
Journal of Control, Automation and Electrical Systems (2022) 33:38–48
https://doi.org/10.1007/s40313-021-00757-2

On the Continuous-time and Discrete-Time Versions of an Alternative
Epidemic Model of the SIR Class

Jorge A. Costa Jr.1 · Amanda C. Martinez1 · José C. Geromel2

Received: 15 February 2021 / Revised: 26 April 2021 / Accepted: 31 May 2021 / Published online: 28 June 2021
© Brazilian Society for Automatics–SBA 2021

Abstract
The well-known SIR epidemic model is revisited. Continuous-time and discrete-time versions of an alternative model of
this class are presented, discussed and validated with actual data. The proposed model follows from the calculation of the
mean number of new infected cases due to the eventual meeting of susceptible and infected individuals, based on a simple
probabilistic argument. Determination of the invariant set in the state space and convergence conditions towards equilibrium
are established. For numerical analysis, data of daily number of new diagnosed cases provided by the Brazilian Ministry of
Health and World Health Organization of COVID-19 outbreak that currently occurs respectively in Brazil and in the UK are
used. Illustrations and model prediction analysis are provided and discussed from full data of both aforementioned countries
which include more than 400 epidemic days. Three different and complementary strategies for parameter identification
including the impact of causality on the optimal solution of the nonlinear mean square problem are discussed.

Keywords Epidemic model of SIR Class · Continuous-time systems · Discrete-time systems · Invariant sets · Stability ·
Nonlinear fitting

1 Introduction

We are living in a new time characterized by an unprece-
dented demand of the health system. In Brazil, we have the
Unified Health System (SUS) that is showing its importance
to better serve the population of our country. It is neces-
sary to highlight the commitment and dedication of all health
professionals and a significant part of the population, which
also deserves praise, as they seek to maintain an effective
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social distance, even in the face of unreasonable opinions
that, unlike most of the world, insist to minimize its ben-
eficial effects. From the public health point of view, it is
necessary to be able to evaluate possible scenarios and val-
idating actions in order to flatten the peak of the epidemic
and preserve the hospital’s service capacity. Together with
vaccination, social distancing (including the use of masks) is
perhaps one of the most effective actions to be implemented,
but the key question is how to assess its effectiveness and
how to decide when and how to mitigate it, without allowing
new waves of the epidemic. The research effort on mathe-
matical models development appears to be a possible way to
find an adequate answer to this concern, since a sufficiently
precise model would be an appropriate device to predict and
quantify the epidemic time evolution.

This paper is entirely devoted to the study of the most
well known class of epidemic models known by the acronym
SIR, which stands for Susceptible–Infected–Removed, for-
mulated in both continuous-time and discrete-time domains.
Nowadays, the literature presents countless studies dealing
with epidemics. Among them, it is important to put in evi-
dence the deterministic continuous-time modeling presented
in the seminal paper by Kermack and McKendrick (1927),
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almost a century ago, which established a solidmathematical
basis for further developments.

Since then, this research area has been developed by incor-
porating to the original class many other subclasses like
SEIR, SEIRS, SIRS, SEI, SEIS, SI, SIS, among others. The
reader is asked to see the survey paper by Hethcote (2000)
where this subject is deeply treated. In addition, Hethcote
(2000) provided a rather complete set of results and ref-
erences putting in clear evidence the more representative
contributions made over time. Furthermore, it is important
to mention the books of Anderson (1987), Bailey (1975) and
Brauer and Castillo-Chavez (2012) including the references
therein as excellent sources of information onmodel develop-
ment analysis, control design and many other related topics
on infectious diseases.

Allmentioned subclasses of the SIRmodel are readily rec-
ognized by the infection mechanism which includes into the
model a nonlinear term expressed, putting aside normaliza-
tion, by a product of variables, seeKermack andMcKendrick
(1927)), Soares (2011) and the very recent papers by Gior-
dano et al. (2020) and Silva et al. (2020). Here, we intend
to go further by proposing a new approach to determine the
spread of the infection in a population of given constant size.
In our opinion, the proposedmodel is a valid theoretical alter-
native to the classical SIRmodel but its final validation needs
to be established in practice from actual data.

The literature provides many studies dealing with the
continuous-time version of the SIR model but much less
about the discrete-time one. For the last mentioned subject,
the interested reader is invited to see Anastassopoulou et al.
(2020), Brauer and Castillo-Chavez (2012), Calafiore et al.
(2020) andHuet al. (2014) including, in the former reference,
a useful treatment of difference equations. The subclasses of
the SIR model are all expressed by nonlinear differential
or difference equations, in continuous-time or discrete-time
domains, respectively. The order of themodel depends on the
number of state variables needed to discriminate the various
types of individuals in the population. Recently, in Giordano
et al. (2020), a new class of SIRmodel expressed in terms of a
eighth-order differential equation has been proposedwith the
main goal to evaluate possible scenarios of the COVID-19
outbreak evolution in Italy.

