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Abstract
We study the question of which rings, and which families of ideals, have uniform symbolic
topologies. In particular, we show that the uniform symbolic topology property holds for all
dimension one primes in any normal complete local domain, provided dimension one primes
in hypersurfaces have the uniform symbolic topology property.We also discuss bootstrapping
techniques and provide a strong bootstrapping statement in positive characteristic. We apply
these techniques to give families of primes in hypersurfaces of positive characteristic which
have uniform symbolic topologies.
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1 Introduction

In this paper we are interested in the following question.

Question 1.1 Let R be a normal, excellent local domain and X ⊆ Spec(R). Does there exist
a positive integer b such that for all prime ideals P ∈ X, P(bn) ⊆ Pn for all n ≥ 1?1

Here we write P(t) to denote the t th symbolic power of the prime ideal P , namely P(t) =
Pt RP ∩ R. For any Noetherian ring R, when b as above exists, we shall say that X satisfies

1 In our previous papers [22–24] this question was formulated for complete local domains and X = Spec(R),
but this turns out to be false in the absence of normality. See [25].
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the uniform symbolic topology property on prime ideals. Of particular interest is the case
X = Spec(R), in which case we say that R satisfies the uniform symbolic topology property.
Uniform results of this type for regular rings were first given by Ein, Lazarsfeld and Smith in
[10], byHochster andHuneke in [14], and recently byMaandSchwede inmixed characteristic
[30]. In these papers, the authors prove that if R is a regular local ring and d is the Krull
dimension of R, then P((d−1)n) ⊆ Pn , for all prime ideals P ⊆ R and all n ≥ 1. In [23],
uniform results were proved for isolated singularities, under some mild conditions on the
ring. Because a complete local domain containing a field, or an affine domain over a field,
is a finite extension of a finite dimensional regular domain containing a field, it is natural
to consider how the uniform symbolic topology property behaves with respect to finite ring
extensions. Thus, Question 1.1 would have a positive answer for such rings if whenever
S ⊆ R is a finite extension of Noetherian domains, R has the uniform symbolic topology
property on prime ideals if S has the uniform symbolic topology property on prime ideals.
In [24] ascent and descent theorems of this type were proved (see [24, Corollaries 4.5 and
3.4]). Although descent of the uniform symbolic topology property holds, the results in [24]
for ascent are not strong enough to give a positive answer to Question 1.1 outright. On the
other hand, the ascent and descent results from [24] play an important role in our recent paper
[22], where we show that (modulo some mild hypotheses), the uniform symbolic topology
property holds in abelian extensions of regular rings.

In this paper, we use these ascent and descent theorems tomake a reduction of the question
above to hypersurfaces when X is the set of dimension one primes. In particular, using
elementary Galois theory, we show that the family of dimension one primes in any complete
normal local domain has the uniform symbolic topology property, if in all hypersurfaces,
the family of dimension one, regular primes has the uniform symbolic topology property.
However, the hypersurface case itself appears rather difficult, even in the case where the ring
R is obtained by adjoining the nth root of a square-free element of the base ring (see [22,
Theorem 4.4]).

A key ingredient in [14, 15] and [23], is the existence of ring elements that uniformly
multiply large symbolic powers of a family of ideals into smaller powers of the given ideals.
In [22], we formalized this by calling such elements uniform symbolic multipliers. In section
four, we prove the existence of uniform symbolic multipliers for hypersurfaces defined by a
separable polynomial. In section five, we provide bootstrapping results for hypersurfaces. By
bootstrapping, we mean results that guarantee the uniform symbolic topology property holds
if for some c, k fixed, P(c) ⊆ Pk , for all prime ideals P . Aside from their intrinsic interest,
boostrapping results enable us to strengthen the results in section three regarding reduction
of the general problem to the case of hypersurfaces. In many cases, finding a uniform k such
that P(k) ⊆ P2, for all P ∈ X , suffices for the uniform symbolic topology property. Results
of this type appear in section five. Finally, we use the techniques developed in section five to
prove that certain families of regular primes satisfy the uniform symbolic topology property
in many local hypersurfaces of positive characteristic.

For unexplained terminology, we refer the reader to the book [8]. Preliminary results and
basic definitions are contained in Section 2. For a more detailed history of the problem at
hand, we refer the reader to [23] or [24] and for unexplained terminology, we refer the reader
to the book [8].
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2 Preliminaries

In this brief section we record the results that we will rely upon throughout the paper. Our
work relies heavily on both the Uniform Artin-Rees Property and the Uniform Briançon-
Skoda Property. Because of this dependence, many of our theorems need to assume we are
in a position to use them. This leads to the following definition:

Definition 2.1 Throughout this paper, we say that a reduced Noetherian ring S satisfies our
standard hypothesis if for every finite extension T of S and reduced ideal J ⊆ T , T /J
satisfies both the Uniform Artin-Rees Property and the Uniform Briançon-Skoda Property.

For the reader’s convenience, we recall the definitions:

Definition 2.2 Let S be a Noetherian ring. We say that S satisfies the Uniform Artin-Rees
Property if for all finitely generated S-modules N ⊆ M , there exists an integer k (depending
on N and M) such that for all ideals I of S, and for all n ≥ k

I n M ∩ N ⊆ I n−k N .

Definition 2.3 Let S be a Noetherian reduced ring. We say that the Uniform Briançon-Skoda
Property holds if there exists a positive integer k such that for all ideals I of S, and for all
n ≥ k,

I n ⊆ I n−k .

