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Abstract
We study ideal-theoretic conditions for a monomial ideal to be Golod. For ideals in a poly-
nomial ring in three variables, our criteria give a complete characterization. Over such rings,
we show that the product of two monomial ideals is Golod.
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1 Introduction

Let k be a field, and let Q = k[x1, . . . , xn] be a polynomial ring on n variables over k, with
deg(xi) = 1 for all i. We denote by m = (x1, . . . , xn) the homogeneous maximal ideal of
Q. Let I ⊆ m2 be a homogeneous ideal and R = Q/I . Serre proved a coefficient-wise
inequality of formal power series for the Poincare series of R:

P R
k (t) :=

∑

i≥0

dimk Tor
R
i (k, k)t i � (1 + t)n

1 − ∑
i>0 dimk Tor

Q
i (k, R)ti+1

.

When equality happens, the ringR (and the ideal I ) is called Golod. The notion is defined
and studied extensively in the local setting, but in this paper we shall restrict ourselves to the
graded situation. Golod rings and ideals have attracted increasing attention recently (see [6,
8, 9, 12, 15]), but they remain mysterious even when n = 3. For instance, we do not know
if the product of any two homogeneous ideals in Q = k[x, y, z] is Golod. Another reason
for the increasing interest is their connection to moment-angle complexes (for example, see
[7, 10, 14]).
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It was asked by Welker whether it is always the case that the product of two proper
homogeneous ideals is Golod (for example, see [16, Problem 6.18]) but a counter-example,
even for monomial ideals, was constructed by the second author in [8].

In this work, we provide a concrete characterization of Golod monomial ideals in three
variables, and use it to show that the product of any two proper monomial ideals in Q =
k[x, y, z] is Golod. The following is our first main result:

Theorem 1.1 Let Q = k[x, y, z] and I ⊆ m2 be a monomial ideal. Then, I is Golod if and
only if the following conditions hold:
(1) [I : x1] · [I : (x2, x3)] ⊆ I for all permutations {x1, x2, x3} of {x, y, z}.
(2) [I : x1] · [I : x2] ⊆ x3[I : (x1, x2)] + I for all permutations {x1, x2, x3} of {x, y, z}.

We point out that rings with embedding codepth at most three have been studied
extensively. For instance, their Koszul homology has been completely classified up to
isomorphism (see [1, 3–5, 18]).

To obtain Theorem 1.1, we first list in Proposition 2.1 a set of necessary conditions for
Golodness for general ideals in any number of variables, that are easy to check and are
of independent interest. They can be used to provide quick examples of non-Golod ideals.
For the sufficiency of the conditions in Theorem 1.1, the fact that I is a monomial ideal is
crucial. In fact, there are examples of homogeneous ideals in k[x, y, z] that satisfy all the
conditions of the theorem, but are not Golod (see Example 2.7).

Our second main result is a consequence of Theorem 1.1: we obtain that products of
monomial ideals in three variables are Golod.

Corollary 1.2 Let J,K be proper monomial ideals in Q = k[x, y, z]. Then, I = JK is
Golod.

Observe that this result is optimal, as the example of a non-Golod product of two mono-
mial ideals constructed in [8] is in four variables. We end the paper with some positive and
negative partial results regarding the colon conditions highlighted by this work, and several
open questions.

2 Characterization of Monomial Golod Ideals in Three Variables

In this section, we prove Theorem 1.1. We first focus on the necessary part, which holds
quite generally. Let Q = k[x1, . . . , xn], I a homogeneous ideal in Q, and R = Q/I .
Let KQ be the Koszul complex on a minimal set of generators x1, . . . , xn of the maximal
ideal m of Q, and KR = R ⊗Q KQ. The Koszul complex can be realized as the exterior
algebra

∧
KR

1 , where KR
1 is a free R-module of rank n, with basis ex1 , . . . , exn . An ele-

ment of the p-th graded component KR
p can be written as a sum of elements of the form

rexi1 ...xip
, where 1 ≤ i1 < i1 < · · · < ip ≤ n, r ∈ R, and where we set exi1 ...xip

