Skip to main content
Log in

Robust Stability Analysis of Grid-Connected Converters Based on Parameter-Dependent Lyapunov Functions

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the problem of robust stability analysis of grid-connected converters with LCL filters controlled through a digital signal processor and subject to uncertain grid inductance. To model the uncertain continuous-time plant and the digital control gain, a discretization procedure, described in terms of a Taylor series expansion, is employed to determine an accurate discrete-time model. Then, a linear matrix inequality-based condition is proposed to assess the robust stability of the polynomial discrete-time augmented system that includes the filter state variables, the states of resonant controllers and the delay from the digital control implementation. By means of a parameter-dependent Lyapunov function, the proposed strategy has as main advantage to provide theoretical certification of stability of the uncertain continuous-time closed-loop system, circumventing the main disadvantages of previous approaches that employ approximate discretized models, neglecting the errors. Numerical simulations illustrate the benefits of the discretization technique and experimental results validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See Appendix “State-Space Description of Resonant Controllers” for a more detailed description of the resonant controller matrices R and M.

  2. The symbol \(\star \) represents a symmetric block in the LMI.

References

  • Althoff, M., Stursberg, O., & Buss, M. (2007). Reachability analysis of linear systems with uncertain parameters and inputs. InProceedings of the 46th IEEE conference on decision and control, New Orleans, LA (pp. 726–732).

  • Ackermann, J. (1993). Robust control: Systems with uncertain physical parameters. London: Springer.

    Book  MATH  Google Scholar 

  • Agorreta, J., Borrega, M., López, J., & Marroyo, L. (2011). Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Transactions on Power Electronics, 26(3), 770–785.

    Article  Google Scholar 

  • Åström, K. J., & Wittenmark, B. (1984). Computer controlled systems: Theory and design. Englewood Cliffs, NJ: Prentice Hall Inc.

    Google Scholar 

  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM Studies in Applied Mathematics.

    Book  MATH  Google Scholar 

  • Braga, M. F., Morais, C. F., Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2013). A new procedure for discretization and state feedback control of uncertain linear systems. In Proceedings of the 52nd IEEE conference on decision and control, Florence, Italy (pp. 6397–6402).

  • Braga, M. F., Morais, C. F., Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2014). Discretization and control of polytopic systems with uncertain sampling rates and network-induced delays. International Journal of Control, 87(11), 2398–2411.

    MathSciNet  MATH  Google Scholar 

  • Chen, J., Yang, F., & Han, Q. L. (2014). Model-free predictive \({H}_{\infty }\) control for grid-connected solar power generation systems. IEEE Transactions on Control Systems Technology, 22(5), 2039–2047.

    Article  Google Scholar 

  • Dannehl, J., Fuchs, F., Hansen, S., & Thøgersen, P. (2010). Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Transactions on Industry Applications, 46(4), 1509–1517.

    Article  Google Scholar 

  • Dannehl, J., Wessels, C., & Fuchs, F. (2009). Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with filters. IEEE Transactions on Industrial Electronics, 56(2), 380–388.

    Article  Google Scholar 

  • Dhar, S., & Dash, P. K. (2015). A finite time fast terminal sliding mode I-V control of grid-connected PV array. Journal of Control, Automation and Electrical Systems, 26(3), 314–335.

    Article  Google Scholar 

  • Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabe, I., Montagner, V. F., & Pinheiro, H. (2009). Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter. IEEE Transactions on Power Electronics, 24(6), 1444–1452.

    Article  Google Scholar 

  • Guerrero, J., Blaabjerg, F., Zhelev, T., Hemmes, K., Monmasson, E., Jemei, S., et al. (2010). Distributed generation: Toward a new energy paradigm. IEEE Industrial Electronics Magazine, 4(1), 52–64.

    Article  Google Scholar 

  • Hara, S., Yamamoto, Y., & Fujioka, H. (1996). Modern and classical analysis/synthesis methods in sampled-data control – A brief overview with numerical examples. In Proceedings of the 35th IEEE conference on decision and control, Kobe, Japan (pp. 1251–1256).

  • Jungers, M., Oliveira, R. C. L. F., & Peres, P. L. D. (2011). MPC for LPV systems with bounded parameter variations. International Journal of Control, 84, 24–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Katayama, H., & Aoki, H. (2014). Straight-line trajectory tracking control for sampled-data underactuated ships. IEEE Transactions on Control Systems Technology, 22(4), 1638–1645.

    Article  Google Scholar 

  • Kawamura, A., Chuarayapratip, R., & Haneyoshi, T. (1988). Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply. IEEE Transactions on Industrial Electronics, 35(2), 295–300.

