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Abstract
In this article, we investigate monotone and Lipschitz continuous variational inclusion
problem in the settings of Hadamard manifolds. We propose a forward–backward
method with a self-adaptive technique for solving variational inclusion problem. To
increase the rate of convergence of our proposed method, we incorporate our iterative
method with double inertial steps and establish a convergence result of our iterative
method under some mild conditions. Finally, in order to illustrate the computational
effectiveness of our method, some numerical examples are also discussed. The result
present in this article is new in this space and extends many related results in the
literature.
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1 Introduction

Let K be a nonempty, closed geodesic convex subset of a Hadamard manifold
P, TxP be the tangent space of P at x ∈ P and T P be the tangent bundle of P. The
variational inclusion problem (VIP) is to find x ∈ P such that

0 ∈ �x + �x, (1)

where � : K → T P is a single-valued vector field, � : K → 2TP is a multi-
valued vector field and 0 denotes the zero section of T P. We denote the solution set
of (1) by �. The variational inclusion problem has received much attention due to its
various applications in signal processing, image recovery and statistical regression,
(see [3, 13, 44, 47, 49]). It is known that several optimization problem such as convex
optimization problem can be translated into finding a zero of a maximal monotone
operator defined on a Hilbert spaceM. The problem of finding a zero of the sum of two
(maximal) monotone operators is of fundamental importance in convex optimization
and variational analysis (see [1, 19, 26, 33, 43, 52]). For solving VIP (1), the forward–
backward splitting method (FBM) (see [13, 28, 29, 48]) is usually employed and is
defined in the following manner: q1 ∈ M and

qk+1 = (I + r�)−1(qk − r�qk), k � 1, (2)

where r > 0, � : M → 2M is a set-valued operator and � : M → M is an operator.
In this case, each step of iterates involves only with� as the forward step and� as the
backward step, but not the sumof operators. The FBMdefined in (2) above requires one
of the operators to be inverse strongly monotone. This assumption imposed on one of
the operators is very difficult to meet the practical problems. In order to dispense with
the condition, many authors have introduced several iterative methods. For instance,
Tseng [48] introduced the following forward–backward–forward method which is a
two-step iterative scheme as follows:

{
wk = (I + rk�)−1(I − rk�)qk,

qk+1 = wk − rk(�wk − �qk),
(3)

where the step size {rk} can be updated by Armijo linesearch methods. When the
mapping � is Lipschitz continuous and the mapping � is maximal monotone, (3)
converges weakly to a solution of VIP in the settings of real Hilbert spaces.

In 2019, Shehu [41] extendedTseng’s splittingmethod to the settings of real Banach
spaces. He proposed the following iterative method for approximating solution of VIP
in a 2-uniformly convex Banach space E which is also uniformly smooth as follows:
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⎧⎪⎨
⎪⎩

q1 ∈ E,

wk = J�
rk

J−1(Jqk − rk�qk),

qk+1 = Jwk − rk(�wk − �qk), ∀ k � 1,

(4)

where � : E → E is monotone and L-Lipschitz continuous, J�
rk

= (J + rk�)−1 J is
the resolvent of � and J is the duality mapping from E to E

∗ (E∗ is the dual of E).
He obtained a weak convergence result.

In 1964, Polyak [38] introduced the inertial extrapolation method which is a useful
tool for speeding up the rate of convergence of iterative methods. The idea of inertial
extrapolation method was inspired by an implicit discretization of a second-order in-
time dissipative dynamical system, so-called heavy ball with friction. The heavy ball
friction is a simplified version of the differential system describing the motion of a
heavy ball that rolls over the graph f and that keep rolling under its own inertia until
friction stop it at a critical point of f . This nonlinear oscillation with damping, which
is called the "heavy ball with friction" system, has been considered by several authors
from the optimization point of view, establishing different convergence results and
identifying circumstances under which the rate of convergence is better than the one
of the first-order-steepest descent method (see [4, 6, 38]). Alvarez and Attouch [5]
introduced and constructed the heavy-ball method with the proximal point algorithm
to solve a problem of maximal monotone operator. They defined their method as
follows: ⎧⎪⎨

⎪⎩
q0, q1 ∈ M,

wk = qk + θk(qk − qk−1),

qk+1 = (I + rk�)−1wk, ∀ k � 1,

(5)

where {θk} ⊂ [0, 1) and {rk} is nondecreasing with
∞∑

k=1
θk‖qk − qk−1‖ < ∞. They

established that the sequence generated by (5) converges weakly to a zero of themono-
tone operator �. In 2003, Moudafi and Oliny [32] introduced the following inertial
proximal point method for finding the zero of the sum of two monotone operators:

{
wk = qk + θk(qk − qk−1),

qk+1 = (I + rk�)−1(wk − rk�qk), k � 1.
(6)

They obtained a weak convergence theorem provided that rk < 2
L with L being the

Lipschitz constant of � and
∞∑

k=1
θk‖qk − qk−1‖ < ∞ holds. Polyak [37] explored

the potential of enhancing the convergence speed of numerical iteration methods for
solving optimization problems by incorporating multistep inertial extrapolation steps.
However, it is important to note that [37, 39] do not provide an established convergence
analysis or rate of convergence for these multi-step inertial methods. Thus, the use
of two or more inertial terms could guarantee necessary acceleration (see [30]). For
growing interests in this direction (see [1, 2, 24, 51]).
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Recently,Donget al. [16] introduced the double inertialMannalgorithmandproved the
convergence of the proposed algorithm under some suitable conditions: the algorithm
is given by

⎧⎪⎨
⎪⎩

zk = qk + λk(qk − qk−1),

yk = qk + θk(qk − qk−1),

qk+1 = (1 − φk)zk + φT (yk),

(7)

where T is a nonexpansive mapping, λ, θ ∈ [0, 1] and φ ∈ (0, 1).
Very recently, Suantai et al. [45] also considered a double inertial forward–backward

algorithm in the settings of real Hilbert spaces.
Extension of concepts and techniques from linear spaces to Riemannian manifolds

has some important advantages (see [17, 22, 40]). For instance, some optimization
problems with nonconvex objective functions become convex from the Riemannian
geometry point of view, and some constrained optimization problems can be regarded
as unconstrained ones with an appropriate Riemannian metric. In addition, the study
of convex minimization problems and inclusion problems in nonlinear spaces have
proved to be very useful in computing medians and means of trees, which are very
important in computational phylogenetics, diffusion tensor imaging, consensus algo-
rithms andmodeling of airway systems in human lungs and blood vessels (see [9–11]).
Thus, nonlinear spaces are more suitable frameworks for the study of optimization
problems from linear to Riemannian manifolds.