:=
exi1

∧ . . . ∧ exip
. The Koszul complex also comes equipped with a differential ∂ , as it is

a DG algebra. The differential is such that ∂(exi1 ...xip
) = ∑p

j=1(−1)j−1xij exi1 ...x̂ij
...xip

,

and extended by linearity to KR
p . It is well-known that, if I is Golod, then the product on

the Koszul homology H≥1(K
R) is trivial (for example, see [2, Remark 5.2.1]). In other

words, R is Golod only if the map Hj(K
R) × Hi−j (K

R) → Hi(K
R) is zero for all

1 ≤ j ≤ i ≤ n.
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Proposition 2.1 Let Q = k[x1, . . . , xn], and I ⊆ m2 be a homogeneous ideal such that
R = Q/I is Golod. Then, the following hold:
(1) For any 1 ≤ p ≤ n, we have

[I : (x1, . . . , xp)][I : (xp+1, . . . , xn)] ⊆ I .

(2) For any 1 ≤ p ≤ n − 1, we have

[I : (x1, . . . , xp)][I : (xp+1, . . . , xn−1)] ⊆ xn[I : (x1, . . . , xn−1)] + I .

Proof For (1), let f ∈ I : (x1, . . . , xp) and g ∈ I : (xp+1, . . . , xn). Then, by definition,
the element f ex1...xp is a cycle in KR

p . Similarly for gexp+1...xn . The product of these cycles
is 0 in Hn(R) if and only if fg = 0 in R, which precisely says that fg ∈ I .

Similarly, take f ∈ I : (x1, . . . , xp) and g ∈ I : (xp+1, . . . , xn−1). Consider the cycles
f ex1...xp and gexp+1...xn−1 . The product of these is zero in Hn−1(R) if and only if there is
h ∈ R such that ∂(hex1...xn ) = fgex1...xn−1 . But this means that hxi = 0 for 1 ≤ i < n and
hxn = fg in R. Lifting to Q, this shows that h ∈ I : (x1, . . . , xn−1), and thus fg ∈ xn[I :
(x1, . . . , xn−1)] + I .

Remark 2.2 The above proposition is motivated by the examples in [8]. It can be used to eas-
ily provide examples of non-Golod ideals. For example, let I = (x2, y2, z2, t2)(x, y, z, t) ⊆
Q = k[x, y, z, t]. Then, xy ∈ I : (x, y) and zt ∈ I : (z, t) but xyzt /∈ I . Thus, I is not
Golod.

It is well-known that, for homogeneous ideals inside polynomial rings in three variables,
being Golod is equivalent to requiring that the product on the Koszul homology is trivial
(for instance, see [15, Theorem 6.3]). In the same article, it is shown that this is not the case
more generally, even for monomial ideals. In order to prove the converse of Proposition
2.1 for monomial ideals in k[x, y, z], we show that the Koszul homology modules admit
“monomial bases”. This is what we shall focus on for the rest of this section.

Definition 2.3 Let Q = k[x1, . . . , xn], and I ⊆ m2 be a monomial ideal. Let R = Q/I .
We say that Hp(KR) admits a monomial basis if it has a k-basis consisting of classes of
cycles of the form uexi1 ...xip

, where u ∈ Q is a monomial and u denotes its image inside R.

Clearly, if uexi1 ...xip
is part of a monomial basis of Hp(KR), then u ∈ I : (xi1 , . . . , xip ).

Observe that, if the ideal I is homogeneous, then we can talk about homogeneous ele-
ments in KR: if r ∈ R is homogeneous of degree d, then deg(rexi1 ...exip

) = d + p.

In this case, the differential preserves degrees. Even more specifically, if I is monomial,
then each KR

p is a Z
n-graded R-module. If r = x

a1
1 · · · xan

n , then rexi1 ...xip
has degree

(a1, . . . , an) + εi1 + · · · + εip , where εj is the vector in Z
n which has 1 in position j

and 0 elsewhere. For example, x2y3eyz ∈ K
k[x,y,z]
2 has degree (2, 4, 1). In this case, the

differential ∂ on KR preserves multidegrees.
The following is well-known. Nonetheless, we provide a short proof for completeness.

