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Abstract
Schreier bases are introduced and used to show that skew polynomial rings are free ideal
rings, i.e., rings whose one-sided ideals are free of unique rank, as well as to compute a rank
of one-sided ideals together with a description of corresponding bases. The latter fact, a so-
called Schreier-Lewin formula (Lewin Trans. Am. Math. Soc. 145, 455–465 1969), is a basic
tool determining a module type of perfect localizations which reveal a close connection
between classical Leavitt algebras, skew polynomial rings, and free associative algebras.
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1 Introduction

In contrast to what one might expect, skew polynomial rings form a quite large, extremely
diverse ring class. Elements of the (left) skew polynomial ring D[X; α, δ] over a division
ring D with a nonzero endomorphism α : D → D and an α-derivation δ : D → D, i.e.,
an additive homomorphism satisfying δ(cd) = δ(c)d + α(c)δ(d) for any two c, d ∈ D, are
formal polynomials a0 + a1X + · · · + anX

n with the usual addition, but with multiplication
twisted by putting Xa = α(a)X + δ(a), respectively. D[X; α, 0] is denoted by D[X; α].
Typical examples for endomorphisms α are provided by Lüroth’s theorem about endomor-
phisms of rational function fields. D[X; α, δ] is a left but not right principal ideal domain
unless α is an automorphism. Almost nothing is known about right ideals of skew poly-
nomial rings except an obvious consequence of Cohn’s dependence relations [3, Theorem
1.1.1] that finitely generated right ideals are free of unique rank. Because of its importance
we present a simple direct and elementary proof that one-sided principal ideal domains are
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semifirs. A ring is a semifir if every finitely generated one-sided ideal is free of unique rank.
A ring is a fir, i.e., a free ideal ring if every one-sided ideal is a free module of unique rank.
Consequently, a fir is projective-free, i.e., all projective modules are free. Following Rosen-
mann and Rosset [13], Schreier bases are introduced and used to show that skew polynomial
rings are firs with a Schreier-Lewin formula [11] determining both rank and corresponding
bases of one-sided ideals. The latter formula is a basic tool in the study of perfect localiza-
tions of skew polynomial rings which is inspired by the advanced theory of Leavitt algebras
[6, 10] and [1]. In particular, we compute precisely both the module type and the Grothen-
dick group of perfect localizations of skew polynomial rings. Furthermore, we describe also
their maximal flat epimorphic ring of quotients as the ring of quotients with respect to the
Gabriel topology defined by finite codimensional right ideals.

The title is suggested by Lewin’s nice article [11]. All rings have the identity 1 �= 0,
and modules are unitary. A division ring is a ring whose nonzero elements are units. For
undefined notions we refer to Stenström’s classic [14]. For a systematic investigation of
skew polynomial rings, we refer to the classics [3, 5], or [7, 8] of either Cohn or Jacobson,
respectively.

2 Skew Polynomial Rings are Free Ideal Rings

As a first step and for the sake of completeness, an obvious consequence of Cohn’s theory
on dependence relations that one-sided principal ideal domains are semifirs is presented
with a short elementary proof. However, it seems to be open whether one-sided principal
ideal domains are firs.

Proposition 2.1 Every one-sided principal ideal domain is a semifir.

Proof Let A be a left principal ideal domain. Then, A is a ring having IBN, whence every
free A-module has a unique rank. Therefore, it suffices to verify by induction on the number
of generators that every finitely generated right ideal is free. Since A is a domain, every
cyclic right ideal is free. Assume that all right ideals generated by at most n − 1 (n > 1)
generators are free and consider a nonzero right idealR = ∑n

i=1 aiA. It is enough to assume
that a1, . . . , an are not right linearly independent over A, that is, there are bi ∈ A not all
equal to 0 with

∑n
i=1 aibi = 0. Then, there is 0 �= b ∈ A with b = ∑n

i=1 cnibi, bi = dib

for appropriate cni, di ∈ A. Hence,
∑n

i=1 cnidi = 1 and
∑n

i=1 aidi = 0 hold. Therefore,
fn = cn1e1 + · · · + cnnen ∈ AAn maps to 1 ∈ A under the left module homomorphism
φ : An → A : ei �→ di = φ(ei) ∈ A, where {ei | i = 1, . . . , n} is a basis of AAn.
Consequently, AAn = Afn ⊕ kerφ holds. This shows that kerφ is a projective left A-
module. Consequently, kerφ is free of rank n−1 because A is a left principal ideal domain.
If {fi = ∑n

j=1 cij ej | i = 1, . . . , n − 1} is a basis of kerφ, then the square matrix (cij ) is
invertible with the inverse matrix (vij ). For an arbitrary column vector (r1, . . . , rn)

t ∈ An
A

the equality
n∑

i=1

airi = (a1, · · · , an)(r1, · · · , rn)
t = {(a1, · · · , an)(vij )}{(cij )(r1, · · · , rn)

t }

= (a′
1, · · · , a′

n)(r
′
1, · · · , r ′

n)
t =

n∑

i=1

a′
i r

′
i
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with a′
j = ∑n

i=1 aivij and r ′
j = ∑n

i=1 cjiri for all j = 1, . . . , n ensures that R can be
generated by a′

1, . . . , a
′
n, i.e., R = ∑n

i=1 aiA = ∑n
i=1 a′

iA. In particular, one has

0 =
n∑

i=1

aidi =
n∑

i=1

a′
id

′
i

with d ′
j = ∑n

i=1 cjidi . The equality d ′
n = ∑n

i=1 cnidi = 1 implies a′
n ∈ ∑n−1

i=1 a′
iA and so

R can be generated by n − 1 elements, whence R is free by the induction hypothesis.