Very recently, Khammahawong et al. [20] proposed the following forward–
backward splitting method for solving variational inclusion problem (1) in the settings
of a Hadamard manifold:{

0 ∈ �qk ,pk �(pk) + �(qk) − 1
τk
exp−1

qk
pk,

pk+1 = expqk
(τk(�qk ,pk �(pk) − �(qk))),

(8)

where

τk+1 =
⎧⎨
⎩min

{
μd(pk, qk)

‖�qk ,pk �(pk) − �(qk)‖ , τk

}
, if �qk ,pk �(pk) − �(qk) 	= 0,

τk, otherwise,
(9)

and μ > 0. They proved that the sequence by their proposed method converges to an
element in �.

Furthermore, it will be crucial to expand the idea of the double inertial method to
the Hadamard manifold because of the significance of our space of interest and the
importance of the inertial method in dynamical systems.

Motivated by the aforementioned results in linear andnonlinear spaces,weproposed
a forward–backward method together with a double step inertial method for solving
variational inclusion problem in the settings of a Hadamard manifold. We prove that
the sequence generated by our method converges to a solution of VIP (1) without the
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prior knowledge of the Lipschitz constant via a self-adaptive technique. In order to
fasten the rate of convergence of our proposed method, we introduce a double inertial
steps. Lastly, we compare our results with some related results in the literature to show
the performance of our method. To the best of our knowledge, no result on double
inertial steps have been discussed in the settings of nonlinear spaces. Our result extends
and generalizes many related results in the literature.

2 Preliminaries

Let P be an m-dimensional manifold, let x ∈ P and let TxP be the tangent space
of P at x ∈ P. We denote by T P = ⋃

x∈P TxP the tangent bundle of P. An inner
product R〈·, ·〉 is called a Riemannian metric on P if 〈·, ·〉x : TxP × TxP → R is an
inner product for all x ∈ P. The corresponding norm induced by the inner product
Rx 〈·, ·〉 on TxP is denoted by ‖ · ‖x . We will drop the subscript x and adopt ‖ · ‖ for
the corresponding norm induced by the inner product. A differentiable manifold P

endowed with a Riemannian metric R〈·, ·〉 is called a Riemannian manifold. In what
follows, we denote the Riemannian metric R〈·, ·〉 by 〈·, ·〉 when no confusion arises.
Given a piecewise smooth curve γ : [a, b] → P joining x to y (that is, γ (a) = x and
γ (b) = y), we define the length l(γ ) of γ by l(γ ) := ∫ b

a ‖γ ′(t)‖dt . The Riemannian
distance d(x, y) is theminimal length over the set of all such curves joining x to y. The
metric topology induced by d coincides with the original topology on P. We denote
by ∇ the Levi-Civita connection associated with the Riemannian metric [40].

Let γ be a smooth curve in P. A vector field X along γ is said to be parallel if
∇γ ′ X = 0, where 0 is the zero tangent vector. If γ ′ itself is parallel along γ , then we
say that γ is a geodesic and ‖γ ′‖ is a constant. If ‖γ ′‖ = 1, then the geodesic γ is said
to be normalized. A geodesic joining x to y in P is called a minimizing geodesic if its
length equals d(x, y). ARiemannianmanifoldP equippedwith a Riemannian distance
d is a metric space (P, d). A Riemannian manifold P is said to be complete if for all
x ∈ P, all geodesics emanating from x are defined for all t ∈ R. The Hopf–Rinow
theorem [40] posits that if P is complete, then any pair of points in P can be joined
by a minimizing geodesic. Moreover, if (P, d) is a complete metric space, then every
bounded and closed subset of P is compact. If P is a complete Riemannian manifold,
then the exponential map expx : TxP → P at x ∈ P is defined by

expx v := γv(1, x), ∀ v ∈ TxP,

where γv(·, x) is the geodesic starting from x with velocity v (that is, γv(0, x) =
x and γ ′

v(0, x) = v). Then, for any t, we have expx tv = γv(t, x) and expx 0 =
γv(0, x) = x . Note that the mapping expx is differentiable on TxP for every x ∈ P.

The exponentialmap expx has an inverse exp
−1
x : P → TxP.For any x, y ∈ P,wehave

d(x, y) = ‖ exp−1
y x‖ = ‖ exp−1

x y‖ (see [40] for more details). The parallel transport
�γ,γ (b),γ (a) : Tγ (a)P → Tγ (b)P on the tangent bundle T P along γ : [a, b] → R with
respect to ∇ is defined by

�γ,γ (b),γ (a)v = F(γ (b)), ∀ a, b ∈ R and v ∈ Tγ (a)P,

123



H. A. Abass et al.

where F is the unique vector field such that ∇γ ′(t)v = 0 for all t ∈ [a, b] and
F(γ (a)) = v. If γ is a minimizing geodesic joining x to y, then we write �y,x instead
of �γ,y,x . Note that for every a, b, r , s ∈ R, we have

�γ (s),γ (r) ◦ �γ (r),γ (a) = �γ (s),γ (a) and �−1
γ (b),γ (a) = �γ (a),γ (b).

