Skip to main content
Log in

Non-intrusive Internal Corrosion Characterization using the Potential Drop Technique for Electrical Mapping and Machine Learning

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper describes a non-intrusive method for collecting data about internal corrosion damages in AISI-304 stainless steel plates and classifying them according to severity. The mapping of the electric potential gradient is derived using the potential drop technique, which is then analyzed using image processing techniques including edge enhancement and segmentation. Simulations were run using finite element modeling to produce examples of damaged plates, with four types of defects that can be considered part of pitting corrosion. The image processing stage plays the role of an extractor of features that, when employed as inputs of machine learning algorithms, make it possible to determine the damage severity. With the Gradient Boosting regressor, the maximum absolute error of 0.879 mm was obtained in the estimate of the depth of the defects. Additionally, with the application of a Convolutional Neural Network, an accuracy of 94.84% was achieved to classify of the severity of the damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, GS., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org

  • Al-Shamari, A., Al-Sulaiman, S., Al-Mithin, A., Jarragh, A., Prakash, S.S., & Islam, M. (2012). Internal corrosion monitoring and management strategy for Kuwait’s pipeline network system. In: NACE corrosion conference, NACE, Salt Lake City

  • Amaral, J., Dos Santos Pinto, G. L., Vieira Pinheiro, G. R., Gomes Silva, V., & Ponciano Gomes, J. A. (2020). A non-intrusive system to classify the severity of damages caused by internal corrosion using the potential drop technique and electrical image mapping. Journal of Integrated Circuits and Systems, 15(3), 1–7. https://doi.org/10.29292/jics.v15i3.181.

    Article  Google Scholar 

  • Angayarkanni, N., & Durairaj, K. (2015). Euclidean distance transform (edt) algorithm applied to binary image for finding breast cancer. Biomedical and Pharmacology Journal, 8, 407–411.

    Article  Google Scholar 

  • ASTM (2018). Standard guide for examination and evaluation of pitting corrosion. ASTM, G46-94 (Reapproved 2018)

  • Atha, D., & Jahanshahi, M. (2017). Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Structural Health Monitoring: An International Journal p 147592171773705, https://doi.org/10.1177/1475921717737051

  • Awad, M., & Khanna, R. (2015). Support vector regression, (pp. 67–80) Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9_4

  • Bradski, G. (2000). The opencv library. Dr Dobb’s Journal of Software Tools, 25, 122–125.

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), https://doi.org/10.1023/A:1010933404324

  • Brinnel, V., Döbereiner, B., & Münstermann, S. (2014). Characterizing ductile damage and failure: application of the direct current potential drop method to uncracked tensile specimens. Procedia Materials Science, 3, 1161–1166. https://doi.org/10.1016/j.mspro.2014.06.189.

    Article  Google Scholar 

  • Chen, T., & Guestrin, C., (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’16, pp. 785–794,https://doi.org/10.1145/2939672.2939785

  • Chollet, F. (2015). Keras. https://keras.io

  • COMSOL (2018) Comsol ac\(/\)dc module user’s guide. www.comsol.com, COMSOL Multiphysics, COMSOL AB

  • Corcoran, J., Davies, C. M., Cawley, P., & Nagy, P. B. (2020). A quasi-dc potential drop measurement system for material testing. IEEE Transactions on Instrumentation and Measurement, 69(4), 1313–1326. https://doi.org/10.1109/TIM.2019.2908509.

    Article  Google Scholar 

  • Demirović, D. (2019). An implementation of the mean shift algorithm. Image Processing On Line, 9, 251–268. https://doi.org/10.5201/ipol.2019.255.

    Article  MathSciNet  Google Scholar 

  • Doremus, L., Nadot, Y., Henaff, G., Mary, C., & Pierret, S. (2015). Calibration of the potential drop method for monitoring small crack growth from surface anomalies - crack front marking technique and finite element simulations. International Journal of Fatigue, 70, 178–185. https://doi.org/10.1016/j.ijfatigue.2014.09.003.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Wiley-Interscience.

  • Feydo, M., Pellegrino, B., & Strachan, S., (2017) Non-intrusive ultrasonic corrosion-rate measurement in lieu of manual and intrusive methods. In: NACE corrosion conference, NACE, Boalsburg

  • Friedman, J. (2000). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, https://doi.org/10.1214/aos/1013203451

  • Gan, F., Tian, G., Wan, Z., Liao, J., & Li, W. (2016). Investigation of pitting corrosion monitoring using field signature method. Journal of the International Measurement Confederation, 82, 46–54. https://doi.org/10.1016/j.measurement.2015.12.040.

    Article  Google Scholar 

  • Hayt, W. H. J., & Buck, J. A. (2013). Eletromagnetismo (8th ed.). AMGH.

