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Abstract

There exist linear relations among tensor entries of low rank tensors. These linear
relations can be expressed by multi-linear polynomials, which are called generating
polynomials. We use generating polynomials to compute tensor rank decompositions
and low rank tensor approximations. We prove that this gives a quasi-optimal low rank
tensor approximation if the given tensor is sufficiently close to a low rank one.
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1 Introduction

Letm and ny, - - - , ny, be positive integers. A tensor F of order m and dimension
nip X --- X n,, can be labeled such that

F = (Fig e i Il <t ove 1 i it -

Let IF be a field (either the real field R or the complex field C). The space of all tensors
of order m and dimension n| X --- X n,, with entries in I is denoted as "1 */m
For vectors v; € F" i =1, --- , m, their outer product v; ® - - - ® vy, is the tensor in
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[rixeXm gych that

WM ® - ® Uiy, iw = Wiy - (Wi

for all labels in the corresponding range. A tensor like v] ® - - - ® vy, is called a rank-1

tensor. For every tensor F € "1 m_there exist vector tuples (vs’l, R TR
s=1,---,r, v € F"%, such that
-

F=) v"'@ v (1)

s=1

The smallest such r is called the [F-rank of F, for which we denote rankp (F). When r
is minimum, Eq. (1) is called a rank-r decomposition over the field F. In the literature,
this rank is sometimes referenced as the Candecomp/Parafac (CP) rank. We refer to [1,
2] for various notions of tensor ranks. Recent work for tensor decompositions can be
found in [3-9]. Tensors are closely related to polynomial optimization [ 10—14]. Tensor
decomposition has been widely used in temporal tensor analysis including discover-
ing patterns [15], predicting evolution [16], and identifying temporal communities
[17], and in multirelational data analysis including collective classification [18], word
representation learning [19], and coherent subgraph learning [20]. Tensor approxima-
tion has been explored in signal processing applications [21] and multidimensional,
multivariate data analysis [22]. Various other applications of tensors can be found in
[23-25]. Throughout the paper, we use the Hilbert-Schmidt norm for tensors:

17| = Y Fein

1< <nj 1< <m

The low rank tensor approximation (LRTA) problem is to find a low rank tensor
that is close to a given one. This is equivalent to a nonlinear least square optimization
problem. For a given tensor F € F"1**"m and a given rank r, we look for r vector
tuples v = @5l ... M) s =1,---,r, such that

-
F ~ sz’l Q- @vS™, v e T,
s=1
This requires to solve the following nonlinear least squares optimization

,

~ min ||.7—Zv5’1®...®vs>m||2. )
v ef", j=1,-.m =1
When r = 1, the best rank-1 approximating tensor always exists and it is equivalent
to computing the spectral norm [26, 27]. When r > 1, a best rank-r tensor approx-
imation may not exist [28]. Classically used methods for solving low rank tensor
approximations are the alternating least squares (ALS) method [29-31], higher-order
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power iterations [32], semidefinite relaxations [10, 12], SVD-based methods [33],
optimization-based methods [8, 34]. We refer to [3, 35] for recent work on low rank
tensor approximations.

Contributions

In this paper, we extend the generating polynomial method in [7, 35] to compute
tensor rank decompositions and low rank tensor approximations for nonsymmetric
tensors. First, we estimate generating polynomials by solving linear least squares.
Second, we find their approximately common zeros, which can be done by computing
eigenvalue decompositions. Third, we get a tensor decomposition from their common
zeros, by solving linear least squares. To find a low rank tensor approximation, we
first apply the decomposition method to obtain a low rank approximating tensor and
then use nonlinear optimization methods to improve the approximation. Our major
conclusion is that if the tensor to be approximated is sufficiently close to a low rank
one, then the obtained low rank tensor is a quasi-optimal low rank approximation.
The proof is based on perturbation analysis of linear least squares and eigenvalue
decompositions.

The paper is organized as follows. In Sect. 2, we review some basic results about
tensors. In Sect. 3, we introduce the concept of generating polynomials and study their
relations to tensor decompositions. In Sect. 4, we give an algorithm for computing
tensor rank decompositions for low rank tensors. In Sect. 5, we give an algorithm for
computing low rank approximations. The approximation error analysis is also given.
In Sect. 6, we present numerical experiments. Some conclusions are made in Sect. 7.

