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Abstract
The use of delivery services is an increasing trend worldwide, further enhanced by the COVID pandemic. In this context,
drone delivery systems are of great interest as they may allow for faster and cheaper deliveries. This paper presented a
navigation system that makes feasible the delivery of parcels with autonomous drones. The system generates a path between
a start and a final point and controls the drone to follow this path based on its localization obtained through GPS, 9DoF
IMU, and barometer. In the landing phase, information of poses estimated by a marker (ArUco) detection technique using
a camera, ultrawideband (UWB) devices, and the drone’s software estimation are merged by utilizing an extended Kalman
filter algorithm to improve the landing precision. A vector field-based method controls the drone to follow the desired path
smoothly, reducing vibrations or harsh movements that could harm the transported parcel. Real experiments validate the
delivery strategy and allow the evaluation of the performance of the adopted techniques. Preliminary results state the viability
of our proposal for autonomous drone delivery.

Keywords Autonomous drones · Unmanned aerial vehicle delivery · Path planning · Localization · Vector field control

1 Introduction

Autonomous robots have been studied for a long time, and
the rising demand for automated solutions for real-world
problems has accelerated research in the area. Such prob-
lems involve housekeeping tasks (vacuum and lawnmower
robots), military missions (rescue, patrol, attacks), security
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applications (surveillance, exploration), and industrial oper-
ations (production and logistics), among others.

In the past few years, the online shopping market has
grown significantly, and ever since, retail and mail com-
panies seek to make autonomous drone delivery a reality.
The global online food delivery services reached $136.4bn
in 2020, a 27% increase from the same period in 2019 (AJOT
2021). This increase should continue in the following years,
with an expectation of $182.3bn in 2024. As a result, deliv-
ery services face a high demand for orders and sometimes
cannot maintain a short delivery time. Thus, new and inno-
vative means of transportation must be developed to increase
efficiency and cope with the increasing demand.

Autonomous delivery presents itself as a very convenient
alternative, particularly in social isolation periods, such as
those experienced by many countries in 2020 and 2021 due
to the COVID-19 pandemic. In situations like this, physi-
cal contact between people should be reduced as much as
possible, especially with people from risk groups. There-
fore, the transportation of goods by autonomous quadrotors
could prevent any physical contact with the customer, thus
maintaining the World Health Organization (WHO) recom-
mendations and preventing the proliferation of the virus.
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Some of the world’s biggest companies, such as Ama-
zon, UPS, and Alphabet, are making advances toward drone
delivery services. According to Schneider (2020), Flight-
Forward, the UPS branch responsible for drone flights, has
already achieved air carrier certification, which allows it
to deliver small packages with drones. Wing, a division of
Alphabet, launched the USA’s first small commercial deliv-
ery service in Christiansburg, Virginia. These achievements
happened in late 2019 and show that the market for drone
delivery is undoubtedly gaining ground worldwide. In late
2020, Brazil’s National Aviation Agency (ANAC) granted
the first authorization to a private company, SpeedBird, to
perform drone cargo tests in Brazillian urban areas (ANAC
2020).

In this context, this paper presents a methodology for
enabling autonomous drone deliveries. After generating a
path between two points of interest, the drone’s location is
obtained through its GPS (Global Positioning System), 9DoF
IMU (Inertial Measurement Unit), and a barometer. A vec-
tor field control algorithm then guides the quadrotor into the
desired path. However, in drone delivery, reproducible safe
landings in urban areas are a critical challenge. In that respect,
we propose an Extended Kalman Filter (EKF) algorithm
that fuses planar visual marker and ultrawideband (UWB)
localization strategies with the drone’s software pose esti-
mation to improve landing accuracy. The visual localization
uses the ArUco markers, and the UWB localization is esti-
mated via multilateration with multiple UWB anchors over
the landing area. The proposed method explores the tech-
niques described in Rezende et al. (2019), initially developed
for high-performance autonomous drone racing, to create
a practical and robust real-world system for drone delivery
services. Real experiments validate the feasibility of the pro-
posed strategies.

The remainder of the paper is structured as follows. First,
the relatedworks are presented in Sect. 2. Section 3 describes
the problem of delivery with autonomous drones, and Sect. 4
presents the methodologies used to accomplish this task. The
results obtained are discussed in Sect. 5. Finally, conclusions
are presented in Sect. 6, together with future research per-
spectives.

2 RelatedWorks

Given the increasingdemand involving autonomous air trans-
port of cargo over short distances, several studies address
different strategies for load transportation and other com-
mon problems in this type of task. Drone delivery is an
emerging field, gaining attention in the academy and industry
given the numerous challenges to overcome to perform suc-
cessful missions in urban environments, such as trajectory
planning, localization, guidance and control, obstacle avoid-

ance, and safe landing, especially when global localization
is not available or is unreliable (Yoo et al. 2018).The study
of parcel delivery using drones is also motivated by the envi-
ronmental benefit of aerial platforms against standard truck
delivery (Koiwanit 2018).

Regarding the control methods for load transportation
applications, Villa et al. (2020) present a survey address-
ing different control techniques and strategies for load
transportation using multirotor Unmanned Aerial Vehicles
(UAVs) from the literature.Raffo and deAlmeida (2016) pro-
pose a robust nonlinear control technique for load transporta-
tion using quadrotors. Despite proving asymptotic stability,
they consider a cable-suspended transport system suscep-
tible to external disturbances due to the wind and drone
maneuvers. Similarly, Zúñiga et al. (2018) present cooper-
ative cable-suspended load transportation, using multiples
drones with consensus strategies. This approach reduces in
60% the cable oscillations. Also, Rossomando et al. (2020)
present a control strategy for cable-suspended transporta-
tion using multiple quadrotors cooperation. In this case, the
authors combine two strategies to control the formation and
maintain load stability. Unlike these approaches, we use a
transportation system with the load attached to the drone’s
body, reducing disturbances due to the cargo movements,
and a control method that is known for not having aggressive
maneuvers when following the path.

