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Abstract
This paper uses a compartmental model that accounts for some of the main features of the COVID-19 pandemic. Assuming
a control that represents the aggregated intensity of non pharmaceutical interventions, such as lockdown in varying degrees
and the use of masks and social distancing, this text proposes an N-step-ahead optimal control (NSAOC) method that is easy
to calculate and provides a guideline for implementation. The compartmental model is extended to account for vaccination,
and the N-step-ahead optimal control is calculated for this case as well. The proposed control is robust to parameter variation
in all model parameters, when they are assumed to be normally distributed about nominal values. In addition, the proposed
NSAOC is shown to compare favorably with a recently proposed PID-like controller.

Keywords COVID-19 · Compartmental model · Optimal control

1 Introduction and Literature Review

The COVID-19 pandemic is an ongoing pandemic of coron-
avirus disease and has emerged as one of this century’s major
global health challenges. Insufficient scientific knowledge,
the fast pace of its spread, and its capacity to cause deaths in
vulnerable groups have generated worldwide discussion and
research on the best strategies for confronting the epidemic
in different parts of the world.

Governments are struggling to determine the correct
course of action as the epidemic goes through its stages.
If they decide to do nothing, a lot of deaths, mainly of the
most susceptible individuals, will occur. On the other hand,
full lockdowns affect the economy and society negatively.
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Modeling the pandemic also poses several difficulties, among
these the rapid variation of several important parameters.

Although several vaccines have been developed, most
countries have insufficient supplies to be able to vaccinate at a
recommended level. Also, even though vaccines are effective
against serious symptoms, they do not guarantee complete
immunity so that strategies such as social distancing, wash-
ing hands and wearing face masks, known collectively as
non-pharmaceutical interventions (NPIs), continue to play
an important role in controlling this epidemic.

Predictive mathematical models for epidemics are funda-
mental to understand the course of the epidemic and to plan
effective control strategies. The most simple and commonly
used model is the SIR model (first introduced by Kermack
& McKendrick, 1927) for human-to-human transmission,
which describes the passage of individuals through three
mutually exclusive stages of infection: susceptible, infected
and recovered (Giordano et al., 2020).

Carcione et al. (2020) implemented an SEIR model to
compute the infected population and the number of casual-
ties in the Italian region of Lombardy, one of the regions
most severely impacted by the epidemic in the world. The
additional feature of this model, with respect to the SIR
model, is the exposed state E, which represents individuals
who have been exposed to the virus, but still not developed
the infection, due to the incubation period of the virus. After
this period, the exposed population transitions to the infected
state.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-023-00993-8&domain=pdf
http://orcid.org/0000-0002-8822-7220


456 Journal of Control, Automation and Electrical Systems (2023) 34:455–469

A model named SEIHRD was introduced by Ivorra et al.
(2020) and studied further by Pazos and Felicioni (2021) and
its main novelty is the introduction of the state hospitalized
corresponding to individuals who require ICU installations.
Inclusion of the hospitalized population in the model is
important froma strategic point of view, since it allows public
health officials to avoid shortages in hospital beds and sup-
plies. In addition, the hospitalized population is a variable
that is easy to monitor and is made available in real time.
This model is the one that is used in this work and will be
further explained in the next section.

Non-pharmaceutical interventions (NPIs) are crucial to
avoid the contagion and to mitigate the spread of the epi-
demic. Ferguson et al. (2020) exemplify and analyze different
NPI policies to control the transmission of the virus.

The approach of designing NPI strategies by applying
tools from control theory is not new. One of the first papers
(Stewart et al., 2020) used an SEIRD model to show that a
simple feedback law can manage the response to the pan-
demic for maximum survival while containing the damage
to the economy.

Pazos and Felicioni (2021) propose the use of a simple
feedback controller proportional to a suitable combination
of the measurable state variables that ensures that the hospi-
talized population remains below the healthcare capacity.

Optimal control applied to mitigate the spread of the
COVID-19 disease is also addressed in the literature. Tsay et
al. (2020) propose an optimal controller applied to a deter-
ministic epidemicmodel with six groups (denoted as SEIRP)
in order to keep the number of infected individuals below a
predetermined upper bound. Three scalar control laws are
calculated, the social distances between susceptible individ-
uals and infected and exposed individuals, respectively, and
the testing rate. The control is calculated over a horizon time
of 100 days, but with policies updated after each 25-day
period.

Ames et al. (2020) propose the use of optimal control
where so-called safety functions are included as constraints
to ensure that the infected population (in the SIRmodel) plus
the hospitalized population and the number of deaths (in the
SIHRD model) do not exceed certain upper bounds.

An optimal control problem of obtaining, by enforcing
social distancing, the largest value for the number of sus-
ceptible individuals at infinity is studied by Bliman et al.
(2021). They first established that stopping arbitrarily close
to the herd immunity threshold through long enough inter-
vention is possible only if the social distancing intensity is
sufficiently large. They also show that this problem may be
interpreted as equivalent to reaching a given distance to the
herd immunity level in minimal intervention time.

Since the report first presented by Alleman et al. (2020),
many works have addressed the model predictive con-
trol approach (MPC, see Camacho & Bordons, 1999;

Maciejowski, 2002) to design NPI policies in order to miti-
gate the spread of the COVID-19 disease.

Morato et al. (2020a) formulate a model predictive con-
trol (MPC) policy to mitigate the COVID-19 contagion in
Brazil, designed as an optimal on–off social isolation strat-
egy. The authors consider two different models to determine
the optimal time of every lockdown.

Péni et al. (2020) applied a nonlinear MPC to an eight-
compartment epidemiological model. The constrained opti-
mization problem includes bounds on the states and on the
control signal. The control signal is calculated over a fixed
time horizon of 180 days and updated weekly. The authors
also consider the use of an observer assuming that only the
hospitalized population and the number of deaths are well
known.

Köhler et al. (2020) considered the SIDHARTE epidemi-
ological model, first presented byGiordano et al. (2020). The
authors propose the use of a model predictive control (MPC)
and admit uncertain data andmodel mismatch. The NPI poli-
cies are updated weekly. A robust MPC is also implemented.