Here we are writing J to denote the integral closure of an ideal J .

Let S be a reduced Noetherian ring. By [19, Theorems 4.12 and 4.13], in each of the
following cases, S satisfies our standard hypothesis.

i) S is essentially of finite type over an excellent Noetherian local ring.
ii) S is a ring of characteristic p, and under the Frobenius map F : S → S, S is a finite

module over the image of the Frobenius map. If S is reduced, this is equivalent to saying
that S1/p is module finite over S.

iii) S is essentially of finite type over Z .

Two main results of [24], which we use freely in this paper, are the ascent and descent
theorems mentioned in the introduction. Note that in [24], the base ring S is assumed to be
acceptable, meaning it satisfies one of the three conditions above. In fact, the results below
from [24] hold when S satisfies our standard hypothesis, since in [24] we used the acceptable
hypothesis in order to invoke the Uniform Artin-Rees and the Uniform Briançon-Skoda
properties.

Theorem 2.4 (Ascent) Let S ⊂ R be a finite integral extension of Noetherian domains such
that S satisfies our standard hypothesis. Assume further that S is integrally closed and the
quotient field of R is separable over the quotient field of S. If S has the uniform symbolic
topology property on prime ideals, then R has the uniform symbolic topology property for
all prime ideals Q ⊆ R such that Q is the only prime lying over Q ∩ S. Moreover, if R is
also integrally closed, the conclusion holds for an arbitrary extension of quotient fields.

Theorem 2.5 (Descent) Let S ⊂ R be a finite integral extension of Noetherian domains.
Assume that S satisfies our standard hypothesis and is integrally closed. There exists an
integer r , depending only on the extension S ⊂ R, such that if Q is a prime in R, q = S ∩ Q,
and Q(bn) ⊂ Qn, for some fixed b and for all n ≥ 1, then q(rbn) ⊂ qn for all n ≥ 1. In
particular, if R satisfies the uniform symbolic topology property, then so does S.
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As a consequence of the descent theorem, for example, if a finite group acts on a regular
ring which satisfies our standard hypothesis and is of equicharacteristic zero having finite
Krull dimension, then the ring of invariants must satisfy the uniform symbolic topology
property on prime ideals.

3 Reduction to Hypersurfaces

The main theorem of this section is a reduction theorem which proves that the property of a
ring having uniform symbolic topology property can often be reduced to a special class of
prime ideals in hypersurface rings. The main techniques used are from Galois theory and the
uniform Artin-Rees theorem. We begin with three propositions concerning contractions of
prime ideals inside subrings of Galois extensions. Our main result is Theorem 3.6 below.

Proposition 3.1 Let S ⊂ R be a finite Galois extension of normal Noetherian domains. Let
Q ⊂ R be a prime ideal. Then there exist an element v ∈ R and a normal domain T with
S[v] ⊂ T ⊂ R such that

(a) T ⊂ R is a Galois extension and Q is the only prime in R lying over Q ∩ T .
(b) For B := S[v], B and T have the same fraction field and Q ∩ T does not contain the

conductor of T into B. In particular, Q ∩ T does not contain f ′(v), where f (x) is the
minimal polynomial of v over the quotient field of S.

Proof Let K denote the fraction field of S and L denote the fraction field of R. Let G be the
Galois group of L over K and set q = Q ∩ S. Let Q = Q1, Q2, . . . , Qr denote the prime
ideals in R lying over q . They are exactly the conjugates of Q under the action of G.

Let H be the decomposition group of Q, that is, the subgroup of automorphisms g ∈ G
such that g(Q) = Q. Let E be the fixed field of H , and let T be the integral closure of S
in E . It is well known that Q is the unique prime ideal of R lying over Q ∩ T , which gives
the first statement of the theorem, as R is Galois over T by construction. For example, see
[5]. However, we need some notation to exhibit this explicitly in order to prove part (b). For
2 ≤ i ≤ r , choose an element gi ∈ G such that gi (Q) = Qi . We set g1 = 1, the identity.
Then

G = H ∪ g1H ∪ . . . ∪ gr H

is a coset decomposition of G over H . Note that the degree of the extension K ⊂ E is r .
To prove the second statement, choose u ∈ Q, u /∈ ⋃

2≤i≤r Qi . For g ∈ H , observe that
g(u) /∈ Q j for every 2 ≤ j ≤ r . For if g(u) ∈ Q j , then u ∈ g−1(Q j ), which by the choice
of u means that g−1(Q j ) = Q, or g(Q) = Q j , a contradiction. Set v = ∏

g∈H g(u). Clearly
v is invariant under H , and is therefore in T . Moreover, v ∈ Q and v /∈ ⋃

2≤i≤r Qi . We
claim that v is an element which satisfies the second condition of the theorem.

We first prove that B := S[v] has the same fraction field as T . To prove this it suffices to
see that the degree of B over S is the same as that of T over S, which is r . We prove this by
noting that v has r distinct conjugates, namely v, g2(v), . . . , gr (v) which must be distinct
since if h(v) = v, then h must be in H , as v ∈ Q and v /∈ ⋃

2≤i≤r Qi . It follows that the
minimal polynomial of v over K is exactly

∏
1≤i≤r (X − gi (v)).

