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Abstract
This paper proposes a newmathematical model called SIRDQ considering control laws for the government actions in order to
reduce the quarantine periods. The proposed control laws guarantee the regulation of the effective number of reproduction to
a desired value, which is directly related to the propagation of the epidemic model. We consider two control strategies based
on first-order sliding mode and super-twisting algorithm due to its robustness with respect to parametric uncertainties and
disturbances, as found in epidemiological models. The stability analysis of the closed-loop system is rigorously presented.
Simulations show that the employed control strategies assure better levels of isolation to be adopted.

Keywords COVID-19 · Epidemiological dynamics · Variable-structure systems · Sliding mode control · Output feedback

1 Introduction

On December 31th, 2020, the World Health Organization
(WHO) was informed of cases of pneumonia of unknown
cause in the city ofWuhan, China. A new coronavirus, which
belongs to a large family of virus that cause diseases ranging
from the common cold to more serious illnesses, was identi-
fied as the cause by the Chinese authorities on January 7th,
2020, and was initially named “2019-nCoV” (WHO 2020).

With a high diffusion capacity and, consequently, a fast
increase in the number of cases, the virus has been spread to
most countries in the world. Therefore, onMarch 11th, 2020,
WHO (2020) declared that the outbreak could be character-
ized as a pandemic.

Transmission is mainly individual-to-individual bymeans
of respiratory droplets. SARS-CoV-2 infection pattern in

B Victor Hugo Pereira Rodrigues
rodrigues.vhp@gmail.com

Débora Marques Lopes Santos
deboramlsantos@gmail.com

Tiago Roux Oliveira
tiagoroux@uerj.br

1 Department of Electronics and Telecommunication
Engineering (DETEL/PEL), State University of Rio de
Janeiro, Rio de Janeiro, RJ, Brazil

2 Department of Electrical Engineering (PEE/COPPE), Federal
University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil

humans is similar to that of other coronaviruses, such as
severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome coronavirus (MERS-
CoV) (Cavalcante and Abreu 2020).

In Brazil, COVID-19 spreading through the country and
community transmission was declared nationwide on March
20th, 2020. In this context, the city of Rio de Janeiro is one
of the largest urban centers and the first COVID-19 case was
reported on March 6th 2020, just 11 days after the Brazilian
first case (Cavalcante and Abreu 2020). Since then, the city
of Rio de Janeiro has provided data on confirmed cases and
deaths of SARS-CoV-2, with open access. These datasets
are available considering confirmed, recovered and infected
cases, per day as well as its moving average over the last 7
days.

Although we will not consider a particular study of case
for any determined city, Figs. 1 and 2 help us to illustrate
the typical real data of a metropolis, such as Rio de Janeiro,
considering the period of spread of the epidemic fromMarch
06th 2020 to April 19th 2021.

In this pandemic scenario, the treatment of the disease
and its prevention require social and medical resources
that are often insufficient. The health systems only try to
mitigate its consequences to avoid complications and fatal
outcomes. This disease has shown a high infection and
fatality rates (Pazos et al. 2020). In addition to the fear of
infection, COVID-19 has caused a feeling of insecurity in
all aspects of life, from the collective to the individual per-
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Fig. 1 Confirmed cases of COVID-19 in the city of Rio de Janeiro

Fig. 2 Confirmed deaths of COVID-19 in the city of Rio de Janeiro

spective, from the daily functioning of society to changes
in individual-to-individual relationships (Faro et al. 2020).
Although measures such as quarantine and social isolation
are possible control variables in the event of a pandemic, its
prolongation can be detrimental to the country’s economy
and, furthermore, considerably impacts the mental health of
the population.

As a result, studies on the dynamics and possible control
strategies have great interest to the scientific community and
to the society as a whole. For instance, Oro et al. (2020)
study the modeling and forecast of the number of new daily
cases of COVID-19, in the State of Paraná by using an
AutoregressiveDistributed LagModel. Batistela et al. (2020)
study the dynamics of the Covid-19 pandemic by proposing
a Susceptible–Infected–Removed—Sick (SIRSi) compart-
mental model. The proposed model considers the possibility
of unreported or asymptomatic cases, and differences in the
immunity within a population. Gomes et al. (2020) proposes
a computational model with intelligent machine learning for
analysis of epidemiological data and real time forecasting
the dynamic propagation behavior of COVID-19 in Brazil.

From control point of view, Pataro et al. (2021) investigate
how to apply model predictive control (MPC) algorithms to
plan appropriate social distancing policies that mitigate the
pandemic effects by considering the states of Bahia and Santa
Catarina (Brazil). Dias et al. (2021) proposes a control law
to adjust the physical distancing level to guarantee the fastest

way to finish the outbreak with the number of hospitalized
individuals below the desired value. Furthermore, the use of
nonlinear control techniques, specifically the sliding mode
control (SMC), has been widely used in the literature in sev-
eral applications (Oliveira et al. 2016; Roy and Roy 2020;
Andrade et al. 2014) and also for the control of infectious
diseases (Rohith and Devika 2020; Ibeas et al. 2013; Xiao
et al. 2012).