Remark 2.2 The above argument can be used to simplify the demonstration of (b) ⇒ (c)
⇒ (a) in [5, Theorem 1.6.1] characterizing n-firs as algorithmically computable. More-
over, the proof of Proposition 2.1 shows also that one-sided Bezout domains are semifirs.
Even more, it is suitable to verify with an obvious modification that a domain whose
finitely generated left ideals are free of unique rank, is a semifir. In particular, the proof of
Proposition 2.1 can be used to show in a direct and elementary way the symmetry of n-fir,
i.e., if every one-sided ideal, say, every left ideal generated by at most n-elements is free
of unique rank, then every right ideal generated by at most n elements is also a free right
module of unique rank. Note the fact that a unique rank of right free modules generated by
at most n elements becomes immediate by applying the duality between finitely generated
free left and right modules induced by functors HomR(−;R)

From now on, D always denotes a division ring together with a non-zero, proper endo-
morphism α : D → D and an α-derivation δ. Fix a basis B1 = {bi | i ∈ I } 	 1
of the right vector space D over α(D) where I is not necessarily a finite set. Then
αn(B1) = {αn(bi) | i ∈ I } = Bn+1 is a basis of the right vector space αn(D)αn+1(D). Since
a skew polynomial ring A = D[X; α, δ] is obviously a right D-module, we will first con-
struct a basis of AD in terms of B1 = {bi | i ∈ I } of Dα(D). Put yi = biX for all i ∈ I . For
each d = ∑

i biα(di) ∈ D the multiplication rule

Xd = α(d)X + δ(d) (1)

implies

dX =
∑

i

biα(di)X ≡
∑

i

yidi mod D (2)

whence {yi | i ∈ I } is a right linearly independent set over D and {1, yi | i ∈ I } is a basis of
the right D-module D + DX. For the sake of simplicity, 1 is considered as the monomial
of length 0, and a product p = yi1 · · · yin (i1, . . . , in ∈ I ) has a length |p| = n. A product
yi1 · · · yim of length m ≤ n is called by definition an initial segment of length m of p, and
is denoted by hp(m)(hp(0) = 1) while a remainder yim+1 · · · yin is a tail tp(m) (tp(n) =
tp(|p|) = 1) of colength m of p. The obvious iteration using (2) shows that for each l > 0,
monomials yij · · · yik of length at most l form a basis ofD-D-bimoduleD+DX+· · ·+DXl

as a right D-module and

DXl ≡
∑

yi1 · · · yil D =
∑

|p|=l

pD mod D + DX + · · · + DXl−1. (3)

Note an important fact that the 1-dimensional left D-module DX is not a right D-module
unless δ = 0. In this case of δ = 0, all DXn (n ∈ N) are also right D-modules. In any case,
monomials in yi form a basis B of AD , called a standard Schreier basis with respect to a
basis B1 of Dα(D), shortly, a standard Schreier basis for AD , and every elements of A can
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be written uniquely as a right linear combination of monomials in the yi with coefficients
from D on the right.

Schreier bases introduced by Rosenmann and Rosset [13] can be extended to skew
polynomial rings as follows.

Definition 2.3 A Schreier basis for a right ideal R of a skew polynomial ring A =
D[X; α, δ] with respect to a standard Schreier basis B of all monomials in yi = biX (i ∈ I ),
where B1 = {bi | i ∈ I } 	 1 is a basis of Dα(D), is a subset B = BR ⊆ B that spans a right
vector space V = VR over D that is complementary to R (that is, A = V + R,V ∩ R = 0),
and is closed to taking initial segments. For each n ∈ N, let Vn be a right vector space
generated by elements of B having length at most n. A Schreier basis B is called a strong
Schreier basis for R if every monomial in yi of length n lies in Vn + R.

The argument of Rosenmann and Rosset [13, (3.2) Lemma] is used to show the existence
of Schreier bases.

Proposition 2.4 There exists a Schreier basis BR for any right ideal R of A = D[X; α, δ].
Proof The case R = A is trivial because BA is just the empty set. Therefore, one can
assume without loss of generality that R is a proper right ideal, i.e., 1 /∈ R. A Schreier
basis B = BR is constructed inductively by putting firstly 0B = {1}. If D + R = A, let
1B = 0B. If D + R �= A, then DX is not a subset of D + R. Namely, DX ⊆ D + R

would imply DX2 ⊆ DX + RX ⊆ D + R and hence all DXn ⊆ D + R hold whence
A = D +R, a contradiction. Consequently, if D +R �= A, then let 1B ′ be a maximal subset
of {yi = 1yi | i ∈ I } such that 1B ′ is right linearly independent modulo D + R over D. Put
1B = 0B ∪ 1B