Proposition 2.4 Let Q = k[x1, . . . , xn] and I ⊆ m2 be a monomial ideal. Let R = Q/I .
The modules H•(KR) admit a Zn-graded k-basis.
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Proof Since I is a monomial ideal, R admits a graded free resolution with Zn-graded shifts
(for example, the Taylor resolution). There is a Zn-graded isomorphism

Hp(KR) ∼= TorQp (Q/I, k)

that comes from tracing Koszul cycles along the double complex P• ⊗ KQ, where P• → R

is a Z
n-graded free resolution of R, and KQ can be viewed as a Z

n-graded minimal free
resolution of Q/m ∼= k. Since Q/I has Zn-graded shifts, we see that TorQp (Q/I, k) has a
Z

n-graded k-basis. Via this isomorphism, such a basis maps to a set of graded Koszul cycles
in KR

p , which forms a k-basis in homology.

We observe that if
∑

{i1,...,ip}⊆[n] ri1...ip exi1 ...xip
∈ KR

p is Z
n-graded, then each

ri1...ip must necessarily be a monomial. Furthermore, we must have ri1...ip xi1 · · · xip =
ri′1...i′pxi′1 . . . xi′p for all {i1, . . . , ip}, {i′1, . . . , i′p} for which ri1...ip �= 0 and ri′1...i′p �= 0. For

example, xeyz + yexz ∈ K
k[x,y,z]
2 is Z3-graded, of degree (1, 1, 1).

Lemma 2.5 Let Q = k[x1, . . . , xn], and I ⊆ m2 be a non-zero monomial ideal. Let R =
Q/I . There exists a k-basis of H1(K

R) consisting of elements of the form {uexi
}, where

u ∈ I : xi is a monomial. Moreover, if depth(R) = 0, then there exists a k-basis of Hn(K
R)

consisting of elements of the form {uex1...xn}, where u ∈ I : m is a monomial in Q and u

denotes its residue class in R.

Proof It is clear that a k-basis of Hn(K
R) can be chosen to be of such form. In fact, an

element of KR
n is of the form f ex1...xn , where f ∈ I : m. Since I is monomial, we can

choose f to be a monomial.
It is also fairly easy to prove the claim forH1(K

R) directly. However, we explain the pro-
cess via lifting Koszul cycles, as this technique will be used later. Let (P•, δ) be a graded free
resolution of R as a Q-module. As noted in Proposition 2.4, we have a graded isomorphism
between TorQ1 (Q/I, k) and H1(K

R). Let I = (m1, . . . , mt ) be a minimal monomial gener-

ating set for I , and say that mj = x
a1j
1 · · · xanj

n =: x
aj . Then, TorQ1 (Q/I, k) ∼= ⊕j k(−aj ).

The way the isomorphism goes is as follows

More explicitly, if we take a Zn-graded basis element of k(−aj ) ⊆ TorQ1 (Q/I, k) and lift it
to a basis element of Q(−aj )⊗Q, then this will map down to mj ⊗1 ∈ Q⊗Q under δ1⊗1.
If xj is any variable that divides mj , say mj = xjm

′
j , then mj ⊗ 1 = (1 ⊗ ∂)(m′

j ⊗ exj
),

wherem′
j ⊗exj

∈ Q⊗K
Q
1 . Applying δ0⊗1, we get the elementm′

j exj
∈ KR

1 ⊗R⊗Qwhich
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is a Koszul cycle. The process ends by considering its residue class in H1(K
R), which is

a k-basis element of the desired form. Namely, a k-basis element of the form m′
j exj

where
m′

j ∈ I : xj is a monomial.