To be as faithful as possible in the face of reality, models
of the SIR class must be considered time-varying because it
is necessary to allow its parameters to vary over time in order
to capture trends in how the population behaves during the
outbreak time evolution. Thismakes the parameter identifica-
tion step muchmore complicated when compared to the time
invariant case. In particular, a sort of causality property arises
that by consequence must be imposed such that past optimal
values of the estimated parameters are not affected when-
ever new measurements are incorporated into the data set.
This aspect is important since causality is a suitable property

to be present in any dynamic model. Hence, in this context,
three parameter estimation strategies are presented and dis-
cussed. The discrete-time versions of the classical model and
the proposed model of the SIR class are validated using daily
data of the COVID-19 outbreak presently occurring in Brazil
and in the UK, a country where the epidemic is approaching
the end. In both countries, the results put in clear evidence
the existence of successive epidemic waves. Moreover, since
newdata are provideddaily, it seemsmore natural to apply the
discrete-time versions of the models and identify the time-
varying parameters. To this end, data from more than 400
days of COVID-19 outbreaks occurring in Brazil and in the
UKare used to put in evidence newmodelling aspects includ-
ing robustness with respect to data errors.

This is an extended version of the paper Costa et al. (2020)
by the sameauthors.Besides thematerial that appeared in that
reference, this paper incorporates the development and anal-
ysis of the continuous-time version of the proposed model
of the SIR class and uses the full data set available until now
(more than 400 days) for model identification and validation.
Instead of Italy, data from the United Kingdom have been
considered because, as already mentioned, in this country
the outbreak is now approaching the end.

The paper is organized as follows: In the next section, the
classical model of the SIR class in continuous time is pre-
sented. In Sect. 3, an alternative model of the SIR class is
proposed and discussed with special attention to the mecha-
nism of infection that is primarily responsible for the spread
of the disease in the population. In the same section, a unified
model in continuous time is constructed and the relation-
ship between both models is established. Section 4 is entirely
devoted to develop the unifiedmodel in discrete time, putting
in evidence the stability properties and three strategies for
parameter identification. In Sect. 5, the results are applied to
the outbreak that is taking place in Brazil and the one that
occurred in the UK. The main conclusions and recommen-
dations are summarized in Sect. 6.

The notation used throughout is standard. Specifically, the
symbols R, R+, and N denote the sets of real, real non-
negative, and natural numbers, respectively. A function or
trajectory f (t) evaluated at some time instant t = tk ∈ R is
denoted as f [k] = f (tk) for all k ∈ N.

2 The Classical SIR Model

The classical deterministic Susceptible–Infected–Removed
(SIR) model was proposed for the first time almost one cen-
tury ago in the seminal paper by Kermack and McKendrick
(1927).1 We now discuss this model as originally formulated

1 It is interesting to put in evidence that this paper is until nowadays
the most cited paper in the Proceedings of the Royal Society—A.
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in continuous time but in a probabilistic context that makes
possible some interpretations and comparisons in the unified
viewpoint to be given afterwards; see also Silva et al. (2020).

The independent variable t ∈ R+ denotes time and the
initial time t0 = 0 corresponds to the time instant on which
the first case of infection was diagnosed. The population P
made up of M individuals is split into three types, and at each
time instant each person is supposed to belong to only one
of them, namely:

– Susceptible (S)—is the group of healthy individuals. The
total number of elements in this set, denoted by s(t),
indicates the number of healthy individuals on t ∈ R+.

– Infected (I )—is the group of infected individuals. The
total number of elements in this set, denoted by i(t),
indicates the number of infected individuals, capable of
transmitting the disease, on t ∈ R+.

– Removed (R)—is the group of individualswho no longer
have the ability to transmit the disease because they are
immunized or dead.2 The total number of elements in
this set is denoted by r(t), on time t ∈ R+.

By assumption, the population remains constant through-
out the epidemic horizon, births are not taken into account,
which implies s(t) + i(t) + r(t) = M for all t ∈ R+. Let
x(t) be any member of the population on time t ∈ R+. With-
out any further information, at time t ∈ R+, the probability
to be of type susceptible, infected, or removed is s(t)/M ,
i(t)/M or r(t)/M , respectively. The key issue and the main
characteristic of anymodel of the SIR class is the mechanism
that determines the susceptible to infected transition which
is responsible for its nonlinear nature. In the mathematical
framework of SIR models, the ones of interest are developed
and interpreted in the sequel.

2.1 The Classical SIR Model

Following Hethcote (2000), consider the time-varying ver-
sion of the classical SIR model with probabilistic interpreta-
tion. To this end, let β(t) be the average number of effective
contacts, those which result in infection of a person per unit
of time. Hence, β(t)(i(t)/M) is the average number of effec-
tive contacts with infected of one individual of the population
per unit of time. Taking into account that at time t ∈ R+ the
number of susceptible is s(t), then the average number of
new infected in an arbitrarily small time interval �t > 0 is

n(t) = β(t)

(
s(t)

M

)
i(t)�t (1)

2 Wewould like to emphasize that we are not considering the possibility
that people in the removed group may become susceptible again and be
infected more often, as there is not enough evidence for this yet.

In the aforementioned reference the time-invariant case
β(t) = β is considered. Moreover, by comparison with the
model resulting from the mass action law, the parameter
dependence β = ηMυ for some (η, υ) is discussed. Mea-
surements strongly suggest that υ ≈ 0, see Hethcote (2000)
for more details on this relevant aspect.