′ and V1 a right D-module spanned by D and 1B. Then D + DX ⊆ V1 + R

holds. Therefore, one has the equality D +DX+R = V1 +R. Assuming now that nB
′, nB

and Vn (n > 0) have been already constructed such that D + DX + · · · + DXn + R =
Vn + R. If Vn + R = A, let n+1B = nB. If Vn + R �= A, then DXn+1 is not a subset
of Vn + R because as above one can verify easily that DXn+1 ⊆ Vn + R would imply
Vn + R = A, a contradiction. Consequently, in case Vn + R �= A, let n+1B

′ be a maximal
subset

{byi | b ∈ nB
′}

which is a right linearly independent set modulo Vn+R over D. Then, define n+1B = nB ∪
n+1B

′ and let Vn+1 be a right D-module spanned by n+1B. Hence, DXn+1 ⊆ Vn+1 + R

holds. If n+1B
′ = ∅, the process stops at this step and define BR = nB. If the process does

not stop after finitely many steps define

B = BR =
∞⋃

n=0

nB .

B is clearly a strong Schreier basis of R, completing the proof.

Schreier’s technique [11] is now suitable for showing that skew polynomial rings are firs.
Let π : A = V ⊕ R → V be the canonical projection of A along R onto the right D-

module V spanned by the Schreier basis B of R constructed above. Then, for every element
a ∈ A, one has a − π(a) ∈ R whence as − π(a)s ∈ R holds for every s ∈ A. In particular,
the equality

π(as) = π(π(a)s), ∀a, s ∈ A (4)
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holds. Consequently, for every element b ∈ B and yi (i ∈ I ), the element byi is either
contained in B whence π(byi) = byi and so byi − π(byi) = 0, or not contained in B. In
that case, by the construction of B, or equivalently, by the definition of a strong Schreier
basis, 0 �= byi − π(byi) ∈ R holds. Therefore, for every monomial y = yi1 · · · yil of length
l ≥ 0 in B, the associated element

uy,i = yyi − π(yyi), ∀y ∈ B & i ∈ I (5)

is either 0 or a nonzero element of R. We are now ready to reach the main goal of this
section.

Theorem 2.5 If δ is an α-derivation of a division ring with respect to a nonzero, proper
endomorphism α : D → D, then A = D[X; α, δ] is a free ideal ring.

Proof We have to show that every right ideal R of A is a free A-module. Since the case
R = A or R = 0 is obvious, one can assume without loss of generality that R is a proper
right ideal. For an arbitrary but fixed basis B1 = {bi | i ∈ I } 	 1 of Dα(D) define elements
(“variables”) yi = biX (i ∈ I ). Moreover, let B = BR be a strong Schreier basis of R with
respect to the standard Schreier basis B of AD consisting of all monomials in yi (i ∈ I ). We
show first that the nonzero elements uy,i = yyi − π(yyi) (y ∈ B, i ∈ I ) generate R freely.
For an arbitrary monomial y and yi = biX (i ∈ I ), we have by (4)

π(y)yi − π(yyi) = π(y)yi − π(π(y)yi).

Let π(y) = ∑l
j=1 zj dj for some monomials zj ∈ BR and dj ∈ D. Write djyi =

(
∑

k yk
ij ck) + dij for appropriate ij ck, dij ∈ D. Then we have, by putting v =

∑l
j=1 zj dij ∈ V where V is a right D-module spanned by BR , the following equality

π(y)yi =
l∑

j=1

zj (dj yi) =
l∑

j=1

zj

(

dij +
∑

k

yk
ij ck

)

=
∑

j,k

zj yk
ij ck + v

whence

π(y)yi − π(yyi) =
∑

j,k

(zj yk − π(zj yk))
ij ck =

∑

j,k

uzj ,k
ij ck ∈

∑

y∈B&i∈I

uy,iA. (6)

The canonical projection 1 − π of A on R via the decomposition A = V ⊕ R sends every
monomial y = yi1 · · · yin (n > 0) to

(1 − π)(y) = y − π(y) =
n−1∑

j=0

{
π(hy(j))yij+1 − π(hy(j + 1))

}
ty(j + 1) (7)

and so by formulas (6), (7) together with y−π(y), the image a−π(a) of an arbitrary element
a ∈ A is contained in

∑
y∈B&i∈I uy,iA. Consequently, uy,i (y ∈ B; i ∈ I ) generate R.

Therefore, it remains to show that the set {uy,i �= 0 | y ∈ B; i ∈ I } is linearly inde-
pendent over A. Instead of using the lengthy opaque argument of Lewin [11] we use the
nice argument of [13, p. 363]. Consider finitely many nonzero elements uzj ,i defined by
zj ∈ BR and yi = biX, i ∈ I . Then, zj yi /∈ B and uzj ,i = zj yi − π(zj yi) �= 0 hold. By
definition

π(zj yi) =
∑

k

ijmk
ij dk

(
0 �= ij dk ∈ D & ijmk ∈ BR, |ijmk| ≤ |zj | + 1

)
. (8)
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Assume indirectly that these uzj ,i’s are right linearly dependent over A, i.e., there are ele-
ments aij ∈ A not all 0 such that

∑
j uzj ,i aij = 0. If yd (d ∈ D) is a monomial of longest

length among monomials appearing in the aij -s, say, it is a monomial of ai j , then in view of
the equality (8) the term zj yiyd , cannot cancel. This is an immediate result of the following
observations. Because of its maximal length zj yi is not an initial segment of any elements

zj yi satisfying (j, i) �= (j, i), nor of any of ijmk , i.e., of monomials appearing in π(zj yi)

(without any exception, even including the case (j, i) = (j , i)) in view of the fact that zj yi

is not contained in BR . This contradiction finishes the proof.