With a focus on the landing process, Gonçalves et al.
(2020) present a control method based on vector fields for
autonomous landing in afixedplatform.Theyuse visual feed-
back of amarker on the target to estimate the relative distance
and compute a velocity vector field to follow a path to land-
ing. The authors in de Souza et al. (2019) present a different
approach for theUAV landing using artificial neural networks
(ANNs). There, the model training bases on fuzzy logic to
define reference velocities for the robot, which uses visual
detection of a marker for distance feedback. Xuan-Mung
et al. (2020) present an algorithm for quad-rotors autonomous
landing in a moving target, with a robust control strategy to
minimize the ground effect and other disturbances. They also
propose a state estimation based on visual detection of the
landing platform and use this estimation to plan a route to
landing. Similarly, de Santana et al. (2019) present a visual-
based method for landing in moving targets, tracking the
target movements, and predicting a point to land. However,
moving targets are not common in delivery tasks, and we
have not addressed these special cases.

Obstacle avoidance appears as the main problem inves-
tigated in several papers on autonomous drone navigation
in the literature. However, in works related to cargo trans-
portation and landing, this issue is not usually addressed.
Falanga et al. (2020) present a method for dynamic obstacle
avoidance using event cameras for fast reactions of quadro-
tors. Experiments show the ability to avoidance of multiples
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obstacles with speeds up to 10 m/s. This strategy gener-
ates control commands according to the detection of the
events during flight and can be adopted in the delivery task.
Still focusing on drone navigation with obstacle avoidance,
the authors in Chiella et al. (2019) present a localization
approach and a vector field-based strategy for path following
in sparse forests. They use GNSS and LiDAR data for loca-
tion improvement and detection of trees, which are avoided
using a probabilistic planner alongwith the vector field. Their
collision avoidance strategy can also be incorporated into
our solution, given that we also use a similar vector field-
based control method. Despite the importance of considering
obstacles in drone navigation tasks, the problem is not com-
monly treated in drone delivery, transportation, and landing
researches, since the environments are usually known and
controlled.

Traditional protocols and drone landing methods rely on
expensive equipment such as DGPS or RTK GPS or do not
satisfy the precision and robustness needed for drone land-
ings in urban areas. Visual localization methods could aid in
locating the landing area accurately, even in partially clut-
tered scenarios, using equipment already deployed in the
platform, for instance, RGB cameras. Planar markers such as
the ArUco (Garrido-Jurado et al. 2014) can generate robust
pose estimation from heights up to 30 m and are a feasible
solution for drone landing (Wubben et al. 2019; Marut et al.
2019; Gonçalves et al. 2020). Many landing solutions using
planar markers change the flight behavior to use only ArUco
localization when in range instead of combining information
from different sources. Despite the low-cost, low-power con-
sumption of visual localization using planarmarkers, they are
more prone to environmental interference such as low light
conditions, snow, dust, rain, and fog. Therefore, visual pla-
nar markers require constant maintenance to keep them fully
functional. A different visual approach for robust landing in
vision-compromised environments uses active infrared (IR)
beacons located at the landing platform and a special IR cam-
era for detecting them from afar (Nowak et al. 2017). These
methods can work without external illumination but could be
imprecise at direct sunlight or other IR emission sources.

Other types of localization systems that are less prone
to environmental interference are wireless-based localiza-
tion systems. Robust wireless localization can be achieved
with ultrawideband (UWB) systems using the time-of-flight
(ToF) principle to estimate distances with centimeter pre-
cision. Drones could exploit these localization systems for
indoor localization in cluttered environments such as in Tie-
mann and Wietfeld (2017) and Tiemann et al. (2018). Key
benefits of these types of wireless localization technologies
are that they could work even in visually degraded situations,
are easily scalable tomultiple platforms (Nguyen et al. 2016),
and are particularly robust to walls and reflections, increas-
ing the possible range of real-world situations where they

can be applied. Recent works have fused UWB and vision
localization for drone landing based on recursive least square
optimization (Nguyen et al. 2019).

Recent works dealing with drone delivery have focused
on route optimization (Chiang et al. 2019), optimal charging
station location (Hong et al. 2018), and the mixture of tradi-
tional aerial routes with drone-carrying truck routes (Chang
and Lee 2018; Boysen et al. 2018). However, a holistic anal-
ysis of the requirements of a suitable delivery platform is
often overlooked. Our work differs from the previously men-
tioned ones since we propose a complete platform for drone
delivery and compare popular localization methods for UAV
platforms such as GPS, visual, and UWB localization in the
landing phase. We also propose a sensory fusion of multiple
external localization techniques given the sensing capabili-
ties already available on theUAV, includingGPS, 9DoF IMU,
and barometer. An extended Kalman filter improves landing
accuracy considering fixed location platforms in urban areas.

Besides that, most of the control strategies present in the
literature focus on ensuring the drone’s stability at the lowest
level, acting on the motors to follow a trajectory (Almakhles
2020). The present work considers that the drone already
has the lowest level controller properly tuned to guaran-
tee the desired angular velocities. Therefore, we adopt the
approaches presented in Rezende et al. (2020) andGonçalves
et al. (2010) to define our vector field-based high-level con-
trol strategy, commonly called guidance.

Table 1 presents a qualitative comparison of the differ-
ences between our approach for autonomous drone delivery
and some related works mentioned in this section. Note that
most of the related works deal with a specific part of the
delivery task, while ours proposes a navigation system for
complete autonomous delivery tasks using drones, focusing
on the practical aspects of safe drone landing.

