Ê = E ⊕ A0 (16)

3.2 Controller Design

From a TEG perspective, the closed-loop control of the sys-
tem is implemented through the addition of timed places (one
for each input signal) connected and initialized in such a way
that all the restrictions are met by the controlled system. One
interesting change introduced by these control places is that
they make the closed-loop system strongly connected. Thus,
according to the results given in Baccelli et al. (1992), the
closed-loop system has only one eigenvalue, which is numer-
ically equal to its maximum cycle mean.

The kth firing dates of the input signals in the closed-loop
system are related to the (k − 1)th firing dates of the system
transitions according to the following:

u(k) = Fx(k − 1) (17)

Once F has been determined, the state space description of
the closed-loop system is given as:

{
x(k) = (A ⊕ BF) ⊗ x(k − 1)

Ê∗x(k) = x(k)
(18)

The method introduced byMaia et al. (2011) is used here for
determining a matrix F that ensures the equation (18) holds
true. In a first stage, themethod uses the so-called alternating
algorithm, introduced in Cuninghame-Green and Butkovic
(2003), to find an initial solution that may or may not be a
causalmatrix.AmatrixM ∈ Rmax is causal if all of its entries
Mi j are such that Mi j = 0̄ or Mi j 
 1̄. Non-causal matrices
cannot be physically implemented by systems like the one
considered in this work. Thus, if the initial control matrix is
non-causal, a method for finding an equivalent causal matrix
must be employed.

3.3 Equivalent Causal Control Matrix

Finding an equivalent causal control matrix is a critical step
for the work presented here. Given a non-causal matrix Fnc,
the goal is to find a causal matrix Fc such that Im Fc ⊆
Im Fnc and still ensures the closed-loop systemmeets all the
non-physical restrictions imposed. The simplest way to find
such an equivalent matrix is to use the concept of parallelism
relation given in Katz (2007)

Fc = −min
{[Fnc]i j

} ⊗ Fnc (19)

inwhichmin
{[Fnc]i j

}
is the smallest entry in the non-causal

matrix Fnc. However, this approach has a major disadvan-
tage for the control problem considered here: it increases the
eigenvalue of the corresponding closed-loop system when
compared to the non-causal matrix. Since the system eigen-
value is numerically identical to its maximum cycle mean, to
increase the system eigenvalue means to decrease the system
throughput. In order to avoid such an undesirable change,
an alternative approach, introduced in Maia et al. (2013) is
further developed mathematically in this paper, resulting in
proposition 1.

123



Journal of Control, Automation and Electrical Systems (2023) 34:673–688 679

3.4 Equivalent Dynamic Feedback that Preserves the
Same Dynamic Behavior as Fnc

Let Fnc be a non-causal control matrix that leads to a closed-
loop system with characteristic:

⎧⎪⎨
⎪⎩

u(k) = Fncx(k − 1)

x(k) = (A ⊕ BFnc) ⊗ x(k − 1)

Ê∗x(k) = x(k)

(20)

Equation (20) can be recursively applied to show that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k − 1) = (A ⊕ BFnc) ⊗ x(k − 2)

u(k) = Fnc(A ⊕ BFnc) ⊗ x(k − 2)
...

u(k) = Fnc(A ⊕ BFnc)⊗L x(k − L − 1)

(21)

Provided that (A ⊕ BFnc) is irreducible, it can be shown
(Maia et al., 2013) that

lim
L→∞[Fnc(A ⊕ BFnc)

⊗L ]i j = ∞,∀ i, j (22)

Thus, there is a minimum value of L that makes Fnc(A ⊕
BFnc)⊗L causal. Let Fopt = Fnc(A ⊕ BFnc)⊗Lmin . For the
purpose of this work, the recursive routine shown in Algo-
rithm 1 can be used to find Lmin and Fopt. The closed-loop
state matrix is then given as:

x(k) = Ax(k − 1) ⊕ BFoptx(k − L − 1) (23)

It should be mentioned that x(k) in equation (20) is actually
representing the whole array of state variables defined pre-
viously, including the auxiliary variables defined in equation
(6).