Also, �γ (b),γ (a) is an isometry from Tγ (a)P to Tγ (b)P, that is, the parallel transport
preserves the inner product

〈�γ (b),γ (a)(u), �γ (b),γ (a)(v)〉γ (b) = 〈u, v〉γ (a), ∀ u, v ∈ Tγ (a)P. (10)

Below is an example of a Hadamard manifold.
Space 1: LetRm++ be the product spaceR

m++ := {(x1, x2, · · · , xm) : xi ∈ R++, i =
1, 2, · · · , m}. Let P = (Rm++, 〈·, ·〉) be the m-dimensional Hadamard manifold with

the Riemannian metric 〈p, q〉 = pTq and the distance d(x, y) = | ln x
y | = | ln

m∑
i=1

xi
yi

|,
where x, y ∈ P with x = {xi }m

i=1 and y = {yi }m
i=1.

A subset K ⊂ P is said to be convex if for any two points x, y ∈ K, the geodesic
γ joining x to y is contained in K. That is, if γ : [a, b] → P is a geodesic such that
x = γ (a) and y = γ (b), then γ ((1 − t)a + tb) ∈ K for all t ∈ [0, 1]. A complete
simply connected Riemannian manifold of non-positive sectional curvature is called
a Hadamard manifold. We denote by P a finite dimensional Hadamard manifold.
Henceforth, unless otherwise stated, we represent byK a nonempty, closed and convex
subset of P.

Next, let H(K) denote the set of all single-valued vector fields U : K → T P such
thatU (p) ∈ TpP, for each p ∈ K. LetX (K) denote to the set of all multivalued vector
fields V : K → 2TP such that V (p) ⊆ TpP for each p ∈ K, and the denote Dom(V )

the domain of V defined by Dom(V ) = {p ∈ K : V (p) 	= ∅}.
We state some results and definitions which are needed in the next section.

Definition 1 [50] A vector field U ∈ H(K) is said to be

(i) monotone, if

〈U (p), exp−1
p q〉 � 〈U (q),− exp−1

q p〉, ∀ p, q ∈ K,

(ii) L-Lipschitz continuous if there exists L > 0 such that

‖�p,qU (q) − U (p)‖ � Ld(p, q), ∀ p, q ∈ K.

Definition 2 [14] A vector field V ∈ X (K) is said to be

(i) monotone, if for all p, q ∈ Dom(V ),

〈u, exp−1
p q〉 � 〈v,− exp−1

q p〉, ∀ u ∈ V (p) and ∀ v ∈ V (q),

123



Self-Adaptive Technique with Double Inertial Steps · · ·

(ii) maximal monotone if it is monotone and ∀ p ∈ K and u ∈ TpK, the condition

〈u, exp−1
p q〉 � 〈v,− exp−1

q p〉, ∀ q ∈ Dom(V ) and ∀ v ∈ V (q) implies that u ∈ V (p).

Definition 3 [17] LetK be a nonempty, closed and subset of P and {xn} be a sequence
in P. Then, {xn} is said to be Fejèr convergent with respect to K if for all p ∈ K and
n ∈ N,

d(xn+1, p) � d(xn, p).

Definition 4 [25] Let V ∈ X (K) be a vector field and x0 ∈ K. Then, V is said to be
upper Kuratowski semicontinuous at x0 if for any sequences {xn} ⊆ K and {vn} ⊂ T P

with each vn ∈ V (xn), the relations lim
n→∞ vn = v0 imply that v0 ∈ V (x0). Moreover,

V is said to be upper Kuratowski semicontinuous on K if it is upper Kuratowski
semicontinuous for each x ∈ K.

Lemma 1 [17] Let K be a nonempty, closed and closed subset of P and {xn} ⊂ P be a
sequence such that {xn} be a Fejér convergent with respect to K. Then, the following
hold:

(i) For every p ∈ K, d(xn, p) converges.
(ii) {xn} is bounded.
(iii) Assume that every cluster point of {xn} belongs to K, then {xn} converges to a

point in K.

Proposition 1 [40]. Let x ∈ P. The exponential mapping expx : TxP → P is a dif-
feomorphism. For any two points x, y ∈ P, there exists a unique normalized geodesic
joining x to y, which is given by

γ (t) = expx t exp−1
x y, ∀ t ∈ [0, 1].

A geodesic triangle�(p, q, r) of a Riemannian manifold P is a set containing three
points p, q, r and three minimizing geodesics joining these points.

Proposition 2 [40]. Let �(p, q, r) be a geodesic triangle in P. Then

d2(p, q) + d2(q, r) − 2〈exp−1
q p, exp−1

q r〉 � d2(r , q) (11)

and

d2(p, q) � 〈exp−1
p r , exp−1

p q〉 + 〈exp−1
q r , exp−1

q p〉. (12)

Moreover, if θ is the angle at p, then we have

〈exp−1
p q, exp−1

p r〉 = d(q, p)d(p, r) cos θ. (13)
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Also,

‖ exp−1
p q‖2 = 〈exp−1

p q, exp−1
p q〉 = d2(p, q). (14)

Remark 1 [25] If x, y ∈ P and v ∈ TyP, then

〈v,− exp−1
y x〉 = 〈v, �y,x exp

−1
x y〉 = 〈�x,yv, exp−1

x y〉. (15)

Lemma 2 [21] Let P be a Hadamard manifold and let u, v, w ∈ P. Then,

‖ exp−1
u w − �u,v exp

−1
v w‖ � d(u, v).

Lemma 3 [25] Let x0 ∈ P and {xn} ⊂ P with xn → x0. Then, the following assertions
hold:

(i) For any y ∈ P, we have exp−1
xn

y → exp−1
x0 xn and exp−1

y xn → exp−1
y x0.