3 The Proposed SIRModel

Wenowpropose an alternativemodel of the SIR class. To this
end, let us consider the following experiment. In an arbitrary
instant of time t ∈ R+, let a pair of individuals (x1, x2) from
the population P be randomly chosen, with replacement.3

The probability that x1 is healthy (x1 ∈ S) and x2 is infected
(x2 ∈ I ), or vice versa, is 2(s(t)/M)(i(t)/M). Assuming
that, a fraction p(t) of healthy people becomes infected due
to the meeting of healthy and infected individuals, per unit
of time, then the average number of new people infected in
an arbitrarily small time interval �t > 0 is given by

n(t) = s(t) × p(t) × 2

(
s(t)

M

) (
i(t)

M

)
�t

= γ (t)

(
s(t)

M

)2

i(t)�t (2)

where γ (t) = 2p(t) ∈ (0, 2). Note that the first term s(t) in
the product shown in the first equality of (2), indicates that
only healthy people, when they meet infected people, can
become infected. At this point, it is interesting to compare
the estimated number of new infected people provided by
both SIR models. From (1) and (2), it follows that

β(t) = γ (t)

(
s(t)

M

)
(3)

fromwhich some conclusions can be drawn. First, at the very
beginning of the epidemic evolution, the fact that s(t) ≈ M
implies β(t) ≈ γ (t), meaning that both models virtually
coincide. Of course, the same fact does not remain true
whenever the epidemic evolves in time and the number of
susceptible persons becomes smaller. This fact can be veri-
fied by comparing the phase-plane drawing of both models.
Second, even though β(t) may not depend on the population
size M , it may be time-varying and be linearly dependent
on the density of susceptible in the population as indicated
in (3). Indeed, among many factors, it may depend on the
behavior changes, at least in part of the population, due to
alerts and awareness campaigns.

3 Since the population is big enough (M � 1), the pair of individuals
can be chosen sequentially without replacement.

123



Journal of Control, Automation and Electrical Systems (2022) 33:38–48 41

3.1 The Unified Model in Continuous Time

Since the infection mechanism has already been determined,
the time evolution of the state variables of both models
(s(t), i(t), r(t)) for all t ∈ R+, can be written in a unified
manner. To this end, let us define the selection index

ν =
{
1, classical SIR model
2, proposed SIR model

(4)

and perform the limit�t → 0 to get the following state space
equations of a nonlinear time-varying dynamic system that
can be expressed in the form

ds

dt
(t) = −γ (t)

(
s(t)

M

)ν

i(t) (5)

di

dt
(t) = γ (t)

(
s(t)

M

)ν

i(t) − α(t)i(t) (6)

dr

dt
(t) = α(t)i(t) (7)

where γ (t) ∈ (0, 2), α(t) > 0, for all t ∈ R+ and non-
negative initial conditions s(0) = s0, i(0) = i0 and r(0) = r0
satisfying s0 + i0 + r0 = M . The parameters α = α(t) and
γ = γ (t) are considered time-varying because there is strong
evidence that they change in the course of the epidemic evo-
lution, due to the reasons mentioned before. However, in
some instances, the parameter α = α(t) can be considered
time-invariant, and determined if we know the half-life of
the process that characterizes the transition of infected indi-
viduals to removed, under the hypothesis that no contagion
occurs. The half-life Lh expressed in units of time yields

α = ln(2)/Lh (8)

that is, for a half-life of Lh = 7 days, we obtain 1/α ≈ 10
days,which fromactual data seems to be quite reasonable. By
its turn, the parameter γ = γ (t) expresses the rate at which
the infection spreads over time and whenever it decreases,
results in a gradual reduction of the number of infected per-
sons. A possible interpretation is that the parameter α(t) is a
characteristic of the disease while γ (t) strongly depends on
the population behavior. Certainly, it is a major consequence
of the social distancing and additional precautions adopted
by the population in some time intervals.

3.2 The Basic Reproduction Number

In epidemiology, there is a number that defines the secondary
infections produced by one infected individual being intro-
duced in a susceptible individuals group (Hethcote 2000).
This number (which in the present case depends on time)

called basic reproduction number, denoted as R0, in our time-
varying SIR models can be calculated as

R0(t) = γ (t)

α(t)

≥ γ (t)

α(t)

(
s(t)

M

)ν

= Rν(t) (9)

Hence, from (6), it is clear that for values of Rν > 1,
the infection spreads in the susceptible population, and on
the contrary, whenever Rν < 1 the infection declines. The
parameter R0, an upper bound to Rν , has a vital role in the
study of epidemics, and in the case of our time-varying mod-
els, it helps us to observe how the epidemic is evolving in
the population and approaches the end since R0 < 1 implies
that Rν < 1. Clearly, R0 depends only on the model param-
eters (it does not depend on s(t)) and as it can be verified
R0(t) ≥ R1(t) ≥ R2(t), for all t ∈ R+.

The proposed SIR model that we have just obtained has
an intrinsic hypothesis that seems to be unrealistic. On a time
interval, the average number of new infections is given by (2).
To obtain this value, we have assumed that each individual
in the population can meet any other, with equal probability.
We believe that this simplifying hypothesis is no longer real-
istic when, for example, the population spreads over a large
area with a non-uniform demographic density. The impact of
this hypothesis, in face of reality, is difficult to measure. In
fact, the possibility that all individuals meet each other tends
to increase the number of new infected, but not taking into
account the eventual existence of high population densities,
in some regions, acts in the opposite direction. Fortunately,
as we will see later, this undesirable aspect can be mitigated
if we consider time-varying models, as in (5)–(7) with the
parameters being determined such as the modeling error is
minimum. Clearly, the same reasoning is valid for the classi-
cal SIRmodel resulting from ν = 1.Moreover, dividing each
equation in (5)–(7) by the population size M , it is simple to
see that the property stated in the following remark holds.