3 Autonomous Drone Delivery

This section describes the autonomous delivery problemwith
drones and specifies the hardware and software used for
development.

3.1 Problem Description

The problem addressed involves transporting small parcels
between two points of interest using a drone in autonomous
mode without receiving commands from a human pilot.
Assuming that the landing stations are defined at safe loca-
tions and the route is planned for a height above buildings and
trees, we have considered obstacle-free environments. Fur-
thermore, we assumed distances compatible with the drone
endurance (maximum time of flight). Besides, since it is
essential for delivery drones to carry fragile objects without
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abrupt movements, we have adopted a grasped transportation
mechanism that reduces the risks of vibrations or unexpected
package drops.

At first, residential regions will be the primary landing
locality for delivery tasks; therefore, the drone must have the
ability to land with accuracy in restricted and narrow areas
to prevent unexpected accidents or injuries. The tests were
performed considering a 1x1m landing platform.

3.2 Hardware

The DJI Matrice 1001, illustrated in Fig. 1 allows developers
to implement their codes to control the drone. All sensors
that come with the drone by default are used, including GPS,
9DoF IMU, and a barometer. These are responsible for help-
ing to estimate the drone’s position in global coordinates
(latitude and longitude), orientation, and height. The drone’s
flight board is responsible for transmitting information from
the sensors to another device, in addition to receiving con-
trol commands and sending them to the brushless motors. In
addition to the flight controller board already available on
the drone, a Jetson Nano2 is responsible for data processing,
path planning, and the quadrotor high-level control.

We also developed a 3D model of the box used for deliv-
ery, with dimensions 110×105×90mm, as shown in Fig. 2a.
Its coupling mechanism uses a servo motor, as illustrated in
Fig. 2b. An Arduino Nano is connected to the Jetson board
to control this servo motor, placing it in the position of cou-
pling or decoupling the box on the drone. The schematic of
Fig. 3 illustrates the connections between the equipment and
drone used during experiments. The drone has a total mass
of approximately 3000 g with all devices connected and an
empty box. Therefore, the cargo mass must be limited to
600 g, following the DJI Matrice 100 takeoff technical spec-
ifications. The current system is mostly intended to validate
the algorithms that we propose in Sect. 4. Further, it could
be scaled up to transport heavier loads.

Considering that the landing site used in the experiments
has 1x1 m and that the horizontal accuracy in the drone’s
location using GPS is approximately 2m, it is necessary to
use additional sensors to assist the drone in making a safer
and more accurate landing. For that, we verified the applica-
tion of the following sensors in experiments using the real
drone: (i) a RaspberryPi Camera v2.0 pointing downwards,
together with ArUco markers combination on the landing
platform, and (ii) ultrawideband (UWB) devices anchored at
the landing site, and a device of the same type attached to
the drone. In both cases, it is possible to obtain additional
information on the drone’s position with respect to the plat-

1 DJI Matrice 100 - https://www.dji.com/br/matrice100.
2 JetsonNano - https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-nano/.
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Fig. 1 Drone used for the autonomous delivery and its components.

Fig. 2 Coupling mechanism using a servo motor with a package used
for cargo delivery: (a) exploded delivery box and (b) the servo coupling
mechanism.

form during landing and improve the localization by fusing
all these data.

3.3 Software

The Operating System used is Ubuntu 18.04 together with
ROS 1 (Robot Operating System). The ROS package pro-
vided by DJI called Onboard-SDK-ROS3 establishes com-
munication between the drone and the Jetson Nano. The
package allows sending commands to the embedded con-
trol system and provides data from the sensors present on the
drone, such as GPS, 9DoF IMU, and barometer, in addition
to estimating the drone’s position and orientation in an online
fashion. For the identification and estimation of the ArUco’s
pose, specific algorithms from the OpenCV4 are used. In
the case of UWB devices, an algorithm uses the difference

3 Onboard-SDK-ROS-https://github.com/dji-sdk/Onboard-SDK-ROS
4 OpenCV - https://opencv.org/

Fig. 3 Connection between the drone embedded equipment.

Fig. 4 System overview with the information flow between the mod-
ules.

between the time of arrival (TDoA) of the signal for each
device to compute the drone’s position with respect to the
landing site.

4 Methodology

In order to satisfy the problem requirements, such as reduc-
ing the delivery time while avoiding abrupt movements and
with a safe landing, we propose a solution divided into three
distinct tasks: (i) path planning, (ii) localization, and (iii)
control. Figure 4 illustrates the information flow during the
system operation.

4.1 Path Planning

The proposed path planning strategy simplifies autonomous
drone delivery. First, the method considers the altitude, lat-
itude, and longitude data to define the drone’s geographical
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location. For test purposes, the covered distances are short,
such that aflatEarthmodel canbe considered.Thus,we trans-
form the angles of latitude and longitude into measurements
of distance. The drone’s position is then initially represented
with respect to the Earth’s reference frame FE .

Consider that the drone’s starting point is ps ∈ R
3 and that

the load delivery point isp f ∈ R
3.Without loss of generality,

it is possible to assume an inertial coordinate system FI that
respects two conditions:

1 The path’s end point is the origin, i.e. p f = 0;
2 The x axis of the coordinate systemFI is in the horizontal
plane, pointing in the direction of the final point, i.e. x̂ ‖
�xy(p f −ps), where �xy(·) represents the projection in
the xy plane.

The inertial reference frame FI is easily obtained through
two operations: a translation with respect to FE , in order
to satisfy condition 1; and a simple rotation in the z axis to
satisfy condition 2.