Proposition 2.6 Let I ⊆ Q = k[x, y, z] be a non-zero monomial ideal, and let R = Q/I .
Then, for all 1 ≤ p ≤ 3 − depth(R), the module Hp(KR) admits a k-basis of the form
{uexi1 ...xip

}, where u ∈ I : (xi1 , . . . , xip ) is a monomial, and u denotes the residue class of

u in R.

Proof The statement for H1(K
R) and H3(K

R) has already been proved in Lemma 2.5
(assuming that depth(R) = 0 for the latter to be non-zero). The argument for H2(K

R)

exploits again the process of lifting Koszul cycles. Assume that H2(K
R) �= 0, that is,

depth(R) ≤ 1. We consider a minimal Z3-graded free resolution of R over Q

After fixing bases, δ1 can be represented as the matrix [m1, . . . , mt ], where {m1, . . . , mt }
is a minimal monomial generating set of I . On the other hand, δ2 is represented by a matrix
where every column has precisely two non-zero monomial entries. This is because every
relation between distinct monomials mi and mj is of this form miui − mjuj = 0 for some
monomials ui, uj ∈ m. We now describe the lifting process for H2(K

R). Consider the

following part of double complex F• ⊗ K
Q• :

If we lift a Z
3-graded basis element of k(−b�) ⊆ TorR2 (Q/I, k) to ⊕�Q(−b�) ⊗ Q, this

will map down via δ2 ⊗ 1 to an element (0, . . . , ui, . . . , −uj , . . . , 0) ∈ ⊕jQ(−aj )
∼=⊕

j Q(−aj ) ⊗ Q, corresponding to a binomial relation in the �-th column of the matrix
representing δ2, as described above. Write ui = xivi and uj = xj vj , for some i, j ,
and monomials vi, vj ∈ Q. Observe that i �= j , since otherwise the relation between
mi and mj given by (0, . . . , ui, . . . , −uj , . . . , 0) would not be minimal. We may assume
that i < j . Using the above relations, we have that (0, . . . , ui, . . . , −uj , . . . , 0) = (1 ⊗
∂1)(0, . . . , viexi

, . . . , −vj exj
, . . . , 0). We now push this element down via δ1 ⊗ 1, to get an

element σ = vimi ⊗ exi
− vjmj ⊗ exj

∈ Q ⊗ K
Q
1 . From xivimi = xj vjmj , we deduce

that vimi = −xjw for some monomial w. Consider the element w ⊗ exixj
∈ Q ⊗ K

Q
2 ;
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we claim that (1 ⊗ ∂2)(w ⊗ exixj
) = σ . By the definition of the differential, we have

(1 ⊗ ∂2)(w ⊗ exixj
) = wxiexj

− wxjexi
. Since −wxjxi = vimixi = vjmjxj , we

deduce that wxi = −vjmj . Putting these facts together gives (1 ⊗ ∂2)(w ⊗ exixj
) =

vimi ⊗ exi
− vjmj ⊗ exj

= σ , as desired. As (δ0 ⊗ 1)(w ⊗ exixj
= w ⊗ exixj

is a cycle

in R ⊗ K
Q
2 , the process of lifting Koszul cycles now ends by considering the class of the

element wexixj
inside H2(K

R). As observed above, inside Q we have wxi = −vjmj ∈ I ,
and wxj = −vimi ∈ I . Therefore w ∈ I : (xi, xj ), and the class of wexixj

inside H2(K
R)

gives then a basis element of the desired form.

Proof of Theorem 1.1 The necessary part was Proposition 2.1. But as Proposition 2.6 shows
that all Koszul homologies admit a k-basis of the form {uexi1 ...xip

}, where u ∈ I :
(xi1 , . . . , xip ) is a monomial and p = 1, 2, 3, the stated conditions are also sufficient.

There are examples of homogeneous ideals in k[x, y, z] that satisfy the conditions of
Theorem 1.1, but are not Golod.

Example 2.7 Let Q = k[x, y, z], and let g1 = (xy2, xyz, yz2, x4 − y3z, xz3 − y4). By
[5, Theorem I] the ring R = Q/g1 belongs to the class G(2) in the classification of the
Koszul homology of rings with embedding codepth at most three. In particular, R is not
Golod, by [3, 1.4.3]. However, it can be checked using Macaulay 2 [11] that the ideal g1
satisfies conditions (1) and (2) of Theorem 1.1.

