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Abstract
In this paper, we introduce a new inertial Tseng’s extragradient method with self-adaptive
step sizes for approximating a common solution of split equalities of equilibrium prob-
lem (EP), non-Lipschitz pseudomonotone variational inequality problem (VIP) and fixed
point problem (FPP) of nonexpansive semigroups in real Hilbert spaces. We prove that the
sequence generated by our proposed method converges strongly to a common solution of
the EP, pseudomonotone VIP and FPP of nonexpansive semigroups without any linesearch
procedure nor the sequential weak continuity condition often assumed by authors when solv-
ing non-Lipschitz VIPs. Finally, we provide some numerical experiments for the proposed
method in comparison with related methods in the literature. Our result improves, extends
and generalizes several of the existing results in this direction.

Keywords Split equality problems · Equilibrium problem · Variational inequalities ·
Nonexpansive semigroup · Inertial technique · Self-adaptive step size

Mathematics Subject Classification (2010) 47H09 · 47H10 · 49J20 · 49J40

1 Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The variational
inequality problem (VIP) is defined as follows: Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (1.1)
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where A : H → H is an operator. We denote by V I (C, A) the solution set of the problem
(1.1).

Definition 1.1 Let A : H → H be a mapping. Then, A is said to be

(i) L-co-coercive (or L-inverse strongly monotone), if there exists a constant L > 0 such
that 〈

Ax − Ay, x − y
〉 ≥ L‖Ax − Ay‖2, ∀x, y ∈ H,

(ii) Monotone, if 〈
Ax − Ay, x − y

〉 ≥ 0, ∀x, y ∈ H.

(iii) Pseudomonotone, if

〈Ay, x − y〉 ≥ 0 	⇒ 〈Ax, x − y〉 ≥ 0, ∀x, y ∈ H,

Note that (i) 	⇒ (ii) 	⇒ (iii) but the converses are not always true.
A central problem in nonlinear analysis is the VIP, which was first introduced indepen-

dently by Fichera [18] and Stampacchia [51]. It plays an important role in the study of several
important concepts in pure and applied sciences such as mechanics, neccessary optimality
conditions, operations research, systems of nonlinear equations, among others (see [19, 25,
62]). Many authors have analyzed and studied iterative algorithms for approximating the
solution of the VIP (1.1) and other related optimization problems, (see [2, 10, 20, 27, 36, 41,
52, 56], and the references therein).

Under certain conditions, there are two common methods used in approximating the
solution of the VIP (1.1). These methods are the projection method and the regularized
method. To use thesemethods, a certain level ofmonotonicity is required for the cost operator.
In this work, our main focus is on the projection method. Several authors have proposed and
studied projection type algorithms for approximating the solutions of VIP (1.1) (see [1, 13,
14, 22, 30, 43, 60] and other references therein).

Tseng [57] introduced and studied Tseng’s extragradient method for approximating the
solution of the VIP (1.1). The proposed method is defined as follows:

{
yn = PC(xn − λAxn)

xn+1 = yn − λ(Ayn − Axn), ∀n ≥ 0,

where A is monotone, L-Lipschitz continuous and λ ∈
(
0, 2

L

)
. The author obtained a weak

convergence result under the assumption that V I (C, A) �= ∅.

The equilibrium problem (EP) was introduced by Blum and Oettli [7] and they defined it
as follows: Find x ∈ C such that

�(x, y) ≥ 0, ∀y ∈ C, (1.2)

where C is a nonempty, closed and convex subset of a real Hilbert spaceH and� : C×C → R

is a bifunction. A point x ∈ C that solves this problem is called the equilibrium point. We
denote the solution set of EP (1.2) by EP(�). The EP (1.2) has received a lot of attention
from several authors due to its application to problems arising in the field of optimization,
economics, physics, variational inequalities, among others (see, for example, [39, 42, 47, 53]
and other references therein). Several authors have analyzed and proposed various iterative
algorithms for approximating the solution of the EP and other related optimization problems,
(see, for example, [24, 40, 46] and other references therein).
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Let H1,H2 and H3 be real Hilbert spaces. Let C,Q be nonempty, closed and convex
subsets of H1 and H2, respectively. Let F1 : H1 → H3 and F2 : H2 → H3 be bounded
linear operators. The split equality problem (SEP) is defined as follows:

Find x ∈ C and y ∈ Q such that F1x = F2y. (1.3)

The SEP which was first proposed by Moudafi [37] allows asymmetric and partial relations
between the variables x and y. It is used in numerous practical problems such as game theory,
medical image reconstruction, partial differential equation, decomposition method, among
others (see [29, 50]). We denote the solution set of (1.3) by

�SE P := {(x, y) ∈ C × Q |F1x = F2y} .

Several authors have studied several effective methods for solving the SEP (see [50, 58] and
other references therein).

If H2 = H3 and F2 = I (I is the identity operator), (1.3) reduces to the split feasibility
problem (SFP) proposed by Censor et al. [12] and defined as follows:

Find x ∈ C such that F1x ∈ Q,

where F1 : H1 → H2 is a bounded linear operator. One of the most common method for
solving (1.3) is the CQ projection method proposed and studied by Bryne et al. [9]. They
defined it as follows:

{
xn+1 = PC(xn − ηnF∗

1 (F1xn − F2yn))

yn+1 = PQ(yn + ηnF∗
2 (F1xn − F2yn)),

(1.4)

where ηn ∈
(
ε, 2

λF1+λF2
− ε
)
, and λF1 and λF2 are the matrix operator norms ‖F1‖ and

‖F2‖, respectively. Note that the step size ηn in Algorithm (1.4) is dependent on the operator
norms,which are difficult and sometimes impossible to compute. Several authors have studied
several effective methods for solving SFP (see [50] and other references therein).

Another problem of interest in this study is the fixed point problem (FPP), which is
formulated as follows:

Find x ∈ H such that T x = x,

where T : H → H is a nonlinear mapping. We denote the set of fixed points of T by F(T ).

Several problems in sciences and engineering can be formulated as the problem of finding
solutions of FPP of nonlinear mappings.

If C andQ are the sets of fixed points of some nonlinear operators, the SEP (1.3) becomes
the split equality common fixed point problem (SECFPP) which is defined as

Find x ∈ F(T1) and y ∈ F(T2) such that F1x = F2y, (1.5)

where F(T1) �= ∅ and F(T2) �= ∅ are the sets of fixed points of T1 and T2, respectively, T1 :
H1 → H1 and T2 : H2 → H2 are nonlinear mappings and F1 : H1 → H3, F2 : H2 → H3

are bounded linear operators.
If H2 = H3 and F2 = I , then the SECFPP (1.5) reduces to the following split common

fixed point problem (SCFPP) introduced by Censor et al. [11]

Find x ∈ F(T1) such that F1x ∈ F(T2).

Several authors have studied and proposed effective methods for solving SCFPP (see [49]
and other references therein).
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The SECFPP was first studied by Moudafi et al. [37]. They introduced the following
simultaneous iterative method for solving the SECFPP

{
xn+1 = T1(xn − ηnF∗

1 (F1xn − F2yn))

yn+1 = T2(yn + ηnF∗
2 (F1xn − F2yn)),

(1.6)

where ηn ∈
(
ε, 2

λF1+λF2
− ε
)
, λF1 and λF2 are the spectral radius of F∗

1F1 and F∗
2F2,

respectively, and T1 and T2 are firmly quasi-nonexpansive mappings. We also observe that
the step size of Algorithm (1.6) depends on the operator norms. Hence to implement Algo-
rithm (1.6), one has to compute the operator norms of F1 and F2 which are difficult to
compute. Several authors have studied and proposed modifications of Algorithm (1.6) for
better implementation (see [36, 37, 64] and other references therein).

Recently, Lopéz et al. [32] studied and proposed a method for estimating the step size
which does not require prior knowledge of the operator norms for solving the SFP. Dong et
al. [17] and J. Zhao [63] also proposed new choices of step size which do not require prior
knowledgeof the operator norm for solvingSECFPP. Zhao [63] studied theSEPandpresented
the following step size which guarantees convergence of the iterative method without prior
knowledge of the operator norm of F1 and F2

ηn ∈
(
0,

2‖F1xn − F2yn‖2
‖F∗

1 (F1xn − F2yn)‖2 + ‖F∗
2 (F1xn − F2yn)‖2

)
.