It remains to prove that Q ∩ T does not contain the conductor of T into B. Since T is the
integral closure of B, it is well known that the element f ′(v) is in the conductor of T into
B (see, for example, [43, Theorem 12.1.1]). We have f ′(v) = (v − g2(v)) · · · (v − gr (v)),
so that as a polynomial expression in v, every term in f ′(v) is a multiple of v, and hence in
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Q, except the constant term which up, to a sign, is g2(v) · · · gr (v), which is not in Q. Thus,
f ′(v) /∈ Q ∩ T . ��
We record the following corollary of Proposition 3.1 which is interesting in its own right.

Corollary 3.2 Let S be a regular local ring and R the integral closure of S in a finite Galois
extension of its quotient field. If Q ⊆ R is a prime ideal, then there exists a normal local
domain S ⊆ T ⊆ R such that Q is the only prime in R lying over Q ∩ T and TQ∩T is a
regular local ring.

Proof Let Q ⊆ R be a prime ideal. The proof of Proposition 3.1 shows that there exist a
normal domain S ⊆ T ⊆ R and v ∈ T such that S[v] and T are birational, Q is the only
prime lying over Q ∩ T and f ′(v) /∈ Q ∩ T , where f (x) is the minimal polynomial of v over
the quotient field of S. Since S is regular, S[v]Q∩S[v] is regular, since f ′(v) /∈ Q ∩ S[v]. On
the other hand, f ′(v) is in the conductor of T into S[v], so TQ∩T = S[v]Q∩S[v] is regular, as
required. ��
Proposition 3.3 Let A ⊂ B be Noetherian integral domains having the same fraction field.
Assume that A satisfies the uniform symbolic topology property, B is a finite extension of A,
and B has the uniform Artin-Rees property. Then there exists an integer e such that for all
primes Q in B such that Q ∩ A does not contain the conductor of B into A and for all n ≥ 1,
Q(en) ⊂ Qn.

Proof Fix an integer c such that q(cn) ⊂ qn for all primes q of A and for all n ≥ 1. Let
t be any element of the conductor and choose f ≥ 1 such that f is a uniform Artin-Rees
number for the module t B ⊂ B. We claim that e := c( f + 1) satisfies the conclusion of
the proposition. Let Q be a prime in B not containing the conductor, set q := Q ∩ A and
let u ∈ Q(en). We have that u ∈ Qen BQ ∩ B = qen Aq ∩ B, since Q does not contain the
conductor. It follows that tu ∈ qen Aq ∩ A = q(en) ⊂ q( f +1)n . Hence

tu ∈ Q( f +1)n ∩ t B ⊂ t Q( f +1)n− f .

We cancel t to obtain that u ∈ Q( f +1)n− f ⊂ Qn , as desired. ��
Proposition 3.4 Let S ⊆ R be a finite Galois extension of normal Noetherian domains.
Assume S satisfies our standard hypothesis. Then there exist finitely many simple, integral
extensions S[vi ] ⊆ R, 1 ≤ i ≤ t , with the following property: If each S[vi ] satisfies the
uniform symbolic topology property for each prime ideal not containing the conductor of
S[vi ] into its integral closure, then R satisfies the uniform symbolic power property.

Proof Let K denote the quotient field of S and L denote the quotient field of R. Since L is
Galois over K , there are only finitely many intermediate fields K ⊆ E ⊆ L . Thus, there are
only finitely many normal domains S ⊆ T ⊆ R, namely, the integral closure of S in each
intermediate field E . The idea is to now apply the previous two propositions.

Fix one such T and define ΛT to be the set of prime ideals Q of T with the property that
there exists an element vQ ∈ T such that S[vQ] is birational to T and Q does not contain
f ′
vQ

(vQ), where fvQ (X) is the minimal polynomial for vQ over K . If this set is nonempty,
let IT be the ideal generated by all of the f ′

vQ
(v) obtained for each Q ∈ ΛT . Then IT is

not contained in Q for every Q ∈ ΛT , and moreover, IT is generated by finitely many
f ′
v1

(v1), . . . , f ′
vr

(vr ) corresponding to S[vi ] ⊂ T , 1 ≤ i ≤ r . Since T inherits the uniform
Artin-Rees theorem from S (by [19]), it follows from Proposition 3.3 that if S[vi ] satisfies
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the uniform symbolic topology property at primes not containing the conductor, there is an
integer ei such that for all n ≥ 1 and every Q ∈ Spec(T ) such that Q does not contain
f ′
i (vi ), Q(ei n) ⊆ Qn , since f ′

i (vi ) is in the conductor of T into S[vi ]. By choosing eT to be
the maxmium of all ei , we obtain that for all Q ∈ ΛT , and for all n ≥ 1, Q(eT n) ⊂ Qn .

Now, for each T we obtain finitely many rings of the form S[v] with the property that if
each S[v] satisfies the uniform symbolic topology property, then there exists an eT as in the
previous paragraph, a uniform constant for ΛT . For the required collection S[vi ], we take
the finite collection of rings of the form S[v] obtained from each T as above and take e to
be the maximum eT as T ranges over the finitely many normal domains between S and R.
Thus, Q(en) ⊆ Qn , for all n and all Q ∈ ΛT , for all T .