Carli et al. (2020) applied a MPC in a multi-region sce-
nario. In each region, a SIRQTHE epidemiological model
is considered, admitting a dynamic that represents inter-
regional mobility.

Armaou et al. (2022) propose a probabilisticmodel predic-
tive control (PMPC) to determine different social distancing
policies for six different activities. The epidemic model used
has ten groups (denoted as SEASQHRD, where R is divided
into three subgroups). Thedesignof thePMPCformulates the
policy question as an optimization problem that minimizes a
cost function subject to the epidemic dynamics, to maximum
values for each control law according to the activity and other
probabilistic constraints necessary because only two groups
are directlymeasured. The constrained optimization problem
is solved for a finite time horizon forward, called the predic-
tion horizon, TP , given the current state of the epidemic.

Some authors considered the influence of vaccination on
the epidemic model. Kar and Batabyal (2011) studied a SIR
epidemic model with a vaccination program. They used opti-
mal control strategies in the formof vaccination to control the
number of susceptible individuals and increase the number
of recovered individuals.

An optimal daily vaccination strategy is proposed by
Acuña-Zegarra et al. (2021). They established an opti-
mal control problem to design vaccination strategies where
vaccination modulates dynamics susceptibility through an
imperfect vaccine. The aim was to provide vaccination poli-
cies that minimize the lost life years due to disability or
premature death by COVID-19. The simulations suggested
a better response compared with a constant vaccination rate.

Parino et al. (2021) propose a model predictive control
(MPC) to optimally calibrate a two-dose vaccination strategy
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during the epidemic outbreak. The constrained optimization
problem is solved for an unspecified finite time horizon.

In contrast to most papers aiming at reproducing the
dynamics of the pandemic observed through various data,
a study related to the concepts of epidemic final size and
herd immunity in an ample setting is done by Almeida et al.
(2021). They considered an epidemic in a heterogeneous pop-
ulationmodeled by a SEIRmodelwith a continuous structure
variable and a general contact matrix. They derived and stud-
ied the final size equation fulfilled by the limit distribution
of the population and showed that this limit exists and sat-
isfies the final size equation. The main contribution was to
prove the uniqueness of this solution among the distributions
smaller than the initial condition.

Other works addressing epidemic control and vaccination
are listed in Table 1. They are divided into the following
sections:

• Control strategy indicates which control strategy is used
in the paper (Optimal Control, MPC or Other).

• Uncertain parameters indicate if the authors used uncer-
tain parameters in the epidemic model.

• ≤ 4 CPs and ≥ 5 CPs indicate how many compartments
(CPs) the epidemic model contains.

• Vaccination indicates if the paper used vaccination as a
control variable.

Someof theseworks do not considermaintaining the num-
ber of individuals hospitalized below the maximum capacity
of the health care system as an additional constraint, at
best including a penalty term in the objective function (an
exception is Péni et al., 2020). Most of them do not con-
sider the time horizon as a variable to be optimized, but
the optimization problem is solved over a fixed time hori-
zon arbitrarily chosen. Many approaches presented in the
references cited also consider fixed parameters, excepting
(Armaou et al., 2022) which present a stochastic approach
and Péni et al. (2020) which admit uncertainties in the param-
eters.

In this work, we investigate strategies based on N-steps-
ahead optimal control for mitigation of the COVID-19
pandemic. Themain goal is tominimize the number of deaths
over time without inducing excessive economic costs, while
respecting anupper boundon thehospitalization rate. In order
to do that, an optimization problem is modeled and solved
based on the techniques presented by Canon et al. (1970) and
Kirk (1970).

The main contributions of this paper are:

• An MPC-type control approach with low computational
effort.

• A normalized aggregate control effort that models the
effect of all non-pharmaceutical interventions and there-

fore takes values between zero and one, rather than being
on-off.

• Inclusion of vaccination as a design variable, making the
proposed approach a good candidate for use in future
outbreaks.

Table 1 shows that the the present paper is the only one,
to the best of our knowledge, that treats all the relevant
aspects that labels the rows of the table, namely parameter
uncertainty, a sufficient number of compartments (for greater
model accuracy) and vaccination.

In Sect. 2, the epidemic model SEIHRD is explained in
more detail. In Sect. 3, we detail the optimal algorithm that
is used to calculate the best strategy for each moment of the
epidemic. In Sect. 4, we develop all simulations and compare
our strategy with other strategies already used for the same
problem. Additionally, the impact of the vaccination rate is
shown in Sect. 4.3. Finally, conclusions and future work are
presented in Sect. 5.

2 The SEIHRDModel

In this section, we detail each state of the SEIHRDmodel and
its relevance in the COVID-19 epidemic model. The choice
of the model is an important step. In order to be useful for the
designof control policies, it should contain themainvariables
of interest, keeping inmind the difficulty of obtaining reliable
data that will permit estimation of the main model parame-
ters. In this study, we opted for a model called the SEIHRD
model, explained in the next paragraph, since it allows for
a more detailed model of features specific to the COVID-19
epidemic, such as exposed and asymptomatic populations,
in addition to modeling occupation of hospitals, which is
important from a decision making perspective.

The SEIHRD model contains the following states or pop-
ulations that each individual can belong to:

• Susceptible (S): Individuals who did not get exposed to
the virus and are not infected.

• Exposed (E): Individuals who got exposed to the virus
and are in the incubation period. Even though there are
no visible clinical signs, the individual could infect other
individuals with a lower probability (compared to one in
the infected state). Part of this group will present symp-
toms after an incubation period, moving to group I and
another part will remain asymptomatic.