The main purpose of this work is to find a common element of split equalities of the VIP, EP
and commonfixed point of nonexpansive semigroups. Several algorithms have been proposed
for approximating the common solution of VIP, EP and FPP due to the applications it has on
mathematical models whose constraints can be expressed as VIP, EP and FPP. Particularly,
finding common solution problems has application in signal processing, network resource
allocation, image recovery, among others (see [26, 33, 34] and other references therein).

Recently, Latif and Eslamian [31] studied and introduced a new algorithm for finding a
common element of split equalities of EP, monotone VIP with Lipschitz operator and fixed
point problemof nonexpansive semigroups satisfying the uniformly asymptotically regularity
(u.a.r) condition in Hilbert spaces. The authors obtained strong convergence result for the
proposed algorithm. However, their proposed algorithm has certain drawbacks. For instance,
their method requires computing two projections each per iteration onto C and Q, which
makes it computationally expensive to implement. Moreover, the associated cost operators
for the VIP are required to be monotone and Lipschitz continuous and the step size of the
algorithm depends on the Lipschitz constants of these operators. In addition, the authors
needed to impose the uniformly asymptotically regularity condition on the nonexpansive
semigroups to obtain their result. All of these drawbacks limit the scope of application of
their proposed method.

The inertial technique has been employed by several authors to increase the convergence
rate of iterativemethods. Polyak [45] studied the convergence of the following inertial extrap-
olation algorithm

xn+1 = xn + α1(xn − xn−1) − α2Axn, ∀n ≥ 0,

where α1 and α2 are two real numbers. Recently, there has been an increased interest in
studying inertial type algorithm (see [2, 5, 6, 23, 28, 59] and other references therein).
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Motivated by the above results in the literature and other related results in this direction,
we propose and study an inertial Tseng’s extragradient algorithm for the SEP for finding
a common element of solution of the EP, VIP and common fixed point of nonexpansive
semigroups with the following features:

(i) Different from other existing methods for finding a common element of the solution
of the EP, VIP and fixed point problem of nonexpansive semigroups, our method only
requires that the underlying operator for theVIP be pseudomonotone, uniformly contin-
uous and without the weak sequential continuity condition often used in the literature.
Also, we do not need to assume the u.a.r condition employed by authors in the literature
to obtain our strong convergence result.

(ii) Different from other existing methods in the literature for solving non-Lipschitz VIP,
our method does not require any linesearch technique but rather uses an easily imple-
mentable self-adaptive step size technique that generates non-monotonic sequence of
step sizes. Also, our method only requires one projection each per iteration onto the
feasible sets C and Q.

(iii) Our method employs the inertial extrapolation technique to increase the rate of conver-
gence (see [4–6] and other references therein).

(iv) The proof of our strong convergence result does not rely on the usual “two cases
approach" widely used in many papers to prove strong convergence results.

Finally, we provide some numerical experiments for our proposed method in comparison
with the related method in the literature to show the applicability of our proposed method.

The rest of the paper is organized as follows: In Section 2 we present some definitions
and lemmas needed to obtain the strong convergence result. In Section 3, we present our
proposed method and discuss some of its important features. In Section 4, the convergence
of our method is investigated and in Section 5, we present some numerical experiments of
our method in comparison with a related method in the literature. We conclude in Section 6.

2 Preliminaries

In this section, we recall some lemmas, results and definitions which will be required in
subsequent sections to obtain our strong convergence result. Let H be a real Hilbert space
with inner product 〈· ·〉, and associated norm || · || defined by ||x || = √〈x, x〉, ∀x ∈ H. We
denote the strong and weak convergence by “→” and “⇀”, respectively. Also, we denote
the set of weak limits of {xn} by wω(xn), that is

wω(xn) := {x ∈ H : xn j ⇀x for some subsequence {xn j } of {xn}
}
.

Definition 2.1 Let T : H → H be a mapping. Then, T is said to be

(i) L-Lipschitz continuous, if there exists a constant L > 0 such that

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ H;
if L ∈ [0, 1), then T is called a contraction;

(ii) Uniformly continuous, if for every ε > 0, there exists δ = δ(ε) > 0, such that

‖T x − T y‖ < ε whenever ‖x − y‖ < δ, ∀x, y ∈ H;
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(iii) Sequentially weakly continuous, if for each sequence {xn},we have xn⇀x ∈ H implies
that T xn⇀T x ∈ H;

(iv) Nonexpansive if T is 1-Lipschitz continuous;
(v) Firmly nonexpansive if

‖T x − T y‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ H.

More information on firmly nonexpansive mappings can be found, for example, in [21,
Section 11]. Observe that uniform continuity is a weaker notion than Lipschitz continuity.

Definition 2.2 A one-parameter family mapping T = {T (s) : 0 ≤ s < +∞} from H1 into
itself is said to be a nonexpansive semigroup if it satisfies the following conditions:

(i) T (0)x = x, ∀x ∈ H1;
(ii) T (s + u) = T (s)T (u) for all s, u ≥ 0;
(iii) For each x ∈ H1, the mapping T (s)x is continuous;
(iv) ‖T (s)x − T (s)y‖ ≤ ‖x − y‖ for all x, y ∈ H1 and s ≥ 0.

We denote the common fixed point set of the semigroup T by F(T ) = {x ∈ C : T (s)x =
x, ∀s ≥ 0}. It is well known that F(T ) is closed and convex [8].

Lemma 2.3 [48, 55] Let C be a nonempty bounded closed and convex subset of a real Hilbert
space H. Let T = {T (s) : s ≥ 0} from C be a nonexpansive semigroup on C. Then for all
h ≥ 0,

lim sup
t→∞, x∈C

∥∥∥
1

t

∫ t

0
T (s)x − T (h)

(1
t

∫ t

0
T (s)xdx

)∥∥∥ = 0.

Lemma 2.4 [55] Let C be a nonempty bounded closed and convex subset of a real Hilbert
space H. Let {xn} be a sequence and let T = {T (s) : s ≥ 0} from C be a nonexpansive
semigroup on C, if the following conditions are satisfied

(i) xn⇀x;
(ii) lim sups→∞ lim supn→∞ ‖T (s)xn − xn‖ = 0,

then, x ∈ F(T ).

It is well known that if D is a convex subset of H, then T : D → H is uniformly
continuous if and only if, for every ε > 0, there exists a constant M < +∞ such that

‖T x − T y‖ ≤ M‖x − y‖ + ε, ∀x, y ∈ D. (2.1)

For the proof of (2.1), see [61, Theorem 1].

Lemma 2.5 [38] Let H be a real Hilbert space, then the following assertions hold:

(1) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x − y‖2 = ‖x + y‖2 − ‖x‖2 − ‖y‖2, ∀x, y ∈ H;
(2) ‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x − y‖2, ∀x, y ∈ H, α ∈ R;
(3) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 2.6 [16] Assume that A : H → H is a continuous and pseudomonotone operator.
Then, x is a solution of (1.1) if and only if 〈Ay, y − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.7 [35] LetH be a real Hilbert space and C be a nonempty closed and convex subset
of H. If the mapping h : [0, 1] → H defined as h(t) := A(t x + (1 − t)y) is continuous for
all x, y ∈ C (i.e. h is hemicontinuous), then M(A, C) := {x ∈ C : 〈Ay, y − x

〉 ≥ 0, ∀y ∈
C} ⊂ V I (C, A). Moreover, if A is pseudo-monotone, then V I (C, A) is closed, convex and
M(C, A) = V I (C, A).
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Recall that for a nonempty, closed and convex subset C ofH, the metric projection denoted
by PC , is a map defined on H onto C which assigns to each x ∈ H, the unique point in C,
denoted by PCx such that

||x − PCx || = inf{||x − y|| : y ∈ C}.

Lemma 2.8 [21] Let C be a closed and convex subset of a real Hilbert spaceH and x, y ∈ H.

Then

(i) ‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉 ;
(ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2.
Assumption 2.9 [7] Let� : C×C → R be a bifunction satisfying the following assumptions:

1) �(x, x) = 0, ∀x ∈ C;
2) � is monotone, i.e., �(x, y) + �(y, x) ≤ 0, ∀x ∈ C;
3) For each x, y, z ∈ C, lim supt→0 �(t z + (1 − t)x, y) ≤ �(x, y);
4) For each x ∈ C, y → �(x, y) is convex and lower semi continuous.

Lemma 2.10 [15] Let � : C × C → R be a bifunction satisfying Assumption 2.9. For any
r > 0 and x ∈ H, define a mapping U�

r : H → C as follows

U�
r (x) =

{
z ∈ C : �(z, y) + 1

r

〈
y − z, z − x

〉
≥ 0, ∀y ∈ C

}
.