(ii) If vn ∈ Txn P and vn → v0, then v0 ∈ Tx0P.

(iii) Given un, vn ∈ Txn P and u0, v0 ∈ Tx0P, if un → u0, then 〈un, vn〉 → 〈u0, v0〉.
(iv) For any u ∈ Tx0P, the function F : P → T P, defined by F(x) = �x,x0u for

each x ∈ P is continuous on P.

The next lemma presents the relationship between triangles in R
2 and geodesic

triangles in Riemannian manifolds (see [12]).

Lemma 4 [12]. Let �(x1, x2, x3) be a geodesic triangle in P. Then, there exists a
triangle �(x̄1, x̄2, x̄3) corresponding to �(x1, x2, x3) such that d(xi , xi+1) = ‖x̄i −
x̄i+1‖ with the indices taken modulo 3. This triangle is unique up to isometries of R

2.

The triangle �(x̄1, x̄2, x̄3) in Lemma 4 is said to be the comparison triangle for
�(x1, x2, x3) ⊂ P. The points x̄1, x̄2 and x̄3 are called comparison points to the points
x1, x2 and x3 in P.

A function h : P → R is said to be geodesic if for any geodesic γ ∈ P, the
composition h ◦ γ : [u, v] → R is convex, that is,

h ◦ γ (λu + (1 − λ)v) � λh ◦ γ (u) + (1 − λ)h ◦ γ (v), u, v ∈ R, λ ∈ [0, 1].

Lemma 5 [25] Let �(p, q, r) be a geodesic triangle in a Hadamard manifold P and
�(p′, q ′, r ′) be its comparison triangle.

(i) Let α, β, γ (resp. α′, β ′, γ ′) be the angles of �(p, q, r) (resp. �(p′, q ′, r ′)) at the
vertices p,q,r (resp. p′, q ′, r ′). Then, the following inequalities hold:

α′ � α, β ′ � β, γ ′ � γ.

(ii) Let z be a point in the geodesic joining p to q and z′ its comparison point in the
interval [p′, q ′]. Suppose that d(z, p) = ‖z′ − p′‖ and d(z′, q ′) = ‖z′ − q ′‖.
Then, the following inequality holds:

d(z, r) � ‖z′ − r ′‖.
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Lemma 6 [25] Let x0 ∈ P and {xn} ⊂ P be such that xn → x0. Then, for any y ∈ P,

we have exp−1
xn

y → exp−1
x0 y and exp−1

y xn → exp−1
y x0.

The following propositions (see [17]) are very useful in our convergence analysis:

Proposition 3 Let P be a Hadamard manifold and d : P × P :→ R be the distance
function. Then the function d is convex with respect to the product Riemannian metric.
In other words, given any pair of geodesics γ1 : [0, 1] → P and γ2 : [0, 1] → P, then
for all t ∈ [0, 1], we have

d(γ1(t), γ2(t)) � (1 − t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ P, the function d(·, y) : P → R is a convex function.

Proposition 4 Let P be a Hadamard manifold and x ∈ P. The map �x = d2(x, y)

satisfying the following:

(1) �x is convex. Indeed, for any geodesic γ : [0, 1] → P, the following inequality
holds for all t ∈ [0, 1] :

d2(x, γ (t)) � (1 − t)d2(x, γ (0)) + td2(x, γ (1)) − t(1 − t)d2(γ (0), γ (1)).

(2) �x is smooth. Moreover, ∂�x (y) = −2 exp−1
y x .

Lemma 7 [18] Let {vn} and {δn} be nonnegative sequences which satisfy

vn+1 = (1 + δn)vn + δnvn−1, n � 1.

Then,

vn+1 � M ·
n∏

j=1

(1 + 2δ j ), where M = max{v1, v2}.

Moreover, if
∞∑

n=1
δn < +∞, then {vn} is bounded.

Lemma 8 [34] Let {an}, {ϕn} and {βn} be nonnegative sequences which satisfy

an+1 = (1 + βn)an + ϕn, n � 1.

If
∞∑

n=1
βn < +∞ and

∞∑
n=1

ϕn < +∞, then lim
n→∞ an exists.
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3 Main Result

In this section, we present an iterative method for solving variational inclusion
problem in the settings of Hadamard manifolds. We state the following assumptions:

Assumption 1

(L1) � ∈ H(K) ismonotone and L-Lipschitz continuous, and� ∈ X (K) ismaximal
monotone.

(L2) The solution set � := (� + �)−1(0) is nonempty.

(L3) {λk} is a nonnegative real numbers sequence such that
∞∑

k=1
λk < ∞.

Algorithm 1 Self-adaptive method with two inertial steps for variational inclusion
problem. Initialization: Choose ρ0 > 0, μ ∈ (0, 1), {αk}, {θk} are real positive
sequences. Let q0, q1 ∈ P be arbitrary. Iterative steps: Given the current iterate qk,

calculate qk+1 as follows:

Step 1 Compute

{
wk = expqk

(−αk exp−1
qk

qk−1),

zk = expwk
(−θk exp−1

wk
qk−1),

(16)

and

0 ∈ �tk ,zk �(zk) + �(tk) − 1

ρk
exp−1

tk zk . (17)

If tk = zk, then stop and tk ∈ �. Else, proceed to step 2.
Step 2 Compute

qk+1 = exptk

(
ρk(�tk ,zk �(zk) − �(tk))

)
. (18)

Update

ρk+1 =
⎧⎨
⎩min

{
μd(zk, tk)

‖�tk ,zk �(zk)−�(tk)‖ , ρk + λk

}
, if �tk ,zk �(zk)−�(tk) 	=0,

ρk + λk, otherwise.
(19)

Stopping criterion Set k := k + 1 and return to Iterative step 1.

We start by establishing a technical lemma useful to our analysis.