The proposed path planning method computes a smooth
reference path connecting the twopointsps andp f . The strat-
egy consists of creating 5 path sections: (i) vertical ascending
line; (ii) arc of a circle; (iii) horizontal line towards the plat-
form; (iv) arc of a circle; (v) vertical descending line. In
order to allow a smooth transition between sections, space is
divided into 5 sectors Si , i = 1, 2, 3, 4, 5. Each path section
is associated with one sector. The definition of the sectors is
presented below:

S1 =
{
(x, y, z) ∈ R

3 : z ≤ h − r , x ≤ −d/2
}

,

S2 =
{
(x, y, z) ∈ R

3 : z > h − r , x < −d + r
}

,

S3 =
{
(x, y, z) ∈ R

3 : z > h − r , −d + r ≤ x ≤ −r
}

,

S4 =
{
(x, y, z) ∈ R

3 : z > h − r , x > −r
}

,

S5 =
{
(x, y, z) ∈ R

3 : z ≤ h − r , x > −d/2
}

. (1)

where h is the drone flight height (with respect toFI ), r is the
radius of the transition arcs, and d is the horizontal separation
between ps and p f . Starting and final points, sectors, and
variables defined here are illustrated in Fig. 5.

4.2 Localization

The Onboard-SDK-ROS package provides a georeferenced
estimate of the drone’s global orientation and position (DJI-
SDK Pose). This information comes from the sensory fusion
of the available GPS, 9DoF IMU, and barometer, which
results in an accuracy of approximately 2m. Such an esti-
mate is good enoughwhenon a cruise flight andwas therefore

Fig. 5 Sectors S1, S2, S3, S4 e S5, defined in Eq. (1)

used throughout the flight. However, this may be insufficient
when landing on a 1x1 m platform like the one proposed in
this work, whose dimensions are less than the position esti-
mate’s accuracy. Besides, if the landing pad position changes
or the georeference is not precise enough, the drone might
not be able to land at the right location usingGPS localization
alone.

For these reasons, it is necessary to obtain additional infor-
mation that allows the improvement of the drone’s estimated
position with respect to the landing site. This paper presents
a sensor fusion strategy to improve localization by merging
the DJI-SDK pose estimation with information from: (i) an
ArUco marker detection technique and (ii) multilateration
using ultrawideband (UWB) communication devices.

4.2.1 ArUco

For the use of the marker detection technique for localiza-
tion, ArUco markers were printed and placed on top of the
landing platform. A camera attached to the drone, pointing
downwards, provides images of the marker during landing.
ArUco markers have features that facilitate their identifica-
tion in the image, such as well-defined borders and high color
contrast. In addition, the markers do not present ambiguities
in their orientation.

Thus, specific OpenCV algorithms identify the ArUco, as
well as estimate the relative pose of themarkerwith respect to
the camera. This last step is done by solving the problem of
PnP (Perspective-n-Point), which proposes to estimate the
three-dimensional pose of a calibrated camera given a set
of 3D points and their corresponding 2D projections on the
camera plane.
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Fig. 6 Modified ArUcomarker. An smaller marker is placed in a bigger
one.

It is possible to find the pose that minimizes the projection
errors of the points on the camera plane by knowing the actual
size of the marker and the intrinsic calibration parameters
of the camera. These points must be distinguishable from
each other, and in this case, the corners of the ArUco and its
orientation allow for differentiating each of its four corners
before sending to a PnP solver algorithm (Lepetit et al. 2009;
Hesch and Roumeliotis 2011).

There are works in the literature that address strategies to
improve the detection of the markers. A common method is
tomerge different ARmarkers to create a group that provides
a better pose estimation, minimizing noise and occlusion, as
presented in de Santana et al. (2019). Large ArUco mark-
ers can be detected from high altitudes. However, when the
drone is approaching the platform, this ArUco is quickly lost
by the camera. On the other hand, a smaller ArUco has the
advantage of being detectable when the drone is close to the
platform (if there is no high horizontal error), even though
it is difficult to be detected at high altitudes. To improve the
marker detection range at high and low altitudes, we con-
sidered a modified ArUco marker that has a smaller marker
(0.09 × 0.09m) inside a larger one (0.8 × 0.8 m). Figure 6
shows this modified ArUco. The inclusion of the smaller
marker may harm the detection of the larger one. Nonethe-
less, in our tests, this problem did not occur.

4.2.2 Ultrawideband (UWB) Devices

Although the ArUco marker detection provides a good pose
estimation, the method is not robust for detection in low-
light environments or under visual occlusion situations. For
this reason, we consider using another localization based on
ultrawideband devices, which works on these conditions and
increases the landing strategy robustness.

Devices based on ultrawideband wireless technology
are commonly used for low-energy IoT communication or
localization. This technology uses radio waves with a band-

width greater than 500 MHz, which reduces the loss due
to obstructions and reflections of the environment, conse-
quently increasing the security of transmissions (Sahinoglu
2008).

UWB-based localization systems can be used indoors and
outdoors, with an accuracy of up to 20cm, according to some
manufacturers. In this method, multilateration algorithms
estimate the position xT , yT and zT of amobile device (called
tag) with respect to a fixed reference, where other devices
(called anchors) are located.

In this paper,we useDecawaveDWM10015 UWBdevices
to estimate the position of the drone with greater preci-
sion when approaching the landing platform. A minimum of
five devices are required for the algorithm to work, one tag
embedded in the drone and four anchors in known positions;
one of these devices is set as the base anchor.