Then, we have the following

(1) U�
r is nonempty and single valued;

(2) U�
r is firmly nonexpansive;

(3) F(U�
r ) = EP(�) is closed and convex.

Definition 2.11 Assume that T : H → H is a nonlinear operator with F(T ) �= ∅. Then
I − T is said to be demiclosed at zero if for any {xn} in H, the following implication holds:

xn⇀x and (I − T )xn → 0 	⇒ x ∈ F(T ).

Lemma 2.12 [54] Suppose {λn} and {θn} are two nonnegative real sequences such that

λn+1 ≤ λn + φn, ∀n ≥ 1.

If
∑∞

n=1 φn < ∞, then limn→∞ λn exists.

Lemma 2.13 [3] Let {an} be a sequence of non-negative real numbers, {γn} be a sequence
of real numbers in (0, 1) with conditions

∑∞
n=1 γn = ∞ and {dn} be a sequence of real

numbers. Assume that
an+1 ≤ (1 − γn)an + γndn, n ≥ 1.

If lim supk→∞ dnk ≤ 0 for every subsequence {ank } of {an} satisfying the condition
lim infk→∞(ank+1 − ank ) ≥ 0, then limn→∞ an = 0.

Lemma 2.14 [44]EachHilbert space H satisfies theOpial condition, that is, for any sequence
{xn} with xn⇀x, the inequality lim infn→∞ ||xn − x || < lim infn→∞ ||xn − y|| holds for
every y ∈ H with y �= x .
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3 ProposedMethod

In this section, we present our proposed method and discuss its features. We begin with the
following assumptions under which our strong convergence result is obtained.

Assumption 3.1 Suppose that the following conditions hold:

(a) The feasible sets C and Q are nonempty, closed and convex subsets of the real Hilbert
spaces H1 and H2, respectively.

(b) A : H1 → H1 and B : H2 → H2 are pseudomonotone and uniformly continuous.
(c) The mapping A : H1 → H1 and B : H2 → H2 satisfies the following property:

whenever {xn} ⊂ C, xn⇀x∗, one has ‖Ax∗‖ ≤ lim infn→∞ ‖Axn‖ and whenever
{xn} ⊂ Q, xn⇀x∗, one has ‖Bx∗‖ ≤ lim infn→∞ ‖Bxn‖, respectively.

(d) F1 : H1 → H3 and F2 : H2 → H3 are bounded linear operators.
(e) �1 : C × C → R, �2 : Q×Q → R are bifunctions satisfying Assumption 2.9 and �2

is upper semi continuous in the first argument.
(f) Ta = {T1(s) : 0 ≤ s < ∞} and Tb = {T2(u) : 0 ≤ u < ∞} are one-parameter

nonexpansive semigroups on H1 and H2, respectively.
(g) The solution set � = {x ∈ EP(�1)∩V I (C, A)∩ F(Ta), y ∈ EP(�2)∩V I (Q, B)∩

F(Tb) : F1x = F2y} �= ∅.

(h) {αn} ⊂ (0, 1),
∑∞

n=1 αn = +∞, limn→∞ αn = 0, 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

(i) Let {εn} and {ζn} be positive sequences such that limn→∞ εn
αn

= 0 and limn→∞ ζn
αn

= 0,
respectively.

(j) Let {σn}and {μn}benonnegative sequences such that∑∞
n=1 σn < +∞and

∑∞
n=1 μn <

+∞, respectively, {tn,1}, {tn,2} ⊂ (0,+∞), lim inf rn,1 > 0, lim inf rn,2 > 0.

Algorithm 3.2 Step 0: Choose sequences {βn}∞n=1, {γn}∞n=1, {θn}∞n=1 and {τn}∞n=1 such that
the conditions from Assumption 3.1 (h)–(i) hold. Select an initial point (x0, y0) ∈ H1 ×H2,

let η ≥ 0, ai ∈ (0, 1), i = 1, 2, λ1 > 0, ρ1 > 0, θ > 0, τ > 0 and set n := 1.
Step 1: Given the iterates xn−1, yn−1 and xn, yn for each n ≥ 1, choose θn such that
0 ≤ θn ≤ θ̄n and τn such that 0 ≤ τn ≤ τ̄n, where

θ̄n :=
{
min

{
θ, εn‖xn−xn−1‖

}
if xn �= xn−1

θ otherwise.
(3.1)

Step 2: Compute

wn = (1 − αn)
(
xn + θn(xn − xn−1)

)

and
ϕn = (1 − αn)

(
yn + τn(yn − yn−1)

)
.

Step 3: Compute

zn = wn − ηnF∗
1 (F1wn − F2ϕn),

φn = U�1
rn,1

zn,

un = PC(φn − λn Aφn),

vn = un − λn(Aun − Aφn),

xn+1 = (1 − βn)vn + βn
1

tn,1

∫ tn,1

0
T1(s)vn ds
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and

λn+1 =
{
min

{
a1||un−φn ||
||Aun−Aφn || , λn + σn

}
if Aun �= Aφn

λn + σn otherwise.
(3.2)

Step 4: Compute

τ̄n :=
{
min

{
τ,

ζn‖yn−yn−1‖
}

if yn �= yn−1

τ otherwise.
(3.3)

Step 5 Compute
kn = ϕn + ηnF∗

2 (F1wn − F2ϕn).

Step 6: Compute

ψn = U�2
rn,2

kn,

sn = PQ(ψn − ρn Bψn),

bn = sn − ρn(Bsn − Bψn),

yn+1 = (1 − γn)bn + γn
1

tn,2

∫ tn,2

0
T2(u)bn du

and

ρn+1 =
{
min

{
a2||sn−ψn ||
||Bsn−Bψn || , ρn + μn

}
if Bsn �= Bψn

ρn + μn otherwise,
(3.4)

where the step size ηn is chosen such that for small enough ε > 0,

ηn ∈
[
ε,

2‖F1wn − F2ϕn‖2
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2 − ε

]
,

if F1wn �= F2ϕn; otherwise, ηn = η.

Set n := n + 1 and go back to Step 1.

Remark 3.3 The step sizes generated in (3.2) and (3.4) are allowed to increase per iteration.
This reduces their dependence on the initial step sizes. When n is large enough the step size
may not increase. We assume that Algorithm 3.2 does not terminate in a finite number of
iterations.

Remark 3.4 By conditions (h) and (i), from (3.1) we observe that

lim
n→∞ θn ||xn − xn−1|| = 0 and lim

n→∞
θn

αn
||xn − xn−1|| = 0. (3.5)

Similarly, from (3.3) we have

lim
n→∞ τn ||yn − yn−1|| = 0 and lim

n→∞
τn

αn
||yn − yn−1|| = 0.

Remark 3.5 We note that condition (c) of Assumption 3.1 is weaker than the sequentially
weakly continuity condition.

We present an example which satisfies condition (c) of Assumption 3.1.
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Example 3.6 Let A : �2(R) → �2(R) be an operator defined by

Ax∗ = x∗‖x∗||, ∀x∗ ∈ �2.

Suppose that {xn} ⊂ �2(R) such that xn⇀x∗. Then, by the weakly lower semi-continuity of
the norm we obtain

‖x∗‖ ≤ lim inf
n→+∞‖xn‖.

Thus,

‖Ax∗‖ = ‖x∗‖2 ≤
(
lim inf
n→+∞‖xn‖

)2 ≤ lim inf
n→+∞‖xn‖2 = lim inf

n→+∞‖Axn‖.
Hence, A satisfies condition (c) of Assumption 3.1.

Remark 3.7 Since the sequences of step sizes generated by the algorithm in (3.2) and (3.4)
are well defined and the limits limn→∞ λn and limn→∞ ρn exist (see Lemma 4.1). Then, the
limit

lim
n→∞

(

1 − λ2na
2
1

λ2n+1

)

= 1 − a21 > 0. (3.6)

Thus, there exists n01 > 0 such that for all n > n01 , we have
(
1 − λ2na

2
1

λ2n+1

)
> 0.

Similarly, we have that

lim
n→∞

(

1 − ρ2
na

2
2

ρ2
n+1

)

= 1 − a22 > 0, (3.7)

and there exists n02 > 0 such that for all n > n02 , we have
(
1 − ρ2

na
2
2

ρ2
n+1

)
> 0. Now, we set

n0 = max{n01 , n02}.
Remark 3.8 From the definition of ηn, that is,

ηn ∈
[
ε,

2‖F1wn − F2ϕn‖2
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2 − ε

]

we have

(ηn + ε)
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

]
≤ 2‖F1wn − F2ϕn‖2.