Remark 1 The dynamicEqs. (5)–(7) are such that the normal-
ization M = 1 can be imposed, with no loss of generality,
for both models ν ∈ {1, 2}.

3.3 Relationship Between Classical and Proposed
Models

Adopting the previous normalization, we are now in position
to compare the time evolution and the equilibrium points
of both models, in the particular, and still very important,
time-invariant case by assuming that the pair of parameters
(α(t), γ (t)) = (α, γ ) is constant for all t ∈ R+. Dividing
Eqs. (6) and (7) by (5), taking into account the basic repro-
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duction number (9), we obtain the differential relations

R0di = (−R0 + s−ν
)

ds (10)

R0dr = −s−νds (11)

First, set ν = 1 corresponding to the classical SIR model
index. Integrating (10) from (s0, i0) to (s(t), i(t)) and (11)
from (s0, r0) to (s(t), r(t)) we obtain

R0(i(t) − i0) = −R0(s(t) − s0) + ln(s(t)/s0) (12)

R0(r(t) − r0) = −ln(s(t)/s0) (13)

while selecting the proposed SIR model with ν = 2, these
equations become

R0(i(t) − i0) = −R0(s(t) − s0) −
(

s(t)−1 − s−1
0

)
(14)

R0(r(t) − r0) =
(

s(t)−1 − s−1
0

)
(15)

At the very beginning of the epidemic evolution, we have
r0 = 0 and s0 + i0 = 1 with s0 and i0 strictly positive
initial conditions, such as the state variables remain positive
for all t ∈ R+. These initial conditions are called feasible.
Moreover, from (5)–(7) it follows that any equilibrium point
is such that i∗ = 0 and s∗ + r∗ = 1 with s∗ and r∗ strictly
positive.

The comparison of the time evolution of each model can
be done by solving Eqs. (13) and (15), yielding

s(t) = s0e−R0r(t) (16)

s(t) = 1

1/s0 + R0r(t)
, (17)

respectively. These solutions are virtually identical provided
that s0 ≈ 1 and 0 < r(t) � 1 which is always true in
the beginning of the infectious process (even if R0 is large).
However, as time passes, the solutions become different. It is
important to mention that since both models include approx-
imations, their validity must be established by comparison
with data collected from reality. This aspect will be treated
in a forthcoming section.

The previous equations, being true for all t ∈ R+, char-
acterize the trajectories of both models. They converge to
equilibrium points, which always exist, provided that the ini-
tial condition is feasible. They can be calculated with no big
difficulty. Indeed, performing the limit t → +∞, Eqs. (12)–
(13) give

1 − r∗ = s∗ = s0e−R0r∗ (18)

that is, the determination of the equilibrium point follows
from the solution of a transcendental equation. The same

algebraic manipulations applied to Eqs. (14)–(15) provide

1 − r∗ = s∗ = 1

1/s0 + R0r∗
(19)

and it is seen that both admit strictly positive solutions (s∗, r∗)
whenever 0 < s0 < 1. Of course, depending on the value
of the basic reproduction number, the number of suscepti-
ble at equilibrium s∗ predicted by each model can be quite
different. Interestingly, it can be verified that, at equilib-
rium, the number of susceptible (those not infected during
the whole epidemic time evolution) predicted by the pro-
posed SIR model is always bigger than the one provided by
the classical SIRmodel. In other words, the time evolution of
the epidemic process is always described as being less severe
by the proposed SIR model. Once again, it is important to
stress that this aspect needs factual confirmation.

4 The UnifiedModel in Discrete Time

For the COVID-19 outbreak, daily data is the only avail-
able data for parameter estimation. The Brazilian Ministry
of Health and theWorld Health Organization daily report the
number of new diagnosed cases nm[k] and its accumulated
sum am[k]. Note that n[k] becomes very different from i[k]
as the epidemic progresses. This is because infected people
stopbeing infectedwhen they transit to the removed type.The
continuous-time independent variable t ∈ R+ is evenly sam-
pled providing the sampled instants of time tk = k�t where
k ∈ N is the discrete-time independent variable. As com-
mented before, we have interest to consider �t = 1 [day].

The discrete-time version of the unified model is readily
obtainedby solving (approximately) the differential Eqs. (5)–
(7) with thewell-knownEulermethod, with unitary step size,
which yields

s[k + 1] = s[k] − γ [k]
(

s[k]
M

)ν

i[k] (20)

i[k + 1] = i[k] + γ [k]
(

s[k]
M

)ν

i[k] − α[k]i[k] (21)

r [k + 1] = r [k] + α[k]i[k] (22)

It is interesting to notice that the equality s[k]+i[k]+r [k] =
M holds for all k ∈ N provided that it holds for k = 0, and
the set of difference equations to be dealt with is nonlinear
and time-varying. Furthermore, the additional equation

a[k + 1] = a[k] + γ [k]
(

s[k]
M

)ν

i[k] (23)

subject to the initial condition a[0] = am[0] generates the
sequence of accumulated sum of new diagnosed cases pre-
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dicted by the model, so as the minimization of the mean
square error between the sequence a[k] and the measured
sequence am[k] in some time interval provides the optimal
time-varying parameters α[k] and γ [k], for the time horizon
under consideration.