Algorithm 1 Routine to find the minimum value of L that
makes Fopt causal
Require: A, B, Fnc
L ← 1
Fopt ← Fnc(A ⊕ BFnc)
while [Fopt]i j < 0, f or any (i, j) do

L ← L + 1
Fopt ← Fnc(A ⊕ BFnc)⊗L

end while
return Fopt, L

In order to write the closed-loop state matrix (23) in the
standard form, a set of Lmin auxiliary variables are defined

as:

r1(k) = x1(k − 1)

r2(k) = r1(k − 1)

...

rLmin(k) = rLmin−1(k − 1) = x(k − Lmin)

(24)

Substituting (24) into (23), the closed-loop state matrix can
then be written as:

⎡
⎢⎢⎢⎢⎢⎣

x(k)
r1(k)
r2(k)

...

rLmin(k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xext (k)

=

⎡
⎢⎢⎢⎢⎢⎣

A [0̄] [0̄] . . . BFopt
[ Ī ] [0̄] [0̄] . . . [0̄]
[0̄] [ Ī ] [0̄] . . . [0̄]
...

...
...

. . .
...

[0̄] [0̄] [0̄] . . . [0̄]

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Aext

⎡
⎢⎢⎢⎢⎢⎣

x(k − 1)
r1(k − 1)
r2(k − 1)

...

rLmin(k − 1)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xext (k−1)

(25)

Here, xext and Aext are the extended versions of the closed-
loop system state variables array and the state matrix,
respectively. [ Ī ] represents an identitymatrix and [0̄] amatrix
of zeroes, bothwith dimensions (NW+m−1)×(NW+m−1).

Proposition 1 Aext has the same eigenvalue as (A⊕ BFnc).

Proof Let λ be the eigenvalue of (A ⊕ BFnc) and v a corre-
sponding eigenvector. Then, by definition,

λv = (A ⊕ BFnc)v (26)

But

λv = (A ⊕ BFnc)v ⇒ λpv = (A ⊕ BFnc)
pv (27)

Now, letλext be the eigenvalue of Aext and vext a correspond-
ing eigenvector. Then,

λextvext = Aextvext (28)

But vext = [vTx vTr1 vTr2 ... vTrLmin
]T . Thus, from (25) and (28),

it follows that

λextvx = Avx ⊕ BFoptvrLmin

λextvr1 = vx

λextvr2 = vr1

λextvr3 = vr2

...

λextvrLmin
= vr(Lmin−1)

(29)
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From (29), it follows that

λ2extvrLmin
= vr(Lmin−2)

λ3extvrLmin
= vr(Lmin−3)

...

λ
Lmin
ext vrLmin

= vx

(30)

Replacing the last equality in (30) into the first one in (29)
results in

λ
Lmin+1
ext vrLmin

= (λ
Lmin
ext A ⊕ BFopt)vrLmin

(31)

Now, assume that proposition 1 is true and that λext =
λ and vext = v. Then, from (27) it follows that (A ⊕
BFnc)LminvrLmin

= λ
Lmin
ext vrLmin

. Thus, Fopt = Fnc(A ⊕
BFnc)Lmin = Fncλ

Lmin
ext and (31) can be rewritten as shown

below

λ
Lmin+1
ext vrLmin

= λ
Lmin
ext (A ⊕ BFnc)vrLmin

(32)

From (26), it follows that (A ⊕ BFnc)vrLmin
= λextvrLmin

.

Finally, from (32), it follows that λ
Lmin+1
ext vrLmin

=
λ
Lmin+1
ext vrLmin

, which shows that proposition 1 is true. ��

4 Simulated Tests

In order to verify the theoretical predictions presented in the
last sections, simulations were carried out and the results are
presented here. All the simulations were done using the soft-
ware Scicoslab©, which has amax-plus toolbox that simplify
the simulation of discrete event systems like the one consid-
ered in this paper.