Finally, let CT denote the prime ideals P in R such that P ∩ T ∈ ΛT . By Proposition 3.1
every prime in R belongs to some CT . By the previous paragraph and the ascent property
(Theorem 2.4), it follows that for each T , there is an integer kT , depending only on e and T
such that P(kT n) ⊂ Pn for all P ∈ CT . Taking k to be the maximum of the kT shows that R
satisfies the uniform symbolic topology property. ��
Remark 3.5 While the proposition above is accurate, as of now it has limited applicability.
This is because, in an arbitrary hypersurface A, there may exists prime ideals P ⊆ A so
that the symbolic and P-adic topolgies are not equivalent - and thus the uniform symbolic
topology property could not hold. For an example of this, see [25]. However, the reduction
in the proposition above depends upon the choice of u ∈ Q, for the primes ideals Q ⊆ R.
It is conceivable that a more careful choice of u ∈ Q (or u in Q extended to some generic
extension of R) has the property that the hypersurface S[v] derived from u has the property
that for any prime P ⊆ S[v], the symbolic and P-adic topologies are equivalent. Such a
choice is available in the example from [25]. However, for dimension one primes in R, this is
no longer an issue, since, by Schenzel’s criterion, any such prime in a complete local domain
has the property that its adic and symbolic topologies are equivalent, so we state the following
theorem for this class of primes.

We now combine the results of this section to prove the following theorem. If A is a
Noetherian ring and P ⊆ A is a prime ideal, we will say that P is a regular prime if AP is a
regular local ring. We say that A has the uniform symbolic property for its regular primes, if
there exists c > 0 such that P(cn) ⊆ Pn , for all regular primes P and all n ≥ 1.

Theorem 3.6 Consider the following statements.

(a) Complete local hypersurface rings have uniform symbolic topologies for their dimension
one, regular primes.
(b) All normal complete local domains have uniform symbolic topologies at dimension one,
regular primes.

If either (a) or (b) holds, then the family of dimension one primes in all normal complete
local domains have uniform symbolic topologies.

Proof Let R be a normal, complete local domain. Then R is finite over a complete regular
local ring S. Note that S satisfies our standard hypothesis. Let K denote the quotient field of S
and L the quotient field of R. We want to reduce to the case that R is a Galois extension of S.
By taking the integral closure of R in the normal closure of L , we obtain a normal, complete
local domain R′ containing R such that S ⊆ R′ is a finite extension of normal domains. By
the descent property Theorem 2.5, the uniform symbolic topology property descends in a
finite extension of normal domains (for which Uniform Artin-Rees holds), so that if R′ has
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the uniform symbolic topology property, then R has the uniform symbolic topology property.
After changing notation, it now follows that, for either statement (a) or (b), we may begin
again assuming that L is a normal extension of K .

If S has characteristic zero, then R is a Galois extension of S. If S has characteristic
p, let E be the separable closure of K in L . Then K ⊆ E is a Galois extension and L is
purely inseparable over E . Let R′ denote the integral closure of S in E , so that R′ ⊆ R
is a finite extension of complete, normal, local domains. Note that each prime ideal Q in
R lies over exactly one prime in R′. Thus, by the ascent property, Theorem 2.4, R has the
uniform symbolic topology property, if R′ has the uniform symbolic topology property. It
now follows that to prove the theorem, we may assume that R is a Galois extension of S.

For statement (a), by Proposition 3.4 (and its proof), there exist finitely many simple
extensions S[vi ] ⊆ R with the property that if each S[vi ] satisfies the uniform symbolic
topology property at each prime not containing f ′

i (vi ), then R satisfies the uniform symbolic
topology property. Here fi (x) is the minimal polynomial of vi over K . However, for any
prime P ⊆ S[vi ] not containing f ′

i (vi ), S[vi ]P is regular. Hence by our assumption, S[vi ]
satisfies the uniform symbolic topology property for all primes not containing f ′

i (vi ), which
gives what we want.

For statement (b), let T1, …, Ts be the set of normal domains between S and R. Note that
each Tj is a complete normal local domain. By Corollary 3.2, for each prime ideal Q ⊆ R,
there is a Ti such that Q ∩ Ti is a regular prime and Q is the only prime lying over Q ∩ Ti .
Thus, if all of the Ti have uniform symbolic topologies at regular primes, then as in the
proof of Proposition 3.4, the uniform symbolic topology property lifts to all primes in R, via
Theorem 2.4. ��

4 Uniform Symbolic Multipliers for Hypersurfaces

Akey ingredient in a number of papers that deal with the uniform symbolic topology property
is the existence of ring elements that multiply large symbolic powers of an ideal into powers
of smaller symbolic powers. In [22], we formalized this notion with the following definition.

Definition 4.1 Let R be a Noetherian ring and U a set of ideals of R (for example, all prime
ideals or all reduced ideals). We say that a non-zerodivisor x ∈ R is a uniform multiplier for
symbolic powers with respect to U with if there exists k ≥ 1 such that for all ideals I ∈ U ,
xn I (kn+en) ⊆ (I (e+1))n for all e ≥ 0 and n ≥ 1. If U = Spec(R), we just say that x is a
uniform multiplier for symbolic powers. In either case, we refer to the integer k as the index
of the multiplier x .

The purpose of this section is to prove the existence of uniform multipliers for symbolic
powers over separable hypersurfaces. As a corollary we are able to strengthen the reduction
to hypersurfaces theorem from the previous section (see Corollary 4.6 below).

Remark 4.2 It follows from [14,Theorem1.1], that if R is a finite-dimensional regular domain
containing a field, then 1 ∈ R is a uniform multiplier for symbolic powers for all ideals. The
same theorem shows that if R is a geometrically reduced affine domain over a field K (which
in the case that R has characteristic zero, just means that R is reduced), then any x in the
square of the Jacobian ideal of R over K is a uniform multiplier for symbolic powers for
all ideals. In [23, Proposition 3.4], it is shown that if R is a Noetherian domain containing
a field of characteristic p > 0 such that R is F-finite and an isolated singularity, then there
exists an m-primary ideal consisting uniform multipliers for symbolic powers. Additionally,
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in [22], we prove the existence of uniform multipliers for symbolic powers in certain types
of repeated radical extensions.