Remark 2 Since �t = 1 [day], the discrete-time model
admits two interpretations. First, α[k] = α(tk) and γ [k] =
γ (tk) are expressed in [day−1]. Or alternatively, α[k] =
α(tk)�t and γ [k] = γ (tk)�t are dimensionless.

Remark 3 It is simple to see that in discrete time, the uni-
fied model (20)–(22) follows without making use of Euler
method arguments by adopting the same reasoning used to
get the continuous-time counterpart. In this case, the param-
eter γ [k] = 2p[k] ∈ (0, 2) can also be interpreted as twice
the probability that whenever a susceptible person meets an
infected at k ∈ N, she/he becomes infected. In this sense, that
parameter can also accommodate the possibility that several
meetings between susceptible and infected occur in the time
interval [0,�t]. Notice that in this framework no kind of
approximation is adopted in order to obtain the discrete-time
version of the classical and proposed SIR models.

Remark 4 Assuming that in the discrete-time model there is
no contagion then the epidemicmust vanishes asymptotically
which implies that α[k] ∈ (0, 1).

Since the available measurement sequence am[k] belongs
to the discrete-time domain, the mean square error does
not take into account of the inter-sampling values am(t) for
t 
= tk,∀k ∈ N. The consequence is that, provided the param-
eters are well determined, the final discrete-time model is, in
general, a precise representation of the epidemic evolution
but only at the sampling times tk = k�t, ∀k ∈ N. In other
words, as usual, the time evolution between the sampling
instants {tk}k∈N is not given by the discrete-time model.

4.1 Stability Analysis

Considering the normalization M = 1,which canbe imposed
with no loss of generality, let us define the closed and convex
domain D ⊂ R

2 that plays a central role in the stability
analysis of SIR models, that is

D = {(s, i) : s ≥ 0, i ≥ 0, s + i ≤ 1} (24)

and let us rewrite the previous model as (s[k+1], i[k+1]) =
Qν◦(s[k], i[k])where the nonlinear operator Qν : R2 → R

2

given by

(
s
i

)
�−→

(
s − γ sν i

i + γ sν i − αi

)
(25)

exhibits the important properties stated in the next lemma.
Notice that the variable r [k] and Eq. (22) do not have impor-
tance, as far as stability is concerned.

Lemma 1 Assume that α ∈ (0, 1). The set D ⊂ R
2 is an

invariant set of the nonlinear operator Qν , that is, Qν ◦D ⊆
D provided that:

(i) ν = 2 and γ ∈ (0, 3).
(ii) ν = 1 and γ ∈ (0, 1).

Proof Denoting (sQ, iQ) = Qν ◦ (s, i), considering α ∈
(0, 1) and (s, i) ∈ D, it is immediate to verify that iQ ≥ 0
and sQ + iQ = (s + i) − αi ≤ 1 for both ν ∈ {1, 2}. On the
other hand, for any γ > 0, ν ∈ {1, 2}, and (s, i) ∈ D it is
seen that sQ = s − γ sν i ≥ s − γ sν(1 − s) = gν(s). Since
gν(0) = 0, two cases must be considered:

First, for ν = 2, simple calculations put in evidence that
g′
ν(s) ≥ 1−γ /3. For γ ∈ (0, 3) the function gν(s) is strictly

increasing in the interval s ∈ [0, 1].As a consequence sQ ≥ 0
for all (s, i) ∈ D. Second, for ν = 1, it can be verified that
g′
ν(s) ≥ 0 for all s ∈ [0, 1], provided that |γ | < 1. Hence, in

the interval γ ∈ (0, 1), we have that sQ ≥ 0 for all (s, i) ∈ D.
The proof is concluded. ��

FromLemma 1, it is clear that for the proposed SIRmodel
the trajectories (s[k], i[k]) ∈ D for all k ∈ N provided that
(s0, i0) ∈ D, since its parameters are such that α ∈ (0, 1)
and γ ∈ (0, 2). For the classical SIR model, the situation
is more restrictive since this property is assured whenever
the parameters satisfy α ∈ (0, 1) and γ ∈ (0, 1). If this last
condition is violated, it may occur that s[k] < 0 for some
k ∈ N, in which case, the meaning and validity of the model
is completely lost.

Lemma 2 Assume that the conditions of Lemma 1 hold.
For any initial condition (s0, i0) ∈ D the trajectory
(s[k], i[k])k∈N ∈ D converges to an equilibrium point
(s∗, i∗) such that 0 ≤ s∗ ≤ s0 and i∗ = 0.

Proof Since any equilibrium point solves (s∗, i∗) = Qν ◦
(s∗, i∗), it follows that i∗ = 0. On the other hand, from
Lemma 1, it has been established that (s, i) ∈ D provides
(sQ, iQ) ∈ D, which implies that the inequalities 0 ≤ sQ ≤
s ≤ 1 hold as well. Consequently, the sequence s[k], k ∈ N

converges to some 0 ≤ s∗ ≤ 1 because it is bounded below
and non increasing putting in evidence that s∗ ≤ sQ . Now
consider the linear function v(s, i) = (s − s∗) + i which is a
valid Lyapunov function candidate for trajectories evolving
in the region (s, i) ∈ D∗ = D ∩ {s ≥ s∗} of the phase plane.
Simple algebraic manipulations yield

v(sQ, iQ) = (sQ − s∗) + iQ

= (s − s∗) + i − αi
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Fig. 1 Phase plane for γ = 1.75 and α = 0.50. The classic SIR model
is on the left and the proposed model is on the right
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Fig. 2 Phase plane for γ = 0.75 and α = 0.50. The classic SIR model
is on the left and the proposed model is on the right