Figure3 shows an instance of the generalized vaccination
center model represented in Fig. 1, for which there are three
PRR booths (m = 3) and two injection stations (n = 2).
The PRR process takes 1.5min on average while the whole
procedure involving the vaccine injection takes 2.5. It will
be assumed that a maximum of four people (NW = 4) can
be allowed into the waiting roomwithout violating the social
distancing protocol previously established. Also, it will be
assumed that the maximum waiting time tolerable is five
minutes (tW = 5min). The state space matrices for this par-
ticular instance are shown in (33).

It is worth noting that the cycle means for the instance
shown in Fig. 3 are equal to 0.75 min and 1.25 min. The

Fig. 3 Instance of the vaccination center represented in Fig. (1) with
tP = 1.5 min, tI = 2.5 min, m = 3 and n = 2. It is also assumed that
NW = 4 and tW = 5 min

system maximum cycle mean is then 1.25 min.

A0xx =

⎡
⎢⎢⎣
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄
0̄ 1.5 0̄ 0̄
0̄ 0̄ 1̄ 0̄

⎤
⎥⎥⎦ A1xw =

⎡
⎢⎢⎣
0̄ 0̄
0̄ 1̄
0̄ 0̄
0̄ 0̄

⎤
⎥⎥⎦

A1xz =

⎡
⎢⎢⎣
0̄ 0̄
0̄ 0̄
0̄ 0̄
0̄ 2.5

⎤
⎥⎥⎦ A1wx =

[
0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄

]

A1ww =
[
0̄ 0̄
1̄ 0̄

]
A1zx =

⎡
⎢⎢⎣
0̄ 0̄ 0̄ 1̄
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 0̄

⎤
⎥⎥⎦

A1zz =

⎡
⎢⎢⎣
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄

⎤
⎥⎥⎦ A0xw = [

0̄
]
4×2

A0xz = [
0̄
]
4×4

A0wx = [
0̄
]
2×4

A0ww = [
0̄
]
2×2

A0wz = [
0̄
]
2×4

A0zx = [
0̄
]
4×4

A0zw = [
0̄
]
4×2

A0zz = [
0̄
]
4×4

A1xx = [
Ī
]
4×4

A1wz = [
0̄
]
2×4

A1zw = [
0̄
]
4×2

Bx =

⎡
⎢⎢⎣
1̄ 0̄ 0̄
0̄ 1̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 1̄

⎤
⎥⎥⎦ Bw =

[
0̄ 0̄ 0̄
0̄ 0̄ 0̄

]

Bz =

⎡
⎢⎢⎣
0̄ 0̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 0̄
0̄ 0̄ 0̄

⎤
⎥⎥⎦

Cx = [
0̄ 0̄ 0̄ 2.5

]

Cw = [
0̄ 0̄

]

Cz = [
0̄ 0̄ 0̄ 0̄

]
(33)

123



Journal of Control, Automation and Electrical Systems (2023) 34:673–688 681

Table 1 First firing dates of the open-loop system transitions

k 1 2 3 4 5 6 7

x1(k) 0 0 0 0 0 0 0

x2(k) 0 0 0 1.5 1.5 1.5 3

x3(k) 1.5 1.5 1.5 3 3 3 4.5

x4(k) 1.5 1.5 4 4 6.5 6.5 9

y(k) 4 4 6.5 6.5 9 9 11.5

Fig. 4 Number of people in the waiting room for the open-loop system.
The NW restriction is violated

4.1 The Open-Loop System

Table 1 shows the first firing dates of the system transitions
when it is operating without a controller. Since only physi-
cal restrictions are observed by the model, there is no limit
of any kind regarding the admission of users into the vac-
cination center facility. Consequently, an infinite number of
admissions happen at t = 0. Obviously, this is not physically
possible. Yet, it provides valuable insights about the system
dynamic behavior. The modeled system behavior under this
circumstance corresponds to its impulse response. For exam-
ple, looking at y(k), it can be seen that two users leave the
injection room every 2.5 min, which corresponds to an aver-
age of 1.25 min/vaccine. This gives the minimum time per
vaccine possible for the instance considered, which, not by
coincidence, is equal to its maximum cycle mean.