Theorem 2.5 implies, in view of the structure of projective modules over hereditary rings,
that projective right modules over D[X; α, δ] are free. However, one can extend in an obvi-
ous manner the notion of (strong) Schreier basis to free right modules, and by the same
proof one gets directly that projective right modules over D[X; α, δ] are free as

Corollary 2.6 Let M be a submodule of a free right module F on a set {tj | j ∈ J } over
D[X; α, δ] where B = {yi1 , . . . , yin | ij ∈ I, n ≥ 0} is a standard Schreier basis of F given
by a basis B1 = {bi | i ∈ I } of Dα(D) and yi = biX (i ∈ I ). Then BF = ⋃

j∈J tjB is
called a standard Schreier basis of F with respect to B. Let BM be a strong Schreier basis
of M constructed in the same manner as in Proposition 2.4, then F admits a decomposition
F = VM ⊕ M , where VM is the right D-module spanned by BM . Let πM be the canonical
projection of F onto VM along M and put uj = tj − πM(tj ), j ub,i = tj byi − πM(tj byi)

for j ∈ J, i ∈ I ; b ∈ B. Then, the nonzero elements uj , j ub,yi
form a basis of M over

D[X; α, δ].

We can now easily deduce the Schreier-Lewin formula [11] for the rank of submodules
with a finite strong Schreier basis of finitely generated free modules over D[X; α, δ].

Corollary 2.7 Let F be a free right module of a finite rank l overD[x; α, δ] such thatD has
a finite dimension n over α(D), and M a submodule admitting a finite strong Schreier basis
of m ∈ N elements, i.e., the factor A-module F/M has dimension m as a right D-module.
Then nm − m + l is the rank of M .

Proof For simplicity, we present a proof for the case l = 1 which works word-for-word
for the arbitrary case. Consider a right ideal R of D[X; α, δ]. In the notation of preceding
results there are exactly mn symbols ub,i (b ∈ BR, i ∈ I ; |I | = n). Therefore, by Theorem
2.5 R is a free right A-module of rank mn − k where k is the number of ub,i equal to 0. But
this number is exactly m − 1 by the construction of BR and the definition of π and ub,i ,
completing the proof.

Remark 2.8 In view of Lewin’s footnotes [11] that Cohn was able to obtain results in [11]
from a general theory of the weak algorithm and the Hilbert series of filtered rings (cf.
[3] and [4]), it seems that results of this section can be obtained by Cohn’s method, too.
Our treatment is, however, elementary. On one hand, it provides evidence for the broad
applicability of Cohn’s beautifully deep theory; and on the other hand, it supplies another
particular, preliminary, introductory example different than the ordinary, classical example
of free associative algebras for Cohn’s theory. Furthermore, it is worth keeping in mind that
by its flexibility, Schreier-Lewin techniques can be applicable to not necessarily unital rings
with zero divisors, for example, see [1].
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3 Localizations of Skew Polynomial Rings

Inspired by the important work of Rosenmann and Rosset [13], we now turn to the study of
perfect bimorphic localizations of skew polynomial rings because of their striking similar-
ity to free associative algebras. In particular, Rosenmann and Rosset [13] proposed a nice
method to compute module types of certain rings which do not have IBN. Roughly speak-
ing, their idea is to find a subring A such that A has IBN, and then to reduce the problem
to one on (unique) rank of free modules over A which is usually a projective-free ring, i.e.,
a ring that admits only free modules as projective modules. Recall that a module type of a
ring A without IBN is a pair (m, n) ∈ N

2 (m < n) such that m, n are the first two smallest
integers satisfying Am

A
∼= An

A. In particular, it is easy to find rings of module type (1, 2), i.e.,
rings over which all finitely generated free modules are isomorphic. But it is generally quite
hard to show that certain free modules are not isomorphic. As an illustration, we include the
following obvious folkloric result, with proof to aid the reader.

Proposition 3.1 If α : D → D is a non-zero, non-surjective endomorphism, then the right
maximal quotient ring of D[X; α, δ] has the module type (1, 2). More generally, if a ring A

has a dense right ideal R which is an infinite direct sum of isomorphic modules, then the
module type of the maximal right quotient ring Qmax(A) is (1, 2).

Proof The assumption on α implies that D[X; α, δ] has a dense right ideal which is free
of infinite rank. In particular, if a right ideal R of a ring A is an infinite direct sum of iso-
morphic modules, then we have an isomorphism RR

∼= Rn for every n ∈ N. Consequently,
this direct decomposition ensures elements ai, a

∗
i ∈ Qmax(A), i = 1, . . . , n satisfying

∑n
i=1 aia

∗
i = 1 and a∗

i aj = δi
j , where δi

j is the usual Kronecker symbol. Hence, all finitely
generated free modules over Qmax(A) are isomorphic, completing the proof.