The following crucial lemma appears as [22, Lemma 3.3], though it has a number of
closely related antecedents (see [14] and [23], for example) .

Lemma 4.3 Suppose that R is a d-dimensional F-finite integral domain containing a field
of characteristic p > 0. Fix a ∈ R and assume there are flat R-modules Fq ⊆ R1/q such
that a R1/q ⊆ Fq for all q. Then for every ideal I ⊆ R, if we let h denote the maximum of
the analytic spreads of the ideals IP , where P is an associated prime of I , then an I (nh+en)

is contained in the tight closure of (I (e+1))n for all e ≥ 0 and n ≥ 1. Moreover, if a is also
a test element for R, then a2 is a uniform multiplier for symbolic powers, with index d, for
all ideals of R.

We now prove that if R is a hypersurface defined by the separable polynomial, f (x), then
f ′(x)2 is a uniform multiplier for symbolic powers.

Proposition 4.4 Let S be an excellent regular domain containing a field and suppose R is a
finite extension of the form R = S[x], where x is the root of a monic separable polynomial
f (X) such that R = S[X ]/( f (X)). We assume that R is reduced and that f ′(x) is not a
zerodivisor in R. Further assume that if S has positive characteristic, then S is F-finite. Then
f ′(x)2 is a uniform symbolic multipler with index d := dim(R) for the set of radical ideals
in R.

Proof We first consider the case that S contains a field of characteristic p. For this, we will
first show that for every ideal I ⊆ R, f ′(x)n I (nh+en) is contained in the tight closure of
(I (e+1))n for all e ≥ 0 and n ≥ 1, where h denotes the maximum of the analytic spreads of
the ideals IP , where P is an associated prime of I . By the previous lemma, we must find flat
R-modules Fq for which f ′(x)R1/q ⊆ Fq for all q . We set Fq := S1/q [R] = S1/q [x] for all
q .

First note that since S is regular, S1/q is flat over S and since R is free over S, S1/q ⊗S R is
flat over R. On the other hand, as in the proof of [15, Lemma 3.4], S1/q ⊗S R is isomorphic
to S1/q [R] = S1/q [x] (since, for example, R f ′(x) is regular). Thus, we take Fq := S1/q [x]
for each q .

We now note that f ′(x)R1/q ⊆ Fq for all q . To see this, let K denote the total quotient ring
of R, so that K = K1×· · ·×Kr , where each Ki is the quotient field of R/Pi , with P1, . . . , Pr

denoting theminimal primes of R. Note that in fact each Pi is a principal ideal generated by an
irreducible factor, say gi (X), of f (X). Let Ri := R[X ]/(gi (X)) and write xi for the image of
x in Ri , so that Ri = S[xi ]. Now Ki is separable over L (since the image f ′(x) in Ki is non-
zero) and thus, L1/q ⊗S Ki = K 1/q

i , as L1/q is purely inseparable over L (by [26, Theorem

21]). It follows that for each i , K 1/q
i = L1/q [xi ], so that xi is a primitive element for K 1/q

over L1/q . Thus, g′
i (xi )R1/q

i ⊆ S1/q [xi ]. Since g′
i (xi ) divides f ′(x), f ′(x)R1/q

i ⊆ S[xi ], for
all q and all i . Since as subrings of K 1/q = K 1/q

1 × · · · × K 1/q
r , R1/q can be identified with

R1/q
1 × · · · × R1/q

r and S1/q [x] can be identitifed with S1/q [x1] × · · · × S1/q [xr ], it follows
that f ′(x)R1/q ⊆ S1/q [x], as required.

Now, by [13, Theorem 6.13], since f ′(x)R1/q ⊆ S1/q [R] for all q , f ′(x) is a test element
for R and thus, f ′(x)2n I (nh+en) ⊆ (I (e+1))n , as required.

If S contains a field of characteristic zero, the proof of the result we seek proceeds via
reduction to characteristic p. The proof follows along the same lines as most reduction to
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characteristic p proofs. In particular, we can follow the ideas in the proof of [14, Theorems
4.3 and 4.4], and also the proof of Theorem 4.7 and in the Appendix in [21]. To elaborate, the
results in [14], show how, starting with a complete local ring A, say, and a counter-example
to an inclusion of the type we want involving symbolic powers, one can produce a counter-
example in a ring of positive characteristic - the point being that conditions like elements
belonging to, or not belonging to, various symbolic powers, as well as the maximum of
local analytic spreads can be preserved via the reduction process. On the other hand, we
need a slight variation of this, because we will be working with two rings at once, S and
its simple extension R – but [21, Theorem 4.7 and the Appendix], illustrate how to carry
the ring strucure of R along in the reduction process. Another crucial point here is that the
failure of the required property of a proposed uniform multiplier for symbolic powers can be
preserved along the way, because the element f ′(x)2 is given a priori as an element of the
original ring – in this case R.