If on one hand the open-loop system works with opti-
mum throughput, on the other it violates the non-physical
restrictions previously defined. Figures4 and 5 show how the
number of people in the waiting room (NW ) and the waiting
time (tW ) for each user increases well above the limits estab-
lished.

4.2 The Closed-Loop Systemwith Fc Determined
through Parallelism

As explained in Sect. 3.3, the first step to design the controller
that will enforce the restrictions on the system behavior is to
find a control matrix F . Here, that was done using themethod
introduced inMaia et al. (2011). The result was the following

Fig. 5 Waiting time for the kth user in the open-loop system. The tW
restriction is violated

non-causal matrix:

Fnc =
[ −3 −5 −4 −10 −4 −4 −2 −8 −4 −2

−5 −4 −4 −10 −8 −8 −10 −7 −7 −2
−7 −8 −7 −7 −4 −6 −4 −3 −1 −7

]
(34)

A remarkable feature of this Fnc is that, if it was possible
to implement such a control strategy, the closed-loop sys-
tem matrix (A ⊕ BFnc) would have only one eigenvalue
(a clear sign that the closed-loop system is strongly con-
nected), which would be equal to the systemmaximummean
cycle, that is, λnc = 1.25. That means the closed-loop sys-
tem generated by the non-causal control matrix would meet
all non-physical restrictions and, in addition, guarantee the
maximum system throughput possible. However, as already
mentioned in Sect. 3.2, non-causal control strategies cannot
be implemented by systems like the one under analysis here.

In order to generate a causal control matrix equivalent to
the Fnc shown in (34), the parallelism relation described in
Sect. 3.3 was used. From equation (19), Fc = 10⊗ Fnc. The
resulting Fc is

Fc =
⎡
⎣
7 5 6 0 6 6 8 2 6 8
5 6 6 0 2 2 0 3 3 8
3 2 3 3 6 4 6 7 9 3

⎤
⎦ (35)

The matrix Fc shown in (35) has redundant information that
can be eliminated in order to simplify the controller. To see
this, observe that the expression for u1(k) implied by (35) is

u1(k) = 7x1(k − 1) ⊕ 5x2(k − 1) ⊕ 6x3(k − 1)

⊕ x4(k − 1) ⊕ 6w1(k − 1) ⊕ 6w2(k − 1) ⊕ 8z1(k − 1)

⊕ 2z2(k − 1) ⊕ 6z3(k − 1) ⊕ 8z4(k − 1)

If the auxiliary variables are now eliminated using the expres-
sions given in (6), the expression for u1(k) becomes

u1(k) = 7x1(k − 1) ⊕ 5x2(k − 1) ⊕ 6x3(k − 1)
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Fig. 6 The closed-loop systemwith Fc determined through parallelism

⊕ x4(k − 1) ⊕ 6x3(k − 2) ⊕ 6x3(k − 3) ⊕ 8x4(k − 2)

⊕ 2x4(k − 3) ⊕ 6x4(k − 4) ⊕ 8x4(k − 5)

Clearly, 6x3(k − 3) ≺ 6x3(k − 2) ≺ 6x3(k − 1). Thus,
the entries [Fc]1,5 = 6x3(k − 2) and [Fc]1,6 = 6x3(k − 3)
are unnecessary. After elimination of redundant entries, Fc
becomes

Fc =
⎡
⎣
7 0̄ 6 0 0̄ 0̄ 8 0̄ 0̄ 0̄
0̄ 0̄ 6 0 0̄ 0̄ 0̄ 3 0̄ 8
0̄ 0̄ 0̄ 3 6 0̄ 6 7 9 0̄

⎤
⎦ (36)

The corresponding closed-loop system is shown in Fig. 6.
It is clear that the added control places make the closed-

loop system strongly connected.
It is worth stopping at this point to clarify the role played

by the control places in the control strategy. Essentially, what
the control places do is to ensure the correct synchroniza-
tion between the firings of each transition. They do that by
controlling the firing of the inputs. For example, the control
places associated to the first input in Fig. 6 ensure that the
next firing of u1 will not happen 7 time units before the last
firing of x1, or 6 time units before the last firing of x3, or
8 time units before the last but one firing of x4, whichever
happens last. It is not intuitive, though, why that control law,
in conjunction with the control laws associated to u2 and
u3 enforce the closed-loop system to behave in the expected
way. It is the analytical methodology presented in Sects. 3.2,
3.3 and 3.4 that guarantees it will do so.