• Infected (I): Individuals who can infect others and may
start developing clinical signs.Asymptomatic individuals
who have been diagnosed as positive are also considered
in this group. After a period, the individual recovers or is
hospitalized, if the symptoms are very serious.
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Table 1 Classification of the references used in this work

Optimal control MPC Other

Uncertain parameters Di Lauro et al. (2021) Alleman et al. (2020), Köhler et al.
(2020), Watkins et al. (2019), [PP]

Pazos and Felicioni (2021)

≤ 4 CPs Almeida et al. (2021), Bliman and
Duprez (2020), Di Lauro et al.
(2021), Lin et al. (2010), Mallela
(2020)

Watkins et al. (2019) Sadeghi et al. (2021)

≥ 5 CPs Acuña-Zegarra et al. (2021), Bin et
al. (2021), Charpentier et al. (2020),
Djidjou-Demasse et al. (2020),
Gondim andMachado (2020), Shah
et al. (2020), Tsay et al. (2020),
Ullah and Khan (2020) and Zamir
et al. (2020)

Alleman et al. (2020), Carli et al.
(2020), Jankhonkhan and Sawang-
tong (2021), Köhler et al. (2020),
Morato et al. (2020b), Moore
and Okyere (2020), Morato et al.
(2020a),Olivier et al. (2020), Parino
et al. (2021), Péni et al. (2020),
Sharma and Agarwal (2021), [PP]

Pazos and Felicioni (2021)

Vaccination Acuña-Zegarra et al. (2021), Kar
and Batabyal (2011)

Parino et al. (2021), [PP]

The terms “PP” and “CPs” stand for “present paper” and “compartments,” respectively

• Hospitalized (H): Individuals who need medical assis-
tance and occupy beds in the hospital. After treatment,
the individual might recover or die.

• Recovered (R): Individuals who recover from the infec-
tion or acquired immunity.

• Dead (D): Individuals who were infected, hospitalized
and then died.

This is a typical compartmental model and Fig. 1 shows
the manner in which individuals transit between these states
or populations. This model also has a mathematical repre-
sentation given by the following difference equations.

Sk+1 = Sk − (αSk Ek + βSk Ik) − vk−d1 (1)

Ek+1 = Ek + (αSk Ek + βSk Ik) − (γ p1

+ ζ(1 − p1))Ek (2)

Ik+1 = Ik + γ p1Ek − (δ p2 + η(1 − p2))Ik (3)

Hk+1 = Hk + δ p2 Ik − (ε p3 + μ(1 − p3))Hk (4)

Rk+1 = Rk + ζ(1 − p1)Ek + η(1 − p2)Ik

+ μ(1 − p3)Hk + vk (5)

Dk+1 = Dk + ε p3Hk (6)

where:

• k ∈ {1, 2, . . . , K } where K ∈ N is the maximum time
horizon considered in the study.

• vk−d1 is the vaccination rate applied on the population at
instant k and d1 is the length of the period after which
the vaccine takes effect, considering that one shot gives
full immunity.

• αSk Ek is the transmission rate of the virus between sus-
ceptible and exposed populations, while βSk Ik is the

Fig. 1 SEIHRD model diagram

transmission between susceptible and infected popula-
tions. Parameters α and β are the probability of disease
transmission in a single contact between individuals of
the group S and E . Typically, α is greater than β, since
each individual tends to avoid contact with individuals
showing symptoms. Also, the viral load is higher in the
second case.

• p1 is the probability that exposed individuals develop
symptoms.

• γ −1 is the average period to develop symptoms.
• ζ−1 is the average time to overcome the disease while

remaining asymptomatic.
• p2 is the probability that infected individuals with symp-
toms require hospitalization.

• δ−1 is the average time between infection and the need
for hospitalization.

• η−1 is the average time for infected individuals to recover
without hospitalization.

• p2 is the probability that infected individuals with symp-
toms required hospitalization.

• ε−1 is the average time between hospitalization and
death.

• μ−1 is the average time to recover after hospitalization.

123



Journal of Control, Automation and Electrical Systems (2023) 34:455–469 459

• p3 is the probability that hospitalized individuals die.

According to the equations, the populations in the com-
partments R and D are always increasing, while S is always
decreasing. This is expected, since the number of recov-
ered and dead individuals may stop increasing but will never
decrease (with the assumption that reinfections are not pos-
sible). The same idea can be applied to the group S, which
will decrease until the epidemic is finished.

This model does not discriminate between detected and
undetected cases of infection as this would add an extra com-
plexitywhich, in addition, is difficult to observe and quantify.
Although this assumption ignores the more complex biol-
ogy, it does allow the inclusion of some important real world
issues such as scarcity of hospital beds.

The transference between the model compartments is
based on mean rates, indicating that the individuals stay for a
certain period in each compartment. This could also be rep-
resented by adding delays instead of using mean rates. There
are othermodeling techniques,whichuse a conveyor to repre-
sent the delays (Isee, 2021). However, in this work we chose
to use the mean rates as a simplification. A basic quantity
in the analysis of epidemic models is the basic reproduction
number R0, which, informally, is the expected number of
individuals who will be infected by one person with the dis-
ease. If R0 is less than 1, each infected person can transmit the
virus to less thanone susceptible person.Thismeans the num-
ber of infected will decline and the disease will die out. If R0

is greater than 1, the disease will spread into the population
and the number of infected individuals will increase, causing
an epidemic.A detailed explanation of the basic reproduction
number can be found in Kermack and McKendrick (1927).

The parameters used in the model will generally assume
different values for different regions in the world. Specially,
the parameters α and β are related with R0 and they are
influenced by different factors, like population density of a
community, the general health and average age of its popu-
lation and medical infrastructure.

In this work, the values of the parameters used in (1)–
(6) are based on the studies reported by Pazos and Felicioni
(2021) and can be found in Table 2.

3 Optimal Control Problem

Optimal control applied tomitigate the spread of diseaseswas
addressed before the Covid-19 outbreak. The book (Lenhart
&Workman, 2007) and especially the article (Lin et al., 2010)
are references on which many works are based (Armaou et
al., 2022; Tsay et al., 2020; Moore &Okyere, 2020; Djidjou-
Demasse et al., 2020; Perkins & España, 2020; Mallela,
2020; Gondim & Machado, 2020; Angulo et al., 2020). In
this section, we present the theory behind an optimal con-

Table 2 Values for SEIHRD
model parameters (Pazos &
Felicioni, 2021)

Parameter Value

α 0.179

β 0.0895

γ −1 5.1 days

ζ−1 14.7 days

δ−1 5.5 days

η−1 14 days

ε−1 11.2 days

μ−1 16 days

d1 21 days

p1 50%

p2 19%

p3 15%

trol problem.We base our studies mainly on Kirk (1970) and
Canon et al. (1970). In the subsequent sections, we introduce
and explain different types of controller and strategies used
to control the COVID-19 epidemic.