The sliding mode is a control strategy able to drive and
constrain the system output to the equilibrium in finite time.
In closed-loop, the main advantage of this approach is its
robustness with respect to matched disturbances and para-
metric uncertainties. On the other hand, the epidemiological
systems are highly uncertain once their parameters hardly can
be precisely obtained which makes the sliding mode con-
trol (SMC) as well as the super-twisting algorithm (STA)
extremely suitable. In particular, STA preserves the propri-
eties above with a continuous and smooth control action,
rather than the classical discontinuous SMC.

In the ideal first-order sliding mode, the sliding variable
reaches and remains the equilibrium in finite time by using a
switching scheme of infinite frequency (discontinuous con-
trol) (Utkin 2016). In practice, it is impossible to ensure
such commutation which yields a high-frequency oscillation
in the sliding variable during the steady-state. This behav-
ior is called chattering. In order to alleviate the chattering,
it is possible to employ the average version of the switch-
ing control signal, the average control, by using a linear
filter whose time constant is sufficiently small to keep the
slow-frequency component undistorted, but large enough to
eliminate the high-frequency component. Therefore, the real
sliding mode only ensures the convergence with residual
errors. On the other hand, the super-twisting algorithm is a
continuous sliding mode control approach able to guarantee
the exact convergence in finite time precluding the chatter-
ing phenomenon. In the scenario of measurement noises, it
is thus expected that STA is less sensitive than discontinuous
SMC (Pérez-Ventura and Fridman 2019).

In order to analyze theCOVID-19 outbreak dynamics, this
paper proposes a new mathematical model called Suscepti-
ble, Infected, Recovered, Dead and Quarantined (SIRDQ)
inspired by Kermack and McKendrick (1927) and Gaff and
Schaefer (2009), and two control laws based on sliding mode
control (SMC) (Utkin 1978, 1992) which are able to reg-
ulate the effective number of reproduction of the virus to
theoretical desirable values. In the stability analysis, we con-
sider parametric uncertainties and prove the robustness of the
closed-loop systems by using Lyapunov’s stability theory.

This paper is organized as follows. The mathematical
model SIRDQ and its analysis are discussed in Sect. 2. Sec-
tion 3 presents both SMC designs to control the outbreak
of COVID-19. The numerical simulations are carried out in
Sect. 4. Finally, Sect. 5 presents conclusions.
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2 Problem Statement

A decisive step in the modeling and dynamic analysis of epi-
demics was the introduction of the Susceptible, Infectious
and Removed (SIR) compartmental approach. According to
the authors themselves, Kermack and McKendrick (1927),
the epidemiological dynamics can be explained as follows:
one or more people Infected are introduced into a commu-
nity of more or less Susceptible individuals to the disease in
question. The disease spreads from infected to non-infected
individuals through contact. Each infected person travels the
course of the disease, being ultimately Removed from the
number of the sick individuals, due to recovery or death.

The classic SIRmodel, as presented inKermack andMcK-
endrick (1927), is limited to the casewhere allmembers of the
community are initially equally susceptible to the disease in a
scenario where only the so-called “herd immunity” or “pop-
ulation immunity” is applicable. In other words, all members
of the community can be contaminated and interventions are
not considered in order to mitigate the consequences of the
epidemiological outbreak, such as, for example, administra-
tion of drugs that reduce the number of deaths, vaccination
that confers immunity to the population or social isolation
that guarantees the non-dissemination of the disease agent.

The SIR model is a nonlinear dynamical system given by

Ṡ(t) = − α

N
S(t)I (t), (1)

İ (t) = α

N
S(t)I (t) − λI (t), (2)

Ṙ(t) = λI (t), (3)

where the variable t ∈ R
+ represents the time instant in days,

S(t) ∈ R, I (t) ∈ R and R(t) ∈ R are state variables rep-
resenting, respectively, the numbers of Susceptible, Infected
and Removed people, α > 0 is the constant rate of spread
of the disease, λ > 0 is the constant rate which individu-
als move from infected to removed status, and N is the total
number of individuals.

Despite thewidespread use of the SIRmodel (1)–(3), from
the engineering point of view, its use is limited to the analysis
and prediction of epidemiological behavior since measures
such as vaccines and social isolation to reduce contagion and
the duration of the outbreak are not contemplated. Even so,
it is not difficult to find in the literature contributions that
assume a small change in (1)–(3) by replacing the constant
α by

α(t) = α0 − u(t), (4)

where α0 > 0 and u(t) ∈ [0, 1] represents the control signal.
In this context,u(t) is faced as the government action (level of
social isolation or vaccination of the population). As simple

and tempting as this change may seem, there is a contra-
diction in this approach that makes the results questionable.
More precisely, the behavior of the effective reproduction
number R0 (Adam 2020).