≤ v(s, i) (26)

for all (s, i) ∈ D∗, concluding thus the proof. ��
For illustration we have drawn the phase plane for some

parameters of the classical and proposed SIR models in dis-
crete time. Figure 1 has been determined for γ = 1.75 and
α = 0.50. On the left side part the phase plane of the clas-
sical SIR model (ν = 1) is shown. It is clearly seen that,
as expected, D is not an invariant set since the condition of
Lemma 1 is violated. In this case, the stability property of
Lemma 2 is no longer valid. For comparison, from the right
side part of the same figure it is clear that D is an invariant
set for the proposed SIR model (ν = 2).

Figure 2 has been determined for γ = 0.75 and α =
0.50. For both models,D is confirmed as an invariant set. For

this particular choice of parameters, it is interesting to notice
the similar behavior of both models but with the number of
susceptible at equilibrium s∗ being larger for the proposed
model when compared to the one of the classical model.
Under the same epidemic conditions, the proposed model
appears to draw a less severe situation as the classical model
does. This aspect needs factual confirmation.

4.2 Parameter Identification

In this section, we consider the parameter identification
problem where the goal is to determine the time-varying
parameters (α[k], γ [k]) and the initial condition from the
available data am[k]. The number of days for which data are
available is denoted by Nm . Defining the state space variable
z[k] = [s[k] i[k] a[k]]′ ∈ R

3 with a[k] being the accumu-
lated number of new diagnosed cases, the coupling variable
w[k] and the output variable y[k] = a[k], the classical and
the proposed SIR model state space minimal realization can
be written as

z[k + 1] = A[k]z[k] + G[k]w[k], z[0] = z0 (27)

y[k] = H z[k] (28)

w[k] = fν(z[k]) (29)

where the indicated matrices are

A[k] =
⎡
⎣ 1 0 0
0 1 − α[k] 0
0 0 1

⎤
⎦ , G[k] =

⎡
⎣ −γ [k]

γ [k]
γ [k]

⎤
⎦ , H ′ =

⎡
⎣ 0
0
1

⎤
⎦ (30)

and the nonlinear function fν(·) : R3 → R+ is defined as

fν(z[k]) =
(

s[k]
M

)ν

i[k] (31)

Finally, it is important to keep in mind that the initial con-
dition z0 = [s0 i0 a0]′ ∈ R

3 must be non-negative and such
that s0 + i0 ≤ M . This is indicated simply by z0 ∈ Z0. Addi-
tionally, the notation (α, γ ) ∈ 	ν denotes the constraints
0 ≤ α ≤ 1 and 0 ≤ γ ≤ ν whenever the classical SIR
model (ν = 1) or the proposed SIR model (ν = 2) is con-
cerned. Under these constraints, Lemmas 1 and 2 indicate
that D is an invariant set and convergence towards the equi-
librium point is assured. In this section, two complementary
situations are analysed. First, the parameters are supposed to
be time-invariant which naturally imposes that they are con-
stant during the entire time horizon of interest. Afterward,
the time-varying case with constant by parts parameters is
treated.
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4.3 Time-Invariant Parameter Optimization

A well-known procedure for parameter identification is
adopted. It consists on the minimization of the mean square
error between the model and data through the optimal solu-
tion of the nonlinear mathematical programming problem

eti = min
z0∈Z0,(α,γ )∈	ν

1

2
log10

(
1

Nm

Nm−1∑
k=0

(y[k] − am[k])2
)

(32)

where y[k] is the output provided by the model (27)–(29)
with (α[k], γ [k]) = (α, γ ) for all k ∈ [0, Nm). It is worth
mentioning that this problem is highly non-convex, and by
consequence, only a local optimum is expected to be reached
by any numerical procedure. Hence, this is obviously true for
the method applied here (Mathworks 2005). See Geromel
et al. (2002) for robust filtering in a simpler context.

4.4 Time-Varying Parameter Optimization

It is assumed that the time interval [0, Nm) is split in
N sub-intervals {Tj }N

j=1, without overlapping, such that
(α[k], γ [k]) = (α j , γ j ) for all k ∈ Tj , j = 1, . . . , N . In
other words, in each time sub-interval, the pair of parameters
to be determined remains constant. We have to solve

etv = min
z0∈Z0,(α j ,γ j )∈	ν

1

2
log10

⎛
⎜⎝ 1

Nm

N∑
j=1

∑
k∈Tj

(y[k] − am [k])2
⎞
⎟⎠ (33)

where as before, y[k] is the output provided by the model
(27)–(29). Numerically speaking, this problem is similar
to (32). The only difference between them is the num-
ber of variables to handle. Moreover, since the constraints
(α j , γ j ) ∈ 	ν for j = 1, . . . , N are decoupled, at the opti-
mal solution, the minimum cost naturally satisfies etv ≤ eti

because any solution to (32) is feasible to (33). Depending
on the epidemic horizon Nm and the number of time sub-
intervals N , (33) can be classified as a large scale non-convex
programming problem which, in general, is hard to solve
mainly if the time horizon Nm under consideration is large.