Expanding the last inequality, we have

ηn · ε
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn‖)2

]

≤ηn

(
2‖F1wn − F2ϕn‖2 − ηn

[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

])
. (3.8)

4 Convergence Analysis

Lemma 4.1 Let {λn} and {ρn} be sequences generated by Algorithm 3.2. Then, we have
limn→∞ λn = λ, where λ ∈ [min{ a1

K1
, λ1}, λ1 + b1], b1 = ∑∞

n=1 σn for some K1 > 0 and

limn→∞ ρn = ρ, where ρ ∈ [min{ a2
K2

, ρ1}, ρ1 + b2], b2 =∑∞
n=1 μn for some K2 > 0.
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Proof Since A is uniformly continuous, we obtain from (2.1) that for any given ε > 0,
there exists a constant M < +∞ such that ‖Aun − Aφn‖ ≤ M‖un − φn‖ + ε. Thus, when
Aun − Aφn �= 0 for all n ≥ 1 we have

a1‖un − φn‖
‖Aun − Aφn‖ ≥ a1‖un − φn‖

M‖un − φn‖ + ε
≥ a1‖un − φn‖

(M + ε1)‖un − φn‖ = a1
K1

,

where ε = min{ε1‖un − φn‖ : n ∈ N} for some ε1 > 0 and K1 = M + ε1. Hence, from
the definition of λn+1, the sequence {λn} is bounded below by min{ a1

K1
, λ1} and above by

λ1 + b1. By Lemma 2.12, it follows that limn→∞ λn denoted by λ = limn→∞ λn exists.
Clearly, we have λ ∈ [min{ a1

K1
, λ1}, λ1 + b1].

Similarly, we have limn→∞ ρn = ρ, and ρ ∈ min{ a2
K2

, ρ1}, ρ1 + b2. ��
Lemma 4.2 Let

{
(xn, yn)

}
be a sequence generated by Algorithm 3.2 under Assumption 3.1.

Then

‖zn − x∗‖2 + ‖kn − y∗‖2 ≤ ‖wn − x∗‖2 + ‖ϕn − y∗‖2.
Proof Let (x∗, y∗) ∈ �. Then, by applying Lemma 2.5, we have

‖zn − x∗‖2 =‖wn − ηnF∗
1 (F1wn − F2ϕn) − x∗‖2

=‖wn − x∗‖2 + η2n‖F∗
1 (F1wn − F2ϕn)‖2 − 2ηn

〈
wn − x∗, F∗

1 (F1wn − F2ϕn)
〉

=‖wn − x∗‖2 + η2n‖F∗
1 (F1wn − F2ϕn)‖2 − 2ηn

〈
F1wn − F1x

∗, F1wn − F2ϕn
〉

=‖wn − x∗‖2 + η2n‖F∗
1 (F1wn − F2ϕn)‖2 − ηn‖F1wn − F1x

∗‖2
− ηn‖F1wn − F2ϕn‖2 + ηn‖F2ϕn − F1x

∗‖2. (4.1)

Similarly, we have

‖kn − y∗‖2 =‖ϕn + ηnF∗
2 (F1wn − F2ϕn) − y∗‖2

=‖ϕn − y∗‖2 + η2n‖F∗
2 (F1wn − F2ϕn)‖2 − ηn‖F2ϕn − F2y

∗‖2
− ηn‖F1wn − F2ϕn‖2 + ηn‖F1wn − F2y

∗‖2. (4.2)

Adding (4.1) and (4.2), we have

‖zn − x∗‖2 + ‖kn − y∗‖2

=‖wn − x∗‖2 + ‖ϕn − y∗‖2 + η2n

[
‖F∗

1 (F1wn − F2ϕn)‖2

+ ‖F∗
2 (F1wn − F2ϕn)‖2

]
− ηn

[
‖F1wn − F1x

∗‖2 + ‖F2ϕn − F2y
∗‖2
]

− 2ηn‖F1wn − F2ϕn‖2 + ηn

[
‖F1wn − F2y

∗‖2 + ‖F2ϕn − F1x
∗‖2
]
.

By (3.8) and the fact that F1x∗ = F2y∗, we have

‖zn − x∗‖2 + ‖kn − y∗‖2

=‖wn − x∗‖2 + ‖ϕn − y∗‖2 − ηn

[
2‖F1wn − F2ϕn‖2

− ηn

(
‖F∗

1 (F1wn − F2ϕn)‖2 + ‖F∗
2 (F1wn − F2ϕn)‖2

)]

=‖wn − x∗‖2 + ‖ϕn − y∗‖2 − ηn · ε
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

]

≤ ‖wn − x∗‖2 + ‖ϕn − y∗‖2, (4.3)
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which is the desired result. ��
Lemma 4.3 Let

{
(xn, yn)

}
be a sequence generated by Algorithm 3.2 under Assumption 3.1.

Then

‖vn − x∗‖2 ≤ ‖zn − x∗‖2 − ‖zn − φn‖2 −
(

1 − λ2na
2
1

λ2n+1

)

‖un − φn‖2

and

‖bn − y∗‖2 ≤ ‖kn − y∗‖2 − ‖kn − ψn‖2 −
(

1 − ρ2
na

2
2

ρ2
n+1

)

‖sn − ψn‖2.

Proof Let (x∗, y∗) ∈ �. Since U�1
rn,1 is firmly nonexpansive, it follows from Lemma 2.8 that

‖φn − x∗‖2 = ‖U�1
rn,1

zn − x∗‖ ≤ ‖zn − x∗‖2 − ‖zn − φn‖2. (4.4)

Similarly, we have

‖ψn − y∗‖2 = ‖U�2
rn,2

kn − y∗‖ ≤ ‖kn − y∗‖2 − ‖kn − ψn‖2.
From (3.2), we obtain

λn+1 = min

{
a1‖un − φn‖
‖Aun − Aφn‖ , λn + σn

}
≤ a1‖un − φn‖

‖Aun − Aφn‖ ,

which implies that

‖Aun − Aφn‖ ≤ a1
λn+1

‖un − φn‖, ∀n ≥ 1. (4.5)

Similarly, we have

‖Bsn − Bψn‖ ≤ a2
ρn+1

‖sn − ψn‖, ∀n ≥ 1.

From the definition of vn in Step 3 and Lemma 2.5, we have

‖vn − x∗‖2 ≤‖un − λn(Aun − Aφn) − x∗‖2
=‖un − x∗‖2 + λ2n‖Aun − Aφn‖2 − 2λn〈Aun − Aφn, un − x∗〉
=‖φn − x∗‖2 + ‖un − φn‖2 + 2〈un − φn, φn − x∗〉

+ λ2n‖Aun − Aφn‖2 − 2λn〈Aun − Aφn, un − x∗〉
=‖φn − x∗‖2 + ‖un − φn‖2 − 2〈un − φn, un − φn〉

+ 2〈un − φn, un − x∗〉 − 2λn〈Aun − Aφn, un − x∗〉 + λ2n‖Aun − Aφn‖2
=‖φn − x∗‖2 − ‖un − φn‖2 + 2〈un − φn, un − x∗〉

− 2λn〈Aun − Aφn, un − x∗〉 + λ2n‖Aun − Aφn‖2. (4.6)

Since un = PC(φn − λn Aφn) and x∗ ∈ C, we obtain from the characteristic property of PC
that

〈un − φn + λn Aφn, un − x∗〉 ≤ 0.

This implies that

〈un − φn, un − x∗〉 ≤ −λn〈Aφn, un − x∗〉. (4.7)
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Also since un ∈ C and x∗ ∈ � we have

〈Aun, un − x∗〉 ≥ 0, ∀n ≥ 0. (4.8)

Applying (4.4), (4.5), (4.7) and (4.8) in (4.6), we obtain

‖vn − x∗‖2 ≤‖φn − x∗‖2 − ‖un − φn‖2
− 2λn〈Aφn, un − x∗〉 − 2λn〈Aun − Aφn, un − x∗〉 + λ2n‖Aun − Aφn‖2

=‖φn − x∗‖2 − ‖un − φn‖2 − 2λn〈Aun, un − x∗〉 + λ2n‖Aun − Aφn‖2

≤‖φn − x∗‖2 − ‖un − φn‖2 + λ2n
a21

λ2n+1

‖un − φn‖2

=‖zn − x∗‖2 − ‖zn − φn‖2 −
(

1 − λ2na
2
1

λ2n+1

)

‖un − φn‖2. (4.9)

Following the same line of argument, we have

‖bn − y∗‖2 ≤ ‖kn − y∗‖2 − ‖kn − ψn‖2 −
(

1 − ρ2
na

2
2

ρ2
n+1

)

‖sn − ψn‖2, (4.10)

which completes the proof. ��

Lemma 4.4 Let {(xn, yn)} be a sequence generated by Algorithm 3.2 satisfying Assumption
3.1. Then {(xn, yn)} is bounded.