3.1 SEIHRDModel with Control Variable

The characteristics of COVID-19 disease make the virus
spread incredibly fast into the population. One of the strate-
gies the government can apply is to attack the source, when
the disease is not yet disseminated in the population. Isola-
tion of cases and tracking of new cases and individuals that
were in contact with someone infected would interrupt the
transmission in the source. Of course, this is very difficult
in a globalized world, where individuals can easily travel
anywhere.

Another strategy is to interrupt (or reduce) the trans-
mission. This is mainly achieved by increasing personal
and environmental hygiene (washing hands, etc.), using
appropriate masks when in public and restricting population
movements. A lockdown strategy and social distancing have
been observed in several parts of the world.Middle- and low-
income countries do not have sufficient resources and face
financial and economic challenges, which may hinder their
ability to effectively implement the abovementioned policies.

The strategies described above are the so-called non-
pharmaceutical interventions (NPIs). Pharmaceutical inter-
vention is mainly achieved by vaccinating the population
since, to date, there is no proven reliable treatment for
infected individuals.

In this paper, an aggregate normalized control effort vary-
ing between zero and one will be taken to represent all the
NPIs being applied (i.e., lumping together social distancing,
use of masks, adoption of hygienic measures, etc.).

Since we can only try to control the transmission between
individuals, in the mathematical model introduced in Sect. 2
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Fig. 2 SEIHRD model diagram with control variable

we may only affect the relations between compartmental
groups S, E and I . In other words, we would like to prevent
susceptible individuals from getting into contact with indi-
viduals that have the virus (exposed and infected). Therefore,
the proposed model is the following:

Sk+1 = Sk − (1 − uk)(αSk Ek + βSk Ik)

− vk−d1 (7)

Ek+1 = Ek + (1 − uk)(αSk Ek + βSk Ik)

− (γ p1 + ζ(1 − p1))Ek (8)

Ik+1 = Ik + γ p1Ek − (δ p2 + η(1 − p2))Ik (9)

Hk+1 = Hk + δ p2 Ik − (ε p3 + μ(1 − p3))Hk (10)

Rk+1 = Rk + ζ(1 − p1)Ek + η(1 − p2)Ik

+ μ(1 − p3)Hk + vk (11)

Dk+1 = Dk + ε p3Hk (12)

The control variable affects directly the parameters α and
β of the SEIHRD model, as shown in Fig. 2. One important
fact is that by increasing the control input, we are decreasing
the observed α and β. In other words, the control prevents
susceptible individuals from getting in contact with exposed
and infected individuals, respectively.

The control variable uk can assume any value between
0 and 1 (uk ∈ [0, 1]). The lower bound of 0 means that
no social distancing strategy is applied and individuals are
free to go wherever they want. The upper bound of 1 means
that a lockdown is in place and individuals have no contact
with each other, meaning that the transmission is interrupted.
This is impossible in practice, since basic services for the
population require some movement of populations.

It should be observed that states D and R do not affect
the dynamics of the rest of the model [i.e., do not occur in
the Eqs. (7)–(12)]. In the next sections, we will not include
them in the optimization problem as they would only add
unnecessary complexity, since they can be calculated using
the other state variable values.

Social distancing is the main NPI strategy to interrupt
the spread of the virus in the population. When the number

of infected and hospitalized individuals is too high, social
distancing needs to be implemented. Since complete lock-
down has well known adverse effects in the economy, this
work postulates a certain level of normalized control effort
(between zero and one) that translates into partial lockdown
and relaxation of other measures (such as the use of masks).
The focus of this paper is on strategies to calculate the value
of this aggregate control. It is then the task of decision mak-
ers to translate this level of control effort into concrete NPI
policies, which is, of course, a nontrivial task. In the next
sections, we show different algorithms to calculate the best
values of the control variable uk during the time horizon.

3.2 N-Steps-Ahead Optimal Control (NSAOC)

In this work, we introduce a controller that uses model pre-
dictive control theory. The main idea is to calculate, at each
time instant, a new control value based on the estimation
of the evolution of the state vector during the next N time
instants. So, at each time step k = 1, 2, . . . , K , where k cor-
responds to days and K is the time horizon applied to the
COVID model, we solve an optimization problem over the
horizon k, . . . , k + N , where N is the number of days that
is used to calculate what are the best values for the control
variable u. The optimization result gives the best values for
the next N control inputs. However, we only use the control
uk , since at instant k + 1, we assume that information from
the real environment (namely the states of day k+1 resulting
from the application of uk).

It is important to note that the solution of the optimiza-
tion problem is based on a certain COVID model (SEIHRD
in this work). However, the computed optimal control vari-
able is applied to a real COVID environment, where some
parameters (if not all) can differ from those of themodel. The
diagram in Fig. 3 illustrates the flowused in the problem.One
can see that the states of the model are estimated at time k, in
the computational (controller) block labeled NSAOC, while
the ones from the environment (i.e. the output Xk+1 of the
block labeled environment) are real measured states.

The optimization process is responsible for the calcu-
lation of the next control inputs taking into consideration
an adequate objective function. The mathematical model is
described below:

min J =
k+N∑

k

uk (13)

subject to:

Sk+1 = Sk − (1 − uk)(αSk Ek + βSk Ik)

− vk−d1 (14)

Ek+1 = Ek + (1 − uk)(αSk Ek

+ βSk Ik) − (γ p1 + ζ(1 − p1))Ek (15)
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Fig. 3 N-steps-ahead control diagram (the variable X is defined by
X = [S, E, I , H ])

Ik+1 = Ik + γ p1Ek − (δ p2 + η(1 − p2))Ik (16)

Hk+1 = Hk + δ p2 Ik − (ε p3

+ μ(1 − p3))Hk (17)

Hk ≤ Hmax (18)

0 ≤ uk ≤ 1 (19)

Sk , Ek , Ik and Hk are the initial conditions and input of
the algorithm. Hmax is the maximum capacity of the med-
ical resources. If Hk assume values higher than the upper
bound Hmax, the number of deaths would have a consider-
able increase, since the medical capacity will be exceeded
and, consequently, part of the population will not be covered
by medical care. No government wants this to happen, so the
constraint (18) is added to make sure the optimization takes
this into consideration.