Lemma 9 [2, 27] Let {qk} be a sequence generated by Algorithm 1 and the sequence

{ρk} is generated by (19). Then we have that lim
k→∞ ρk = ρ and ρ ∈

[
min

{
μ
L , ρ0

}
, ρ0+

λ

]
, where λ =

∞∑
k=0

λk .
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Remark 10 It is obvious that the stepsize in Algorithm 1 is allowed to increase from
iteration to iteration and so (19) reduces the dependence on the initial stepsize ρ0.
Also, since {λk} is summable, we obtain lim

k→∞ λk = 0. Thus the stepsize λk may be

non-increasing when k is large. If λk ≡ 0, the step size in (1) reduces to the one in
[20].

Theorem 1 Suppose that Assumptions (L1)-(L3) holds and let {qk} be a sequence
generated by Algorithm 1. If

∑∞
k=1 αk < +∞ and

∑∞
k=1 θk < +∞, then

(i) d(qk+1, p) � M ·
k∏

j=1
(1 + 2(α j + θ j (1 + α j ))), where M := max{d(q1, p),

d(q2, p)}.

(ii) The sequence {qk} converges to an element in �.

Proof Let p ∈ �, then −�(q) ∈ �(p). Using (16) of Algorithm 1, we get
1
ρk

exp−1
tk zk − �tk ,zk �(zk) ∈ �(tk). By applying the monotonicity of �, we deduce

that

〈 1
ρk

exp−1
tk zk − �tk ,zk �(zk), exp

−1
tk p

〉
� 〈−�(p),− exp−1

p tk〉
= 〈�(p), exp−1

p tk〉. (20)

Since � is a monotone vector field, then

〈�(p), exp−1
p tk〉 � 〈−�(tk), exp

−1
tk p〉. (21)

By combining (20) and (21), we have

〈 1
ρk

exp−1
tk zk − �tk ,zk �(zk), exp

−1
tk p

〉
� 〈−�(tk), exp

−1
tk p〉,

thus

〈exp−1
tk zk, exp

−1
tk p〉 � ρk〈�tk ,zk �(zk) − �(tk), exp

−1
tk p〉. (22)

Now, for k ∈ N. Let �(zk, tk, p) ⊆ P be a geodesic triangle with vertices zk, tk
and p and let �(z′

k, t ′k, p′) ⊂ R
2 be the corresponding comparison triangle, thus

we have from Lemma 5 (ii) that d(zk, p) = ‖z′
k − p′‖, d(tk, p) = ‖t ′k − p′‖ and

d(t ′k, z′
k) = ‖t ′k − z′

k‖. Also, let �(qk+1, tk, p) ⊆ P be a geodesic triangle with
vertices qk+1, tk and p, then �(q ′

k+1, t ′k, p′) ⊆ R
2 is the corresponding comparison

triangle. Hence, we have d(qk+1, p) = ‖q ′
k+1 − p′‖, d(tk, p) = ‖t ′k − p′‖ and

d(qk+1, tk) = ‖q ′
k+1 − t ′k‖.
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Now,

d2(qk+1, p) � ‖q ′
k+1 − p′‖2

= ‖q ′
k+1 − t ′k + t ′k − p′‖2

= ‖t ′k − p′‖2 + ‖q ′
k+1 − t ′k‖2 + 2〈q ′

k+1 − t ′k, t ′k − p′〉
= ‖(t ′k − z′

k) + (z′
k − p′)‖2 + ‖q ′

k+1 − t ′k‖2 + 2〈q ′
k+1 − t ′k, t ′k − p′〉

= ‖t ′k − z′
k‖2 + ‖z′

k − p′‖2 + ‖q ′
k+1 − t ′k‖2 + 2〈t ′k − z′

k, z′
k − p′〉

+ 2〈t ′k − p′, t ′k − p′〉 − 2‖t ′k − p′‖2 + 2〈q ′
k+1 − t ′k, t ′k − p′〉

+ 2〈t ′k − z′
k, t ′k − z′

k〉
− 2〈t ′k − z′

k, t ′k − z′
k〉

= d2(zk, p) − d2(tk, zk) + ‖q ′
k+1 − t ′k‖2 + 2〈t ′k − z′

k, t ′k − p′〉
+ 2〈q ′

k+1 − t ′k, t ′k − p′〉
+ 2〈t ′k − p′, t ′k − p′〉 − 2d2(tk, p)

= d2(zk, p) − d2(tk, zk) + ‖q ′
k+1 − t ′k‖2 + 2〈t ′k − z′

k, t ′k − p′〉
+ 2〈q ′

k+1 − p′, t ′k − p′〉 − 2d2(tk, p). (23)

Let r and r ′ be the angles of the vertices tk and t ′k , respectively. By Lemma 5 (i), we
get r ′ � r . Therefore, we obtain from Lemma 4 and (13) that

〈t ′k − z′
k, t ′k − p′〉 = ‖t ′k − z′

k‖ · ‖t ′k − p′‖cosr ′

= d(tk, zk)d(p, tk)cosr
′

� d(tk, zk)d(p, tk)cosr

= 〈exp−1
tk zk, exp

−1
tk p〉. (24)

Following the same argument as in (24), we have

〈q ′
k+1 − p′, t ′k − p′〉 = 〈exp−1

p qk+1, exp
−1
p tk〉. (25)

Hence, we deduce from (18) that

‖q ′
k+1 − t ′k‖2 � ρ2

k ‖�tk ,zk �(zk) − �(tk)‖2. (26)

On substituting (24), (25) and (26) into (23), we obtain

d2(qk+1, p) � d2(zk, p) − d2(tk, zk) + ρ2
k ‖�tk ,zk �(zk) − �(tk)‖2

+ 2〈exp−1
tk zk, exp

−1
tk p〉 − 2d2(tk, p)