4.5 Sequential Forward Optimization

In the time-varying parameter optimization context, when-
ever new measurements are treated during the epidemic time
evolution, in principle, the time evolution of the parameters
can be modified as well. To preserve optimal past values,
a strategy inspired on receding horizon seems to be well
adapted; see Bemporad et al. (2002) for details. In other
words, the future of the outbreak evolution can not mod-
ify the values of parameters in the past and present. This

imposes causality to the parameter identification procedure.
It can be stated by considering again that the parameters
(α[k], γ [k]) = (α j , γ j ) for all k ∈ Tj , j = 1, . . . , N are
constant by parts. At an arbitrary time sub-interval Tj , we
need to solve

e2j = min
(α j ,γ j )∈	ν

∑
k∈Tj

(
y[k] − am[k]

)2
(34)

where y[k] is the output provided by the model (27)–
(29) starting from the initial condition z0 = [(M −
am(0)) am(0) am(0)]′ ∈ Z0 at the first time sub-interval
j = 1 and considering the state z[k + 1] at the end of Tj

as the initial condition for the subsequent time sub-interval
Tj+1. Proceeding in this way, it is possible to determine the
time-varying parameters (α[k], γ [k]) for all k ∈ [0, Nm).
Finally, the minimum square error

eso = 1

2
log10

⎛
⎝ 1

Nm

N∑
j=1

e2j

⎞
⎠ (35)

between the sequence a[k] determined through the proposed
time-varying model and the corresponding measured values
am[k], actually observed, gives an idea of the model adher-
ence to data. Compared to the previous strategy this one is
simpler but suboptimal implying that etv ≤ eso. However, in
general, it has been verified that eso < eti whenever the time
sub-intervals Tj , j = 1, . . . , N are appropriately chosen. It
is important to notice that the number of unknown variables
of problem (34) is two for any j = 1, . . . , N which makes
it easier to solve than the global optimization problem (33).
It can be solved with no big difficulty even though the time
horizon Nm of interest is large.

Finally, from the previous results, it is important to men-
tion that, with precaution, since estimation errors may be
expressive, the epidemic short-term evolution can be esti-
mated by keeping the parameters constant, and equal to the
values identified during the last time sub-interval TN , that is,
(α[k], γ [k]) = (αN , γN ) for all k ≥ Nm .

5 Simulation and Validation

In this section, the outbreak that is taking place in Brazil
and the one that occurred in the UK are modeled. First, the
outbreak in Brazil, which is until now in franc expansion,
is considered. Afterward, the epidemic in the UK, which
already reached the end, is handled through the same models
of the SIR class, in order to put in evidence the adherence to
data and precision. It is important to mention that in all cases
the parameters have been determined by the sequential for-
ward optimizationmethod from the numerical solution of the
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Fig. 3 Basic reproduction number time evolution in Brazil—Proposed
model (solid line) and Classical model (dotted line)
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Fig. 4 Outbreak time evolution in Brazil—Actual data (red dots), Pro-
posed model (solid line) and Classical model (dotted line)

nonlinear least square problem (34) with MATLAB Version
R14, see Mathworks (2005). To avoid undesirable numerical
singularity on the determination of the basic reproduction
number R0[k] = γ [k]/α[k] we have replaced in the set 	ν ,
the constraint 0 ≤ α ≤ 1 by the constraint 1/10 ≤ α ≤ 1.
This is possible because for such a small enough lower bound
the minimum mean square errors e2j , j = 1, . . . , N remain
approximately unchanged.

5.1 Outbreak in Brazil

In this study, we have adopted the official data4 avail-
able in the Brazilian Ministry of Health (2020) and World
Health Organization (WHO) (2020) corresponding to the
time horizon of 419 days since the first case in Brazil was
reported. We have considered M ≈ 210 million inhabitants
as indicated in Instituto Brasileiro de Geografia e Estatística

4 Data fromboth cited sources are slightly different.We have used those
provided by the Brazilian Ministry of Health.
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Fig. 5 Basic reproduction number time evolution in Brazil—Proposed
model (solid line) and Classical model (dotted line)

(IBGE) (2020). The optimal parameters have been deter-
mined with Nm = 419 [day], N = 28 and T1 = [0, 28),
Tj = [14 j, 14( j + 1)), j = 2, . . . , 27, T28 = [392, 419).
Each time sub-interval was taken greater or equal to 14 [day]
at exception to the first and the last ones. The larger length
of the first sub-interval has been verified to be necessary to
cope with the exponential growth of the epidemic at the very
beginning. We have determined the optimal parameters cor-
responding to the classical SIR model (ν = 1) and to the
proposed SIR model (ν = 2). The residual error eso ≈ 4.24
for both models indicates that they represent the data with
similar accuracy. Accordingly, Fig. 3 shows the time evo-
lution of the basic reproduction number R0[k] in solid line
(proposed model) and in dotted line (classical model) which
are almost coincident in all days of the optimization horizon.
The same framework is viewed in Fig. 4 which clearly shows
that the accumulated sum of new diagnosed people a[k] pro-
vided by eachmodel fit adequately and equally to data shown
in red dots. This is not surprising since, until this moment,
the number of susceptible individuals is close to the entire
Brazilian population (≈ 93%), implying that R0[k] ≈ Rν[k]
for all k ∈ [0, Nm) and ν ∈ {1, 2}, see (9).