We now sketch out the steps required in order to reduce our statement to positive char-
acteristic. So, we assume that we have I ⊆ R, u ∈ I (hn+en) with f ′(x)2nu /∈ (I (e+1))n , for
some e ≥ 0, n ≥ 1. By standard localization arguments, our counter-example persists after
we localize at some prime ideal in S, so we may assume that we have a counter-example
when S is a regular local ring.We now lift the counterexample by completing S at its maximal
ideal. Writing Ŝ for the completion of S, we have R̂ = Ŝ⊗S R, which is faithfully flat over R.
Note also that since S is excellent, R̂ remains reduced, as does R̂/I R̂ = R̂/ Î . Morever, since
R̂/I R̂ is faithfully flat over R/I , non-zerodivisors on the latter remain non-zerodivisors on
the former, so that if U ⊆ R denotes the set of non-zerodivisors on R/I and W ⊆ R̂ denotes
the set of non-zerodivisors on R̂/ Î , then U = W ∩ R and hence (R/I k)U ↪→ (R̂/ Î k)W , so
that Î (k) ∩ R = I (k), for all k ≥ 1. Thus, u ∈ Î (hn+en). On the other hand, we clearly have
I (k) R̂ = I k R̂U ∩ R̂ ⊆ I k R̂W ∩ R̂ = Î (k). If P is an associated prime of R̂/ Î (k), P ∩ W = ∅,
so P is contained in a minimal prime of Î , and thus P is also an associated prime of I (k) R̂.
It follows from this that I (k) R̂ = Î (k), for all k. Therefore, ((I R̂)(e+1))n = ( Î (e+1))n , and
therefore, anu /∈ ( Î (e+1))n . So, we may begin again assuming that S is a complete regular
local ring, and we have a counter-example in R as above to our proposition.

At this point one uses Artin approximation to find an counter-example in an affine algebra
over a field of characteristic zero. If we were only working with S, then by [14, Theorem 4.3],
we could create a counter-example in an affine algebra, but we need to preserve our counter-
example in a ring over S. We may therefore, follow the path laid out in [21, Theorem 4.7 and
the Appendix]. One uses equations over S to capture the ring structure of R. For example,
since R is free over S with basis 1, x, . . . , xn−1, where f (X) has degree n, one writes each
product xi · x j in terms of the basis with coefficients in S. The resulting equations can be
thought of solutions over S to a system of equations in n variables over S. Similarly, one can
realize the associative property of multiplication and the distributive property as solutions to
equations over S. Since the ideal I is a submodule of R as an S-module, one can choose a set
of generators for I and write equations expressing the closure of I under multiplication by
elements of R, using the consequences of taking products of the basis elements of R over S
with the generators of I as an S-module. As in [14, Theorem 4.3], one can transfer all of this
data and the attendant data associated to our counter-example to a finitely generated algebra
over the coefficient field, say E , of S. Here we are thinking of S as a formal power series
ring in d variables over E . In fact, one first adjoins to E all of the relevant elements from S
that are solutions to the various equations tracking the data to obtain a subring ring S0 and
then uses [14] (which relies upon [1]) to find a ring S1 and maps S0 ↪→ S1 → S in which all
of the conditions from S are preserved, and such that all of the ideals and modules that we
started with in S are obtained by tensoring their counterparts in S1 with S over S1. Moreover,
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S1 is a regular ring and the counter-example in question holds in the extension R1 := S1[x].
Note that this can be done so that the element x still satisfies the equation f (x) = 0, f ′(x)

is a non-zerodivisor in R1 and the rings R1 and R1/I1 are reduced, where I1 is generated
by the images in S1 of the original generators of I . Now, strictly speaking, the field E is not
the original field E0 contained in the original S, but one can assume E0 ⊆ E , and the last
paragraph of [16, Theorem 3.5.1] explains how to reduce to the case that E0 = E .

The next step is to reduce to an affine algebra overZ, which can be done in a standard way
by collecting all coefficients of all the finitely many equations which describe our situation,
and then letting A be the finitely generatedZ-algebra obtained as the subring of the base field
given by adjoining those finitely many elements to Z. One further uses generic flatness to
insure that after creating models RA and (R/I )A of R and R/I over this finitely generated
Z-subalgebra A of k, there exists a dense subset of closed points S ⊆ Spec A such that we still
a counterexample after moding out any one of the closed points in S. These counterexamples
now live in positive characteristic, and by choosing the characteristic large enough we can
avoid any divisors of our the degree of f (X), so that f (X) remains separable. Moreover,
as described in [16, Chapter 2] and [14, Theorem 4.3], we retain all relevant information,
including various ideals being reduced, and analytic spreads. This leads to a contradiction to
the positive characteristic case. ��

The proposition above enables us to extend the main theorem from the previous section.
For this, we must use the following bootstrapping theorem from [22].

Theorem 4.5 Let R be a Noetherian ring. Let U be a set of ideals of R, and suppose x ∈ R
is a uniform symbolic multiplier with index k ≥ 1 for the set U. Assume further that the pair
(x) ⊆ R has uniform Artin-Rees number l ≥ 1. If there exists b ≥ 1 such that I (b+1) ⊆ I l+1,
for all ideals I ∈ U, then for d = k + b, I (dn) ⊆ I n, for all n ≥ 1 and all I ∈ U.

Here is the extension of Theorem 3.6.

Corollary 4.6 Let C denote the class of hypersurfaces T of the following type: T =
S[X ]/( f (X)), where S is a complete regular local ring, f (X) is a separable polynomial,
and S is F-finite if S has positive characteristic. Suppose each T in C has the property that
if l denotes the uniform Artin-Rees number for ( f ′(x)) ⊆ T , then there exists k ≥ 1, such
that P(k) ⊆ Pl , for all dimension one regular primes P ⊆ T . Then the following statements
hold:

(a) Every T in C satisfies the uniform symbolic topology property on the set of dimension
one regular primes.
(b) In all normal, complete local domains, the family of dimension one primes satisfies the
uniform symbolic topology property.