The objective function (13) takes into account only
resources available for the implementation of control efforts,
while the constraints model available hospital infrastructure.
In otherwords, (13) is an administrator’s ideal objective func-
tion.Thedecision to choose this specific function is explained
by the focus on solving one of the main concerns of all gov-
ernments, which is to exceed the capacity of hospitals with
individuals infected by COVID-19. In practice, of course,
other humanitarian concerns, such as limiting the number of
deaths, are more important and should also be added to the
objective function. The formulation presented in this paper is
applicable to all such objective functions and can be regarded
as a tool to aid decisionmaking by simulating scenarios, with
different objective functions, parameters and so on. Thus
there are other objective functions that might be tested as
well. One can try to maximize the number of susceptible
individuals and simultaneously minimize the sum of all con-
trol efforts, for example. Also, some weights can be added
to each factor term in the objective function, to express its
relative importance.

Another important issue is the choice of suitable values
for N . We would like to choose values as small as possible to
avoid unnecessary computation. On the other hand, N cannot
be too small, because, over a prediction horizon that is too
short, an exponential rise in hospitalizations would not be
foreseen and the situation would get out of control. In the

next section, we investigate the issue of the most suitable
values for N .

The algorithm used in this paper is shown in Algorithm 1
table:

Algorithm 1 N-Step-Ahead Optimal Control Algorithm
1: while k ≤ K do
2: Solve (13)–(19) for the interval (k : k + N ).
3: Use the resultant control value in the environment.
4: Store the new state variables from instant k + 1 and use them in

the next iteration.
5: k ⇐ k + 1
6: end while

We note that (13)–(19), following Canon et al. (1970), is
treated as an optimization problem. Specifically, this means
that the decisionvariables are {uk}Nk=1,and {Sk, Ek, Ik, Hk}N+1

k=1 ,
where the latter (S, E, I , H ) do not occur in the linear objec-
tive function (13), but are subject to the quadratic equality
constraints (14) through (17), as well as the box constraints
(18), (19). Such an optimization problem is easily handled by
many modern solvers and, in our implementation, we used
the algebraic modeling language JuMP [Julia for Mathemat-
ical Programming, see Dunning et al. (2015)], which itself is
written in the scientific computation language Julia (Bezan-
son et al., 2014), to write the optimization code and used the
Coin-OR solver Ipopt Wächter (2009). The reasons for these
choices are that Julia and JuMP are fast, modern (JIT com-
piler) open source languages for scientific computation and
optimization, respectively, and Ipopt is a reliable, modern
solver, based on interior-point algorithms, for a large range
of optimization problems.

3.3 PID-Like Control

This section will briefly present a controller proposed by
Pazos and Felicioni (2021) for the purposes of comparison.
The authors used control theory to determine public NPIs in
order to control the evolution of the pandemic, avoiding the
collapse of the healthcare systems while minimizing harmful
effects on the population and economy.

Again, the control law is given by the control variable uk
in Eqs. (7)–(12). No intervention is represented by uk = 0
and a full lockdown with no movement allowed translates to
uk = 1.

There are several possible choices of the reference sig-
nal or set point of the control system. We also must keep in
mind that some groups of the SEIHRD model are subjected
to large inaccuracies due to unreported or undiagnosed cases.
So, ideally the controller should use states for which reliable
data are available. The number of hospitalized (H ) individu-
als is very reliable. The number of individuals diagnosed as
positive (I ) and deaths (D) is also reasonably reliable.
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Fig. 4 PID-like controller diagram (Pazos & Felicioni, 2021)

The controller proposed by Pazos and Felicioni (2021) is
shown schematically in Fig. 4.

The obvious choice of feedback variable would be
the number of hospitalized individuals. However, since
NPIs reduce contagion between susceptible and infected or
exposed population, when an individual is infected, hospi-
talization may be required after δ−1 = 5.5 days or after
δ−1+γ −1 = 10.6 days on average if the infectionwas recent.
Hence, there exists a delay between the adoption of NPIs and
their consequences on hospitalization. If the control action
relies only on the number of hospitalized compartment, too
many individuals may require hospitalization in the next 10.6
days, exceeding the capacity for medical care.

Therefore, the control action should also take into con-
sideration the number of infected individuals. The addition
of this state emulates a type of predictive control, since it is
proportional to the number of individuals who would require
hospitalization in the next 5 or 6days.

However, not all infected individuals need hospitaliza-
tion. It is reported that most symptomatic cases are mild and
remain mild. According to Table 2, p2 = 19% of infected
individualswill need hospitalization in the following 5.5days
(δ−1). This number plus the number of individuals already
hospitalizedmust remain below the set point. So, the normal-
ized PID-Like control law proposed by Pazos and Felicioni
(2021):

uk = kp

(
1 − Hmax − Hk − p2 I

SP − Hk

)
∈ [0, 1] (20)

where kp is a scalar gain with values between [0, 1].

3.4 Omniscient Control

Finally,wepresent a benchmarkglobally optimal control pol-
icy, that is hypothetical, since it assumes that all data for the
whole control horizon is known. In this case, of course, it is
possible to calculate the open-loop globally optimal control
for any given performance index, and we will refer to this as
the omniscient control, since the control design can observe
all data, without any errors or estimates. The main objective
in presenting and calculating this strategy is to have a base-
line for comparison of the other practically implementable
strategies.

Fig. 5 Omniscient control diagram (the variable X is defined by X =
[S, E, I , H ])

Given a performance index, omniscient control follows
the classical recipe of optimal control. At instant k = 1 we
calculate all uk for k lying in the interval (1, K ). The omni-
scient control is shown schematically in Fig. 5.