+ 2〈exp−1
p qk+1, exp

−1
p tk〉. (27)
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Using Remark 1, Lemma 2 and (27), we get

d2(qk+1, p) � d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 − 2d2(tk , p)

+ 2〈exp−1
p qk+1 − �p,tk exp

−1
tk qk+1 + �p,tk exp

−1
tk qk+1, exp

−1
p tk〉

+ 2〈exp−1
tk zk , exp−1

tk p〉
= d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 − 2d2(tk , p)

+ 2〈exp−1
tk zk , exp−1

tk p〉 + 2〈exp−1
p qk+1 − �p,tk exp

−1
tk qk+1, exp

−1
p tk〉

+ 2〈�p,tk exp
−1
tk qk+1, exp

−1
p tk〉

� d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 − 2d2(tk , p)

+ 2‖ exp−1
p qk+1 − �p,tk exp

−1
tk qk+1‖‖ exp−1

p tk‖ + 2〈exp−1
tk zk , exp−1

tk p〉
− 2〈exp−1

tk qk+1, exp
−1
tk p〉, (28)

which also implies that

d2(qk+1, p) � d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 − 2d2(tk , p)

+ 2d2(p, tk) + 2〈exp−1
tk zk , exp−1

tk p〉 − 2〈exp−1
tk qk+1, exp

−1
tk p〉

= d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 + 2〈exp−1
tk zk , exp−1

tk p〉
− 2〈exp−1

tk qk+1, exp
−1
tk p〉. (29)

It follows from the definition of qk+1 that exp
−1
tk qk+1 = ρk(�tk ,zk �(zk) − �(tk)).

Using the last inequality, we obtain that

d2(qk+1, p) � d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 + 2〈exp−1
tk zk , exp−1

tk p〉
− 2ρk〈�tk ,zk �(zk) − �(tk), exp−1

tk p〉
= d2(zk , p) − d2(tk , zk) + ρ2k ‖�tk ,zk �(zk) − �(tk)‖2 + 2〈exp−1

tk zk , exp−1
tk p〉

+ 2ρk〈�(tk) − �tk ,zk �(zk), exp−1
tk p〉. (30)

By substituting (19) and (22) in (30), we get

d2(qk+1, p) � d2(zk , p) − d2(tk , zk) + μ2 ρ2k

ρ2k+1

d2(tk , zk)

+ 2ρk〈�(tk) − �tk ,zk �(zk), exp−1
tk p〉 − 2ρk〈�(tk) − �tk ,zk �(zk), exp−1

tk p〉

= d2(zk , p) − (
1 − μ2 ρ2k

ρ2k+1

)
d2(tk , zk). (31)
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By utilizing the geodesic triangles�(wk, qk, p) ⊂ P and�(qk, qk−1, p) ⊂ P with
their respective comparison triangles �(w′

k, q ′
k, p′) ⊆ R

2. Then, by Lemma 5 (ii), we
have d(wk, qk) = ‖w′

k −q ′
k‖, d(wk, p) = ‖w′

k − p′‖ and d(qk, qk−1) = ‖q ′
k −q ′

k−1‖.
Similarly, using the geodesic triangles�(zk , wk, p) ⊂ P and�(qk, qk−1, p) ⊂ Pwith
their respective comparison triangle �(z′

k, w
′
k, p′) ⊆ R

2. Then, by Lemma 5 (ii), we
have d(zk, wk) = ‖z′

k − w′
k‖, d(zk, qk) = ‖z′

k − q ′
k‖ and d(zk, p) = ‖z′

k − p′‖.
From step 1 of Algorithm 1, we have that w′

k = q ′
k + αk(q ′

k − q ′
k−1) and z′

k =
w′

k + θk(w
′
k − q ′

k−1), thus

d(wk, p) = ‖w′
k − p′‖

= ‖q ′
k + αk(q

′
k − q ′

k−1) − p′‖
� ‖q ′

k − p′‖ + αk‖q ′
k − q ′

k−1‖
= d(qk, p) + αkd(qk, qk−1). (32)

Similarly, it is easy to see that

d(wk, qk−1) = ‖w′
k − q ′

k−1‖
= ‖q ′

k + αk(q
′
k − q ′

k−1) − q ′
k−1‖

� ‖q ′
k − q ′

k−1‖ + αk‖q ′
k − q ′

k−1‖
= d(qk, qk−1) + αkd(qk, qk−1)

= (1 + αk)d(qk, qk−1). (33)

By definition of zk, (32) and (33), we get

d(zk, p) = ‖z′
k − p′‖

= ‖w′
k + θk(w

′
k − q ′

k−1) − p′‖
� ‖w′

k − p′‖ + θk‖w′
k − q ′

k−1‖
= d(wk, p) + θkd(wk, qk−1)

� d(qk, p) + αkd(qk, qk−1) + θk(1 + αk)d(qk, qk−1)

= d(qk, p) + (αk + θk(1 + αk))d(qk, qk−1). (34)

Since lim
k→∞

(
1 − μ2 ρ2

k
ρ2

k+1

) = 1 − μ2 > 0, this implies that there exists N > 0 such

that 1 − μ2 ρ2
k

ρ2
k+1

> 0,∀ k � N.

From (31) and (34), we deduce that

d(qk+1, p) � d(zk, p)

� d(qk, p) + (αk + θk(1 + αk))d(qk, qk−1)

� d(qk, p) + (αk + θk(1 + αk))
(
d(qk, p) + d(qk−1, p)

)
= (1 + αk + θk(1 + αk))d(qk, p) + (αk + θk(1 + αk))d(qk−1, p).