The basic reproduction number (R0), also called the basic
reproduction ratio or basic reproductive rate, is an epi-
demiological metric used to describe the contagiousness or
transmissibility of infectious agents (Delamater et al. 2019).
The basic reproduction number is defined as: the average
number of secondary cases arising from an average primary
case in an entirely susceptible population that essentially
measures the maximum reproductive potential for an infec-
tious disease (Diekmann and Heesterbeek 2000). On the
other hand, mathematically, the effective reproduction num-
ber is defined as an instantaneous rate of change in cases
compared to those removed individuals (Keeling and Gren-
fell 2000), i.e.,

R0(t) := d(I (t) + R(t))

d R(t)
= İ (t) + Ṙ(t)

Ṙ(t)
. (5)

For example, for (1)–(3) one has the effective reproduction
number given by

R0(t) = α

λ

S(t)

N
. (6)

In this way, it is possible to rewrite (1)–(3) such as

Ṡ(t) = −λR0(t)I (t), (7)

İ (t) = λR0(t)I (t) − λI (t), (8)

Ṙ(t) = λI (t). (9)

Note that, if α is considered a variable parameter, as in
(4), we have

R0(t) = (α0 − u(t))

λ

S(t)

N
. (10)

Therefore, assuming (4) and at the same time considering
the effective number of reproduction (R0(t)) as a constant is
indeed a mistake from the point of view of control as well as
from the point of view of identification-prediction based on
the SIR model. Going through this discussion, if we assume
that the contamination rate can be considered as (4), there
is another problem, i.e., the lack of memory of the variable
R0(t). The assumption of (4) is linked with the possibil-
ity of R0(t) varies infinitesimally from its maximum value
(max{R0(t)} = α0

λ
) to the minimum (min{R0(t)} = 0), in a

reciprocal manner, which is not viable either.
Motivated by such limitations, and inspired by the con-

tributions of Kermack and McKendrick (1927) and Gaff and
Schaefer (2009), this paper considers a compartmentalmodel
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of the type Susceptible, Infected, Recovered, Dead and
Quarantined (SIRDQ):

Ṡ(t) = − α

N
S(t)I (t) + β

N
S(t)Q(t) − uS(t), (11)

İ (t) = α

N
S(t)I (t) − λ1 I (t) − λ2 I (t), (12)

Ṙ(t) = λ1 I (t), (13)

Ḋ(t) = λ2 I (t), (14)

Q̇(t) = − β

N
S(t)Q(t) + uS(t), (15)

where S(t) ∈ R, I (t) ∈ R, R(t) ∈ R, D(t) ∈ R and
Q(t) ∈ R are the state variables that represent, respec-
tively, the numbers ofSusceptible, Infected,Recovered,Dead
and Quarantined individuals, u ∈ [0, 1] consists of non-
pharmaceutical government action (level of social isolation),
while α > 0 is the constant rate of disease spread, β > 0 is
the constant which people leave the quarantine, λ1 > 0 is the
constant rate which subjects move from infected to recov-
ered, λ2 > 0 is the constant rate which individuals move
from infected to dead, and

N = S(t) + I (t) + R(t) + D(t) + Q(t) (16)

represents the total number of individuals.
Note that (11)–(15) allows us to take into account impor-

tant aspects left out of the SIR model. The SIRDQ model
considers the government action u that forces social isola-
tion, through quarantine, mitigating the consequences of the
outbreak, infected, sequelae and deaths. At the same time,
such a model includes the phenomenon of falling quarantine
adhesion through the nonlinear term β

N S(t)Q(t). In scenar-
ios where pharmacological actions are not available or are
still being tested, non-adherence to quarantine has a direct
effect on the prolongation of the outbreak and the decline of
the economy.

Finally, according to Keeling and Grenfell (2000), the
effective reproduction number R0(t) of the SIRDQ model
is defined by

R0(t) := İ + Ṙ + Ḋ

Ṙ + Ḋ
= α

λ1 + λ2

S(t)

N
, (17)

with time derivative satisfying

Ṙ0(t) = α

λ1 + λ2

[
−α

S(t)

N

I (t)

N
+ β

S(t)

N

Q(t)

N
− u

S(t)

N

]
.

(18)

Considering that the potential of an epidemic is based on
the magnitude of the value of R0(t). An outbreak is expected
to continue if R0(t) > 1 and to extinguish if R0(t) < 1.

Thus, in order to contain the epidemiological outbreak, the
control objective is defined as the regulation of R0(t) to a
reference value Rref

0 ∈]0.1[. In other words, we design u so
that the regulation error

R̃0(t) := R0(t) − Rref
0 , (19)

with dynamics

˙̃R0(t) = α

λ1 + λ2

[
−α

S(t)

N

I (t)

N
+ β

S(t)

N

Q(t)

N
− u

S(t)

N

]
,

(20)

it is taken to zero or a small neighborhood of zero. To achieve
this goal, in the next section two control strategies based on
sliding modes will be presented.

Throughout the paper, the following assumptions are con-
sidered:

(A1) During the early stages of an epidemic, in a large
population, the number of susceptible people can be
considered constant, since any change is small com-
pared to the total number of individuals N (Kermack
and McKendrick 1927).