Proof Let x∗ ∈ �. From the definition of wn and Lemma 2.5, we have

‖wn − x∗‖ = ‖(1 − αn)(xn + θn(xn − xn−1)) − x∗‖
= ‖(1 − αn)(xn − x∗) + (1 − αn)θn(xn − xn−1) − αnx

∗‖
≤ (1 − αn)‖xn − x∗‖ + (1 − αn)θn‖xn − xn−1‖ + αn‖x∗‖
= (1 − αn)‖xn − x∗‖ + αn

[
(1 − αn)

θn

αn
‖xn − xn−1‖ + ‖x∗‖

]
. (4.11)

By (3.5), we have

lim
n→∞

[
(1 − αn)

θn

αn
‖xn − xn−1‖ + ‖x∗‖

]
= ‖x∗‖.

Thus, there exists a constant M1 > 0 such that (1− αn)
θn
αn

‖xn − xn−1‖ + ‖x∗‖ ≤ M1 for all
n ∈ N. Thus, from (4.11) it follows that

‖wn − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αnM1.

Consequently, we have

‖wn − x∗‖2 ≤ (1 − αn)
2‖xn − x∗‖2 + 2αn(1 − αn)M1‖xn − x∗‖ + α2

nM
2
1 . (4.12)

Following similar procedure, we have

‖ϕn − y∗‖2 ≤ (1 − αn)
2‖yn − y∗‖2 + 2αn(1 − αn)M2‖yn − y∗‖ + α2

nM
2
2 . (4.13)
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Adding (4.12) and (4.13), we obtain

‖wn − x∗‖2 + ‖ϕn − y∗‖2

≤(1 − αn)
2
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]

+ 2αn(1 − αn)
(
M1‖xn − x∗‖ + M2‖yn − y∗‖

)
+ α2

n(M
2
1 + M2

2 )

≤(1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]

+ 2αn

(
M1‖xn − x∗‖ + M2‖yn − y∗‖

)
+ αn(M

2
1 + M2

2 )

=(1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]
+ αncn, (4.14)

where cn = 2(M1‖xn − x∗‖ + M2‖yn − y∗‖) + M2
1 + M2

2 . From STEP 3, and by applying
Lemma 2.5, (4.9) together with Remark 3.6, we have

‖xn+1 − x∗‖2 =
∥∥∥(1 − βn)vn + βn

1

tn,1

∫ tn,1

0
T1(s)vnds − x∗

∥∥∥
2

=
∥∥∥(1 − βn)(vn − x∗) + βn

( 1

tn,1

∫ tn,1

0
T1(s)vnds − x∗)

∥∥∥
2

=(1 − βn)‖vn − x∗‖2 + βn

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − x∗

∥∥∥
2

− βn(1 − βn)

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − vn

∥∥∥
2

=(1 − βn)‖vn − x∗‖2 + βn

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − 1

tn,1

∫ tn,1

0
T1(s)x

∗ds
∥∥∥
2

− βn(1 − βn)

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − vn

∥∥∥
2

≤(1 − βn)‖vn − x∗‖2 + βn‖vn − x∗‖2 − βn(1 − βn)

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − vn

∥∥∥
2

=‖vn − x∗‖2 − βn(1 − βn)

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − vn

∥∥∥
2

≤‖zn − x∗‖2 − ‖zn − φn‖2 −
(
1 − λ2na

2
1

λ2n+1

)
‖un − φn‖2

− βn(1 − βn)

∥∥∥
1

tn,1

∫ tn,1

0
T1(s)vnds − vn

∥∥∥
2

(4.15)

≤‖zn − x∗‖2. (4.16)

Similarly, from STEP 5, and by applying Lemma 2.5, (4.10) together with Remark 3.6, we
have

‖yn+1 − y∗‖2 ≤‖kn − y∗‖2 − ‖kn − ψn‖2 −
(
1 − ρ2

na
2
2

ρ2
n+1

)
‖sn − ψn‖2

− γn(1 − γn)

∥∥∥
1

tn,2

∫ tn,2

0
T2(u)bndu − bn

∥∥∥
2

(4.17)

≤‖kn − y∗‖2. (4.18)
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From (4.3), (4.14), (4.16) and (4.18), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ ‖zn − x∗‖2 + ‖kn − y∗‖2
≤ ‖wn − x∗‖2 + ‖ϕn − y∗‖2

≤ (1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]
+ αncn

≤ max {‖xn − x∗‖2 + ‖yn − y∗‖2, cn}
...

≤ max {‖xn0 − x∗‖2 + ‖yn0 − y∗‖2, cn0}.
Thus,

{
(xn, yn)

}
is bounded. Consequently, {zn}, {vn}, {kn} and {bn} are also bounded. ��

Lemma 4.5 Let
{
(xn, yn)

}
be a sequence generated by Algorithm 3.2 under Assumption 3.1.

Then,

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤(1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]
+ αndn

− ηn · ε
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

]

− ‖zn − φn‖2 − ‖kn − ψn‖2 −
(

1 − λ2na
2
1

λ2n+1

)

‖un − φn‖2 −
(

1 − ρ2
na

2
2

ρ2
n+1

)

‖sn − ψn‖2

− βn(1 − βn)‖ 1

tn,1

∫ tn,1

0
T1(s)vnds − vn‖2 − γn(1 − γn)‖ 1

tn,2

∫ tn,2

0
T2(u)bndu − bn‖2,

where dn = [2(1 − αn)‖xn − x∗‖ θn
αn

‖xn − xn−1‖ + θn‖xn − xn−1‖ · θn
αn

‖xn − xn−1‖ +
2‖x∗‖‖wn − xn+1‖ + 2〈x∗, x∗ − xn+1〉] + [2(1− αn)‖yn − y∗‖ τn

αn
‖yn − yn−1‖ + τn‖yn −

yn−1‖ · τn
αn

‖yn − yn−1‖ + 2‖y∗‖‖ϕn − yn+1‖ + 2〈y∗, y∗ − yn+1〉].
Proof Let (x∗, y∗) ∈ �. From Lemma 2.5 and the definition of wn, we have

‖wn − x∗‖2 =‖(1 − αn)(xn − x∗) + (1 − αn)θn(xn − xn−1) − αnx
∗‖2

≤‖(1 − αn)(xn − x∗) + (1 − αn)θn(xn − xn−1)‖2 + 2αn〈−x∗, wn − x∗〉
≤(1 − αn)

2‖xn − x∗‖2 + 2(1 − αn)θn‖xn − x∗‖‖xn − xn−1‖ + θ2n ‖xn − xn−1‖2
+ 2αn〈−x∗, wn − xn+1〉 + 2αn〈−x∗, xn+1 − x∗〉

≤(1 − αn)‖xn − x∗‖2 + αn

[
2(1 − αn)‖xn − x∗‖ θn

αn
‖xn − xn−1‖

+ θn‖xn − xn−1‖ · θn

αn
‖xn − xn−1‖

+ 2‖x∗‖‖wn − xn+1‖ + 2〈x∗, x∗ − xn+1〉
]
. (4.19)

Following the same line of argument, we have

‖ϕn − y∗‖2 ≤(1 − αn)‖yn − y∗‖2 + αn

[
2(1 − αn)‖yn − y∗‖ τn

αn
‖yn − yn−1‖

+ τn‖yn − yn−1‖ · τn

αn
‖yn − yn−1‖ + 2‖y∗‖‖ϕn − yn+1‖ + 2〈y∗, y∗ − yn+1〉

]
.