The position is calculated based on the distance of the
tag with respect to the anchors, which comes from the Time
Difference of Arrival (TDoA) of the transmitted signal, mul-
tiplied by the speed of signal propagation (speed of light), as
presented in Sayed et al. (2005). Consider a set of enumer-
ated UWB devices, where index 0 represents the tag placed
on the robot, index 1 the base anchor (or main anchor), and
the higher indexes the other anchors used on the system. The
distance di1 from the i th anchor to the base anchor is given
by:

di1 = (ti − t1)c, i = 2, ..., N , (2)

where ti is the instant of time the signal sent by the tag reaches
anchor i , and t1 is the instant of time this signal reaches the
base anchor. Light speed is c and the number of anchors is N ,
such that N ≥ 4. Distances in equation (2) result on an inter-
section region that represents the Tag’s position, obtained as
the solution of the following set of equations:

(d221 + d21 )
2 = (x2 + y2 + z2)

2 − 2J2 + d21 ,

(d231 + d21 )
2 = (x3 + y3 + z3)

2 − 2J3 + d21 ,

...

(d2N1 + d21 )
2 = (xN + yN + zN )2 − 2JN + d21 ,

(3)

where Ji = (xi xT + yi yT + zi zT ) and d1 is the distance from
the tag to the base anchor. Considering t0 the instant of time
the signal is sent by the tag, d1 can be computed as follows:

d1 = (t1 − t0)c. (4)

To use Decawave devices, a maximum distance of 10m
must be kept between the anchors and the tag. This method-

5 Decawave - https://www.decawave.com/product/dwm1001-
development-board/
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ology does not estimate orientation, whereas the ArUco
estimation does.

4.2.3 Sensory Fusion

Oneway to improve the localization andmore accurately esti-
mate the drone’s position, orientation, and speed states, is to
use information from several sensors. Sensory fusion meth-
ods use data from different devices to obtain more accurate
information on the states of interest. For instance, the soft-
ware on the DJI Matrice 100 uses data from the GPS, 9DoF
IMU, and barometer to provide the drone’s pose and speeds
(DJI-SDK pose).

One of the most common fusion methods is the Extended
Kalman filter (EKF) (Thrun et al. 2000). In this sense, the
PnP estimation of the ArUco’s marker location and the UWB
localization are merged with the DJI-SDK pose data to allow
a more accurate landing. As the sensors provide data refer-
ring to coincident states, a bias is considered in the position
estimated by GPS. It is possible to divide Kalman’s extended
fusion and filtering method into two stages: prediction and
correction. For simplicity, the equations are presented with
the notation b ← a indicating that b is updatedwith the value
of a.

The prediction step in the discrete EKF involves the state
vector x̄ and the covariance matrix P:

x̄ ← f (x̄,u,�t), (5)

P ← FPFT + GQuG
T + Q f , (6)

where f represents the state propagation model, which
involves current estimate x̄, the input vector u and the
timestep�t .Matrix F ≡ F(x̄,u,�t) is the partial derivative
of f with respect to x̄, and matrix G is the partial derivative
of f with respect to u. Matrix Qu is the covariance matrix
associated with input vector u, and Q f is a covariancematrix
associated with the model.

The correction step is defined as follows:

x̄ ← x̄ + K (w − h(x̄)) , (7)

P ← (I − K H) P, (8)

where w is the measurement vector and h(x̄) is the measure-
ment model, which represents the expected value of w given
the current estimated state x̄. Matrix H is the Jacobian of
h(x̄), and I is an identity matrix. Finally K represents the
Kalman gain, given by:

K = PHT
(
HPHT + R

)−1
, (9)

where R is the covariance of the measurement data w.

The strategy defines the input vector as u = [uTv uTω ]T =
[vx vy vz ωx ωy ωz]T , where vx , vy , and vz are the linear
velocities of the drone with respect to the world frame, and
ωx , ωy , and ωz are the angular velocities in the body frame.
In the correction steps, themeasurementwmay assume three
different values: (i) position and Euler angles from the DJI-
SDK pose; (ii) position and Euler angles from the ArUco-
PnP; and (iii) position from the UWB system.

In general, the data collected by DJI-SDK position (GPS),
compared to theArUco andUWB, have an unknown nonzero
average error. Therefore, the direct use of these measure-
ments in the correction step causes an oscillation in the
estimation. Despite containing a displacement, the data from
DJI-SDK is the only available throughout the whole exper-
iment and cannot be discarded. In order to merge the data
from these two sensors properly, we consider extra states
representing a bias associated with the DJI-SDK position
(GPS) measurements with respect to the landing platform’s
location (ArUco or Decawave). In fact, the proposed filter
incorporates the following 12 states:

x̄ = [ x̄ ȳ z̄︸ ︷︷ ︸
posi tion

φ̄ θ̄ ψ̄︸ ︷︷ ︸
angles

b̄x b̄y b̄z︸ ︷︷ ︸
biasGPS

b̄ωx b̄ωy b̄ωz︸ ︷︷ ︸
bias gyro

]T , (10)

where p̄ ≡ [x̄ ȳ z̄]T is the drone’s position, r̄ ≡ [φ̄ θ̄ ψ̄]T the
drone’s orientation in Euler angles, b̄p ≡ [b̄x b̄y b̄z]T is the
GPS bias, and b̄ω ≡ [b̄ωx b̄ωy b̄ωz]T is the drone’s gyro bias.
More precisely, b̄p is the GPS bias with respect to the (pre-
defined) location of the landing platform. Note that the filter
does not have bias states related to the ArUco orientation.
For this reason, the marker geographical orientation must be
known with relative precision.

The propagation model f (x̄,u,�t) is given by:

f (x̄,u,�t) =

⎡
⎢⎢⎣

p̄
r̄
b̄p

b̄ω

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

uv

Jr (uω−b̄ω)

0
0

⎤
⎥⎥⎦ �t, (11)

in which Jr ≡ Jr (φ̄, θ̄ ) is the Jacobian matrix that trans-
forms the angular velocities uω in the derivatives of the Euler
angles r̄. Note that the prediction model assumes constant
bias states.