We observe that the condition that I ⊆ m2 in Theorem 1.1 cannot be removed.

Example 2.8 Consider the ideal I = (x, y2, yz, z2) inside Q = k[x, y, z]. This ideal does
not satisfy the second condition of Theorem 1.1, since y ∈ [I : x] · [I : y] = I : y, but
y /∈ z[I : (x, y)] + I = I . However, the ring Q/I ∼= k[y, z]/(y, z)2 is Golod.

Remark 2.9 Let I be a monomial ideal in k[x1, . . . , xn]. The condition “strongly Golod”
considered by Herzog and Huneke in [12] means, in this context, that [I : (xi)][I : (xj )] ⊆
I for all 1 ≤ i, j ≤ n. This condition is clearly stronger than all the necessary colon
conditions in Proposition 2.1. This makes sense, since strongly Golod implies Golod.

We conclude this section observing that, in the case of monomial ideals in four or more
variables, some Koszul homology modules may not always admit a “monomial basis.”

Example 2.10 Consider the ideal I = (xz, xw, yz, yw) in Q = k[x, y, z, w], and
let R = Q/I . It is easy to check that α = xeyzw − yexzw is a cycle of KR

3 ,
whose class equals that of wexyz − zexyw in homology. Observe that α has multidegree
(1, 1, 1, 1). Exploiting the multigrading, one can show that the class of α in homol-
ogy cannot be expressed as a combination of elements coming from a monomial basis
of H3(K

R).

3 Products of Monomial Ideals in k[x, y, z] are Golod
In this section, we prove Corollary 1.2. By Theorem 1.1 and by the symmetry, it suffices to
show the following lemmas.
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Lemma 3.1 Let J,K be proper monomial ideals in Q = k[x, y, z] and I = JK . Then

[I : x][I : (y, z)] ⊆ I .

Proof Let f ∈ I : x and g ∈ I : (y, z) be monomials. If f ∈ (y, z), then fg ∈ I , so we
assume f = xa for some a ≥ 0. It follows that xa+1 ∈ JK , and as J,K are proper we must
have f ∈ J ∩ K . As J,K are monomial ideals, we have g ∈ JK : y ⊆ (J : y)K + (K :
y)J ⊆ J + K , and we are done.

Lemma 3.2 Let J,K be proper monomial ideals in Q = k[x, y, z] and I = JK . Then,

(I : x)(I : y) ⊆ z[I : (x, y)] + I .

Proof As J and K are monomial ideals, we have JK : x = (J : x)K + (K : x)J . We then
have

(JK :x)(JK : y)=J 2(K :x)(K :y)+K2(J :x)(J :y)+JK(J :x)(K :y)+JK(K :x)(J :y).

By symmetry, it is enough to show that J 2(K : x)(K : y) ⊆ z[JK : (x, y)] + JK .
Let J = J1 + zJ ′ with J1 generated by J ∩ k[x, y]. Then,

J 2(K : x)(K : y) ⊆ J 2[K : (x, y)] = [J1 + zJ ′]J [K : (x, y)].
But

J1J [K : (x, y)] ⊆ (x, y)J [K : (x, y)] ⊆ JK

and

zJ ′J [K : (x, y)] ⊆ zJ [K : (x, y)] ⊆ z[JK : (x, y)].

4 Integrally Closed Ideals and Some Questions

The colon conditions considered in this paper seem related to the property of “being inte-
grally closed” (see also the m-full and basically full conditions [13, 17]). Here, we give
some positive and negative results in this direction.

Lemma 4.1 Let J,K be homogenous ideals in Q = k[x, y, z] (J may not be proper) and
m = (x, y, z). Assume that K ⊆ m2 and K is integrally closed. Then if I = JK , we have
[I : x][I : (y, z)] ⊆ I .