(4.20)
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Adding (4.19) and (4.20) we have

‖wn − x∗‖2 + ‖ϕn − y∗‖2 ≤ (1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]
+ αndn . (4.21)

From (4.3), (4.15), (4.17) and (4.21), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤‖zn − x∗‖2 + ‖kn − y∗‖2 − ‖zn − φn‖2 − ‖kn − ψn‖2 −
(
1 − λ2na

2
1

λ2n+1

)
‖un − φn‖2

−
(
1 − ρ2

na
2
2

ρ2
n+1

)
‖sn − ψn‖2 − βn(1 − βn)‖ 1

tn,1

∫ tn,1

0
T1(s)vnds − vn‖2

− γn(1 − γn)‖ 1

tn,2

∫ tn,2

0
T2(u)bndu − bn‖2

≤ ‖wn − x∗‖2 + ‖ϕn − y∗‖2 − ηn · ε
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

]

− ‖zn − φn‖2 − ‖kn − ψn‖2 −
(
1 − λ2na

2
1

λ2n+1

)
‖un − φn‖2 −

(
1 − ρ2

na
2
2

ρ2
n+1

)
‖sn − ψn‖2

− βn(1 − βn)‖ 1

tn,1

∫ tn,1

0
T1(s)vnds − vn‖2 − γn(1 − γn)‖ 1

tn,2

∫ tn,2

0
T2(u)bndu − bn‖2

≤ (1 − αn)
[
‖xn − x∗‖2 + ‖yn − y∗‖2

]
+ αndn

− ηn · ε
[
‖F∗

2 (F1wn − F2ϕn)‖2 + ‖F∗
1 (F1wn − F2ϕn)‖2

]
− ‖zn − φn‖2 − ‖kn − ψn‖2

−
(
1 − λ2na

2
1

λ2n+1

)
‖un − φn‖2 −

(
1 − ρ2

na
2
2

ρ2
n+1

)
‖sn − ψn‖2

− βn(1 − βn)‖ 1

tn,1

∫ tn,1

0
T1(s)vnds − vn‖2 − γn(1 − γn)‖ 1

tn,2

∫ tn,2

0
T2(u)bndu − bn‖2,

which is the required result. ��
Now we are in a position to state the main result of this work.

Theorem 4.6 Let {(xn, yn)} be a sequence generated by Algorithm 3.2 such that Assump-
tion 3.1 holds. Then, the sequence {(xn, yn)} converges strongly to (x̂, ŷ) = P�(0H1 , 0H2) ∈
�.

Proof Let (x̂, ŷ) = P�(0H1 , 0H2) ∈ �. Then, it follows from Lemma 4.5 that

‖xn+1 − x̂‖2 + ‖yn+1 − ŷ‖2 ≤ (1 − αn)
[
‖xn − x̂‖2 + ‖yn − ŷ‖2

]
+ αnd̂n, (4.22)

where d̂n = [2(1 − αn)‖xn − x̂‖ θn
αn

‖xn − xn−1‖ + θn‖xn − xn−1‖ · θn
αn

‖xn − xn−1‖ +
2‖x̂‖‖wn − xn+1‖+2〈x̂, x̂ − xn+1〉]+[2(1−αn)‖yn − ŷ‖ τn

αn
‖yn − yn−1‖+ τn‖yn − yn−1‖ ·

τn
αn

‖yn − yn−1‖ + 2‖ŷ‖‖ϕn − yn+1‖ + 2〈ŷ, ŷ − yn+1〉]. Now, we claim that the sequence
{‖xn− x̂‖+‖yn− ŷ‖} converges to zero. To show this, by Lemma 2.13 it suffices to show that
lim supk→∞ d̂nk ≤ 0 for every subsequence {‖xnk − x̂‖+‖ynk − ŷ‖} of {‖xn− x̂‖+‖yn− ŷ‖}
satisfying

lim inf
k→∞

((‖xnk+1 − x̂‖ + ‖ynk+1 − ŷ‖)− (‖xnk − x̂‖ + ‖ynk − ŷ‖)) ≥ 0. (4.23)
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Suppose that {‖xnk − x̂‖ + ‖ynk − ŷ‖} is a subsequence of {‖xn − x̂‖ + ‖yn − ŷ‖} such that
(4.23) holds. Again, from Lemma 4.5, we obtain

ηnk · ε
[
‖F∗

2 (F1wnk − F2ϕnk )‖2 + ‖F∗
1 (F1wnk − F2ϕnk )‖2

]

+ ‖znk − φnk‖2 + ‖knk − ψnk‖2

+
(
1 − λ2nk a

2
1

λ2nk+1

)
‖unk − φnk‖2 +

(
1 − ρ2

nk a
2
2

ρ2
nk+1

)
‖snk − ψnk‖2

+ βnk (1 − βnk )‖
1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − vnk‖2

+ γnk (1 − γnk )‖
1

tnk,2

∫ tnk,2

0
T2(u)bnk du − bnk‖2

≤(1 − αnk )
[
‖xnk − x̂‖2 + ‖ynk − ŷ‖2

]
−
[
‖xnk+1 − x̂‖2 + ‖ynk+1 − ŷ‖2

]
+ αnk d̂nk .

From (4.23) and the condition on αnk we have

lim
k→∞

(
ηnk · ε

[
‖F∗

2 (F1wnk − F2ϕnk )‖2 + ‖F∗
1 (F1wnk − F2ϕnk )‖2

]

+ ‖znk − φnk‖2 + ‖knk − ψnk‖2

+
(
1 − λ2nk a

2
1

λ2nk+1

)
‖unk − φnk‖2 +

(
1 − ρ2

nk a
2
2

ρ2
nk+1

)
‖snk − ψnk‖2

+ βnk (1 − βnk )‖
1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − vnk‖2

+ γnk (1 − γnk )‖
1

tnk,2

∫ tnk,2

0
T2(u)bnk du − bnk‖2

)
= 0.

From (3.6), (3.7) and the conditions on the control parameters, we have

lim
k→∞‖znk − φnk ‖ = 0, lim

k→∞‖knk − ψnk‖ = 0, lim
k→∞‖unk − φnk ‖ = 0, lim

k→∞‖snk − ψnk‖ = 0,

(4.24)

lim
k→∞

∥∥∥
1

tnk,2

∫ tnk,2

0
T2(u)bnk du − bnk

∥∥∥ = 0, lim
k→∞

∥∥∥
1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − vnk

∥∥∥ = 0.

(4.25)

Also, we have

lim
k→∞

[
‖F∗

2 (F1wnk − F2ϕnk )‖2 + ‖F∗
1 (F1wnk − F2ϕnk )‖2

]
= 0

which implies that

lim
k→∞‖F∗

2 (F1wnk − F2ϕnk )‖ = 0,

lim
k→∞‖F∗

1 (F1wnk − F2ϕnk )‖ = 0,

lim
k→∞‖F1wnk − F2ϕnk‖ = 0.
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From the definition of znk , knk and the previous inequality we have

‖znk − wnk‖ = ηnk‖F∗
1 (F1wnk − F2ϕnk )‖ → 0, as k → ∞.

‖knk − ϕnk‖ = ηnk‖F∗
2 (F1wnk − F2ϕnk )‖ → 0, as k → ∞. (4.26)

Also, from the definition of vnk , bnk and (4.24), we have

‖vnk − unk‖ = λnk‖Aunk − Aφnk‖ ≤ λnk a1
λnk+1

‖unk − φnk‖ → 0, as k → ∞.

‖bnk − snk‖ = ρnk‖Bsnk − Bψnk‖ ≤ ρnk a2
ρnk+1

‖snk − ψnk‖ → 0, as k → ∞.

From (4.25) and Lemma 2.3 we have

‖vnk − T1(v)vnk‖ ≤
∥∥∥vnk − 1

tnk,1

∫ tnk,1

0
T1(s)vnk ds

∥∥∥

+
∥∥∥

1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − T1(v)

1

tnk,1

∫ tnk,1

0
T1(s)vnk ds

∥∥∥

+
∥∥∥T1(v)

1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − T1(v)vnk

∥∥∥→ 0, as k → ∞.

(4.27)

Similarly, we have

lim
k→∞‖bnk − T2(b)bnk‖ = 0.

From the definition of xnk+1 and (4.25), we have

‖xnk+1 − vnk‖ =
∥∥∥(1 − βnk )vnk + βnk

1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − vnk

∥∥∥

= βnk

∥∥∥
1

tnk,1

∫ tnk,1

0
T1(s)vnk ds − vnk

∥∥∥→ 0, as k → ∞.

Similarly, we have

lim
k→∞‖ynk+1 − bnk‖ = 0.

Now, from Step 2 and by Remark 3.4, we get

‖wnk − xnk ‖ = ‖(1 − αnk )(xnk + θnk (xnk − xnk−1)) − xnk ‖
= ‖(1 − αnk )(xnk − xnk ) + (1 − αnk )θnk (xnk − xnk−1) − αnk xnk ‖
≤ (1 − αnk )‖xnk − xnk ‖ + (1 − αnk )θnk ‖xnk − xnk−1‖ + αnk ‖xnk ‖ → 0, k → ∞.