Since the course of an epidemic is short compared
with the life of an individual, the population may
be considered as remaining constant. Then, in our
approach, the total number of individuals N is a con-
stant. On the other hand, in the early stages of an
epidemic, the number of infected people introduced
into a community of unaffected individuals is very
small while the number of quarantined individuals or
deaths are null. Therefore, number of susceptible indi-
viduals are approximately equal to the total number
of individuals.

For the purpose of analysis, the assumption (A1)
for simplifying the dynamics of R̃0(t) given by (20)
is used. The argument that the population is large
enough so that the number of susceptible individu-
als is considered constant during the initial period of
the epidemic (S(t)/N ≈ 1) combined with the rapid
responseofSMC,with the justification that the control
law has been used since the beginning of the outbreak,
allow us to rewrite (20) as

˙̃R0(t) = α

λ1 + λ2

[
−α

I (t)

N
+ β

Q(t)

N
− u

]
. (21)

Of course, the assumption (A1) is restrictive, how-
ever, we understand that the control strategy using
social isolation is effective only in the early stages of
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the epidemic (Al-Radhawi et al. 2021; Angulo et al.
2021; Sontag 2021). After this period, new control
variables and pharmacological actions such as vac-
cination (Zhong et al. 2021) must be added to the
model so that it makes sense. Furthermore, assump-
tion (A1) simplifies the mathematical effort required
in the demonstration of the main theorems.

(A2) The parametersα,β, λ1 andλ2 in (11)–(15) are uncer-
tain; however, its positive lower-upper bounds are
known, such that:

α < α < α, β < β < β, (22)

λ1 < λ1 < λ1 e λ2 < λ2 < λ2. (23)

In general, the parameters of epidemiological systems
are difficult to obtain accurately. A possible strategy
for choosing the upper and lower bounds is to select
similar diseases (more or less aggressive) as a basis
or even the existing knowledge of other models elab-
orated in the literature. There is no theoretical limit
value for choosing an upper/lower bounds, however,
if the bounds are overestimated, the control effort will
be overly large.

(A3) The variable R0(t) in (17) is an output of the plant
(11)–(15) that is available for feedback.

Note that the assumption (A3) is plausible since, in
practice, data are released and government actions are
takenwith sampling interval h = 1 [day] (Aström and
Wittenmark 1997). Thus, the basic number of repro-
duction in (17) can be extracted daily from the data
using a recursive difference equation given by

R̂0(t) := I (t) − I (t − 1) + R(t) − R(t − 1) + D(t) − D(t − 1)

R(t) − R(t − 1) + D(t) − D(t − 1)
,

(24)

where t ∈ N represents the current day in question.

The Eq. (17) as well as (24) of the manuscript rep-
resent the same phenomenon. Notice, from (17), one
has

R0(t) =
dI (t)

dt
+ dR(t)

dt
+ dD(t)

dt
dR(t)

dt
+ dD(t)

dt

, (25)

whose derivatives terms canbe approximated byusing
the backward Euler’s method such that

dI (t)

dt
≈ I (t) − I (t − h)

h
, (26)

dR(t)

dt
≈ R(t) − R(t − h)

h
, (27)

dD(t)

dt
≈ D(t) − D(t − h)

h
, (28)

with periodic sampling h. On the other hand, from
Eq. (24), one obtains

R̂0(t) =
I (t) − I (t − h)

h
+ R(t) − R(t − h)

h
+ D(t) − D(t − h)

h
R(t) − R(t − h)

h
+ D(t) − D(t − h)

h
(29)

≈
dI (t)

dt
+ dR(t)

dt
+ dD(t)

dt
dR(t)

dt
+ dD(t)

dt

(30)

= R0(t). (31)

In a nutshell, from (29)–(31), R̂0(t) ≈ R0(t). In our
particular case, we have h = 1 day. Furthermore, if
I (t) → 0 then R0(t) ≈ R̂0(t) → 0.

3 SlidingMode Control

Sliding mode control theory is considered to be one of the
main strategies for dealing with uncertain systems. In the
following,we present two possible approaches based on first-
order and second-order sliding modes such that the closed-
loop system can represented by Fig. 3.

3.1 First-Order SlidingMode

The classic sliding mode, also called first-order SMC, is able
to drive the output of a given dynamic system to zero in finite
time and keeping it in this situation in a precise and robust
way through a control signal with high-frequency switch-
ing (Utkin 1992). Such switching behavior is sometimes an
undesirable phenomenon and it is usual to use a low-pass
filter in the design to achieve an appropriate smooth estimate
of the ideal equivalent control (Utkin 1992).