The omniscient optimal control problem is described
below in Eqs. (21)–(27):

min J =
K∑

k=1

uk (21)

subject to:

Sk+1 = Sk − (1 − uk)(αSk Ek + βSk Ik)

− vk−d1 (22)

Ek+1 = Ek + (1 − uk)(αSk Ek

+ βSk Ik) − (γ p1 + ζ(1 − p1))Ek (23)

Ik+1 = Ik + γ p1Ek − (δ p2 + η(1 − p2))Ik (24)

Hk+1 = Hk + δ p2 Ik − (ε p3

+ μ(1 − p3))Hk (25)

Hk ≤ Hmax (26)

0 ≤ uk ≤ 1 (27)

After all control variable values are calculated, we can
use them in a real world environment. If the SEIHRD model
parameters are exactly equal to the real world parameters,
the omniscient control would have a perfect performance.
Of course, given the multiple uncertainties and assumptions
made in the model, this will almost never happen. Thus, for
each instant k, the respective optimal control uk calculated
from the model is applied to the real system which responds
with the actual state variables of the instant k + 1.

4 Results

In the previous section, we explained the theory behind the
strategies we chose to use in this work. In this section we
perform numerical experiments based on this theory. The
experiments consider two cases. In the first one, the environ-
ment parameters are constant and equal to the model used
to calculate the control values. Next, parameter uncertainty
is introduced in the SEIHRD Environment block (Fig. 3)
and, consequently, their values will differ from the ones used
in the NSAOC block (Fig. 3). Also, three different objective
functions will be used separately to evaluate the NSAOC
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algorithm:

J1 =
k+N∑

k

uk (28)

J2 =
k+N∑

k

wkuk (29)

J3 =
k+N∑

k

wkuk +
k+N−1∑

i=k

k+N∑

j=k+1

(ui − u j )
2 (30)

The main goal of (28) is to simply minimize the total
control input applied on the population. The second objective
function (29) is similar to thefirst one, except for the inclusion
of a weight vector w = [w1, . . . , wN ]. It is chosen as w =
[N 2, (N − 1)2, (N − 2)2, . . . , 12]. This modification results
in giving more importance to the near future, and reducing
the importance of controls far in the future. Last, (30) adds a
slew rate penalty to the objective in (29). Aswewill see in the
simulations, the second objective makes the controller vary
a lot between high values and low values. The slew rate term
penalizes big jumps in the control, smoothening the control
signal, which is desirable, because it avoids big changes in
policies, which tend to confuse the population (subjects of
the control action).

4.1 NSAOC Simulation

Before comparing different strategies, in this section we ana-
lyze the results of NSAOC strategy using performance index
J1 in a SEIHRD model with constant parameters. The simu-
lation horizon is K = 600 days.

In NSAOC strategy, the only parameter we need to adjust
is the parameter N and, indeed, this is one of the good fea-
tures of the proposed NSAOC strategy. As stated earlier, this
parameter represents the number of steps ahead of the actual
instant the calculation of the optimal solution is carried out.
For example, if we use N = 10 (Fig. 6), the epidemic can be
controlled and the number of hospitalized individuals never
exceeds the specified limit of 0.8%.

The control input is only greater than zero when the num-
ber of hospitalized individuals reaches a dangerous level.
Then, a severe lockdown is put in place (u = 1) for a week,
approximately.After the contamination starts to decrease, the
input control can be relaxed to a lower level. The final per-
centage of deaths is 3.62%. Also, the peak of infected and
exposed individuals are smaller, since the control applied
reduces the contact between susceptible and individuals car-
rying the virus.

Fig. 6 Results of a SEIHRD model with constant parameters using
NSAOC algorithm with N = 10 and K = 600 (time horizon)

Fig. 7 Hospitalization level and total number of deaths for different val-
ues of parameter N of NSAOC Algorithm using performance indices
J1, J2 and J3 in an environment with constant parameters. The verti-
cal black dashed line shows the smallest prediction horizon N that is
able to achieve a steady state hospitalization level below the maximum
specified capacity Hmax

4.1.1 Parameter N: Impact Study

In this section, we vary the parameter N of the NSAOC
algorithm and experiment in the SEIHRD model without
parameter uncertainty. We consider all three objective func-
tions discussed earlier, defined in Eqs. (28), (29) and (30).

As stated before in thiswork,COVID-19 is a diseasewith a
relatively high incubation period and the consequences of the
actions taken today will most likely only appear in a week or
evenmore. Therefore, parameter N must be chosen wisely in
order to predict the hospitalization level early enough, which
is critical for good decision making.

First, we investigate the impact of different values of N
on the hospitalization level and number of deaths. As shown
in Fig. 7, when using the objective function J1 the minimum
value we should use for N is 9, while for objective functions
J2 and J3 this value changes to 10. This strategy maintains
the hospitalization level below the desired limit Hmax.

We also note that for values of N below 9 (using J1) and
10 (using J2 and J3), the optimization problem is infeasible.
This occurs because it cannot see enough steps ahead to iden-
tify that the individuals exposed and infected at the actual
instant will become ill a few days later and the number of
hospitalized individuals will exceed the limit Hmax, violat-
ing the constraint (and making N < 9-step-ahead problem
infeasible).
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Fig. 8 Total control input for different values of parameter N of
NSAOC Algorithm using performance indices J1, J2 and J3 on an
environment with constant parameters

As long as N increases (and is larger than 10), the max-
imum hospitalization level stabilize near the specified limit
Hmax for all performance indexes, even though it takes more
time to reach the limit using the objective function J1, as
shown in previous simulations. The number of deaths oscil-
lates near the value 3.8%, indicating that increasing the
horizon parameter N does not result in better results. So,
considering Fig. 7, we conclude that the best choice for N is
10, since it results in the lowest feasible computational effort.

When it comes to total control effort (Fig. 8), a different
behavior when using different objective functions can be also
noted. Again, for N smaller than 10, the algorithm is not
able to find a feasible solution. For higher values of N , the
total control effort increases as N also increases when using
the objective function J1. However, when using functions J2
and J3, the total control does not vary much as N increases,
because the controller only acts when it is really needed.

4.2 Comparison of Strategies

This section considers all strategies explained in Sect. 3 and
compares the results. When using NSAOC, the parameter N
assumes the value 10. Therefore, the following strategies are
used:

1. NSAOC-J1 (N = 10)
2. NSAOC-J2 (N = 10)
3. NSAOC-J3 (N = 10)
4. Omniscient control
5. PID-like control (proposed by Pazos & Felicioni, 2021).