    Article  Google Scholar 

  • Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10), 1361–1379.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Won, S. (2006). Model Predictive Control for linear parameter varying systems using a new parameter dependent terminal weighting matrix. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E, 89A(8), 2166–2172.

    Article  Google Scholar 

  • Liserre, M., Teodorescu, R., & Blaabjerg, F. (2006). Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics, 21(1), 263–272.

    Article  Google Scholar 

  • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE international symposium on computer aided control systems design, Taipei, Taiwan (pp. 284–289).

  • Maccari, L., Massing, J. R., Schuch, L., Rech, C., Pinheiro, H., & Montagner, V. F., et al. (2012). Robust \({\cal H\it }_\infty \) control for grid connected PWM inverters with LCL filters. InProceedings of the 10th IEEE / IAS international conference on industry applications (INDUSCON) (pp. 1–6). CE, Brazil: Fortaleza.

  • Maccari, L., Massing, J. R., Schuch, L., Rech, C., Pinheiro, H., Oliveira, R. C. L. F., et al. (2014). LMI-based control for grid-connected converters with LCL filters under uncertain parameters. IEEE Transactions on Power Electronics, 29(7), 3776–3785.

    Article  Google Scholar 

  • Mattavelli, P., Spiazzi, G., & Tenti, P. (2005). Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers. IEEE Transactions on Power Electronics, 20(1), 140–147.

    Article  Google Scholar 

  • Meza, C., Biel, D., Jeltsema, D., & Scherpen, J. (2012). Lyapunov-based control scheme for single-phase grid-connected PV central inverters. IEEE Transactions on Control Systems Technology, 20(2), 520–529.

    Article  Google Scholar 

  • Moraes, V. M., Castelan, E. B., & Moreno, U. F. (2013). Full-order dynamic output-feedback compensator for time-stamped networked control systems. Journal of Control, Automation and Electrical Systems, 24(1), 22–32.

    Article  Google Scholar 

  • Mukherjee, N., & De, D. (2013). Analysis and improvement of performance in LCL filter-based PWM rectifier/inverter application using hybrid damping approach. IET Power Electronics, 6(2), 309–325.

    Article  Google Scholar 

  • Olalla, C., Queinnec, I., Leyva, R., & Aroudi, A. E. (2011). Robust optimal control of bilinear DC-DC converters. Control Engineering Practice, 19(7), 688–699.

  • Oliveira, R. C. L. F., & Peres, P. L. D. (2007). Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Transactions on Automatic Control, 52(7), 1334–1340.

    Article  MathSciNet  Google Scholar 

  • Oppenheimer, E. P., & Michel, A. N. (1988). Application of interval analysis techniques to linear systems: Part ii-The interval matrix exponential function. IEEE Transactions on Circuits and Systems, 35(10), 1230–1242.

    Article  MathSciNet  Google Scholar 

  • Parker, S., McGrath, B., & Holmes, D. (2014). Regions of active damping control for LCL filters. IEEE Transactions on Industry Applications, 50(1), 424–432.

    Article  Google Scholar 

  • Pena-Alzola, R., Liserre, M., Blaabjerg, F., Sebastian, R., Dannehl, J., & Fuchs, F. (2014). Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters. IEEE Transaction on Industrial Informatics, 10(1), 43–52.

    Article  Google Scholar 

  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11(1–4), 625–653. http://sedumi.ie.lehigh.edu/.

  • Su, H., Wang, J., & Chu, J. (1998). Robust memoryless \({{\cal H\it }}_\infty \) control for uncertain linear time-delay systems. In Proceedings of the 1998 American control conference, Philadelphia, PA, USA (pp. 3730–3731).

  • Wada, N., Saito, K., & Saeki, M. (2006). Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(12), 1446–1450.

    Article  Google Scholar 

  • Yin, J., Duan, S., & Liu, B. (2013). Stability analysis of grid-connected inverter with LCL filter adopting a digital single-loop controller with inherent damping characteristic. IEEE Transaction on Industrial Informatics, 9(2), 1104–1112.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Brazilian agencies CAPES, CNPq (Grants 307536/2012-2, 477487/2013-0), and FAPESP (Grants 2011/08312-6, 2014/22881-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo S. Tognetti.