The control law is governed by a variable structure system

u =
{

α + β + δ, if R̃0(t) > 0

−α + β − δ, if R̃0(t) < 0
, (32)

where δ > 0 is a sufficiently small constant that satisfies
δ + α < β, used to ensure that the sliding surface R̃0(t) = 0
is reached in finite time.
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Fig. 3 Block diagram illustrating the closed-loop system

Theorem 1 Consider the epidemiological system SIRDQ
(11)–(15) with dynamics of the effective reproduction num-
ber R0(t) given by (18), regulation error R̃0(t) in (19) and
control law u in (32). If all the assumptions (A1)–(A3) are
satisfied, then the sliding surface R̃0(t) = 0 is reached in
finite time.

Proof Consider the following energy function

V = R̃2
0(t), (33)

whose time derivative is given by

V̇ = 2R̃0(t)
˙̃R0(t). (34)

Replacing (21) into (34), one has

V̇ = 2R̃0(t)
α

λ1 + λ2

[
−α

I (t)

N
+ β

Q(t)

N
− u

]
. (35)

If R̃0(t) > 0, plugging (32) into Eq. (35), the latter
becomes

V̇ = 2|R̃0(t)| α

λ1 + λ2

[
−α

I (t)

N
+ β

Q(t)

N
− α − β − δ

]
.

(36)

From (16) it can be concluded that I (t)
N < 1 and Q(t)

N < 1.
Therefore,

V̇ < 2|R̃0(t)| α

λ1 + λ2

[
α + β − α − β − δ

]
. (37)

Applying the upper bounds (22) to (37) arrives to

V̇ < −2
αδ

λ1 + λ2
|R̃0(t)|. (38)

If R̃0(t) < 0, replacing (32), Eq. (35) becomes

V̇ = −2|R̃0(t)| α

λ1 + λ2

[
−α

I (t)

N
+ β

Q(t)

N
+ α − β + δ

]
.

(39)

Applying the upper bounds (22) to (39), we arrive at

V̇ < −2
αδ

λ1 + λ2
|R̃0(t)|. (40)

So, it is easy to verify that (40) is also satisfied, ∀R̃0(t) ∈
R − {0}. Note that, with (33), it is possible to rewrite the
inequality (40) as

V̇ < −2
αδ

λ1 + λ2

√
V

< −2
αδ

λ1 + λ2

√
V . (41)

Defining the auxiliary variable Ṽ := √
V , it is verified

that differential equation ˙̃V = 1
2

V̇√
V
is satisfied and

V̇ = 2 ˙̃V √
V . (42)

Then, by replacing (42) on the left-hand side of the
inequality (41), we arrive at

˙̃V < − αδ

λ1 + λ2
. (43)

Recalling the Comparison Lemma (Khalil 2002, p. 102),
we conclude that an upper bound V̄ to Ṽ is ensured by the
solution of the dynamic system

˙̄V = − αδ

λ1 + λ2
, (44)

as long as the initial condition is chosen as V̄ (0) = Ṽ (0) =
|R̃0(0)|. The solution to this differential equation is

V̄ (t) = V̄ (0) − αδ

λ1 + λ2
t

= |R̃0(0)| − αδ

λ1 + λ2
t, (45)
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Hence, there is a finite time instant t f = (λ1+λ2)|R̃0(0)|
αδ

such that V̄ (t f ) = 0. Given that V̄ (t) > Ṽ (t) = |R̃0(t)|, it
can be shown that there is a finite time ts ∈ [0, t f [ such that
the sliding mode occurs and the sliding surface R̃0(t) = 0 is
reached. ��

3.2 Second-Order SlidingMode—Super-Twisting

An alternative to alleviate chattering due to the discontin-
uous control signal is the Super-Twisting algorithm. The
Super-Twisting is a second-order slidingmode controller that
does not require derivatives of R̃0(t) for its implementation,
guaranteeing all the main properties of the first-order slid-
ing modes with the advantage of being naturally continuous
(Gonzalez et al. 2012).

The super-twisting-based control law is

u = β̄ + κ1|R̃0(t)| 12 sgn(R̃0(t)) + κ2

∫ t

0
sgn(R̃0(γ ))dγ,

(46)

where β̄ > β, κ1 and κ2 are arbitrary positive constants in
order to ensure the sliding surface R̃0(t) = 0 is reached finite
time.

Theorem 2 Consider the epidemiological system SIRDQ
(11)–(15) with dynamics of the effective reproduction num-
ber R0(t) given by (18), regulation error R̃0(t) in (19) and
control law u in (46). If all the assumptions (A1)–(A3) are
satisfied, then the sliding surface R̃0(t) = 0 is reached in
finite time.