Proof The first statement follows immediately from Proposition 4.4 and Theorem 4.5. The
second statement follows from the proof of Theorem 3.6 (where the general case of a normal
complete local domain reduces to the case of a Galois extension over a complete regular local
ring), together with Proposition 4.4 and Theorem 4.5. ��

5 Bootstrapping in Characteristic p

The purpose of this section is to prove a bootstrapping theorem for hypersurfaces in charac-
teristic p > 0. Here we assume outright that our ring R is a hypersurface, and we consider
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the set E ⊆ Spec(R) of primes in the ring whose adic and symbolic topologies are equivalent
- the largest possible set of primes to which a uniform statement could apply. In particular,
we prove that if R is a complete local domain which is a hypersurface and has positive
characteristic, then if we can find a uniform k such that for all primes P ∈ E , P(k) ⊂ P2,
then E has the uniform symbolic topology property. Note that the power 2 on each P is
now independent of the hypersurface, contrary to the statement of Corollary 4.6. Note also
that this result applies to abstract hypersurfaces, not just those defined by a single separable
polynomial over a regular local ring.

Throughout this section, if R = S/I is a quotient of a regular local ring and P is a prime
ideal of R, then by Lk we denote the unmixed part of Pk + I in S, i.e., the lift of the kth
symbolic power of P to S.

We need a lemma which is implicit in the work of [14], but which we state formally:

Lemma 5.1 Let R be a Noetherian local ring of characteristic p and dimension d with infinite
residue field. Let J be an ideal of R. Then for all q = pe, J qd ⊂ (J [q])∗, the tight closure
of the qth Frobenius power of J .

Proof Wecan reducemodulominimal primes to prove this assertion. See [14]. Henceforthwe
assume that R is a domain. Let K be a minimal reduction of J . Note that K is generated by at
most d elements. Choose an element c �= 0 such that cJ n ⊂ K n for all n ≥ 1 (see [43]). Let q ′
be a varying power of p, and letu ∈ J qd . Then cuq ′ ∈ cJ qq ′d ⊂ K qq ′d ⊂ K [qq ′] = (K [q])[q ′]
implies that u ∈ (K [q])∗ ⊂ (J [q])∗. ��
Lemma 5.2 Suppose R is a local domain containing an infinite field of characteristic p > 0
and c ∈ R is such that Rc is regular. Assume d = dim(R). Let P be a prime ideal not
containing c. Given n = qd and k ≥ 1, there exists a power cN of c (depending on n, k and
P), such that cN · P(nd+nk) ⊆ (P(k))[q].

Proof Since Rc is regular, P(nd+nk)
c ⊆ (P(k))n

c , so there exists r > 0 such that cr · P(nd+nk) ⊆
(P(k))n . Taking J = P(k) in Lemma 5.1 we have (P(k))qd ⊆ ((P(k))[q])∗ and therefore
cr · P(nd+nk) ⊆ ((P(k))[q])∗. In Rc, (P(k))[q])c is tightly closed, and therefore, ct · (cr ·
P(nd+nk)) ⊆ (P(k))[q] for some t > 0. Taking N = r + t , gives what we want. ��

Here is the key result leading to the bootstrapping theorem in characteristic p > 0.

Proposition 5.3 Let R be a local domain of dimension d which is a hypersurface and has
positive characteristic. Write R = S/( f ), where S is a regular local ring of characteristic
p > 0. Let P ∈ Spec(R) such that RP is regular. Denote by Q the lifting of P to S. Assume
there exists an integer k and an ideal J ⊂ Q such that Lk ⊂ (J , f ), and J : f ⊂ Q.
Set N = d2 + kd. Then P(Nq) ⊂ P [q] for all q = pe. Moreover, if we fix an integer n
and write q = an + r , where q = pe is a varying power of p, and 0 ≤ r ≤ n − 1, then
P Nr (P(Nn))a ⊂ (Pn)a. In particular, P(Nn) is contained in the integral closure of Pn.

Proof Temporarily fixing n = qd and k, for c ∈ R such that Rc is regular, Lemma 5.2 implies
that some power of c multiplies P(dn+kn) into (P(k))[q]. Lifting back to S, and continuing to
call the element c by the same name, we obtain that some power of c multiplies Lqd2+qkd into

(L [q]
k , f ). Further multiplying by f q−1 yields that some power of c multiplies f q−1Lqd2+qkd

into L [q]
k . By the construction of Lk , c is a non-zerodivisor modulo Lk , and then the regularity

of S (i.e., flatness of the Frobenius) proves that c is a non-zerodivisor modulo L [q]
k . It follows

that f q−1Lqd2+qkd ⊂ L [q]
k , independently of q and k, and therefore

Lqd2+qkd ⊂ L [q]
k : f q−1.
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By assumption, Lk ⊂ ( f , J ). Hence

L [q]
k : f q−1 ⊂ ( f q , J [q]) : f q−1 = ( f )+J [q] : f q−1 ⊂ ( f )+J [q] : f q = ( f )+(J : f )[q],

where the last equality holds because S is regular. By assumption, J : f ⊂ Q. Putting
together all of these containments yields that

Lqd2+qkd ⊂ L [q]
k : f q−1 ⊂ ( f ) + Q[q].