Proof First, observe that if JK ⊆ (y, z), then I : x = JK : x ⊆ (y, z) : x = (y, z).
From this, we deduce that [I : x][I : (y, z)] ⊆ (y, z)[I : (y, z)] ⊆ I , and the lemma
holds in this case. Thus, we may assume that neither J nor K is contained in (y, z). Write
(J, y, z) = (xa, y, z) and (K, y, z) = (xb, y, z). Because of our assumptions, we have
a ≥ 1 and b ≥ 2. Let f ∈ JK : x, so that f x ∈ JK ⊆ (J, y, z)(K, y, z) ⊆ (xa+b, y, z).
It follows that f ∈ (xa+b−1, y, z), write f = uxa+b−1 + v for some v ∈ (y, z). Now let
g ∈ JK : (y, z), and consider the element h = uxb−1g. As we are assuming b ≥ 2, we have
h ∈ mJK : (y, z). On the other hand, since we have f x = uxa+b + xv ∈ JK , we get that
xa+1h = uxa+bg = f xg − xvg ∈ mJK . It follows that h ∈ mJK : (xa+1, y, z). Observe
that (mJ, y, z) = (xa+1, y, z). It follows that h ∈ mJK : (xa+1, y, z) ⊆ mJK : mJ = K ,
because K is integrally closed. Since f is congruent to uxa+b−1 modulo (y, z), we have
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that fg is congruent to uxa+b−1g = xah modulo JK . On the other hand, xa belongs to
(J, y, z); therefore, xah ∈ (J, y, z)[K ∩ (JK : (y, z))] ⊆ JK .

Corollary 4.2 Let I be a homogenous ideal in Q = k[x, y, z] and m = (x, y, z). Assume
that I ⊆ m2 and I is integrally closed. Then, we have [I : x][I : (y, z)] ⊆ I .

Proof Let J = R in Lemma 4.1.

Unfortunately, one can use other necessary colon criteria provided in Proposition 2.1 to
show that even integrally closed monomial ideal in three variables or product of them in
four variables may not be Golod.

Example 4.3 Let I = (x2, y4, z4, yz) = (x2, y4, z4, xz2, yz, xy2) in Q = k[x, y, z]. Then
xz ∈ (I : x)(I : y) but it is not in z[I : (x, y)] + I . So I cannot be Golod by Proposition
2.1. If one does not want to restrict to m-primary ideals, a simpler example of an integrally
closed ideal in k[x, y, z] that is not Golod is I = (x2, yz). Indeed, this ideal fails again the
condition (I : x)(I : y) ⊆ z[I : (x, y)] + I of Proposition 2.1; moreover, it is a complete
intersection of height two.

Example 4.4 Let J = (x2, y4, z2, yz) and K = (x4, y2, w2, xw) in Q = k[x, y, z, w].
Using Macaulay 2 [11], one can check that JK is not Golod.

Note that both Examples 4.3 and 4.4 are in the smallest possible number of variables.
To end this paper, we pose some intriguing question motivated by our work. The obvious

one is:

Question 4.5 Let J,K be proper homogeneous ideals in Q = k[x, y, z]. Is JK Golod?

We do not know the answer to Question 4.5 even when K = m. One can show that the
conclusions of Lemmas 3.1 and 3.2 still hold when K = m and J is any proper homoge-
neous ideal in Q, so Proposition 2.1 does not provide any obstructions in this case. When
the characteristic of k is 0 and J = K , the answer is positive by the main result of [12].

Finally, we have not been able to determine whether Lemma 3.1 holds for any product
JK of homogeneous ideals in three variables, without either the monomial condition, or
assuming that K ⊆ m2 is integrally closed. Observe that any example for which the lemma
fails would provide a negative answer to Question 4.5. It is rather frustrating that such a
simple-looking question cannot be resolved, so the first author is willing to offer a cash
prize of 25 USD for the first solver of this:

Question 4.6 Let J,K be proper homogeneous ideals in Q = k[x, y, z]. Is this true that
[I : x][I : (y, z)] ⊆ I

for I = JK?
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