The filter considers three measurement models. The first
one represents the expected measurement of position and
orientation data provided by the DJI SDK. In this correction
step, there is a binary variable that determines whether the
landing platform local data is already being collected or not.
This variable ξ determines the inclusion of bias in the GPS
measurement model. This variable is 1 when the local data
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has already been observed and 0 if not. Thus, we have:

hSDK (x̄) =
[
p̄ + ξ b̄p

r̄

]
. (12)

Let Hd
c ∈ SE(3) be a constant homogeneous matrix that

represents the pose of the camera with respect to the drone
and Hw

a ∈ SE(3) be a constant homogeneous matrix that
represents the pose of the ArUco in the world. The matrix
H̄w
d ≡ H̄w

d (p̄, r̄) represents the pose of the drone in theworld
frame. Then, the expected pose of the ArUco with respect
to the camera (data provided by the PnP algorithm) can be
written as:

H̄ c
a = (Hd

c )−1(H̄w
d )−1Hw

a . (13)

The matrices Hd
c and Hw

a are known a priori, whereas the
matrix H̄w

d is obtained from the filter states p̄ and r̄. Since
the filter works with Euler angles, the measurement model
of the ArUco information is given by:

hArUco(x̄) =
[

get_pos(H̄ c
a )

get_euler(H̄ c
a )

]
, (14)

in which get_pos() and get_euler() are functions that return
the position and the Euler angles associated with a given
homogeneous transformation matrix.

It is important to comment about the reason we feed the
filter with the original pose of the ArUco (direct from PnP,
with no transformation) with respect to the camera. A dif-
ferent strategy would consider a sequence of homogeneous
transformations in order to obtain the pose of the drone with
respect to the world and feed the filter with this transformed
data. In this case, model hArUco(x̄) would correspond to the
identity function. The justification for the choice of our strat-
egy relies on the noise levels of the ArUco measurement. In
fact, the position and the yaw angle of themarkerwith respect
to the camera are estimated with good precision, while the
roll and pitch have significantly higher uncertainty. In our
approach, we are able to provide these levels of accuracy in
a diagonal covariance matrix R. Using a sequence of homo-
geneous transformations, the high noise in the roll and pitch
reflects on the computed position of the drone, and conse-
quently, would worse the filter response. The consideration
of the original pose measurement allows the filter to properly
treat the signals according to their correct covariances.

Finally, since the UWB system only provides a position
measurement, its measurement model is given by:

hUWB(x̄) = p̄. (15)

In this way, the estimation of the drone’s pose improves,
increasing safety and accuracy during landing. The results in
Sect. 5 demonstrate the effectiveness of the methodology.

Fig. 7 Graphical representation of α1 and α2 functions, equations (16)
and (17), respectively.

4.3 Control with Vector Fields

The quadrotor control is divided into two levels: high and
low. The main objective is to enforce the drone to follow
the path presented in Sect. 4.1. In order to accomplish this
task, the proposed high-level controller is an artificial vec-
tor field created to allow path following assuming the drone
behaves as a simple integrator. The low-level controller can
be any controller able to impose this desired vector field-
based velocity behavior to the real system. For instance, in
the experiments presented in this work, the drone uses the
low-level controller proposed in Rezende et al. (2020). That
controller has the drone’s mass as a parameter. Here we con-
sider a mass m = mvehicle + mpackage, accounting for the
drone and the package. After the package is released, we
consider m = mvehicle. Next, we describe how the desired
vector field, used by the controller, can be defined by means
of the strategy proposed in Gonçalves et al. (2010).

Traditional control techniques, or even flight modes that
use waypoints on the map could have been used, however
with disadvantages. In the proposed technique, the gener-
ated path is smooth, eliminating unwanted effects caused by
switching between control laws at each waypoint. In addi-
tion, paths such as the ones in sectors S2 and S4 (Fig. 5) can be
optimized to generate less abrupt movements with the load.

The control by vector fields is used to follow paths, not
trajectories. Theproposed control law is a function only of the
drone’s state p, therefore, it does not directly depend on time
t . This property is particularly interesting because it does not
present two problems associated to trajectory control: (i) if
the reference starts very far from the drone’s initial position, it
may pass through an aggressive transient, which is unwanted;
(ii) in the event of a temporary system failure that causes the
drone to stop responding for a while, when the drone returns,
the reference may be too far away, generating an additional
transient state.

To represent a curve C, it is necessary to define scalar
functions αi : R3 → R, i = 1, 2, for each sector S j , j =
1, 2, 3, 4, 5, in a way that the intersection of their zero-level

123



150 Journal of Control, Automation and Electrical Systems (2022) 33:141–155

surfaces, αi (p) = 0, generates the desired curve (Gonçalves
et al. 2010). This means that C is defined by C = {p ∈ R

3 :
α1(p)=0∧α2(p)=0}. Figure 7 illustrates this representation
in the case of the path defined in Sect. 4.1. The functions
α1 ≡ α1(y) and α2 ≡ α1(x, z) are defined as:

α1 = y, (16)

α2=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x − d, i f p ∈ S1√
(x+d−r)2 + (z−h+r)2 − r , i f p ∈ S2

z − h, i f p ∈ S3√
(x+r)2 + (z−h+r)2 − r , i f p ∈ S4

x, i f p ∈ S5

(17)

This way, for each point in space, a convergent and a tan-
gential component to the curve are given by:

Fconv = ∇V

‖∇V ‖ , Ftang = s
∇α1×∇α2

‖∇α1×∇α2‖ , (18)

where V = 1
2α

2
1+ 1

2α
2
2 is a Lyapunov function and× denotes

the cross product.We consider s = 1when the drone is going
to delivery the package (moving from ps to p f ) and s = −1
when it is returning (from p f to ps). The parameter s is
responsible for inverting the sense of motion by changing
the direction of the tangent component Ftang .