  • He, K., & Sun, J. (2014). Convolutional neural networks at constrained time cost. arXiv:1412.1710 [cs]

  • Hoang, ND., & Duc, T. (2019). Image processing based detection of pipe corrosion using texture analysis and metaheuristic-optimized machine learning approach. Computational Intelligence and Neuroscience In Press:13, doi: https://doi.org/10.1155/2019/8097213

  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv: 1502.03167

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications, R. Springer Publishing Company, Incorporated, http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf

  • Khan, A., Sohail, A., Zahoora, U., & Qureshi, AS. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, https://doi.org/10.1007/s10462-020-09825-6, arXiv:1901.06032

  • Krizhevsky, A., Sutskever, I., & Hinton, GE. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25 (NIPS 2012) (pp. 1097–1105), doi: https://doi.org/10.1145/3065386

  • Lantz, B. (2015). Machine Learning with R, (2nd ed.) Packt Publishing, Birmingham B3 2PB, UK

  • Moreira, A.R., de Almeida, N.L., Chaves, L.F.F., Silva, V.G., Vaz, G.L., (2019) Non-intrusive systems for monitoring internal corrosion of carbon steel pipes. In: NACE corrosion conference, NACE, Nashville, 13358

  • NACE International (1999). Standard recommended practice : preparation, installation, analysis, and interpretation of corrosion coupons in oilfield operations. Technical report, NACE.

  • NACE International Task Group (TG) 390. (2012). Techniques for Monitoring Corrosion and Related Parameters in Field Applications. Techical report, NACE.

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076.

    Article  MathSciNet  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Édouard Duchesnay (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85):2825–2830, http://jmlr.org/papers/v12/pedregosa11a.html

  • Pinheiro, G.R.V., Silva, VG., da Cunha Ponciano Gomes, JA., do Amaral, JLM., & dos Santos Pinto, GL. (2019). Obtenção da imagem de defeitos em materiais por mapeamento elétrico. In Anais do 14\(^\circ \)Simpósio Brasileiro de Automação Inteligente, Galoa, https://doi.org/10.17648/sbai-2019-111545

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. arXiv: 1505.04597

  • Ryu, K., Lee, T., cheon Baek, D., & won Park, J. (2020). Pipe thinning model development for direct current potential drop data with machine learning approach. Nuclear Engineering and Technology, 52(4), 784–790. https://doi.org/10.1016/j.net.2019.10.004.

    Article  Google Scholar 

  • Seghier, M. E. A. B., Keshtegar, B., Tee, K. F., Zayed, T., Abbassi, R., & Trung, N. T. (2020). Prediction of maximum pitting corrosion depth in oil and gas pipelines. Engineering Failure Analysis, 112, 104505. https://doi.org/10.1016/j.engfailanal.2020.104505.

    Article  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556v6

  • Soille, P. (2003). Morphological image analysis: principles and applications (2nd ed.). Springer-Verlag.

  • Sposito, G. (2009). Advances in potential drop techniques for non-destructive testing. Phd thesis, Imperial College London, Londres

  • Sposito, G., Cawley, P., & Nagy, P. (2010). Potential drop mapping for the monitoring of corrosion or erosion. JNDT&E International, pp. 394–402, https://doi.org/10.1016/j.ndteint.2010.03.005

  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.

    MathSciNet  MATH  Google Scholar 

  • Stanford. (2019). Cs231n convolutional neural networks for visual recognition. https://cs231n.github.io/convolutional-networks/, stanford Vision and Learning Lab - Stanford University

  • Szeliski, R. (2011). Computer vision. Texts in Computer Science, Springer, London, London,. https://doi.org/10.1007/978-1-84882-935-0.

    Article  MATH  Google Scholar 

  • Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., & SciPy 10 Contributors (2020). SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2

  • Vriesman, D., Britto Junior., A., Zimmer, A., & Lameiras Koerich, A. (2019). Texture cnn for thermoelectric metal pipe image classification. In 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI), pp. 569–574, https://doi.org/10.1109/ICTAI.2019.00085

  • Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., et al. (2014). scikit-image: image processing in python. PeerJ, 2, 453. https://doi.org/10.7717/peerj.453.

    Article  Google Scholar 

  • Zeiler, M.D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. arXiv:1311.2901

  • Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms (1st ed.). Chapman & Hall/CRC.

Download references

Acknowledgements

An early version of paper was presented at XXIII Congresso Brasileiro de Automática (CBA 2020). The authors would like to acknowledge the financial support provided by FAPERJ —Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro and CAPES—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Amaral.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, G., Amaral, J., Pinheiro, G.R.V. et al. Non-intrusive Internal Corrosion Characterization using the Potential Drop Technique for Electrical Mapping and Machine Learning. J Control Autom Electr Syst 33, 183–197 (2022). https://doi.org/10.1007/s40313-021-00823-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-021-00823-9

Keywords

Navigation