2 preliminary
Notation

The symbol N (resp., R, C) denotes the set of nonnegative integers (resp., real,
complex numbers). For an integer r > 0, denote the set [r] := {1, - - - , r}. Uppercase
letters (e.g., A) denote matrices, A;; denotes the (i, j)thentry of the matrix A, and Curl
letters (e.g., F) denote tensors, F;, ... ;,, denotes the (i1, - - - , i,,)th entry of the tensor
F. For a complex matrix A, AT denotes its transpose and A* denotes its conjugate
transpose. The Kruskal rank of A, for which we denote k4, is the largest number k
such that every set of k columns of A is linearly independent. For a vector v, the (v);
denotes its ith entry and diag(v) denotes the square diagonal matrix whose diagonal
entries are given by the entries of v. The subscript vs.; denotes the subvector of v whose
label is from s to ¢. For a matrix A, the subscript notation A. ; and A; ., respectively,
denote its jth column and ith row. Similar subscript notation is used for tensors. For
two matrices A, B, their classical Kronecker product is denoted as A X B. For a set
S, its cardinality is denoted as |S|.
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For a tensor decomposition for F such that

.
F = Zu5’1®u5’2®-~-®u“"m. 3)
s=1
we denote the matrices
UD = [, ], =1, m.

The U is called the jth decomposing matrix for . For convenience of notation,
we denote that

.
UVo o™ =3 U@ - ®U™).,.
i=1

Then the above tensor decomposition is equivalent to F = UM o .. 0 U™,
For a matrix V € CP*" | define the matrix-tensor product

A=V x; F
is a tensor in C"1> X M—1XPXMi1XX1m gych that the ith slice of A is
Ail,--- AR AR Vj:il,'“ NI AR
2.1 Flattening matrices

We partition the dimensions n1, ny, - - - , 1y, into two disjoint groups /1 and I, such
that the difference

[Tm—T1n

iel jeh
is minimum. Up to a permutation, we write that Iy = {ny,---,ng}, L =
{nk+1,--- , nm}. For convenience, denote that

I={G1. . w): 1<y <nj, j=1,- k},
J={(lk+1,-~-,lm):lgljgnj,j=k+l,-~-,m}.

For a tensor F € C"1*"*"n the above partition gives the flattening matrix
Flat(F) := (F,))

el jel S

This gives the most square flattening matrix for F. Let o, denote the closure of all
rank-r tensors in C"1>**"m under the Zariski topology (see [36]). The set o, is
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an irreducible variety of C"'* " For a given tensor F € oy, it is possible that
rank (F) > r. This fact motivates the notion of border rank:

rankg(F) = min{r : F € 0,}. (&)
For every tensor F € C"'*"*"m_one can show that
rank Flat(F) < rankg(F) < rank(F). (6)

A property P is said to hold generically on o, if P holds on a Zariski open subset 7
of o,-. For such a property P, each u € T is called a generic point. Interestingly, the
above three ranks are equal for generic points of o, for a range of values of r.

Lemma 1 Let s be the smaller dimension of the matrix Flat(F). For every r < s, the
equalities
rank Flat(F) = rankg(F) = rank(F) @)

hold for tensors F in a Zariski open subset of oy.

Proof Let ¢, --- , ¢¢ be the r x r minors of the matrix

.
Flat (Zx“ Q- ®xi”") ) (8)
i=1

They are homogeneous polynomials in x'/(i = 1,---,r,j = 1,---,m).
Let x denote the tuple (xl'l,xl'z, cee,x” ’") Define the projective variety in
Prni+tnm)—1

Z={x:¢1(x)=---=¢(x) =0}. ©)

Then Y := Pr0u+=+7)=1\ 7 is a Zariski open subset of full dimension. Consider the
polynomial mapping 7 : ¥ — o,

r

<x1,1’x1,2, N ’xr,m> . Z (xi,l) ® - ® (xi,m> _ (10)

i=

The image 7 (Y) is dense in the irreducible variety o,. So, 7w (Y) contains a Zariski
open subset % of o, (see [37]). For each F € %/, there exists u € Y such that
F = m(u). Because u ¢ Z, at least one of ¢1(u), - - - , ¢p¢(u) is nonzero, and hence
rank Flat(F) > r. By (6), we know (7) holds for all 7 € ¢ since rank(F) < r. Since
% is a Zariski open subset of o,, the lemma holds.