As seen in Gonçalves et al. (2010), the functions G ≡
G(V ) = −(2/π) arctan(k f

√
V ) and H ≡ H(V ) =√

1 − G2 are defined,where k f > 0 is a convergenceweight.
This functions are part of the vector field F(p) definition,
used in the control strategy, as seen next:

F(p) = vr (GFconv + HFtang), (19)

where vr ≡ vr (p) > 0 is the desired robot velocity, defined
by vr (p) = vi for p ∈ Si , i = 1, 2, 3, 4, 5, i.e. the reference
velocity for the drone is dependent on the sector it is.

The drone’s orientation can be controlled in a way to keep
its ψ angle (around z axis) in 0◦ with respect to reference
frame FI . Thus, a reference ψr = 0 is passed to the lower
level controller.

The delivery task in autonomous mode can be accom-
plished by following the logic demonstrated in Algorithm 1.

5 Results

In this section, real experimental results are presented, con-
sidering a parcel delivery task with a drone in autonomous
operation. The carried out experiments aim to evaluate the

Algorithm 1: Quadrotor high-level control
delivered ← f alse
landingDone ← f alse
taskFinished ← f alse
while landingDone == f alse do

states ← get EK Fstates()
sector ← get Sector(posi tion)

cmd ← vector FieldController(states, sector)
sendCommands(cmd)

if posi tion == landingPosi tion then
landingDone ← true

end
end
releasePackage()
delivered ← true
updateMass()
takeO f f ()
taskFinished ← true

Fig. 8 Experimental landing setup with planar Aruco markers and
UWB tags.

complete autonomous delivery method, as well as the local-
ization strategy in the landing phase. We have considered
the platform center as the landing reference point [x, y] =
[0, 0], and the distance for the drone’s landing point was
measured manually using a measuring tape, basing on the
drone’s center. The considered experimental setup is depicted
in Fig. 8 and videos of the experiments are available online6.

5.1 Complete Delivery Task Evaluation

The proposed strategy was validated in a delivery task with
the drone following a planned path, from a start point to the
endpoint on the landing platform, autonomously. The object
transported has a mass of 200 g, respecting the 600 g limit of
the drone. In these experiments, we consider that the control
system knows the load mass. In future works, we intend to
study the effects of changes in the mass.

Figure 9 shows a comparison between the path performed
by the drone and the planned one, using the proposed EKF
algorithmwith data from the DJI-SDK, and including ArUco

6 Experiment Video - https://youtu.be/wJYaKBytC2g
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Fig. 9 Autonomous delivery task results. The performed path is the
solid green line and the planned is dashed black.

Fig. 10 Lyapunov function of the vector field strategy. It indicates the
distance from the drone to the curve.

markers and UWB on landing. The experiment considers a
height h = 45m and arcs of the circumference with radius
r = 6m. The parameter d is computed as the distance of
drone at its initial position and the expected position of the
platform, and in the experiment, d = 100.03m. Figure 10
illustrates the Lyapunov function of the vector field con-
trol, which indicates the distance between the drone and the
planned path according to the EKF estimation. This distance
increases after 150s because of the corrections that start when
the platform is detected. These changes show to the sys-
tem that it is not exactly on the path as expected before. In
sequence, this distance decreases againwith the actions of the
controller. As shown in Fig. 9, these corrections happened in
sector S5 at the height of approximately 30m. Although the
camera detected the marker from 45m of height, given the
high uncertainties in higher altitudes, the filter only considers
measurements with height below 30m.

Figure 11 illustrates the results of the drone’s position
estimation in another experiment. It shows the data obtained
from each sensor separately and from the proposed EKF
fusion algorithm during the landing phase. It was a local
experiment with r = 2m and h = 30m focused on the
landing phase. In order to plot the position of the ArUco,
we considered a direct computation of the position of drone

Fig. 11 Results of 3D position estimation in landing.

Fig. 12 Results of position estimation in landing for each axis.

with respect to the frame FI (see Fig. 5). It is important to
emphasize that this transformed data was not supplied to the
filter (see Sect. 4.2.1). There is considerable noise associ-
ated with the ArUco and UWB estimates. These noises are
directly proportional to the distance between the drone and
the platform, as we can observe in Fig. 12. Besides that, the
UWBsensors’ information starts to be computed only around
10m of distance from the landing base. The system was able
to make the drone land almost in the center of the platform,
position [−0.072 − 0.103]Tm in the filter’s estimation and
[−0.03 − 0.11]Tm in the ground truth measure. Thus, the
distance error from the filter estimation to the ground truth
is 0.043m, and the ground truth distance to the center of the
platform is 0.114m.

Note in Fig. 11 that, despite the noisy data from theArUco
and the UWB, the filter was able to estimate a clear trajectory
for the drone. Also, the GPS (from the DJI-SDK) signal has
a shift. According to this measurement, the drone did not
land correctly on the platform. The filter bias is responsible
to correct the GPS shift while neglecting the noise in the
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Fig. 13 Bias estimation for GPS position

Fig. 14 Comparison of the position measurement of the ArUco with
the position of the measurement model hArUco(x̄). The original data
has significantly less noise.

ArUco and UWB measurements.The bias estimated by the
filter is depicted in Fig. 13.

As commented in Sect. 4.2.3, the noise of the ArUcomea-
surement (ArUco frame with respect to the camera frame) is
significantly larger in the estimated roll and pitch angles.
When homogeneous transformations are applied to this data
to estimate the drone’s position, the high noise in the roll
and pitch manifest on the x and y position of the drone, as
observed in Figs. 11 and 12. Figure 14 presents a compar-
ison of the original position estimation of the ArUco with
respect to the camera (wArUco) with the expected measure-
ment (hArUco(x̄)). This signal has much less noise than the
signal observed in Fig. 12.