The first simulation applies the above strategies in a
SEIHRD environment with constant parameters. The results
are shown in Fig. 9. The control inputwhen usingNSAOC-J2
and omniscient strategies work approximately as an on-off

Fig. 9 Comparison of results of a SEIHRDmodel with constant param-
eters using NSAOC (J1, J2, J3), PID-like and omniscient optimal
control algorithms

policy, while the other strategies apply smooth changes from
one time instant to another. As a consequence, the exposed,
infected populations keep oscillating with a high frequency
when using the first two strategies, especially the omniscient
strategy. The PID-like strategy tends to choose safer deci-
sions as it starts acting before the others and also tries to
respond actively to the number of infected individuals.

The aggressiveness of the strategies affect the first peaks
of infected and exposed individuals. The omniscient strategy
has the highest peak in the infected state I , being followed by
strategies NSAOC-J2 and NSAOC-J3. One interesting fact
is that the peak of exposed individuals is higher when using
NSAOC-J2 whilst the peak of infected individuals is higher
when using NSAOC-J3. This is explained by the extra factor
present in objective function J3 that smoothens the changes
applied in the control input. So, instead of forcing the values
to be almost only 0 or 1 (like J2), it tries to choose inter-
mediate values to smooth the lockdown level descent. As a
consequence, the interactions are higher after the exposed
peak is reached, making the peak of infected individuals
higher when using NSAOC-J3.

The number of deaths does not differ between all NSAOC
strategies and omniscient strategy, presenting a final value of
3.624%(3.625%using J3 and3.623%for omniscient).When
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Table 3 Results for each strategy applied in a SEIRHD model with
constant parameters

Strategy Max (H ) (%) Deaths (%) Control

NSAOC-J1 0.8 3.624 74.82

NSAOC-J2 0.8 3.624 70.91

NSAOC-J3 0.8 3.625 72.42

Omniscient 0.8 3.643 70.82

PID-Like 0.538 3.099 190.94

using PID-Like strategy, the total control input increases and
the number of deaths decreases,which leads to the reasonable
conclusion that the final number of deaths decreases if total
control input is increased.

The level of hospitalized individuals is below the limit
Hmax for all strategies. The PID-Like strategy keeps the level
considerably below the lower bound. This is achieved by
applying a stronger total control in the environment, as pre-
sented inTable 3.NSAOC-J1 strategy presents a greater slack
compared to the specified limit Hmax. The remaining strate-
gies (NSAOC-J2,NSAOC-J3 and omniscient) present curves
very close to the limit.

Thus, considering that SEIHRD parameters remain con-
stant during the entire time horizon, strategies NSAOC-J2
and omniscient are impossible to implement due to their
high frequency behavior. Even though the PID-Like strategy
presents good levels of hospitalization and deaths, the control
could be relaxed further to reduce the impact on the econ-
omy. Finally, strategies NSAOC-J1 and NSAOC-J3 present
the most balanced results.

When parameter variation is allowed in the SEIHRD
model, as should be expected, the results will not be as good
as when using constant parameters, especially for strategies
with more aggressive behavior in the control input. The case
of parameter variation is now investigated. Parameters α and
β are both assumed to be normally distributed, with mean
(standard deviation) chosen as 0.1786 (0.05), 0.0825 (0.025),
respectively. This situationmodels the existence ofmany dif-
ferent COVID-19 variants. 1000 simulations are carried out
in order to compute the statistics of each strategy.

In Fig. 10, the continuous lines represent the mean of each
instant over all simulations, while the shaded areas represent
the variance. The first conclusion is that the variance when
using omniscient control is greater than all other strategies
due to the absence of feedback structure in its strategy.

The control effort graph shows that the mean values resul-
tant from NSAOC strategies after instant k = 60 tend to
decrease together around the same value. However, the vari-
ance is different for each objective function and, as we
noted when using constant parameters, strategy NSAOC-J1
is smoother than NSAOC-J2 and NSAOC-J3. This is con-

Fig. 10 Results of a SEIHRDmodel with parameter variation using all
strategies explained in this work

firmed by the dashed blue area, which is smaller than the
green and gray ones.

The most important graph is the one showing Hospital-
ization. Omniscient strategy is the worst one as expected,
since it is open-loop. PID-Like control is the smoothest and
safest strategy, securing the greatest hospital capacity mar-
gin, at the expense of more severe lockdown controls. The
last three strategies use NSAOC algorithm and the hospital-
ization levels are closer to Hmax at steady-state.

Figure 11 is a zoom of Fig. 10, close to Hmax in which the
omniscient and PID-like curves have been removed since
they are far from the neighborhood of Hmax. First, using
strategyNSAOC-J2, themeanvalue curve exceeds Hmax with
the peak almost reaching 0.009. Strategy NSAOC-J3 has its
mean value curve below the specified limit Hmax, however
the initial transient hospitalization level exceeds its desired
capacity limit, which can be noted by the dashed green area
around instant k = 45. Finally, strategyNSAOC-J1 is always
below Hmax, even in the worst case scenario, at the expense
of having the third highest total control input, as shown in
Table 4.

Thus, considering that parameters do vary in the real
world, the best proposed strategy is NSAOC-J1, as it guaran-
tees the hospitalization level below the specified limit Hmax
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Fig. 11 Hospitalization level graph amplified with strategies NSAOC-
J1, NSAOC-J2 and NSAOC-J3 using a SEIHRD model with constant
parameters

Table 4 Results for each strategy applied in a SEIRHD model with
parameter variation

Strategy Max (H ) (%) Deaths (%) Control

NSAOC-J1 0.800 3.851 90.26

NSAOC-J2 0.872 3.871 85.15

NSAOC-J3 0.812 3.846 87.4

Omniscient 2.074 3.794 70.82

PID-Like 0.611 3.358 213.24

with a total control effort slightly superior to other similar
strategies.