Appendices

State-Space Description of Resonant Controllers

In order to ensure zero steady-state error and also to reject harmonic disturbances, resonant controllers can be used. In continuous-time, it is possible to consider the following resonant controller

$$\begin{aligned} {\dot{\xi }}_i(t)=R_{ci} \xi _i(t) + M_{ci} e(t) \end{aligned}$$
(19)

where

$$\begin{aligned} R_{ci} = \left[ {\begin{array}{*{20}{c}} 0 &{}1\\ { - {\omega _i}^2}&{}{ - 2{\zeta _i}{\omega _i}} \end{array}} \right] ~,~ M_{ci} = \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] \end{aligned}$$

and the tracking error is given by

$$\begin{aligned} e(t)=i_{ref}(t)-z(t). \end{aligned}$$
(20)

In this representation, \(\omega _i\) is the frequency of resonant controller and \(\zeta _i\) is a damping factor, employed to avoid problems in the discrete-time implementation related with placing controller poles at the border of the unit circle.

A state-space discrete-time representation of this controller is given by

$$\begin{aligned} \xi _i(k+1)= R_i \xi _i(k)+ M_i e(k) \end{aligned}$$
(21)

where \( \xi _i(k) \in \mathbb {R}^{2 \times 1}\), \( R_i \in \mathbb {R}^{2 \times 2}\), \(M_i \in \mathbb {R}^{2 \times 1}\).

Note that (21) also describes a resonant controller, but specialized for state feedback.

In the general case, a set of the above controllers can be used to represent multiple resonant controllers as

$$\begin{aligned} \xi (k+1)= R \xi (k) - M C_{\mathrm{dist}} x(k) + M i_{\mathrm{ref}}(k) \end{aligned}$$
(22)

where

$$\begin{aligned} \xi = \begin{bmatrix} \xi _1\\ \vdots \\ \xi _n \\ \end{bmatrix}, ~~ R = \begin{bmatrix} R_1&\quad&\quad \\&\quad \ddots&\quad \\&\quad&\quad R_n \\ \end{bmatrix}, ~~ M = \begin{bmatrix} M_1\\ \vdots \\ M_n \\ \end{bmatrix}. \end{aligned}$$
(23)

In this representation, the state vector has dimension 2n, where n is the number of resonant controllers to be implemented, and each resonant controller is discretized independently, resulting in the matrices R (block diagonal matrix) and M.

System Parameters and Control Gains

The parameters of the system used for controller design and to obtain the experimental results are given in Table 2.

Table 2 Parameters of the converter

Considering the parameters of Table 2 and tunning the resonant controllers at the frequencies of 60, 180, 300 and 420 Hz, the control gains designed in Maccari et al. (2014), used in Sect. 6, are given by (truncated with 4 decimal digits)

$$\begin{aligned} \mathbf{K }= \begin{bmatrix} -13.0046 \\ -0.8727 \\ -3.2444 \\ -0.5887 \\ 87.2641 \\ -86.5638 \\ 43.0993 \\ -41.8932 \\ 38.4751 \\ -37.7920 \\ 37.8061 \\ -36.2425 \end{bmatrix}'. \end{aligned}$$
(24)

Multi-nomial Series Development

In the matrix case, products in multi-nomial series are non-commutative. In this case, one can write \(A_{c}(\alpha )\) as

$$\begin{aligned} A_{c}(\alpha )^q&= \left( \sum \limits _{i=1}^{N} \alpha _i A_{ci} \right) ^q =\sum \limits _{p \in {\mathcal {P}}(q)} \prod \limits _{i=1}^{q} \alpha _{p_i} A_{c_{p_i}} \nonumber \\&= \sum \limits _{p \in {\mathcal {P}}(q)} \alpha _{p_1} A_{c_{p_1}} \cdots \alpha _{p_q} A_{c_{p_q}} \nonumber \\&= \sum \limits _{p \in {\mathcal {P}}(q)} \alpha _{p} A_{c_{p}}, = \sum \limits _{k\in {\mathcal {K}}(q)} \alpha ^{k} \sum \limits _{p \in {\mathcal {R}}(k)} A_{c_{p}} \end{aligned}$$
(25)

where, \( A_{c_{p}} = A_{c_{p_1}} \cdots A_{c_{p_q}}\) \(\alpha ^k=\alpha _1^{k_1} \alpha _2^{k_2} \cdots \alpha _N^{k_N}\), \(k=(k_1 k_2 \cdots k_N)\), \(\alpha _p=(\alpha _{p_1}, \alpha _{p_2}, \ldots , \alpha _{p_q}\)), \(p=(p_1 p_2 \cdots p_q)\),

$$\begin{aligned} {\mathcal {K}}(q) \triangleq \Big \{ k = ( k_1 \cdots k_N ) \in \mathbb {N}^N : \sum _{j=1}^N k_j = q, ~~ k_j \ge 0 \Big \}, \end{aligned}$$