By Lemma 1, if » < s and F is a generic tensor in o,, we can use rank Flat(F) to
estimate rank (F). However, for a generic 7 € C"1* >/ guch that rank Flat(F) = r,
we cannot conclude F € o,.
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2.2 Reshaping of tensor decompositions

A tensor F of order greater than 3 can be reshaped to another tensor F of order
3. A tensor decomposition of F can be converted to a decomposition for F under
certain conditions. In the following, we assume a given tensor F has decomposition
(3). Suppose the set {1, - - - , m} is partitioned into 3 disjoint subsets

{1,---,m} = UL U I3.

Let p; = |I;] for i =1, 2, 3. For the reshaped vectors

whl = u R RuSn for Iy = iy, - Lip )
wh =y Ryt for b = (i, ) (11)
w'? = w R Rutkes for I = ki, -, kpy ),

we get the following tensor decomposition:

-
F = Z v @ w'? @ w'. (12)
s=1
Conversely, for adecomposition like (12) for F Jifallws!, w2, w3 canbe expressed
as rank-1 products as in (11), then Eq. (12) can be reshaped to a tensor decomposition
for F as in (3). When the flattened tensor T satisfies some conditions, the tensor
decomposition of Fis unique. For such a case, we can obtain a tensor decomposition
for F through decomposition (12). A classical result about the uniqueness is the
Kruskal’s criterion [38].

Theorem 1 (Kruskal’s criterion, [38]) Let F = U(l? o UD o U pe a tensor with
each UV e C"*"_ Let k; be the Kruskal rank of U, fori = 1,2, 3. If

2r +2 < k1 + k2 + k3,

then F has a unique rank-r tensor decomposition.

The Kruskal’s criterion can be generalized for more range of r as in [39]. Assume
the dimension ny > ny > n3 > 2 and the rank r is such that

2r +2 < min(ny, r) + min(no, r) + min(ns, r),
or equivalently, for § = ny + n3 —ny — 2, r is such that
1
r<n;+ mln{E(S, 8}.
If F is a generic tensor of rank r as above in the space C"!'*""2*3 then F has a
unique rank-r decomposition. The following is a uniqueness result for reshaped tensor

decompositions.
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Theorem 2 (Reshaped Kruskal Criterion, [39, Theorem 4.6]) For the tensor space
CmixnmexeXTm yithm > 3, let [ UL Uz ={1,2,---, m} be a union of disjoint sets
and let

P1=l_[ni, p2 = l_[nj, P3=l_[”lk-

iel jeh kel3

Suppose p1 = p2 = p3z andlet § = py + p3 — p1 — 2. Assume
1
r<pr+ mm{zS, 38}. (13)

If F is a generic tensor of rank r in C"V*"2>XX"m_ then the reshaped tensor F €
CP1*P2XP3 qg in (12) has a unique rank-r decomposition.

3 Generating Polynomials
Generating polynomials can be used to compute tensor rank decompositions. We

consider tensors whose ranks r are not bigger than the highest dimension, say, » < n
where n1 is the biggest of ny, - - - , ny,. Denote the indeterminate vector variables

X1 = (-xl,lv te 7x1,n1)7 o, Xm = (xm,la ey xm,nm)~
A tensor in C""*"*" can be labeled by monomials like xy ;, X2, - - - Xy, - Let
M := {xl,il-nxm,im | 1§l.j gnj} (14)

For a subset J C {1, 2, --- , m}, denote that

JO={1,2,--- ,m}\J,
MJ = {xl,il"'xm,im|xj,ij=1VjEJC}’ (15)
My = span{M}.

A label tuple (i1, - - - , iy,) is uniquely determined by the monomial x1 ;, - - - Xp;,,- SO
atensor F € C">* > can be equivalently labeled by monomials such that

Fxvigxmim = Firoeim- (16)
With the new labeling by monomials, define the bi-linear product
(Y et Fy == > cuFu. (17)

neM neM

In the above, each ¢, is a scalar and F is labeled by monomials as in (16).
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Definition 1 ([40, 41]) For a subset J C {1,2,---,m} and a tensor F € C"1>*"m_
a polynomial p € M is called a generating polynomial for F if

(pq,F) =0 forall g € Mye. (18)