(4.28)

Similarly, we have

lim
k→∞‖ϕnk − ynk‖ = 0. (4.29)

From (4.24)–(4.29) we have

lim
k→∞‖xnk − φnk‖ = 0, lim

k→∞‖xnk+1 − wnk‖ = 0, lim
k→∞‖ynk+1 − ϕnk‖ = 0. (4.30)
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From (4.28) and (4.30) we have

lim
k→∞‖xnk+1 − xnk‖ = 0. (4.31)

Similarly, from (4.29) and (4.30)

lim
k→∞‖ynk+1 − ynk‖ = 0. (4.32)

To complete the proof, we show that wω

(
xn, yn

) ⊂ �, where wω

(
xn, yn

)
is the set of weak

limits of
{
(xn, yn)

}
. Since

{
(xn, yn)

}
is bounded we have that wω

(
xn, yn

)
is nonempty. Let

(x∗, y∗) ∈ wω

(
xn, yn

)
be an arbitrary element. From (4.26), (4.28) and (4.29) we have

x∗ ∈ wω(xn) and y∗ ∈ wω(yn). Then there exists a subsequence {xnk } of {xn} such that
xnk⇀x∗ as k → ∞. Since limk→∞ ‖xnk −φnk‖ = 0, we have that φnk⇀x∗ ∈ C as k → ∞.

From the characteristic property of PC, we have

〈x − unk , φnk − λnk Aφnk − unk , 〉 ≤ 0, x ∈ C,

which implies that

1

λnk

〈
φnk − unk , x − unk

〉 ≤ 〈Aφnk , x − unk
〉
, ∀x ∈ C.

Consequently, we have

1

λnk

〈
φnk − unk , x − unk

〉+ 〈Aφnk , unk − φnk

〉 ≤ 〈Aφnk , x − φnk

〉
, ∀x ∈ C. (4.33)

Applying the fact that limk→∞ ‖φnk − unk‖ = 0 and limk→∞ λnk = λ > 0 to (4.33), we
have

0 ≤ lim inf
k→∞

〈
Aφnk , x − φnk

〉
, ∀x ∈ C. (4.34)

Also, we have that
〈
Aunk , x − unk

〉 = 〈Aunk − Aφnk , x − φnk

〉+ 〈Aφnk , x − φnk

〉+ 〈Aunk , φnk − unk
〉
.

Since A is uniformly continuous on H and limk→∞ ‖φnk − unk‖, we have
lim
k→∞‖Aφnk − Aunk‖ = 0. (4.35)

From (4.34)–(4.35), we have

0 ≤ lim inf
k→∞

〈
Aunk , x − unk

〉
, ∀x ∈ C. (4.36)

Let {δk} be a sequence of positive numbers such that δk+1 ≤ δk, ∀k ≥ 1 and δk → 0 as k →
∞. Then, for each k ≥ 1, we denote by Nk the smallest positive integer such that

〈Aun j , x − un j 〉 + δk ≥ 0, ∀ j ≥ Nk, (4.37)

where the existence of Nk follows from (4.36). We have that {Nk} is increasing since {δk}
is decreasing. Furthermore, since {unk } ⊂ C we can suppose AuNk �= 0 (otherwise, uNk is

a solution) and we set for each k ≥ 1, hNk = AuNk
‖AuNk ‖2 . Then we have that 〈AuNk , hNk 〉 =

1 for each k ≥ 1. Thus, by (4.37), we have that

〈AuNk , x + δkhNk − uNk 〉 ≥ 0,
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which implies by the pseudo-monotonicity of A that

〈A(x + δkhNk ), x + δkhNk − uNk 〉 ≥ 0. (4.38)

Since unk ⊂ C, the sequence {unk } converges weakly to x∗ ∈ C. If Ax∗ = 0, then x∗ ∈
V I (C, A). On the contrary, we suppose Ax∗ �= 0. Since A satisfies condition (c), we have

0 < ‖Ax∗‖ ≤ lim inf
k→∞ ‖Aunk‖.

Since {uNk } ⊂ {unk }, we obtain that

0 ≤ lim sup
k→∞

‖δkhNk‖ = lim sup
k→∞

(
δk

‖Aunk‖
)

≤
lim sup
k→∞

δk

lim inf
k→∞ ‖Aunk‖

= 0.

Therefore, limk→∞ ‖δkhNk‖ = 0. Letting k → ∞ in (4.38) gives

〈Ax, x − x∗〉 ≥ 0, ∀x ∈ C,

which implies by Lemma 2.7 that x∗ ∈ V I (C, A). By similar argument, we have that y∗ ∈
V I (Q, B).

Now, to show that x∗ ∈ F(Ta) and y∗ ∈ F(Tb). On the contrary, we suppose that
T1(v)x∗ �= x∗ and T2(b)x∗ �= y∗ for all v ≥ 0 and b ≥ 0. Then, it follows from the Opial
condition of Hilbert space and from (4.27) that

lim inf
k→∞ ‖vnk − x∗‖ < lim inf

k→∞ ‖vnk − T1(v)x∗‖

≤ lim inf
k→∞

{
‖vnk − T1(v)vnk‖ + ‖T1(v)vnk − T1(v)x∗‖

}

≤ lim inf
k→∞

{
‖vnk − T1(v)vnk‖ + ‖vnk − x∗‖

}

= lim inf
k→∞ ‖vnk − x∗‖,

which is a contradiction. Thus, it follows that T1(v)x∗ = x∗ for all v ≥ 0 which implies that
x∗ ∈ F(Ta). Similarly, y∗ ∈ F(Tb).

Next, from (4.24)wehave that limk→∞ ‖φnk−znk‖ = limk→∞ ‖U�1
rnk ,1 znk−znk‖ = 0, and

since znk⇀x∗ it follows from the demiclosed property of nonexpansive mappings that x∗ ∈
EP(�1). Similarly, we have that y∗ ∈ EP(�2). Since F1x∗ −F2y∗ ∈ wω(F1wn −F2ϕn),

it follows from the weakly lower semi-continuity of the norm that

‖F1x
∗ − F2y

∗‖ ≤ lim inf
n→∞ ‖F1wn − F2ϕn‖ = 0.

Hence, we have that (x∗, y∗) ∈ �. Since (x∗, y∗) ∈ wω

(
xn, yn

)
was chosen arbitrarily, it

follows that wω

(
xn, yn

) ⊂ �. To conclude, we show that

lim sup
k→∞

(〈
x̂, x̂ − xnk+1

〉
+
〈
ŷ, ŷ − ynk+1

〉)
≤ 0.

By the boundedness of {(xnk , ynk )}, it follows that there exists a subsequence {(xnk j , ynk )}
of {(xnk , ynk )} which converges weakly to some (x̄, x̄) ∈ H, and such that

lim
j→∞

( 〈
x̂, x̂ − xnk j

〉
+
〈
ŷ, ŷ − ynk j

〉 )
= lim sup

k→∞

( 〈
x̂, x̂ − xnk

〉+ 〈ŷ, ŷ − ynk
〉 )

. (4.39)
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From (4.39) and the fact that (x̂, ŷ) = P�(0H1 , 0H2) ∈ � we have

lim sup
k→∞

( 〈
x̂, x̂ − xnk

〉+ 〈ŷ, ŷ − ynk
〉 )

= lim
j→∞

( 〈
x̂, x̂ − xnk j

〉
+
〈
ŷ, ŷ − ynk j

〉 )

= 〈x̂, x̂ − x̄
〉+ 〈ŷ, ŷ − ȳ

〉 ≤ 0. (4.40)

From (4.31), (4.32) and (4.40), it follows that

lim sup
k→∞

( 〈
x̂, x̂ − xnk+1

〉+ 〈ŷ, ŷ − ynk+1
〉 )

=lim sup
k→∞

( 〈
x̂, x̂ − xnk

〉+ 〈ŷ, ŷ − ynk
〉 )

= 〈x̂, x̂ − x̄
〉+ 〈ŷ, ŷ − ȳ

〉 ≤ 0. (4.41)

Thus, by (4.30) and (4.41)wehave lim supk→∞ d̂nk ≤ 0.Now, applyingLemma2.13 to (4.22)
we have {‖xn − x̂‖+‖yn − ŷ‖} converges to zero, which implies that limn→∞ ‖xn − x̂‖ = 0
and limn→∞ ‖yn − ŷ‖ = 0. Therefore, ({xn}, {yn}) converges strongly to (x̂, ŷ). ��

5 Numerical Experiment

In this section, we discuss the numerical behavior of our method, (Proposed Alg.) Algo-
rithm 3.2 in comparison with the method in Appendix A proposed by Latif and Eslamian
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Fig. 1 Example 5.1: Case 1
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[31] (Latif and Eslamian Alg.), which is the only related result we could find in the literature.
We plot the graph of errors against the number of iterations in each case of both examples
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Fig. 3 Example 5.1: Case 3
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using |xn+1− xn | < 10−4 and ‖xn+1− xn‖ < 10−4 in Example 5.1 and Example 5.2 respec-
tively as the stopping criterion. The numerical computations are reported in Figs. 1, 2, 3, 4,
5, 6, 7, and 8 and Tables 1 and 2 with all implementations performed using Matlab 2021 (b).