For the goals of this section recall that a ring homomorphism φ : A → B is called an
epimorphism if for any ring C and ring homomorphisms α, β : B → C, αφ = βφ implies
α = β. Dually one gets a notion of a monomorphism. Epimorphisms are not necessarily
surjective, for example Q is an epimorphic overring of Z. However, monomorphisms are
always injective. Namely, if there is 0 �= a ∈ A with φ(a) = 0, then α, β : Z[X] −→ A

defined by putting α(X) = 0 and β(X) = a, respectively, are two ring homomorphisms
from Z[X] to A satisfying φα = φβ but α �= β. Two rings are bimorphic if there is a ring
homomorphism between them which is both a monomorphism and an epimorphism. For
example, the ring Z of integers and the field Q of rationals are bimorphic. An epimorphism
φ : A → B is flat if AB is a left flat A-module. In this case B is called a perfect right
localization or a flat epimorphic right ring of quotients of A. Flat epimorphisms form a
non-trivial intersection of Cohn’s localization via epimorphisms and Gabriel’s theory of
localization via both Gabriel topology and hereditary torsion theory. For a basic theory of
perfect localizations we refer to classic books [14] and [12] by Stenström and Popescu,
respectively.

If φ : A −→ Q is a flat bimorphism, then Q becomes a subring of the maximal ring
Qmax(A) of right quotients of A by identifying each a ∈ A with φ(a) ∈ Q. It is well-known
that Qmax(A) has the largest subring Qtot(A), called the maximal flat epimorphic ring of
right quotients of A which is a flat bimorphism of A and contains all flat bimorphisms
of A. It is also well-known, and in fact, not hard to see that every element q of Qmax(A)

uniquely determines a largest right ideal dom(q) = {a ∈ A | qa ∈ A} of A, called a
maximal right ideal of definition of q and q can be identified with an A-homomorphism
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q : dom(q) −→ A : a �→ qa = q(a). This observation greatly simplifies notations when
working inside maximal rings of quotients.

From now on, we assume that α is an endomorphism of a division ringD such thatDα(D)

is of finite dimension n > 1. We shall use notations fixed in Section 2. Therefore, B1 =
{b1, . . . , bn} is a basis of Dα(D) and yi = biX. Since D is a subring of A = D[X; α, δ]
every right A-module is also a right vector space over D. We’ll start with some preparatory
results. The first assertion is an adaption of [13, (3.3) Theorem].

Proposition 3.2 A right ideal R of A = D[X; α, δ] is of finite codimension over D, i.e.,
a factor module A/R is a finite dimensional D-module, if and only if R is essential and
finitely generated. In particular, a nonzero two-sided ideal of A has a finite codimension
over D if and only if it is finitely generated.

Proof Since every cyclic right ideal is an infinite dimensional D-module, the necessity is
obvious in view of Theorem 2.5. Conversely, assume indirectly that there is a finitely gener-
ated essential right ideal R which is of infinite (right) codimension over D. If B is a strong
Schreier basis of R (constructed as in Proposition 2.4), then {ub,i = byi − π(byi) �= 0 | b ∈
B, i = 1, . . . , n} is a basis for R as a free module over A. Since A has IBN, and by the
assumption that R is finitely generated, then the above set must be finite. In particular, there
exists an integer m > 0 such that for every b ∈ B = BR satisfying |b| ≥ m all monomials
byi (i = 1, . . . , n) are also in B. Consequently, all monomials of length > r whose initial
segments of length r belong to B, are also contained in B. Hence, for a monomial b ∈ B of
length r the right ideal bA meets R trivially, contradicting the essentiality of R. This shows
that B = BR is finite. The last claim follows trivially from the observation that a nonzero
two-sided ideal of a domain is always essential.

We reach now the first goal of this section as

Theorem 3.3 Let I be an ideal of right codimension 1 of A = D[X; α, δ] over D, where
α is an endomorphism of a division ring D such that Dα(D) has a dimension n > 1. Then
ideal powers I l (l ∈ N) form a perfect Gabriel topology I and (1, n) is the module type of
the associated ring AI of quotients. Moreover, projective modules over AI are free and the
Grothendieck group K0(AI) is cyclic of order n − 1.

Proof By Theorem 2.5 I is a free right A-module of rank n. Consequently, I l is a free
right A-module of rank nl . This implies by [14, Propositions XI.3.3 and XI.3.4 (d)] that the
ideal topology defined by powers I l (l ∈ N) is a perfect topology. Therefore, the canonical
embedding D[X; α, δ] = A −→ AI is a flat bimorphism whence AI is a subring of
both the maximal flat epimorphic ring and the maximal ring of right quotients Qtot(A) ⊆
Qmax(A). Consequently, by [14, Corollary XI.3.8] an equality (R ∩ A)AI = R holds for
every right ideal R of AI. Therefore, R is a free AI-module because R ∩ A is a free A-
module by Theorem 2.5 and AAI is a flat left A-module. Hence, projective right modules
over AI are free.