Nowwewant to validate the twomodels. To this end, let us
evaluate the sensitivity (robustness) of the optimal parame-
ters against data errors. To this purpose, we have included
one more day at the beginning of the outbreak with one
infected person. Hence for Nm = 420 we have set N = 29
and the same time sub-intervals Tj , j = 1, . . . , 28 and
T29 = [406, 420). This means that the first 27 time sub-
intervals are identical in both situations.We have determined
the optimal parameters with the same algorithm and the same
procedure. The following claims are supported by the trajec-
tories shown in Figs. 5 and 6, respectively:

– As before, in both figures we have plotted the trajectories
provided by the proposed model (solid lines) and by the
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Fig. 6 Outbreak time evolution in Brazil—Actual data (red dots), Pro-
posed model (solid line) and Classical model (dotted line)

classical model (dotted lines). It is seen that they virtually
coincide one to another and the same is true ifwe compare
the accumulated sum of newly diagnosed people a[k]
shown in the bottom of Fig. 4 and in the bottom of Fig. 6.
This is in part explained by the fact that the residual errors
are almost equal, namely eso ≈ 4.15 and eso ≈ 4.17,
respectively. Hence, it appears that as far as the number
of the accumulated sum of new infected is concerned,
both models perform well and are numerically robust.

– However, if we compare the basic reproduction number
R0[k] shown in Figs. 3 and 5 they appear completely
different mainly at the beginning and at the middle of the
outbreak time evolution. A possible explanation stems
from the non-convex nature of the problem (34) which
certainly hasmany local optima. Summarizing, it appears
that the important index R0[k] is not robust in face of the
data perturbation considered. Hence, in the context of the
proposed and the classical SIR models the estimation of
the basic reproduction number must be done with care by
paying particular attention to optimization methods and
data quality.

As a final remark, we would like to put in evidence the
fact that the outbreak in Brazil is composed by different and
successive waves whose shape can not be described with
precision by time-invariant models. Under unchanged con-
ditions, bothmodels estimate the endof the outbreak inBrazil
by August, 2021.

5.2 Outbreak in the United Kingdom

We now move our attention to the outbreak in the United
Kingdom that already reached the end after 441days.Data for
the entire time evolution of the epidemic is available inWorld
Health Organization (WHO) (2020) and, consequently, all
stages can be taken into account for parameter identifica-
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Fig. 7 Basic reproduction number time evolution in theUK—Proposed
model (solid line) and Classical model (dotted line)
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Fig. 8 Outbreak time evolution in the UK—Actual data (red dots),
Proposed model (solid line) and Classical model (dotted line)

tion. We have considered a population of M ≈ 68 million
inhabitants. As before, the optimal parameters have been
determined with Nm = 441 [day], N = 30 and T1 = [0, 28),
Tj = [14 j, 14( j + 1)), j = 2, . . . , 29, T30 = [420, 441).
The residual error eso ≈ 3.68 for both models indicates that
they represent the data with similar accuracy. The total of
accumulated new cases is very small (less than 6.5%) when
compared to the population, which naturally means that both
models with ν = 1 or ν = 2 provide virtually the same
trajectories.

Figure 7 shows the basic reproduction number for the pro-
posed model in solid line and for the classical model in
dotted line. Most of the time they are equal but in some
instances they are quite different. Even though, as Fig. 8
makes clear, the trajectories for n[k] and a[k] are very simi-
lar, in fact, they are practically coincident. This indicates once
again that the parameter estimation problem exhibits many
local solutions which yield models of comparable precision.
The non-convex nature of this problem needs supplementary
research efforts towards the characterization of the global
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solution. This perhaps is possible if we take into account that
the model nonlinearities are of polynomial type.

Finally, it is important to remark that the classical model
and the proposed model of the SIR class are precise enough
for analysis if we take care of their limitations to estimate the
basic reproduction number. This aspect can also be improved
by involving the determination of the time sub-intervals
Tj , j = 1, . . . , N in the optimization process. Moreover, as
clearly indicated in Costa et al. (2020) more research effort
must also be done towards the development of more accurate
prediction models depending on time-varying parameters.
Another possibility, successfully adopted in Giordano et al.
(2020), is to consider scenarios definedbyparameters leading
to prescribed R0[k] and evaluating by the model the impact
of each scenario on the epidemic evolution. To accomplish
this goal, more precise and robust time-varying models are
essential, see also Bertozzi et al. (2002).

6 Conclusion

The dynamic model proposed in this paper has good adher-
ence to reality, however, due to the presence of time-varying
parameters, it does not allow reliable long-term prediction
of the epidemic time evolution. After all, if the parame-
ters change in the future, there is no way to estimate them
from observations of the past and present. Fortunately, the
reported results seem to indicate that this fact becomes
less important as new data is processed by the sequential
optimization method which preserves causality and makes
possible short-term prediction. Hence, the impact of well-
defined scenarios on the epidemic evolution can be done
with accuracy. For long-term prediction time-varying param-
eters modeling seems to be essential to increase precision.
It is important to mention that we proposed an alternative
dynamic model of the SIR class that, in principle, can be
generalized to obtain continuous and discrete-time models
like SEIR, SEIRS, SIRS, SEI, SEIS, SI, SIS, among others.
Moreover, the robustness to cope with data errors, inevitable
in practice, is a subject that needs further theoretical develop-
ments. Finally, we would like to emphasize once again that
the practical viability of the proposed model needs factual
confirmation.
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