The closed-loop system behavior is then determined by
the following set of equations:{
x(k) = (A ⊕ BFc) ⊗ x(k − 1)

y(k) = C ⊗ x(k).
(37)

Table 2 shows the firing dates of each system transition. The
first ten firings were simulated with an open-loop system.

Fig. 7 Number of people in the waiting room as the system goes from
open-loop operation to closed-loop operation with Fc

Fig. 8 Waiting time for the kth user as the system goes from open-loop
operation to closed-loop operation with Fc

Before the 11th firing the loop was closed. Looking at tran-
sitions x3 and x4, it can be seen that, once the loop is closed,
they are always fired at the same time. That means the non-
physical restrictions are easilymet by the closed-loop system,
since NW and tW are driven to zero. On the other hand,
from the values of y(k), it can be seen that the closed-loop
system takes on average 7.5 min/vaccine, a value six times
greater than the minimum value possible. That indicates that
the closed-loop system throughput is six times lower than its
optimumvalue. It can be easily verified thatmatrix (A⊕BFc)
has only one eigenvalue, which is equal to 7.5.

Figures 7 and 8 highlight the action of the controller show-
ing how it brings Nw and tW to values below those specified
by the non-physical restrictions.

4.3 The Closed-Loop Systemwith Optimum
Throughput Implemented Through theMethod
Suggested in this Paper

Here, the method presented in Sect. 3.4 is applied in order
to find a Fopt that generates the same closed-loop eigenvalue
as the Fnc shown in (34) and ensures the closed-loop system
observe the non-physical restrictions. The resulting matrix is
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Table 2 Transitions firing dates when the loop is closed with Fc deter-
mined through parallelism

k x1(k) x2(k) x3(k) x4(k) y(k)

1 0 0 1.5 1.5 4

2 0 0 1.5 2.5 5

3 0 0 1.5 4 6.5

4 0 1.5 3 5 7.5

5 0 1.5 3 6.5 9

6 0 1.5 3 7.5 10

7 0 3 4.5 9 11.5

8 0 3 4.5 10 12.5

9 0 3 4.5 11.5 14

10 0 4.5 6 12.5 15

11 19.5 19.5 21 21 23.5

12 27 27 28.5 28.5 31

13 34.5 34.5 36 36 38.5

14 42 42 43.5 43.5 46

15 49.5 49.5 51 51 53.5

16 57 57 58.5 58.5 61

17 64.5 64.5 66 66 68.5

18 72 72 73.5 73.5 76

19 79.5 79.5 81 81 83.5

20 87 87 88.5 88.5 91

Fig. 9 The closed-loop system with Fopt

Fopt =
[

7 7 5.5 8 7 7 8 4.5 5 5
4.5 4.5 3 3 2 4.5 5.5 0 2 2.5
6 6 4.5 6.5 5.5 6 7 3 3.5 4

]
. (38)

As with Fc, the Fopt in (38) has redundant entries, which can
be eliminated resulting in the following matrix:

Fopt =
[
0̄ 0̄ 0̄ 8 0̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 4.5 0̄ 3 0̄ 4.5 5.5 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 6.5 0̄ 0̄ 7 0̄ 0̄ 0̄

]
(39)

The corresponding closed-loop system is shown in Fig. 9.
Again, the closed-loop systembehavior is then determined

by equation (37), with Fc being replaced by Fopt.
The firing dates of the system transitions are shown in

Table 3, in which the first ten rows show the system behavior
working with no controller while the remaining rows repre-

Table 3 Transitions firing dates when the loop is closed with Fopt
determined as shown in Sect. 3.4

k x1(k) x2(k) x3(k) x4(k) y(k)