The following is an example of generating polynomials.
Example 1 Consider the cubic order tensor F € C3*3*3 given as
112010(152412|7 105
[Foit| P2 Fiis] = 7 105 {15189 |9 105
12189 [243015|14 168
The following is a generating polynomial for F:
pi=(2x11 —x12)2x21 — x2.2).
Note that p € M1 2) and for each iz = 1,2, 3,
D X3,y = (2x1,1 — x1,2)(2x2,1 — X2,2)X3,45-
One can check that for each iz = 1, 2, 3,
AF1 1,3 — 2F12,i5 — 2F2,1,i3 + F2,2,i3 = 0.
This is because [4 —2 —2 1] is orthogonal to
[Fi1is Frois Faris Faois
foreachiz =1, 2, 3.
Suppose the rank r < n7 is given. For convenience of notation, denote the label set

Jo=1{G,j. k) :1<i<r,2<j<m, 2<k<n;). (19)

For a matrix G € CU1xJ andatriplet = (i, j, k) € J, define the bi-linear polynomial
r

$1G. T1(x) == Y G(L, T)x1exj1 — X1ixjk € My (20)
=1

The rows of G are labeled by £ = 1,2, --- , r, and the columns of G are labeled by

T € J. Weare interested in G such that ¢[G, 7] is a generating polynomial for a tensor
F e Crxmxxim This requires that

@G, 7] -, F) =0 forall u € My jje.
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The above is equivalent to the equation (F labeled as in (16))

> GU D Fuypp = Frpinjon- @21
=1

Definition 2 ([40, 41]) When (21) holds for all T € J, the G is called a generating
matrix for F.

For given G, j € {2,--- ,m}and k € {2,--- , n;}, we denote the matrix

G, (1, j.k) G2,(,j.k) - G, (L, j, k))
G(1,2,j.k) G2, @2, j,k) - G(r, (@2, j. k)

MIHG] = (22)
G(lv(rvjvk)) G(27 (rvjvk)) G(rv(rsjvk))
For each (j, k), define the matrix/vector
AlF, jl = (Fy . ,
L7 J1 ( e “)ueM“ e 1<e<r
) - J (23)
[F,Jj. k] = (thvx/-,k#)#eM“ﬂC’lgegr'
Equation (21) is then equivalent to
ALF, jIMIHGD T = bIF, j, k. (24)

The following is a useful property for the matrices M/*[G].

Theorem 3 ([40, 41]) Suppose F =3 '_ us' ® --- @ u™™ for vectors us/ € C"J.
Ifr <np, W) - W™ # 0, and the first r rows of the first decomposing matrix

U(l) = [ul,l . ur,l]

are linearly independent, then there exists a G satisfying (24) and satisfying (for all
Je2,--- mhke{2,-- ,njyands=1,---,r)

MIFIGT- @)1 = @) - @)1 (25)

4 Low Rank Tensor Decompositions
Without loss of generality, assume the dimensions are decreasing as
nyZnpz--- 2 npy.

We discuss how to compute tensor decomposition for a tensor F € C"' X" *"m when
the rank 7 is not bigger than the highest dimension, i.e., r < n1. As in Theorem 3, the
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decomposing vectors (u#* 1y,., are common eigenvectors of the matrices M Jk[G], with
(u*7)x being the eigenvalues, respectively. This implies that the matrices M/ -¥[G] are
simultaneously diagonalizable. This property can be used to compute tensor decom-
positions.

Suppose G is a matrix such that (24) holds and M/-¥[G] are simultaneously diag-
onalizable. That is, there is an invertible matrix P € C"*” such that all the products
P~!'M/¥[G]P are diagonal forall j =2, --- ,mand forallk =2, ---,n;. Suppose
MJ*[G] are diagonalized such that

PT'MIMGIP = diag[hj k1. Ajk2. o hjir] (26)
with the eigenvalues A s . Foreachs = 1,---,r and j = 2,---,m, denote the
vectors '

us’] = (19)"j,2,_&" v)\j,nj,s)- (27)
When F is rank-r, there exist vectors u'!, ..., u"! € C" such that
r
f:ZuS’l®us’2®~-~®us’m. (28)
s=1

The vectors u* ! can be found by solving linear equations after u*>/ are obtained for
j=2,---,mand s = 1,---,r. The existence of vectors us! satisfying tensor
decomposition (28) is shown in the following theorem.