In our computation, we choose θ = 3.5, τ = 2.44, λ1 = 1.5, ρ1 = 1.8, a1 = 0.8, a2 =
0.9, εn = ζn = 1

(2n+1)3
, αn = 3

2n+1 , βn = 1
4 , γn = 1

4 , ρn = σn = 100
(n+1)2

, η =
0.5, rn,1 = 2.8, rn,2 = 3.5, tn,1 = 4.5, tn,2 = 5.5, s = u = 1.5. For Appendix A, we choose
α = 0.85, ςn = κn = 1

6 , ξn = δn = 1−αn
2 .

Example 5.1 Let H1 = H2 = H3 = R the set of all real numbers with the inner product
〈x, y〉 = xy, ∀x, y ∈ R and induced norm | · |. For ri > 0, i = 1, 2, consider C = [−10, 10]
andQ = [0, 20].We define the bifunction�1 : C×C → R and�2 : Q×Q → R as follows:

U�1
r1 (u) = u

3r1 + 1
, ∀x ∈ C

and

U�2
r2 (v) = v

r2 + 1
, ∀y ∈ Q.

Let F1x = 2x and F2x = 5x which implies that F∗
1 x = 2x and F∗

2 x = 5x . Next we define
A : H1 → H1 as Ax = 2x and B : H2 → H2 as Bx = 3x . We define the mappings
T1(s) : R → R and T2(u) : R → R as follows; T1(s)x = 10−s x and T2(u)y = 10−2u y.
Clearly, we observe that T1(s) and T2(u) are nonexpansive semigroups.

We choose V1 = x0,V2 = y0 and consider the following cases for the numerical experi-
ments of this example.

Case 1: Take (x0, y0) = (−13.5, 8.0) and (x1, y1) = (5.7,−9.1).
Case 2: Take (x0, y0) = (15.1, 7.9) and (x1, y1) = (6.4, 81.3).
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Table 1 Numerical Results for Example 5.1

Case 1 Case 2 Case 3 Case 4
Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Latif & Eslamian Alg. 86 0.0085 86 0.0062 89 0.0084 88 0.0064

Proposed Alg. 3.2 64 0.0132 64 0.0078 64 0.0093 64 0.0018

Case 3: Take (x0, y0) = (10.9,−11.8) and (x1, y1) = (−37.2, 26.8).
Case 4: Take (x0, y0) = (−14.9,−9.8) and (x1, y1) = (−25.2,−17.7).

Example 5.2 Let H1 = H2 = H3 = (l2(R), ‖ · ‖2), where l2(R) := {x =
(x1, x2, . . . , xn, . . .), xi ∈ R : ∑∞

i=1 |xi |2 < +∞}, ||x ||2 =
√

(
∑∞

i=1 |xi |2) and

〈x, y〉 = ∑∞
i=1 xi yi for all x ∈ �2(R). For ri > 0, i = 1, 2, we define the sets

C := {x ∈ �2 : ‖x‖ ≤ 1} and Q := {y ∈ �2 : ‖y‖ ≤ 1}. Let F1 : H1 → H2,

F2 : H2 → H3 be defined by F1x = x
3 and F2x = 2x

5 respectively which implies

that F∗
1 y = y

3 and F∗
2 y = 2y

5 . Clearly, F1 and F2 are bounded linear operators. We
define �1 : C × C → R and �2 : Q × Q → R by �1(x, y) = 〈L1x, y − x〉 and
�2(x, y) = 〈L2x, y − x〉, where L1x = x

3 and L2x = x
2 . Observe that �1 and �2 sat-

isfy Assumption 2.9. After simple calculation and applying Lemma 2.10, we obtain

U�1
r1 (u) = 3u

r1 + 3
, ∀x ∈ C,

and

U�2
r2 (v) = 2v

r2 + 2
, ∀y ∈ Q.

Let A : H1 → H1 be defined by A(x1, x2, x3, . . . ) = (x1e−x21 , 0, 0, . . . ) and B : H2 → H2

as B(x1, x2, x3, . . . ) = (5x1e−x21 , 0, 0, . . . ). Clearly, we see that A and B are pseudomono-
tone mappings. We define the mappings T1(s) : R → R and T2(u) : R → R as follows;
T1(s)x = 10−5s x and T2(u)y = 10−3u y. Clearly, we observe that T1(s) and T2(u) are
nonexpansive semigroups.

We choose V1 = x0,V2 = y0 and consider different initial values as follows:
Case 1: x0 = ( 12 ,

1
4 ,

1
8 , . . . ), y0 = ( 12 ,

1
4 ,

1
8 , . . . ); x1 = ( 13 ,

1
9 ,

1
27 , . . . ), y1 =

( 13 ,
1
9 ,

1
27 , . . . );

Case 2: x0 = ( 12 ,
1
6 ,

1
18 , . . . ), y0 = ( 12 ,

1
4 ,

1
8 , . . . ); x1 = (− 1

3 ,
1
6 ,− 1

18 , . . . ),

y1 = (− 1
3 ,

1
6 ,− 1

18 , . . . );
Case 3: x0 = ( 38 ,

3
16 ,

3
32 , . . . ), y0 = ( 59 ,

5
18 ,− 5

36 , . . . ); x1 = (− 1
3 ,

1
9 ,− 1

27 , . . . ),

y1 = ( 12 ,
1
6 ,

1
12 , . . . );

Case 4: x0 = ( 38 ,
3
16 ,

3
32 , . . . ), y0 = ( 59 ,

5
18 ,

5
36 , . . . ); x1 = ( 19 ,

1
18 ,

1
36 , . . . ), y1 =

(− 7
12 ,

7
24 ,− 7

36 ).

6 Conclusion

In this paper, we studied the split equalities of the VIP, EP and FPP of nonexpansive
semigroups. We introduced a Tseng’s extragradient method with self-adaptive step size for
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Table 2 Numerical Results for Example 5.2

Case 1 Case 2 Case 3 Case 4
Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Latif & Eslamian Alg. 72 0.0134 72 0.0192 72 0.0147 72 0.0073

Proposed Alg. 3.2 58 0.0211 58 0.0171 58 0.0263 58 0.0100

approximating a common solution of the split equalities of the VIP, EP and FPP of nonex-
pansive semigroups in the framework of real Hilbert spaces when the cost operator of the VIP
is pseudomonotone and non-Lipschitz. Without the sequential weak continuity condition on
the cost operator, we obtained a strong convergence result of our proposed method.While the
cost operator is non-Lipschitz, our algorithm does not involve any linesearch procedure and
our strong convergence result was obtained without the usual “two cases approach" widely
used in many papers. Finally, we presented some numerical experiments of our proposed
method in comparison with a related method in the literature to show the applicability of our
method. Our result improves, extends and generalizes several other results in the literature.

Appendix A Algorithm 1 of Latif et al. [31]

Choose sequences {βn}∞n=1, {αn}∞n=1, {δn}∞n=1 such that βn +αn + δn = 1. Select initial point
x0 ∈ H1, y0 ∈ H2, let ϑ ≥ 0. Set n := 1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = xn − ϑnF∗
1 (F1xn − F2yn),

φn = U�1
rn,1 zn,

un = PC(φn − ςn Aφn),

pn = PC(φn − ςn Aun),

xn+1 = αnV1 + ξn pn + δnT1(s)pn
kn = yn + ϑnF∗

2 (F1xn − F2yn),

ψn = U�2
rn,2kn,

sn = PQ(ψn − κn Bψn),

ln = PQ(ψn − κn Bsn),

yn+1 = αnV2 + ξnln + δnT2(u)ln,

where the step size ϑn is chosen such that for small enough ε > 0,

ϑn ∈
[
ε,

2‖F1xn − F2yn‖2
‖F∗

2 (F1xn − F2yn)‖2 + ‖F∗
1 (F1xn − F2yn)‖2 − ε

]
,

if F1xn �= F2yn ; otherwise, ϑn = η.

Set n := n + 1 and go back to Step 1.
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