1 0 0 1.5 5.75 7

2 0 0.25 1.75 7 9.5

3 0 1.5 3 8.25 10.75

4 0 1.5 3 9.5 12

5 0 1.75 3.25 10.75 13.25

6 0 3 4.5 12 14.5

7 0 3 4.5 13.25 15.75

8 0 3.25 4.75 14.5 17

9 0 4.5 6 15.75 18.25

10 0 4.5 6 17 19.5

11 13.75 13.75 15.25 18.25 20.75

12 15 15 16.5 19.5 22

13 16.25 16.25 17.75 20.75 23.25

14 17.5 17.5 19 22 24.5

15 18.75 18.75 20.25 23.25 25.75

16 20 20 21.5 24.5 27

17 21.25 21.25 22.75 25.75 28.25

18 22.5 22.5 24 27 29.5

19 23.75 23.75 25.25 28.25 30.75

20 25 25 26.5 29.5 32

Fig. 10 Number of people in the waiting room as the system goes from
open-loop operation to closed-loop operation with Fopt

sent the controlled systembehaviorwhen the feedback loop is
closed according to Fopt. Looking at the y(k) values one can
immediately see that the closed-loop system is able to main-
tain the same throughput achieved by the open-loop system
(1.25 min/vaccine). This shows that the closed-loop system
matrix (A⊕ BFopt) has the same eigenvalue as (A⊕ BFnc),
which is equal to the system maximum cycle mean.

Figures 10 and 11 show that the restrictions related to
NW and tW are rapidly violated by the open-loop system.
However, once the controller is turned on, it acts to bring
NW and tW back under the defined limits.
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Fig. 11 Waiting time for the kth user as the system goes from open-loop
operation to closed-loop operation with Fopt

4.3.1 Closed-Loop System Behavior Ender Parametric
Variations

A relevant question about the closed-loop system behavior
is how the controller reacts to system parametric variations.
For example, howgoodwill be the closed-loop systembehav-
ior if, for some reason, a PRR booth or an injection station
suddenly goes out of service? This question is related to the
concept of system robustness. We expect to carry out a rig-
orous and formal analytical investigation about this topic in
the future. Here, we used simulations in order to check some
results.

As discussed in the previous sessions, the system is mod-
elled in terms of the parameters m, n, tP , tI . Thus, we focus
here on checking how changes in one ormore of these param-
eters impact the system performance. Before presenting the
results, we observe that there is an equivalence between
increasing tT and decreasing m. Indeed, as the number of
PRR booths decrease, less users, on average, will be attended
in given time interval. Thus, on average, the time for a user
to go through the PRR process will increase. The same thing
can be said about tI and n.

In the first simulation the system state matrices were
changed in order to represent a similar system, but with
m = 2. That represents the situation in which a PRR booth
goes out of service. Everything else, including the controller,
was kept unaltered. The results are shown in Table 4 and
Fig. 12 and 13. Comparing these results with the ones pre-
sented in Table 3 and Figs. 10 and 11, almost no change is
observed. All the restrictions are met, both systems develop
the same throughput, the firing dates of the closed-loop tran-
sitions are the same, etc. This means the controller was able
to enforce the system desired behavior showing no sensitivity
to the variation ofm. The only difference that can be noted is

Table 4 Transitions firing dates when the loop is closed with Fopt and
m = 2

k x1(k) x2(k) x3(k) x4(k) y(k)

1 0 0.25 1.75 5.75 7

2 0 1.5 3 7 9.5

3 0 1.75 3.25 8.25 10.75

4 0 3 4.5 9.5 12

5 0 3.25 4.75 10.75 13.25

6 0 4.5 6 12 14.5

7 0 4.75 6.25 13.25 15.75

8 0 6 7.5 14.5 17

9 0 6.25 7.75 15.75 18.25

10 0 7.5 9 17 19.5

11 13.75 13.75 15.25 18.25 20.75

12 15 15 16.5 19.5 22

13 16.25 16.25 17.75 20.75 23.25

14 17.5 17.5 19 22 24.5

15 18.75 18.75 20.25 23.25 25.75

16 20 20 21.5 24.5 27

17 21.25 21.25 22.75 25.75 28.25

18 22.5 22.5 24 27 29.5

19 23.75 23.75 25.25 28.25 30.75

20 25 25 26.5 29.5 32

Fig. 12 NW as the system goes from open-loop operation to closed-
loop operation with Fopt and m = 2

that the open-loop system dynamics became slower. The sys-
tem takesmore time to change its states. That is coherentwith
the fact that now less users will be attended simultaneously
in the PRR room.