Proof First, plugging (46) into (21), the closed-loop regula-
tion error satisfies

˙̃R0(t) = α

λ1 + λ2

[
−α

I (t)

N
+ β

Q(t)

N
− β̄+

−κ1|R̃0(t)| 12 sgn(R̃0(t)) − κ2

∫ t

0
sgn(R̃0(γ ))dγ

]
,

(47)

since I (t)
N ∈ [0, 1] and Q(t)

N ∈ [0, 1] along with (16) and
β̄ > β from assumption (A2). In addition, one has

˙̃R0(t) ≤ α

λ1 + λ2

[
−α

I (t)

N
− (β̄ − β)+

−κ1|R̃0(t)| 12 sgn(R̃0(t)) − κ2

∫ t

0
sgn(R̃0(γ ))dγ

]

≤ −k1|R̃0(t)| 12 sgn(R̃0(t)) − k2

∫ t

0
sgn(R̃0(γ ))dγ,

(48)

where k1 = ακ1
λ1+λ2

and k2 = ακ2
λ1+λ2

. Now, invoking the Com-
parison Lemma (Khalil 2002, Lemma 3.4), there exists an
upper bound R̄0(t) of R̃0(t) for all t ≥ 0 given by the solu-
tion of the dynamic system

˙̄R0(t) = −k1|R̄0(t)| 12 sgn(R̄0(t)) − k2

∫ t

0
sgn(R̄0(γ ))dγ,

(49)

since that R̄0(0) = R̃0(0).
By defining the state variables x1(t) := R̄0(t) and

x2(t) := −k2
∫ t
0 sgn(R̄0(γ ))dγ , the dynamic in (49) can be

represented in the state-space formulation as

ẋ1(t) = −k1|x1(t)| 12 sgn(x1(t)) + x2(t), (50)

ẋ2(t) = −k2 sgn(x1(t)), (51)

and, finally, by choosing

ζ(t) =
[
ζ1(t)
ζ2(t)

]
=

[
|x1(t)| 12 sgn(x1(t))

x2(t)

]
, (52)

one arrives to

ζ̇ (t) = 1

|ζ1(t)| Aζ(t), A =
[− 1

2k1
1
2− 1

2k2 0

]
, (53)

where A is a Hurwitz matrix for any positive constants
k1 > 0 and k2 > 0 (Moreno and Osorio 2012). Once
A is a Hurwitz matrix, given the positive defined matrix

Q = QT = k1
2

[
2k2 + k21 −k1

−k1 1

]
, there exists a positive defi-

nite matrix P = PT = 1
2

[
4k2 + k21 −k1

−k1 2

]
which satisfy the

algebraic Lyapunov equation

AT P + P A = −Q. (54)

Now, consider the following candidate to Lyapunov equa-
tion

V (ζ ) = ζ T (t)Pζ(t), (55)

satisfying the inequality

λmin{P}‖ζ(t)‖2 ≤ V (ζ ) ≤ λmax{P}‖ζ(t)‖2. (56)

The time derivative of (55) along (53) is

V̇ (ζ ) = ζ̇ T (t)Pζ(t) + ζ T (t)P ζ̇ (t). (57)
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Plugging the right-hand side of (53) into (57), one gets

V̇ (ζ ) = 1

|ζ1(t)|ζ
T (t)AT Pζ(t) + 1

|ζ1(t)|ζ
T (t)P Aζ(t)

= 1

|ζ1(t)|ζ
T (t)(AT P + P A)ζ(t), (58)

and, by using the Algebraic Lyapunov Equation (54), one has

V̇ (ζ ) = − 1

|ζ1(t)|ζ(t)T Qζ(t). (59)

Therefore, its upper bound is given by

V̇ (ζ ) ≤ −λmin{Q}
|ζ1(t)| ‖ζ(t)‖2

≤ −λmin{Q}
λmax{P}

1

|ζ1(t)| V (ζ )

= −λmin{Q}
λmax{P}

1

|ζ1(t)| V
1
2 (ζ )V

1
2 (ζ ). (60)

From the left-hand side of inequality (56), notice that

0 ≤ V (ζ ) − λmin{P}‖ζ(t)‖2

= λmin{P}
(

1

λmin{P} V (ζ ) − ‖ζ(t)‖2
)

= λmin{P}
(

1

λmin{P} 1
2

V
1
2 (ζ ) + ‖ζ(t)‖

)

︸ ︷︷ ︸
>0

×
(

1

λmin{P} 1
2

V
1
2 (ζ ) − ‖ζ(t)‖

)

︸ ︷︷ ︸
≥0

, (61)

hence

‖ζ(t)‖ ≤ 1

λmin{P} 1
2

V
1
2 (ζ ). (62)

On the other hand, ‖ζ(t)‖ =
√

ζ 2
1 (t) + ζ 2

2 (t) and
|ζ1(t)| ≤ ‖ζ(t)‖, then, by using (62), it results in

V
1
2 (ζ ) ≥ λmin{P} 1

2 |ζ1(t)|. (63)

Finally, by using (63), an upper bound to (60) can be given
by

V̇ (ζ ) ≤ −λmin{Q}λmin{P} 1
2

λmax{P} V
1
2 (ζ ), (64)

and one can conclude that V (ζ ) > 0 with V̇ (ζ ) < 0 such
that ζ(t) converges to zero in finite time. Moreover, from the

comparison principle (Khalil 2002, Lemma 3.4), the solution
of

˙̄V (t) = −λmin{Q}λmin{P} 1
2

λmax{P} V̄
1
2 (t), V̄ (0) = V (t = 0),

(65)

leads to

V̄ (t) =
(

V
1
2 (t = 0) − λmin{Q}λmin{P} 1

2

2λmax{P} t

)2

, (66)

where V̄ (t) is an upper bound to V (t) for all t ≥ 0 and,
therefore, R̃0(t) converges to zero in finite time reaching this

value at most in tst = 2λmax{P}V
1
2 (t=0)