To compute the module type ofAI, write I = ∑n
i=1 ziA = ⊕n

i=1ziA in view of Theorem
2.5. Let z∗

j be the canonical j th projection z∗
j : I → A : ∑n

i=1 ziai �→ aj for each
j = 1, . . . , n. The obvious equalities

z∗
j zi =

{
1 if j = i,

0 if j �= i
&

n∑

i=1

ziz
∗
i = 1 (9)
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in AI imply that An
I

∼= AI holds. Therefore, to verify that (1, n) is the module type of
AI, it is enough to see m ≡ 1 mod n − 1 provided AI

∼= Am
I
. In fact, assume AI =

∑m
i=1 ciAI = ⊕i=m

i=1 ciAI such that the annihilator of each ci ∈ AI is trivial. Consequently,
multiplication by ci on the left is injective on AI. Therefore, the right ideals dom(ci) ∼=
cidom(ci) (i = 1, . . . , m) of A are free A-modules of rank ≡ 1 mod (n − 1) by Schreier-
Lewin formula established in Corollary 2.7 and the finite codimensionality of dom(ci). This
shows that R = ⊕

i cidom (ci) is a free A-module of rank ≡ m mod (n − 1). On the
other hand, R is an essential right ideal of A. Namely, for any 0 �= a = ∑m

i=1 ciqi ∈
A (qi ∈ AI) with at least one of the qi �= 0, say q1, there are nonzero elements r1 ∈
q1dom(q1)∩ (dom(c1)∩ (∩m

i=1dom(qi))); r2, . . . , rm ∈ A such that qir1r2 · · · ri ∈ dom(ci)

for all i = 2, . . . , m in view of the fact that all dom(ci), dom(qi) are essential right ideals
of A and q1dom(q1) �= 0 by q1 �= 0. By the choice of r1, one has 0 �= q1(r1) = q1r1 ∈
dom(c1) whence 0 �= (c1q1(r1))r2 · · · rm = c1q1(r1r2 · · · rm) = c1q1r1 · · · rm ∈ c1dom(c1)

because A is a domain. Similarly the product ar1 · · · rm �= 0 holds, and all ciqir1 · · · rm are
not necessarily nonzero elements of cidom(ci), respectively, for all i > 1. Consequently,
0 �= arr1 · · · rm = ∑m

i=1 ciqi(r1 · · · rm) ∈ R holds. Hence, R is a right ideal of A of
finite codimension in view of Proposition 3.2. Hence, again by the Schreier-Lewin formula
in Corollary 2.7, R is a free right A-module of free rank ≡ 1 mod (n − 1). Therefore,
m − 1 ≡ 0 mod (n − 1) holds, i.e., n is the smallest integer satisfying AI

∼= Am
I
, whence

the module type of AI is (1, n). Consequently, the Grothendieck group K0(AI) is cyclic of
order n − 1 because projective modules over AI are free.

Remark 3.4 There are essential differences between free associative algebras and skew
polynomial rings. For example, the annihilator ideals of finite codimensional right ideals are
not necessarily finite codimensional. Consequently, the topology defined by finite codimen-
sional right ideals are, in general, not an ideal topology. Furthermore, it is unclear whether
there always exist two-sided ideals of codimension 1, even of finite codimension. However,
there are simple skew polynomial rings when α is an automorphism and even the identity
automorphism. Namely, let F = K(y) be a field of rational functions over a field K of
characteristic 0 with the usual derivation ′, then the skew polynomial ring F [X; 1,′ ] is a
simple ring, whence it does not admit maximal two-sided ideal of codimension 1 over F .
The simplicity is obvious in view of the facts that F [X; 1,′ ] is a localization of the first
Weyl algebra A1(K) generated by x, y over K subject to yx−xy = 1 at the set of all monic
polynomials on y over K and Weyl algebras over fields of characteristic 0 are simple. It is,
in fact, more interesting to study the ring AI of quotients with respect to an ideal topology
defined by an ideal I of D[X; α, δ] under the extra assumption that I has codimension 1.
It is then quite important to look for (quasi-)normal forms for elements of AI and good D-
bases for A. If μ∗ denotes a product z∗

il
· · · z∗

i1
= μ∗ for every monomial μ = zi1 · · · zil of

zi (i = 1, . . . , n) where zi, z
∗
i are defined as in the proof of Theorem 3.3, then it is unclear

whether elements of AI can be written in the form
∑m

i=1 μiν
∗
i di for monomials μi, νi of

“variables” zj and coefficients di ∈ D. Same questions arise when ID is assumed more
generally to be of finite codimension over D.

It seems to be an important and difficult problem whether the associated ring AI of
quotients considered in Theorem 3.3 is simple. In the particular case of trivial derivation
and I = Ax we have a positive answer.
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Proposition 3.5 If α is an endomorphism of a division ring D such that Dα(D) has a finite
dimension n > 1, then the ring AI of quotients of A = D[X; α] with respect to the Gabriel
topology induced by ideals AXl (l ∈ N) is simple.

Proof We use Cohn’s trick presented in the proof of [2, Proposition 8.1]. AX is obviously
an ideal of codimension 1. Let B1 = {b1, . . . , bn} be a basis of the right vector space D over
α(D). Then Ax is a free right A-module with the free generators yi = biX, and monomials
in yi form a basis of AD . Let y∗

i (i = 1, . . . , n) be the elements of AI sending yi to 1
and yj to 0 for every index j �= i. If J is a nonzero ideal of AI, then J ∩ A is a non-zero
ideal of A. Let a be a non-zero element of J ∩ A such that it can be written as a linear
combination a = ∑m

i=1 μidi of monomials μi in the yj with coefficients di with possibly
smallest m and among them with possibly smallest degree. By considering μ∗

l a where μl

has a minimal length, i.e., of minimal degree; if it is necessary, one sees clearly that some
μi is a constant, i.e., of length 0. If m > 1, by considering μ∗

kaμk , where μk has a positive
length, one obtain a contradiction. Thus, m = 1 and a is a non-zero constant whence the
statement follows.