If m is decreased to m = 1, then the transitions firing
dates become those shown in Table 5. It can be seen that
transitions x3 and x4 are fired simultaneously. That means
no person stays at the waiting room for any significant time
and thus, the non-physical restrictions are observed all the
time. From the values of y(k) one can see that now the system
vaccination rate is a little slower than before: 1.5min/vaccine.
However, that is still the best rate possible. With only one
PRR booth available, the PRR process becomes bottleneck
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Fig. 13 tW for the kth user as the system goes from open-loop operation
to closed-loop operation with Fopt and m = 2

Table 5 Transitions firing dates when the loop is closed with Fopt and
m = 1

k x1(k) x2(k) x3(k) x4(k) y(k)

1 0 4.5 6 6 7

2 0 6 7.5 7.5 10

3 0 7.5 9 9 11.5

4 0 9 10.5 10.5 13

5 0 10.5 12 12 14.5

6 0 12 13.5 13.5 16

7 0 13.5 15 15 17.5

8 0 15 16.5 16.5 19

9 0 16.5 18 18 20.5

10 0 18 19.5 19.5 22

11 14 19.5 21 21 23.5

12 15.5 21 22.5 22.5 25

13 17 22.5 24 24 26.5

14 18.5 24 25.5 25.5 28

15 20 25.5 27 27 29.5

16 21.5 27 28.5 28.5 31

17 23 28.5 30 30 32.5

18 24.5 30 31.5 31.5 34

19 26 31.5 33 33 35.5

20 27.5 33 34.5 34.5 37

of the vaccination cycle. From a graph theory perspective,
the maximum mean cycle is now λ = 1.5/1 = 1.5 min.
So, it can be said that the controller is still working properly,
although it does not have much to control in this case.

The next test consisted of decreasing the parameter n to
n = 1. Now the system as only one vaccination station.
The results are shown in Table 6 and Figs. 14 and 15. It can
be seen that, once the control loop is closed, the controller
is able to stabilize the values of NW and tW . However, it
stabilizes them above the maximum values specified, that is,
the restrictions are violate. This shows that the controlled

Table 6 Transitions firing dates when the loop is closed with Fopt and
n = 1

k x1(k) x2(k) x3(k) x4(k) y(k)

1 0 0 1.5 7 7

2 0 0.25 1.75 9.5 12

3 0 1.5 3 12 14.5

4 0 1.5 3 14.5 17

5 0 1.75 3.25 17 19.5

6 0 3 4.5 19.5 22

7 0 3 4.5 22 24.5

8 0 3.25 4.75 24.5 27

9 0 4.5 6 27 29.5

10 0 4.5 6 29.5 32

11 15 15 16.5 32 34.5

12 17.5 17.5 19 34.5 37

13 20 20 21.5 37 39.5

14 22.5 22.5 24 39.5 42

15 25 25 26.5 42 44.5

16 27.5 27.5 29 44.5 47

17 30 30 31.5 47 49.5

18 32.5 32.5 34 49.5 52

19 35 35 36.5 52 54.5

20 37.5 37.5 39 54.5 57

Fig. 14 NW as the system goes from open-loop operation to closed-
loop operation with Fopt and n = 1

system is highly sensitive to changes in n. In future works
we expect to improve its robustness to n variations.