λmin{Q}λmin{P} 12
. ��

4 Simulation

In this section, the simulation results obtained for the closed-
loop system consisting of the plant (11)–(15), the output
R0(t) in (17) with the first-order sliding mode control law
(32) and super-twisting algorithm control law (46). The
model parameters are α = 0.5464, β = 0.4417, λ1 = 0.1
and λ2 = 0.032. These constants are defined in (Bastos and
Cajueiro 2020). The population of the city of Rio de Janeiro
was chosen as an example and, therefore, N = 6.718.903
individuals according to the latest IBGE sense and based on
data provided by the City Hall. The initial conditions are
I (0) = 4, R(0) = 0, D(0) = 0, Q(0) = 0, such that
S(0) = N − I (0) − R(0) − D(0) − Q(0) = 6.718.899
individuals. The reference value is Rref

0 = 0.5, and the first-
order slidingmode controller constants areα = 0.1,α = 0.6,
β = 0.08, β = 0.5 and δ = 0.002, while the super-twisting
algorithm parameters are κ1 = 0.25 and κ2 = 0.025.

4.1 Fist-Order SlidingMode Control

Although the approach seems to be unrealistic due to the
high-frequency switching of the control law u (isolation
levels), it is possible to find a continuous signal that approx-
imates the equivalent control ueq(t) using the equivalent
extended control (Utkin 1978). According to this theory, an
approximation uav(t) to ueq(t) is obtained by filtering the
sign u. In this context, the dynamics of uav(t) is given by

τ u̇av(t) = −uav(t) + u, (67)

where τ ≥ 0 is a constant. The lower the value of τ , the more
uav(t) approaches ueq(t). Note that if τ = 0, uav(t) = u.

Figure 4 shows the behavior of the closed-loop system for
various values of τ . The lower τ , faster the control objective
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is achieved, see Fig. 4b. Assuming that it is desired to keep
R0(t) close to 0.5 (Fig. 4c), all strategies converge toward
an isolation of approximately 40%, see Fig. 4a. However,
Fig. 4e, gmake it clear that in order to avoid a high number of
infected and dead individuals, it is essential, at the beginning
of the epidemic, to adhere to a high level of isolation. The
effective reproduction number R0(t) is directly related to the
number of susceptible individuals S(t), see Eqs. (6), (10) and
(17). Therefore, for a reduction in the level of transmission
of the disease, if no vaccine is available, it is necessary that a
large part of the population remains in quarantine, see Fig. 4d,
h.

Figure 5 shows the result obtained when the signal R0(t)
is not available and we use R̂0(t) in (24) for the construction
of the regulation error, that is, the regulation error becomes
R̃0(t) = R̂0(t) − Rref

0 . The regulation error reaches a neigh-
borhood of the origin, Fig. 5b, c, however, the lack of an
accurate information significantly aggravates the epidemio-
logical plot with an increase in the number of infected and
dead individuals, see Fig. 5e, g.

4.2 Super-Twisting Algorithm

Figure 6 shows the closed-loop system by using the super-
twisting control law (46). The smooth control effort shown
in Fig. 6a can ensure the convergence of the variable R̃0(t) to
zero, see Fig. 6b, such that output R0(t) achieves its desired
value Rref

0 infinite time, seeFig. 6c.Toavoid ahighnumber of
infected individuals and deaths, see Fig. 6e, f, g, it is essential,
at the beginning of the epidemic, to adhere a high level of
social isolation Q(t), see Fig. 6d, h. As mentioned before,
the effective reproduction number R0(t) is directly related to
the number of susceptible individuals S(t), see Eqs. (6), (10)
and (17).

Figure 7 shows the result obtained if the variable R0(t) is
unavailable, it is possible to estimate the regulation error as
R̃0(t) = R̂0(t)−Rref

0 . In this case, the error does not converge
to zero but it reaches a neighborhoodof the origin, see Fig. 7b,
c. Of course, by using an estimate, there is an increase in the
number of infected population and, consequently, deaths, see
Fig. 7e, g.

4.3 Discussion

Due to the low level of testing, high level of spreading of
contagious as well as the large number of asymptomatic indi-
viduals, by distinguishing susceptible individuals from the
infected ones becomes an extremely difficult task. There-
fore, in our approach, we use a quarantine to susceptible
individuals because we cannot identify exactly the infected
individuals.

In our model, all those people who cannot isolate them-
selves due to financial issues, illnesses or with inevitable

familiar relationship are considered susceptible individu-
als. Moreover, our quarantine compartment contemplates the
social isolation abandonment behavior, unfortunately and
often promoted by public figures who insist on scientific
denial and bet on conspiracy theories.