It is worth noting that even in the situation of Proposition 3.5, it is not clear whether
elements of AI can be written in the form

∑m
i=1 μiν

∗
i di for monomials μi, νi of “variables”

yj and coefficients di ∈ D.
We will now construct the maximal flat epimorphic ring of skew polynomial rings. To

reach this aim we follow the idea of Rosenmann and Rosset [13]. First it is routine to verify
that finite codimensional right ideals of A = D[X; α, δ] define a linear right topology on
A, named the fc-topology by [13]. It is a little bit harder to show that the fc-topology is a
Gabriel topology. It is instructive to modify the argument of Rosenmann and Rosset [13]
(that right A-modules which can be generated by A-submodules of finite dimension over D,
form a hereditary torsion theory in the category of right A-modules because of the fact that
D is neither commutative nor commuting with the yi’s) to obtain this claim. For undefined
necessary notions and results on torsion theory, Gabriel topologies and localizations, we
refer to Stenström classic [14]. However, to help the reader and to get a better grasp of the
notorious special axiom T4 (see [14, Chapter VI.5]) in the definition of Gabriel topology,
we present here a direct proof. To show that the fc-topology is a Gabriel topology, one has
to show that it satisfies axiom T4, that is, a right ideal R is open, i.e., of finite codimension
if there is a finite codimensional right ideal J such that R : b = {a ∈ A | ba ∈ R} has
a finite codimension for all b ∈ J . By Proposition 3.2 and Theorem 2.5 there is a finite
basis {b1, . . . , bl} for J = ∑

biA = ⊕biA. Moreover, there are l right ideals R1, . . . , Rl

of finite codimension such that biRi ⊆ R. Again by Proposition 3.2 and Theorem 2.5 each
right ideal Ri (0 < i < l + 1) is an essential right ideal of A which is also a free right A-
module of finite rank. Consequently, R̄ = ∑l

i=1 biRi ⊆ R is clearly a finitely generated
right ideal of A. On the other hand, it is obvious that biRi is an essential submodule of biA

for every index i. Therefore, by [9, Folgerung 5.1.8], R̄ = ∑
biRi = ⊕biRi is an essential

submodule of ⊕biA = J . Since J is an essential right ideal of A, R̄ is an essential right
ideal ofA. Consequently, being both finitely generated and an essential right ideal ofA, R̄ is
finite codimensional by Proposition 3.2. This implies, in view of the inclusion R̄ ⊆ R, that
R is a finite codimensional right ideal of A, that is, it is open with respect to the fc-topology.
Thus, we have shown that the fc-topology is a Gabriel topology and a right ideal ofA is open
in the fc-topology if and only if it is essential and free of finite rank in view of Proposition
3.2. By [14, Proposition XI.3.4 (d)] every open right ideal defined by a flat epimorphism
φ : A = D[X; α, δ] → Q contains a finitely generated essential right ideal and so has a
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finite codimension by Proposition 3.2. This shows that the fc-topology defines the maximal
flatepimorphic localization Qfc(D[X; α, δ]) = Qtot(D[X; α, δ]) of D[X; α, δ] which is a
subring of the maximal ring Qmax(D[X; α, δ]). By the same proof as for Theorem 3.3 we
obtain another goal of this section as

Theorem 3.6 Right finite codimensional ideals of A = D[X; α, δ] where the dimension of
Dα(D) is finite, form a perfect Gabriel topology, called the fc-topology. The ring Qfc(A) of
quotients with respect to this fc-topology is the maximal flat epimorphic localization of A.
Its Grothendieck group K0(Q

fc(A)) is cyclic of order n − 1 and their projective modules
are free.

It seems that the maximal flat epimorphic localization of D[X; α, δ] is not necessarily
simple but I am not able to construct a counterexample. However, if δ = 0, then we have a
positive result.

Corollary 3.7 If α is an endomorphism of a division ring D such that D is a right vec-
tor space of dimension n > 1 over α(D), then the maximal flat epimorphic localization
Qfc(D[X; α]) is simple.

Proof By assumption, D[X; α]X is a two-sided ideal of codimension 1 whence every ele-
ment of D[X; α] can be written uniquely as a polynomial in yi with coefficients from D on
the right where yi = biX with respect to a right basis B1 = {b1, . . . , bn} of D over α(D).
The proof of Proposition 3.5 can be used to complete the verification.

In contrast to the case of free unital associative algebras we do not have the description
of all flat bimorphisms of A = D[X; α, δ] because largest ideals contained in finite-
codimensional right ideals of A are not necessarily finite-codimensional right ideals over
A! However, thanks to [14, Proposition I.6.10], products of ideals from any (fixed) set Λ of
maximal two-sided ideals of A which are finite-codimensional right ideals of A, still form a
perfect Gabriel topology on A. The proof for [1, Theorem 3.10] yields the following result.