The controller has low sensitivity to variations in tP and
tI . Figures16, 17, 18, 19 show the values of NW and tW
when tP is increased up to tP = 3.5 min (Figs. 16 and 17)
and when tI is increased up to tI = 4 min (Figs. 18 and 19).
In all situations the non-physical restrictions are met. Also,
it was observed that the vaccination rate is kept at its highest
in all scenarios.
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Fig. 15 tW for the kth user as the system goes from open-loop operation
to closed-loop operation with Fopt and n = 1

Fig. 16 NW as the system goes from open-loop operation to closed-
loop operation with Fopt and tP = 3.5 min

Fig. 17 tW for the kth user as the system goes from open-loop operation
to closed-loop operation with Fopt and tP = 3.5 min

5 Conclusion

The goal of this paper was to present a model for a vaccina-
tion center based on discrete event modeling approach, and a
controller designmethod that ensures the closed-loop system
meets a series of operational restrictionswhilemaintaining its
throughput at a maximum. First, it was shown how a tropical
dynamic model can be developed for the vaccination center.
Then it was shown how a control matrix F can be found and,
in case F turns out to be non-causal, how an equivalent causal
matrix can be found. Following, it was shown that the equiva-
lent causal matrix generated by parallelism relation leads to a
closed-loop system with low throughput. A method for find-

Fig. 18 NW as the system goes from open-loop operation to closed-
loop operation with Fopt and tI = 4 min

Fig. 19 tW for the kth user as the system goes from open-loop operation
to closed-loop operation with Fopt and tI = 4 min

ing an equivalent control matrix that leads to a closed-loop
system that meets the restrictions and works with optimum
throughput was presented. Finally, simulations were carried
out to confirm the theoretical predictions made in the pre-
vious sections and to investigate the system robustness to
parametric variations. It was shown that the controlled sys-
tem has low sensitivity to changes in the parameters m, tP
and tI , but high sensitivity to changes in n.

Simulation results has shown the effectiveness of the
approach. This distinct application of tropical algebra, as
literature review indicates, opens to us exciting threads of
investigation related to the management of structures similar
to the vaccination center studied in this work.
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A Algorithmic Description of the Approach
Proposed in this Paper

The modelling and control approach presented in this paper
can be summarized as in Algorithm 2.

From a computational point of view, most of the algo-
rithm steps reduce to basic matrix operations over systems
of linear equations, what is known to have polynomial com-
plexity (Cormen et al., 2022). The only step that may not
have polynomial complexity is the one in which the alter-
nating algorithm is used to find the control matrix F (see
algorithm 3, in section A of the appendix). In other words,
the mentioned algorithm is the computational bottleneck of
the method presented in this paper. However, as shown in
(Cuninghame-Green & Butkovic, 2003), “the alternating
method has pseudopolynomial complexity”. The algorithm
may not converge at all if the set of restrictions, physical
and non-physical, are inconsistent among them. If a solution
exists, the method presented will display pseudopolynomial
complexity.

Algorithm2Ageneral description of themodelling and con-
trol method presented in this paper
Require: Information about the system to be modeled, like
m, n, tP , tI , NW , tW

Ensure: A closed-loop system with maximum throughput that meets
all the restrictions
Build matrices A, B and C (standard state space representation)
Build matrix Ê based on the system non-physical restrictions
Define a control matrix F such that u(k) = Fx(k − 1)
Find the control matrix F through a numerical method. In this work,
the alternating algorithm(Cuninghame-Green&Butkovic, 2003)was
used.
if F is non-causal then

UseAlgorithm 1 to find the value of Lmin that makes all the entries
of matrix F(A ⊕ BF)Lmin non-negatives

Fopt ← F(A ⊕ BF)⊗Lmin

u(k) ← Fopt x(k − 1)
else

u(k) ← Fx(k − 1)
end if

Algorithm 3 The alternating algorithm. For more details,
please, see Cuninghame-Green and Butkovic (2003), Maia
et al. (2011) or Maia et al. (2013)

Require: Matrices B and Ê∗
Generate a randommatrix Z with the same dimensions as the control
matrix
Y ← Ê∗◦\BZ
while BZ �= Ê∗Y do

Z ← B◦\Ê∗Y
Y ← Ê∗◦\BZ

end while
F ← Z
Return F
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