5.2 Failures Evaluation

The EKF was tested with different combinations of localiza-
tion methods. The objective is to show that the approach is
robust, in the case that if one of the methods fails, the drone
still lands on the platform. This experiment simulates real
situations including visual occlusion of the ArUco marker,
in addition to failures when using UWB devices. Figure 15
shows the results of the experiments. The crosses represent
the ground truth positions, while the circles represent the
estimation of the EKF. Errors in the ground truth positions
are due to the imprecision from both the localization and the

Fig. 15 Results of 6 landing experiments that used different combina-
tion of the localization strategies.

controller. As we can see, the only method not capable of
landing the drone on the platform was the GPS alone. The
other strategies consisted of combinations using:UWB, large
marker (ArUco1) and small marker (ArUco2).

Still evaluating robustness, we have also conducted
another experiment inserting noise on the landing platform
position from the defined landing point. Using only the DJI-
SDK data as input for the EKF, the drone does not reach the
platform, and the platform displacement increases the dis-
tance error observed in the previous experiment. Considering
the inclusion of ArUco detection and the UWB estimation,
the drone lands on the platform. In this case, the EKF algo-
rithm considers the displacement on the platform as an error
on the GPS data and includes it in the bias estimation.

5.3 Precision Evaluation

This section presents a comparison between the landing accu-
racy of the proposed system. The EKF merging information
from all localization systems was considered in 6 landing
experiments. In another 6 landings, the EKF does not use the
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Fig. 16 Comparison between the system’s precision when the ArUco
and UWB are considered or not.

Table 2 Error between estimated location and ground truth at landing.

Considered sensors Mean error (m) Stand. Deviation (m)

All (filter) 0.121 0.0641

DJI 1.166 0.130

ArUco and the UWB data, thus, relying only on the GPS for
position estimation.

Figure 16 shows the result of these 12 experiments. The
true landing positions correspond to the crosses,while the cir-
cles correspond to the position estimation of the filter after
the landing. Red represents the data obtained when the fil-
ter considers all information, and blue when it uses only the
GPS data. The two ellipses correspond to the covariance of
the ground truth landing results and assume 2 standard devi-
ations.

Note that in none of the experiments trusting only on the
GPS, the drone landed on the platform (blue crosses), despite
the filter estimated that the drone was close to the platform’s
center (blue circles). This error was not corrected since that
no local information (ArUco orUWB)was available. In these
experiments, the distance from the platform’s center reached
1.29m. When the filter counted with data from the ArUco
and the UWB, the drone landed on the platform all 6 experi-
ments and the result has a mean distance of 0.19m from the
platform’s center.

Table 2 presents, in the first column, the mean of the norm
of the error (distance) between the ground truth and the esti-
mated pose. We consider a comparison between our strategy
with all considered sensors andwith only the DJI sensors. On
the second column, we show the associated standard devia-
tion of the values.

6 Conclusion and FutureWork

This paper presented a navigation strategy with techniques
of path planning, localization, and control for autonomous
delivery tasks using drones. Computer Vision algorithms and
UWB devices provide pose estimates for the quadrotor to
an extended Kalman filter, allowing the sensory fusion with
the drone’s DJI-SDK pose. A vector field-based controller
defines commands for the drone to follow a planned path
connecting a start point to the landing platform.

Experimental results validate the proposed method in a
complete autonomous delivery task. In the drone landing
experiments, it is possible to note the advantage of the pro-
posed localizationmethod over theDJI-SDKpose estimation
alone. A robustness analysis shows that the system works
in case of failure in one of the localization methods, which
can occur in low-light situations, camera vision occlusion,
and power supply failure for the UWB devices. Besides, a
precision evaluation compares the accuracy of the landing
phase using only the GPS for position estimation and using
the proposed EKF with all localization methods, showing
the advantages of the adopted strategy. Most of the delivery
operations occur in urban and dense populated areas, and all
these results show the effectiveness of the adopted method
and increase confidence for a safe landing.

Despite the advantages presented, there are still some lim-
itations to overcome. The proposed strategy works only with
GPS available and in obstacle-free environments. Besides,
the load mass must be known and invariant until landing.
These points will be addressed in future works.

During themechanical design of the cargo holding system,
it is important to avoid placing the box so that it blocks the
propellers’ winds. This has a considerable negative effect
in the generated total thrust and also creates an undesirable
asymmetry. It is also fundamental to adjust the parameters of
the controller in Rezende et al. (2020) so that the drone has
a smooth flight. Aggressive turns would reflect in shaking
on the camera image and harm the localization based on
the ArUco. Moreover, it may not be appropriate to shake the
cargo.Another important detail that has a significant effect on
the systems performance is the camera’s aperture. It should
be wide enough to identify the ArUco even when GPS errors
are high and the drone enters stage S5 far from the platform.
A wider aperture also enables the marker to be identified
from a closer distance, improving the landing precision.

Future works include improving safety by using the
images to detect obstructions on landing caused by people
or animals, for example. Another goal is the increase of the
localization precision, for instance, by exploringmethods for
GPS-denied moments during the transportation phase and
including other sensors for the landing. Other option is to
improve the EKF considering delay in the pose estimated
by the ArUco method and measurement covariance matri-
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ces dependent on the vehicle’s height. Besides, a complete
360-degrees obstacle avoidance system could improve the
flight’s overall security. We also intend to reach improve-
ments in path planning, considering obstacle avoidance and
minimumpower consumption. Other futurework is to imple-
ment fault detection methods using proprioceptive sensors to
activate parachutes or other types of security equipment, con-
sidering a forced landing. In addition,we intend to investigate
situations of landing on a moving platform and the effects in
the control system for unknown load mass.
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