Theorem4 Let F = VWD o ... 0 VU be g rank-r tensor, for matrices V' e C"*",
such that the first r rows of VY are linearly independent. Suppose G is a matrix
satisfying (24) and P € C™*" is an invertible matrix such that all matrix products
P~V MI¥[G] - P are simultaneously diagonalized as in (26). For j = 2,--- ,m

ands = 1,---,r, let u*J be vectors given as in (27). Then, there must exist vectors
ull oo u"l e ©" such that tensor decomposition (28) holds.
Proof Since the matrix P = [ pLc-- pr] is invertible, there exist scalars ¢y, --- , ¢, €
C such that

Flod..1=cipr+cpr+---+crpr. (29)

Consider the new tensor

-
H = chps ® us,2 Q- - -us".
s=1

l’.“7ur,l e

In the following, we show that F7i., . ... . = H and there exist vectors u L
C™ satisfying equation (28).
By Theorem 3, one can see that the generating matrix G for F is also a generating

matrix for H, so it holds that

(@lG, tlp, F) = (oG, tlp, H) =0, forall p € My j. 30)
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Therefore, we have
@G, tlp. H—F) =0, forall p e M jj. 31
By (29), one can see that
H—=F)ra,-1=0. (32)
In (31), foreach 7 = (i, 2, k) € J and p = 1, we can get
(H = F)izr1,1 =0.
Similarly, for T = (i, 2, k) € J and p = x3 j;, we can get

(H - ]:)l:r,:,:,],-n,l =0.

»»»»»

invertible, there exists a matrix W € C™"*" such that V) = W(V(l))l;,,;. Observe
that

F=Wx1 Fry .. =Wx1H.

Letu®! =W - (¢, ps) fors =1, ---  r. Then tensor decomposition (28) holds.

4.1 An Algorithm for Computing Tensor Decompositions
Consider atensor F € C"1>*/2> X" with a given rank r. Recall that the dimensions
are ordered such that ny > np > --- > n,,. We discuss how to compute a rank-r

tensor decomposition for F. Recall A[F, jl, b[F, j, k] as in (23), for j > 1. Note
that A[F, j] has the dimension N; x r, where

Nj = M2 (33)

If r < Nj, then the matrices A[F, j] have full column rank for generic cases. For
instance, r < N3 if m = 3 and r < nj. Since N, is the smallest, we often use the
matrices A[F, j] for j > 3. For convenience, denote the label set

YT :={(,k):3<j<m2<k<nj}. (34)

In the following, we consider the case that » < N3. For each pair (j, k) € Y, linear
system (24) has a unique solution, for which we denote

Y/k = MIHGI.
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For j = 2, equation (24) may not have a unique solution if » > N,. In the following,
we show how to get the tensor decomposition without using the matrices M 2k[G]. By
Theorem 3, the matrices Y/-* are simultaneously diagonalizable, that is, there is an
invertible matrix P € C*" such that all products P~'Y/-* P are diagonal for every
(j, k) € Y. Suppose they are diagonalized as

PlYIKP = diaglhj k1, hjk2s e hjkr] (35)
with the eigenvalues A ; ;. Write P in the column form

P=[p ]

Foreachs =1, ---,rand j =3,--- ,m, let

v = (L Ao A ) (36)

Suppose F has a rank-r decomposition
r
F = Zu‘y’l ®- - @ud™.
s=1

Under the assumptions of Theorem 3, linear system (24) has a unique solution for

each pair (j, k) € Y. Forevery j € {3, ---, m}, there exist scalars c; ;, cs,1 such that
us,j = Cs,jvs’ja MS’I = Cs,1Ps-
Then, we consider the sub-tensor equation in the vector variables yi, - - - , y, € C™
r
fl:r,:,-u,: = Zps®ys®vs,3®.“®vs,m. (37)

s=1

There are rnj - - - n,, equations and rn, unknowns. This overdetermined linear system
has solutions such that

ys = cxgzus’z, for some ¢, 2 € C.

After all y, are obtained, we solve the linear equation in zy, - - - , z, € C" ™"
r
Frotmes =) 50y @07 @ @™, (38)
s=1
After all y,, z; are obtained, we choose the vectors (s = 1, --- , 1)
5,1 Ps 5,2
v = , v =y,
7] 3
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Then we get the tensor decomposition

,
F=>1vev?e @ (39)

s=1

Summarizing the above, we get the following algorithm for computing tensor
decompositions when r < ny and r < N3. Suppose the dimensions are ordered
suchthatn; > no > --- > ny,.