(35)
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By applying Lemma 7, we obtain that

d(qk+1, p) � M ·
k∏

j=1

(1 + 2(α j + θ j (1 + α j ))), (36)

where M = max{d(q1, p), d(q2, p)}. Hence, the proof completes.
To establish the second part of the proof, we need to show that {qk} converges

to a point in �. Since
∞∑

k=1
αk < +∞ and

∞∑
k=1

θk < +∞, by Lemma 7 and (36),

the sequence {qk} is bounded. This also implies that
∞∑

k=1
αkd(qk, qk−1) < +∞ and

∞∑
k=1

θkd(qk, qk−1) < +∞. Using Lemma 8 in (35), we can claim that lim
k→∞ d(qk, p)

exists. We have from Lemma 5 (ii) and Proposition 4 that

d2(wk, p) = ‖w′
k − p′‖2

= ‖q ′
k + αk(q

′
k − q ′

k−1) − p′‖2
= ‖(1 + αk)(q

′
k − p′) − αk(q

′
k−1 − p′)‖2

= (1 + αk)d
2(qk, p) − αkd2(qk−1, p) + αk(1 + αk)d

2(qk, qk−1). (37)

We also consider

d2(wk, qk−1) = ‖w′
k − q ′

k−1‖2
= ‖q ′

k + αk(q
′
k − q ′

k−1) − q ′
k−1‖2

= ‖q ′
k − q ′

k−1‖2 + 2〈q ′
k − q ′

k−1, αk(q
′
k − q ′

k−1)〉
+ α2

k ‖q ′
k − q ′

k−1‖2. (38)

But from (14), we have

〈q ′
k − q ′

k−1, q ′
k − q ′

k−1〉 � 〈exp−1
qk−1

qk, exp
−1
qk−1

qk〉
= ‖ exp−1

qk−1
qk‖2

= d2(qk, qk−1). (39)

On substituting (39) into (38), we get

d2(wk, qk−1) � d2(qk, qk−1) + 2αkd2(qk, qk−1) + α2
k d2(qk, qk−1)

= (1 + αk)
2d2(qk, qk−1). (40)
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We deduce from Lemma 5, (37) and (40) that

d2(zk , p) = ‖z′
k − p′‖2

= ‖w′
k + θk(w

′
k − q ′

k−1) − p′‖2
= ‖(1 + θk)(w

′
k − q ′

k−1) − θk(q
′
k−1 − p′)‖2

= (1 + θk)d
2(wk , qk−1) − θkd2(qk−1, p) + θk(1 + θk)d

2(wk , qk−1)

= (1 + θk)
(
(1 + αk)d

2(qk , p) − αkd2(qk−1, p) + αk(1 + αk)d
2(qk , qk−1)

)
− θkd2(qk−1, p) + θk(1 + θk)d

2(wk , qk−1)

� (1 + θk)
(
d2(qk , p) + αk

(
d2(qk , p) − d2(qk−1, p)

) + αk(1 + αk)d
2(qk , qk−1)

)
− θkd2(qk−1, p) + θk(1 + θk)(1 + αk)

2d2(qk , qk−1)

= d2(qk , p) + (
θk + (1 + θk)αk

)(
d2(qk , p) − d2(qk−1, p)

)
+ αk(1 + αk)(1 + θk)d

2(qk , qk−1) + θk(1 + θk)(1 + αk)
2d2(qk , qk−1). (41)

On substituting (41) into (31), we obtain

d2(qk+1, p) � d2(qk, p) + (θk + (1 + θk)αk)
(
d2(qk, p) − d2(qk−1, p)

)
+ αk(1 + αk)(1 + θk)d

2(qk, qk−1) + θk(1 + θk)(1 + αk)
2d2(qk, qk−1)

− (
1 − μ2 ρ2

k

ρ2
k+1

)
d2(tk, zk). (42)

The last inequality yields

(
1 − μ2 ρ2

k

ρ2
k+1

)
d2(tk, zk) � d2(qk, p) + (θk + (1 + θk)αk)

(
d2(qk, p) − d2(qk−1, p)

)
+ αk(1 + αk)(1 + θk)d

2(qk, qk−1) + θk(1 + θk)(1 + αk)
2d2(qk, qk−1)

− d2(qk+1, p)

= (
d2(qk, p) − d2(qk+1, p)

) + (θk + (1 + θk)αk)
(
d2(qk, p) − d2(qk−1, p)

)
+ αk(1 + αk)(1 + θk)d

2(qk, qk−1) + θk(1 + θk)(1 + αk)
2d2(qk, qk−1). (43)

Since lim
k→∞ d(qk, p) exists,

∞∑
k=1

αk < +∞ and
∞∑

k=1
θk < +∞. It follows from (43) that

lim
k→∞ d(tk, zk) = 0. (44)
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Note that

d(wk, qk) = ‖w′
k − q ′

k‖
= ‖q ′

k + αk(q
′
k − q ′

k−1) − q ′
k‖

= αkd(qk, qk−1) → 0, k → ∞. (45)

From (45), we get

d(zk, qk) = ‖z′
k − q ′

k‖
= ‖w′

k + θk(w
′
k − q ′

k−1) − q ′
k‖

� ‖w′
k − q ′

k‖ + θk‖q ′
k + αk(q

′
k − q ′

k−1) − q ′
k−1‖

� d(wk, qk) + θkd(qk, qk−1) + θkαkd(qk, qk−1) → 0, k → ∞. (46)

From (44) and (46), we have

lim
k→∞ d(tk, qk) = 0. (47)

Using (45) and (46), we deduce that

lim
k→∞ d(zk, wk) = 0. (48)

Since {qk} is bounded, there exists a subsequence {qkl } which converges to a cluster
point p. Also, from (47), there exists a subsequence {tkl } of {tk} which converges
weakly to p ∈ P. By (17), we deduce that

ϒkl = −�tkl ,zkl
�(zkl ) − 1

ρkl

exp−1
tkl

zkl ∈ �(tkl ). (49)

Thus, by applying (44), we have

lim
l→∞

1

ρkl

‖ exp−1
tkl

zkl ‖ = lim
l→∞

1

ρkl

d(tkl , zkl ) = 0,

hence,

lim
l→∞

1

ρkl

exp−1
tkl

zkl = 0. (50)

Since � is a Lipschitz continuous vector field and zkl → p as l → ∞. Combining
(49) and (50), we obtain

lim
l→∞ ϒkl = −�(p). (51)
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Also, using the fact that� is amaximalmonotone vector field, so it is upperKuratowski
semicontinuous. Thus −�(p) ∈ �(p), which implies that p solves �. Lastly by
Lemma 1, we obtain that {qk} converges to a point in �.