Going modulo ( f ), we see that P(Nq) ⊂ P [q] for all q = pe, as claimed.
To finish the proof, we modify an argument in [14]. Let u ∈ P(Nn). For every q = pe

we write q = an + r where a ≥ 0 and 0 ≤ r ≤ n − 1 are integers. Then ua ∈ P(Nan) and
P Nr ua ⊂ P(Nan+Nr) = P(Nq). By the paragraph above, it follows that

P Nr ua ⊂ P [q] ⊂ Pq ⊂ (Pn)a,

which proves our claim. To prove the last statement, choose a nonzero element d ∈ P Nr .
For infinitely many values of a, we have that dua ∈ (Pn)a . Since R is a domain, it follows
from [43, Cor. 6.8.12], that u is in the integral closure of Pn . ��

The preceding work leads immediately to the main theorem of this section. For this we let
E denote the prime ideals in Spec(R) such that the P-adic and P-symbolic topologies are
equivalent. The first statement in the theorem below gives a surprising necessary condition
for the P-adic and P-symbolic topologies to be equivalent.

Theorem 5.4 Let R be an F-finite local domain of characteristic p > 0 and dimension d,
which is a hypersurface. Let P ⊆ R be a regular prime and assume there exists an integer
k such that P(k) ⊆ P2. Then, there exists c ≥ 1 such that P(cn) ⊆ Pn for all n ≥ 1. In
particular, if there exists k ≥ 1 such that P(k) ⊆ P2, for all regular primes in the set E, then
the set of regular primes in E satisfy the uniform symbolic topology property.

Proof Maintaining the notation from the previous proposition, we claim that we may choose
J = Q2 in Proposition 5.3. Our assumption shows that Lk ⊂ J + ( f ), so we need only to
prove that Q2 : f ⊂ Q. This is true since f /∈ Q(2) since (S/( f ))Q is a regular ring by
assumption.

It follows from Proposition 5.3 that P(Nn) is contained the intergal closure of Pn , for all
regular primes P and n ≥ 1, where N = d2 +kd . By the Uniform Briançon-Skoda Theorem
(see [19]), there exists t ≥ 1 such that the integral closure of Pn is contained in Pn−t , for
all n > t , and all P . An elementary induction argument now shows that for c := N� t+2

2 �,
P(cn) ⊆ Pn , for all n ≥ 1 and all regular primes P , which is what we want. ��
Corollary 5.5 Assume that every F-finite characteristic p complete hypersurface satisfies the
following property: There exists k > 0 (depending upon the ring) such that P(k) ⊆ P2 for all
dimension one regular prime ideals P. Then the set of dimension one primes in every F-finite
integrally closed complete local domain satisfies the uniform symbolic topology property.

Proof Immediate from Theorems 3.6 and 5.4. ��
We close this section by using the bootstrapping technique to provide a large classes of

prime ideals in hypersurface rings have the uniform symbolic topology property. We let S be
an F-finite regular local ring of prime characteristic, and let R = S/( f ) be a hypersurface.
We define Λ to be the set of prime ideals q in R such that R/q is normal, and such that
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for every prime P containing q with dim(R/q)P = 1, RP is regular. We observe that if
the height of the ideal defining the singular locus of R is m, then every prime q in Spec(R)

having height at most m −2, and such that R/q is normal, lies in Λ. This follows since every
prime P with dim(R/q)P = 1 is necessarily of height at most m − 1 in R, and therefore RP

will be regular.

Theorem 5.6 Let S be an F-finite regular local ring of prime characteristic, and let R =
S/( f ) be a hypersurface domain. Then the set of prime ideals in Λ have the uniform symbolic
topology property. Namely there is an integer k such that for all q ∈ Λ and for all n ≥ 1,

q(kn) ⊂ qn .

Proof For q ∈ Λ, let Lk be as above, namely the unmixed part in S of ( f ) + Qk , where Q
is the lifting of q to S. We wish to apply Proposition 5.3 with J = Q(2). By assumption,
RQ = Rq must be regular. It follows that f /∈ Q(2) and therefore Q(2) : f = Q. Thus, if
we can prove there is a uniform k such that Lk ⊂ (Q(2), f ) for all q ∈ Λ, then we may
apply Proposition 5.3 to conclude that q((dk+d2)n) is in the integral closure of qn for all n
and for all q ∈ Λ, where d is the dimension of R. By the Uniform Briançon-Skoda property
(see Definition 2.3), we then have that for some uniform t , q((dk+d2)n) ⊂ qn−t . Using [24,
Remark 2.3] will then finish the proof.

The short exact sequence

0 → S/Q
f→ S/Q(2) → S/(Q(2), f ) → 0

shows that the associated primes P of S/(Q(2), f ) not equal to Q satisfy depth(R/q)P = 1.
Since R/q is normal, all such P have height one over q , and then by assumption, RP R is
regular.

In order to prove that Lk ⊂ (Q(2), f ) for a given k, it suffices to prove this inclusion at all
associated primes P of (Q(2), f ). By the paragraph above, all such primes have the property
that RP R is regular. But then if we choose k to be the dimension of RP , which is at most
the dimension of R, we have that (q(kn))P ⊆ (qP )n by [14]. Taking n = 2 and interpreting
this back in S, we have (L2k)P ⊆ (Q2 + ( f ))P ⊆ (Q(2) + ( f ))P , which is what we want.
Finally, if we choose k0 to be the maximum of the k’s obtained from each P associated to
(Q(2), f ), as q runs through the elements of Λ, then we have q(k0n) ⊆ qn , for all q ∈ Λ. ��
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