\( {\mathcal {P}}(q) \) is the set of q-tuples obtained as all possible combinations of nonnegative integers \( p_i \), \( i = 1, \ldots , q \), such that \( p_i \in \{ 1,\ldots ,N \} \), that is,

$$\begin{aligned} {\mathcal {P}}(q) \triangleq \Big \{ p \in \mathbb {N}^q : p_i \in \{1,\ldots ,N \}, ~ i = 1, \ldots , q \Big \} \end{aligned}$$

and \( {\mathcal {R}}(k) \), \(k\in {\mathcal {K}}(q)\), is the subset of all q-tuples \(p \in {\mathcal {P}}(q)\) such that the elements j of p have multiplicity \(k_j\), for \(j=1,\ldots ,N\), that is,

$$\begin{aligned} {\mathcal {R}}(k) \triangleq \Big \{ p \in \mathbb {N}^q : m_p(j) = k_j, ~j = 1, \ldots , N \Big \} \end{aligned}$$

where \(m_p(j)\) denotes the multiplicity of the element j in p.

By definition, for N-tuples k and \(k'\), one has that \(k \ge k'\) if \(k_{i} \ge k'_{i}\), \(i = 1, \ldots , N\). Operations of summation \(k + k'\) and subtraction \(k - k'\) (whenever \(k' \le k\)) are defined componentwise.

Proof of Theorem 1

To prove Theorem 1, apply Schur’s complement in (18) to get

$$\begin{aligned} \underbrace{\begin{bmatrix} W(\alpha ) - \varPsi (\alpha )&\star \\ -X(\alpha )' + Y(\alpha ) A_{cl}^{\ell }(\alpha )&\Omega (\alpha ) - W(\alpha ) \end{bmatrix}}_{\varGamma } - \\ \lambda _{{\tilde{A}}} \begin{bmatrix} \delta _{{\tilde{A}}} I \\ 0 \end{bmatrix} \begin{bmatrix} \delta _{{\tilde{A}}} I \\ 0 \end{bmatrix}' - \lambda _{{\tilde{A}}}^{-1} \underbrace{\begin{bmatrix} X(\alpha ) \\ Y(\alpha ) \end{bmatrix}}_{V'} \begin{bmatrix} X(\alpha ) \\ Y(\alpha ) \end{bmatrix}' > 0. \end{aligned}$$

Knowing that \(\varDelta A_{cl}^{\ell }(\alpha )' \varDelta A_{cl}^{\ell }(\alpha ) < \delta _{{\tilde{A}}}^{2}I\) and using Lemma 1, one obtains

$$\begin{aligned} \varGamma - \begin{bmatrix} \varDelta A_{cl}^{\ell }(\alpha ) \\ 0 \end{bmatrix} V - V' \begin{bmatrix} \varDelta A_{cl}^{\ell }(\alpha ) \\ 0 \end{bmatrix}' > 0 \end{aligned}$$
(26)

which is equivalent to

$$\begin{aligned} \begin{bmatrix} \begin{pmatrix} W(\alpha ) -{A_{cl}}(\alpha )' X(\alpha ) ' \\ - X(\alpha ) {A_{cl}}(\alpha ) \end{pmatrix}&\star \\ -X(\alpha )' + Y(\alpha ) {A_{cl}}(\alpha )&\Omega (\alpha ) -W(\alpha ) \end{bmatrix} > 0 \end{aligned}$$
(27)

where \({A_{cl}}(\alpha )\) is given by (16). Finally, multiplying (27) by \({\mathcal {B}}' = \begin{bmatrix} -I&{A_{cl}}(\alpha )'\end{bmatrix}\) on the left and by \({\mathcal {B}}\) on the right, one gets \(W(\alpha ) - (A_{cl}^{\ell }(\alpha ) + \varDelta A_{cl}^{\ell }(\alpha ))' W(\alpha ) (A_{cl}^{\ell }(\alpha ) + \varDelta A_{cl}^{\ell }(\alpha )) > 0,\) that ensures the stability of the closed-loop system (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, M.F., Morais, C.F., Maccari, L.A. et al. Robust Stability Analysis of Grid-Connected Converters Based on Parameter-Dependent Lyapunov Functions. J Control Autom Electr Syst 28, 159–170 (2017). https://doi.org/10.1007/s40313-017-0301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0301-7

Keywords

Navigation