4.2.1 Comparison of Computational Requirements of the
Proposed Control Schemes

The BenchmarkTools suite in Julia (Worldometers,
2020) was used on the code for each control scheme. The
command@benchmark from this suite runs the codes being
compared several times and produces the following statis-
tics: min, max, median, average and standard deviation of
the compute times as well as an estimate of the memory use.
It should be noted that only the compute time ismeasured, not
the compilation time. The comparative results are shown in
Table 5. The following observations are pertinent. All codes
(NSAOC-J1 through J3) which use nonlinear optimization
software (Ipopt) obviously have runtimes that are four orders
of magnitude larger than the runtime for the PID-like con-
troller (which requires almost no computation). However,
given that the time constants of the changes in policy are
in days, the change in runtime from a few milliseconds to
tens of seconds is not significant. A similar remark holds for
memory use: once again, the codes which use nonlinear opti-
mization software use memory which is about three orders of

Table 5 Mean execution time andmemory usage for strategiesNSAOC
(J1, J2 and J3), omniscient and PID-like

Strategy Execution time Memory usage (MiB)

NSAOC-J1 11.36 ± 0.54 s 482.32

NSAOC-J2 13.73 ± 0.04 s 502.37

NSAOC-J3 19.78 ± 1.67 s 708.49

Omniscient 97.70 ± 1.11 s 702.58

PID-Like 1.96 ± 0.85 ms 1.79

magnitude larger than the memory requirement of the PID-
like code, due to the fact that the former need to compute and
store all states for N-steps. This is the price to be paid for
the advantages of the N-step-ahead controllers, especially
NSAOC-J1 which performs better than the PID-like con-
trollers under uncertainty (smaller variance) and with less
control effort (meaning fewer and less intense lockdowns),
as discussed earlier in this section.

4.3 Vaccination

In the previous sections, simulations did not consider any
kind of vaccination plan. In this section we simulate and
quantify the impacts of vaccination on the total control input.
We make the following assumptions:

• The vaccine is 100% efficient, meaning that the individu-
als who take it acquire full immunity to COVID-19 after
21 days.

• The vaccination rate is constant over the specified hori-
zon.

• The immunity is acquired with only one shot.

We use different vaccination rates in order to identify the
impacts of each level on the total control input. The strategy
used to control the epidemic is NSAOC-J1 (N = 10). Also,
we consider constant parameters in the SEIHRD model, as
we want to compare the possible benefits of the vaccination.

From Fig. 12, the total effort to control the epidemic
decays when the vaccination rate is increased. When this
rate is greater than 1.8%, the hospitalization level never
reaches Hmax anymore, eliminating one of the main con-
straints imposed in the previous sections, namely hospital
capacity. This would be equivalent to vaccinating 3.8 mil-
lion individuals per day in Brazil, for example.

The evolution of the control effort and the number of sus-
ceptible individuals for each vaccination rate is shown in
Fig. 13. In the graph, on the left we note that when the vac-
cination rate increases, it is possible to start acting (uk > 0)
with a higher delay, since there are fewer susceptible individ-
uals at the same instant. Also, the peaks around the start of the
period have lower values and they last for less time. On the
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Fig. 12 Total control effort using NSAOC-J1 (N = 10) versus vacci-
nation rate

Fig. 13 Control effort and susceptible individuals using NSAOC-J1
(N = 10) with constant parameters for each vaccination rate

right in Fig. 13, the total number of susceptible individuals
decays faster for higher vaccination rates, as expected. In the
last case (v = 1.8%), the curve decay is constant, since the
vaccination rate is constant and no control effort is applied
in the population.

5 Conclusion

Different strategies are being used by governments all around
the world involving the balance between public health and
economic issues. In order to make such decisions, most of
them rely on expert advice based on the results of epidemi-
ological mathematical models and on daily case reports.

At the time of writing this paper, the epidemic in Brazil
is not at a critical stage in terms of hospital capacity, due
to the widespread vaccination campaign, which has reduced
death rates as well as severity of the cases. However, there is
a significant population of negationists, vaccine deniers and
unvaccinated individuals and cases of COVID-19 (variants
of omicron) are on the rise again, not only in Brazil, but also
in the USA, Japan, Korea and China. This implies that the
proposal in the present paper, which constantly reacts to the
actual state in its design of vaccination policy, is a suitable
candidate for implementation in case of a future outbreak.

In this work, we explored different strategies that govern-
ments can use to control the COVID-19 epidemic. The main
results from our analysis are the following:

• All strategies worked well when the SEIHRD model
parameters are constant. They succeed in controlling the
level of hospitalized individuals while minimizing the
total control effort.

• The NSAOC-J2 strategy resulted in less total control
effort, although it applies toomany sequences of full lock
down or no restrictions at all (like an on-off policy). This
can be difficult to apply in the real world.

• NSAOC-J1 and NSAOC-J3 strategies presented better
behavior, since they imply a restricted lockdown at the
beginning and start to relax as time goes on.

• PID-like controller is a safer strategy that takes actions
before the disease really spreads into the population,
while it is easier to control the epidemic. However, it
leads to higher total control input, with negative eco-
nomic impacts.

• When the SEIHRD model parameters are not reliable
enough, using any type of open-loop control and, specif-
ically, even the ideal omniscient control could result in
not being able to control the level of hospitalized indi-
viduals, which can lead to a very high number of deaths.

• Only NSAOC-J1 and PID-Like strategies were able to
keep the hospitalization level below the specified limit
Hmax in a SEIHRD model with parameter uncertainty in
all simulations. The NSAOC-J3 strategy also succeeds as
the mean values are below the limit, but closer to it than
the NSAOC-J1 and PID-like strategies.

• The number of deaths is proportional to the total control
input applied.Hence, PID-Like strategy had better results
in this metric since it uses a larger control effort.

• In a SEIHRD model with parameter uncertainty, the
number of deaths in all strategies increased due to the
difficulty of predicting the future instants correctly.

• Vaccination results in less total control input, less deaths
and smaller pandemic duration. For the initial rate
increases, the effects are more significant, leading to
higher differences in the main performance indexes.

Ideas for future work include the following:

• In our simulations, we considered daily strategies, which
are difficult to apply in practice. Weekly strategies might
be investigated corresponding to policies used in practice
by several health authorities.

• The vaccination follows a constant rate in this work.
However, it is possible to consider variable rates dur-
ing time as presented by Acuña-Zegarra et al (2021). A
different optimization problem could be studied to find
an optimal vaccination strategy for SEIHRD model.
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• Different performance indexes could be explored.
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