4 Numerical Example

Example 1 Let R++ = {x ∈ R : x > 0} and P = (R++, 〈·, ·〉) be the Riemannian
manifold with Riemannian metric defined by 〈p, q〉 = 1

x2
pq ∈ R++, p, q ∈ TxP.

TheRiemanniandistanced : P×P → R+ is givenbyd(x, y) = | ln y
x | for all x, y ∈ P.

Let x ∈ P, then the exponential map expx : TxP → P is defined by expx sq = xe
qs
x

for all q ∈ TxP. The inverse of the exponential map, exp−1
x : P → TxP is defined

by exp−1
x y = x ln y

x for all x, y ∈ P. The parallel transport is the identity on T P.

Let K = (0, 1], � : K → R and � : K → T P be defined by �(x) = x ln x and
�(x) = x(1 + ln x), respectively. Then, � is maximal monotone on K and � is a
continuous and monotone vector field on K. By simple calculation, we obtain that tk
in Algorithm 1 can be expressed as

tk =
( zk

eρk

) 1
1+ρk , ρk > 0,

and (� + �)−1(0) = 1√
e
. We choose αk = 1

k+1 , θk = 1
2n+3 , λk = 1

k
√

k
, μ = 1

2 and

ρ0 = 0.3. We terminate the execution of the process at Ek = d(xk+1, xk) = 10−3 and
make a comparison of Algorithm 1 with a step inertial and non-accelerated versions
of the Algorithm. We test the convergence of the method with some initial values of
x0 and x1. The result of this experiment is shown in Fig. 1.

Case I: x0 = 0.1 and x1 = 0.18.
Case II: x0 = 0.9 and x1 = 0.5.

Example 2 Let R
3++ = {x = (x1, x2, x3) ∈ R

3 : xi > 0, i = 1, 2, 3}, P =
(R3++, 〈·, ·〉) be the Riemannian manifold with the Riemannian metric is defined by

〈p, q〉 = pG(x)qT, x ∈ R
3++, p, q ∈ TxR

3++ = R
3,

where G(x) is a diagonal matrix defined G(x) = diag(x−2
1 , x−2

2 , x−2
3 ). The Rieman-

nian d : P × P → R+ is defined by

d(x, y) =
√√√√(

3∑
i=1

ln2
xi

yi

)
, ∀ x, y ∈ P.

The sectional curvature of the Riemannian manifold P is 0. Thus P = (R3++, 〈·, ·〉)
is a Hadamard manifold. Let x = (x1, x2, x3) ∈ P. Then, the exponential map expx :
TxP → P is defined by
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Fig. 1 Numerical report for Example 2

expx (p) =
(

x1e
p1
x1 , x2e

p2
x2 , x3e

p3
x3

)

for all p = (p1, pp, p3) ∈ TxP.The inverse of the exponentialmap, exp−1
x : P → TxP

is defined by

exp−1
x y =

(
x1 ln

y1
x1

, x2 ln
y2
x2

, x3 ln
y3
x3

)

for all x, y ∈ P. The parallel transport �y,x : TxP → TyP is defined by

Py,x (p) =
(

p1
y1
x1

, p2
y2
x2

, p3
y3
x3

)

for all p = (p1, p2, p3) ∈ TxP.LetK = {x = (x1, x2, x3) ∈ P : 0 < xi � 1, for i =
1, 2, 3} be the geodesic convex subset of P. Let � : M → T P be defined by

�(x) = (−x1, x2 ln x2, 3x3), ∀ (x1, x2, x3) ∈ P,

and � : M → T P be defined by

�(x1, x2, x3) = (x1 + x1 ln x1, x2,−3x1 + 2x3 ln 2x3), ∀ (x1, x2, x3) ∈ M .

Then, � is maximal monotone vector field on K and � is continuous and mono-
tone vector field on K (see [8, Example 1]). By simple calculation, we see that tk in
Algorithm 1 can be expressed as

tk =
(

t1k e
ρk , (t2k )

1
1+ρk , t3k e

−3ρk

)
.
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Note that (� + �)−1(0) = {(1, 1
e ,

1
2 )}. Let αk = 1

k+1 , θ = 1
2k+3 , λk = 1

k
√

k
, μ = 1

2

and ρ0 = 0.9. We terminate the execution of the process at Ek = d(xk+1, xk) = 10−4

andmake a comparison ofAlgorithm1with one inertial and a non-accelerated versions
of the Algorithm. The result of this experiment is shown in Fig. 2 for two initial values
of x0 and x1.

Case 1: x0 = [1.5, 1.5, 1.5]′ and x1 = [1.3, 1.2, 1.1]′.
Case 2: x0 = [1.8, 1.8, 1.8]′ and x1 = [1.5, 1.5, 1.6]′.

5 Conclusion

In this manuscript, we proposed double inertial methods with a forward–backward
method for solving variational inclusion problem in the settings of a Hadamard man-
ifold. We establish a convergence result for solving variational inclusion problem and
illustrate some numerical examples to show the performance of our method in com-
parison with some related ones in the literature. It can be seen from our figures that the
two steps inertial extrapolation method illustrated in our manuscript converges faster

Fig. 2 Numerical report for Example 2
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that the one step inertial method and the non-inertial iterative method. This result
discussed in this manuscript is new in the settings of a Hadamard manifold.
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