Theorem 3.8 Let α : D −→ D be an endomorphism of a divison ring D such that the
right dimension of D over α(D) is n ≥ 2, and A = D[X; α, δ] be a skew polynomial
ring with respect to some α-derivation δ of D. Furthermore, let Λ be an arbitrary set of
maximal two-sided ideals which are also finite codimensional right ideals of A, then finite
products of elements from Λ form a perfect Gabriel topology TΛ of A with the associated
ring Q of right quotients. For each ideal Iλ ∈ Λ the factor ring A/Iλ is a matrix ring
λDmλ over a division ring λD of right dimension lλ over D. Put dλ = lλmλ and let d be
the greatest common divisor of dλ’s. Then, the module type of Q is (1, d(n − 1) + 1). In
addition, if the ideals of Λ are commutable, then the completion of A with respect to Tλ is
the direct products

∏
I lim←−A/I l of inverse limits lim←−A/I l of the canonical inverse systems

{A/I l | l ∈ N}, where I runs over all elements of Λ.

Since the work [1] is under submission, I sketch here the main idea of the proof of
Theorem 3.8. First we show that AI has module type (1, d(n−1)) if ID is a two-sided ideal
of finite codimension over D where d is a dimension of a minimal right ideal of A/I . Here
I denotes the perfect Gabriel topology defined by powers of I . The proof can be carried out
in the same manner as that for Theorem 3.3 after the observation that for an open right ideal
R ofA, there is a power I l contained inR, so that the factor moduleA/R is anA/I l-module
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whence the dimension of A/R over D is md if m is a length of a right A module A/R.
Consequently, R is a free module of rank dm(n− 1)+ 1 by Corollary 2.7. The assertion for
a set Λ of maximal ideals of finite right codimension over D is then a trivial consequence
of elementary number theory! We now complete the proof by using the following equalities
on commutable two-sided maximal ideals I, J of A

A = (I + J )(I + J ) = I + J 2 = I 2 + J = I 2 + J 2 = · · · = I l + Jm, ∀l, m ∈ N,

and
I ∩ J = (I ∩ J )(I + J ) = IJ + J I = IJ = J I .

By iterating these equalities one obtains the following more general equalities for finitely
many pairwise coprime, commutable ideals I1, . . . , Im

I
ni

i + ∩j �=i I
nj

j = A & ∩ I
ni

i =
∏

i

I
ni

i , ∀ni ∈ N.

Now the claim on completion becomes obvious.
As a corollary of Theorem 3.3 we reobtain one more direct but “unusual” proof of the

classical result [10] of Leavitt in the following

Corollary 3.9 The classical Leavitt algebra LK(1, n) (n > 1) over a field K has module
type (1, n).

Proof Consider the rational function field D = K(t) in one variable t over a field K and
let α be the endomorphism of D sending t to tn. By Lüroth’s theorem D is a finite field
extension of D1 = α(D) with basis {bi = t i−1 | i = 1, . . . , n}. Moreover, K is exactly the
set of all elements in D fixed by α. By Theorem 3.3, the subring of AI = D[X, α]I, where
I is the two-sided ideal AX of A = D[X, α], generated by yi = tiX, y∗

i where y∗
i is an

A-homomorphism from AX to A sending yi to 1, yj to 0 for all j �= i, is isomorphic to the
classical Leavitt algebra LK(1, n) and its module type is clearly (1, n).

We end with some remarks pointing out the structural diversity of a particular skew poly-
nomial ringA = D[X; α]. SinceA is a left principal ideal domain, {Xn | n ∈ N} is a left Ore
set. Hence, in the localized ring AX, the equality α(d) = X−1Xα(d) = X−1dX implies
that D ∼= Dn = XnDX−n (n ∈ Z, D0 = D) form an ascending chain of rings and α

can be extended naturally to an automorphism, denoted again by α of E = ∪∞
n=−∞ Dn by

putting α(XndX−n) = Xnα(d)X−n = XnX−1Xα(d)X−n = Xn−1dX−(n−1). This shows
that AX is isomorphic to a localization of a two-sided skew polynomial ring E[X, α] at
the two-sided Ore set {Xn | n ∈ N} and hence AX is a simple two-sided principal ideal
domain! On the other hand, substituting Y = X + c (0 �= c ∈ D) for X does not, in
general, induce an automorphism of A. However, A can be considered as a skew poly-
nomial ring with respect to Y . The multiplication is modified, in view of the equality
Yd = (X + c)d = α(d)X + cd = α(d)(X + c) + (cd − α(d)c), by an inner α-derivation
δc(d) = cd − α(d)c. Hence, A is now the skew polynomial ring D[Y, α, δc]. Conversely,
if A = D[X, α, δc] is a skew polynomial ring defined by an endomorphism a of a division
ring D together with an inner derivation δc given by an element c ∈ D, then A becomes
a skew polynomial ring D[Z; α] by putting Z = X − c. The situation changes completely
when we consider the localized ring AI = D[X, α]I (I = AX) even in the case when D is
commutative and α is an endomorphism of D such that D is finite dimensional over α(D)

with a basis B1 = {b1, . . . , bn}. For yi = biX, let y∗
i : I −→ A be an A-module homomor-

phism induced by the rule yi �→ 1; yj �→ 0; j �= i. It is unclear whether elements of AI
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can be written in a normal form
∑m

i=1 μiν
∗
i di for monomials μi, νi of “variables” yj and

coefficients di ∈ D.
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