The basic reproduction number R0 = R0(0) is one of
the most important quantities in epidemiology. By assuming
that in the early stage of the outbreak the population is ini-
tially susceptible (S(0) ≈ N ), a pathogen can invade only if
R0(0) > 1 (Keeling and Rohani 2008). The value of R0(0)
depends on both the disease and the host population (Ander-
son and May 1982). Mathematically, we can calculate R0(0)
as (17),

R0(0) = α

λ1 + λ2

S(0)

N
≈ α

λ1 + λ2
. (68)

In otherwords, the R0 is obtained bymultiplying the trans-
mission rate α and the average infectious period 1/(λ1+λ2).
The constant α represents rate with which new cases are
produced by an infectious individual when the entire popula-
tion is susceptible. Therefore, the basic reproduction number
R0 = R0(0) does not depend on the infected individu-
als while the effective reproduction number R0(t) is related
to the number of susceptible individuals. In our quarantine
framework, we can reduce the proportion of the effective
reproduction number R0(t) and hence eradicate the disease
since any infection that, on average, cannot successfully
transmit to more than one new host is not going to spread
(Lloyd-Smith et al. 2005).

Notice, if the control law put all susceptible individuals in
quarantine, i.e., into a severe lockdown, the course of time
the pandemic comes to an end. One of the main ideas of our
control schemes is to avoid these cases of severe lockdowns
and study how the pandemic’s effects can be alleviated by
using non-pharmacological actions.

Although our manuscript does not address the afore-
mentioned issues, delay compensation and robustness to
disturbances (whichmay lead to resurgence peaks) and time-
varying parametric uncertainties are topicswell studied in the
sliding mode control literature such that, in the future, our
contribution can be expanded in these directions as well. On
the other hand, recent contributions in these topics by using
others control strategies can be found, for instance, in Cas-
taños and Mondié (2021), Pataro et al. (2021) and Dias et al.
(2021). Such references were included in the revised version
of the manuscript.

5 Conclusion

Epidemics of infectious diseases such as COVID-19 have
been recurrent throughout the history and can cause major
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Fig. 4 Simulation results
obtained for the closed-loop
system when the control law is
(32) and (67) with regulation
error R̃0(t) = R0(t) − Rref

0

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

u.

0 20 40 60 80 100
-1

0

1

2

3

4

R̃0(t) (regulation error).

0 20 40 60 80 100
0

1

2

3

4

5

R0(t).

0 20 40 60 80 100
0

2

4

6

8
106

S(t).

0 50 100
0

500

1000

1500

I(t).

0 50 100
0

1000

2000

3000

R(t).

0 50 100
0

200

400

600

800

1000

D(t).

0 20 40 60 80 100
0

2

4

6

8
106

(a)Control signal (b)Sliding variable

(c)Basic number of reproduction (d)Susceptible individuals

(e) Infected individuals (f)Accumulated of recovered individuals

(g)Accumulated dead individuals (h)Quarantined individuals Q(t).

123



Journal of Control, Automation and Electrical Systems (2022) 33:63–77 73

Fig. 5 Simulation results
obtained for the closed-loop
system when the control law is
(32) and (67) with regulation
error R̃0(t) = R̂0(t) − Rref
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Fig. 6 Simulation results
obtained for the closed-loop
system when the control law is
(46) with regulation error
R̃0(t) = R0(t) − Rref
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Fig. 7 Simulation results
obtained for the closed-loop
system when the control law is
(46) with regulation error
R̃0(t) = R̂0(t) − Rref
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problems for the affected population, such as saturation of
the hospital network, economic crisis, etc. In this context,
mathematical models can be valuable tools, as they are able
to provide estimates for possible scenarios of the disease
spread, helping to delimit borderline cases and intermediate
situations that are plausible as well. In addition, dynamic
models combined with modern control techniques allow for
the development of efficient strategies for the introduction
and relaxation of epidemic mitigation measures. Information
like this is essential to help authorities make decisions about
the allocation of limited resources in the event of an epidemic.

From the control point of view, this is a challenging prob-
lem, since the process is represented by a nonlinear model,
faced with the complexity of the variable R0, with uncertain
parameters or even subject to time variations in some cases
in the literature. In addition, it is faced with the complex-
ity of the variable R0(t) which may vary according to the
social dynamics of a population under a certain control pol-
icy (e.g., see Eq. (10)), that is, it does not capture the current
status of an epidemic and can increase and decrease when the
number of cases is low (Adam 2020). This paper proposed
a new mathematical model SIRDQ that considered the gov-
ernmental action through the quarantine in order to reduce
the number of infected people and deaths. In addition, a first-
order sliding mode control law and super-twisting algorithm
have been proposed in order to regulate the effective repro-
duction number R0 in values lower than the unit, leading
mathematically to the extinction of the epidemic. The simu-
lation results illustrate that the control strategies were proved
to be potentially efficient in the process of regulating the R0

and, consequently, resulting in better (lower) levels of isola-
tion to be adopted by the population.
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