Algorithm 1 (Rank-r tensor decomposition)

Input A tensor F € C™"**"m with rank r < min(n, N3).
Step 1 For each pair (j, k) € Y, solve the matrix equation for the solution ¥ /¥

A[F, j1Y7% = b[F, j, k. (40)

Step 2 Choose generic scalars &; ;. Then compute the eigenvalue decomposition
P~'Y P = D for the matrix

1 .
Y = ? Z n‘;:j’kY]’k.
ik
Gloer | UAET

Step3 Fors =1, ---,rand j > 3, let v5+J be the vectors as in (36).
Step 4 Solve linear system (37) for vectors yi, - -« , yr.

Step 5 Solve linear system (38) for vectors zy, - - , 2.

Step6 Foreachs =1,---,r, letv®! = |:§S:| and v*2 = y,.

\)

Output A tensor rank-r decomposition as in ‘(39).
The correctness of Algorithm 1 is justified as follows.

Theorem 5 Suppose ny > ny > -+ = ny and r < min(ny, N3) as in (33). For a

generic tensor F of rank-r, Algorithm 1 produces a rank-r tensor decomposition for
F.

Proof This can be implied by Theorem 4.

4.2 Tensor Decompositions Via Reshaping

A tensor F € C">* > can be reshaped as a cubic order tensor Fasin (12). One
can apply Algorithm 1 to compute tensor decomposition (12) for F.Ifthe decomposing
vectors w1, w* ’2, w’+3 can be reshaped to rank-1 tensors, then we can convert (12) to
atensor decomposition for F. This is justified by Theorem 2, under some assumptions.
A benefit for doing this is that we may be able to compute tensor decompositions for
the case that

N3 <r < p2,
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with the dimension p» as in Theorem 2. This leads to the following algorithm for

computing tensor decompositions.

Algorithm 2 (Tensor decompositions via reshaping.) Let p1, p2, p3 be dimensions as in Theorem 2.
Input A tensor F € C"1X*/m with rank r < p).

Step 1 Reshape the tensor F to a cubic tensor F € CP1XP2%P3 a5 in (12).
Step 2 Use Algorithm 1 to compute the tensor decomposition

-
F = Zw'y’l @ w w3, 41

s=1
Step 3 Ifall w® L w2 w3 canbe expressed as outer products of rank-1 tensors as in (11), then output
the tensor decomposition as in (3). If one of ws ! R ws*z, w3 cannot be expressed as in (11), then

the reshaping does not produce a tensor decomposition for F.
Output A tensor decomposition for F as in (3).

For Algorithm 2, we have a similar conclusion like Theorem 5. For cleanness of
the paper, we do not repeat it here.

5 Low Rank Tensor Approximations

When a tensor F € C™>*"n has the rank bigger than r, the linear systems in
Algorithm 1 may not be consistent. However, we can find linear least squares solutions
for them. This gives an algorithm for computing low rank tensor approximations.
Recall the label set Y as in (34). The following is the algorithm.

Algorithm 3 (Rank-r tensor approximation.)

Input A tensor F € C"1>*72XXm and a rank r < min(ny, N3).
Step 1 For each pair (j, k) € Y, solve the linear least squares problem

2
min HA[]—", JYIHT —blF, k| - (42)

YJjkeCrxr

Let Y/ ¥ be an optimizer.
Step 2 Choose generic scalars &; ; and let

~ 1 ~
Vel =~ D gl
(joer SR (e

Compute the eigenvalue decomposition P'Y[€]P = A such that P =
[p1 -+ pr]isinvertible and A is diagonal.
Step 3 For each pair (j, k) € Y, select the diagonal entries
diag[)tj’k,l 5»‘/',](,2 e )A\j,k’,] = diag(f;_l);j’kﬁ).

Foreachs =1, ---,rand j =3,--- ,m,let

0 = (1, A 22, s Ajngs)-
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Step 4 Let (31, - -- , ) be an optimizer for the following least squares:
r 2
min H}—lzr,:,---,: - Z ﬁs ®ys ® ﬁs’3 Q- ®v5" (43)
15 yr) pry
Step 5 Let (Z1, - -- , Z,) be an optimizer for the following least squares:
r 2
( min ) Frating i : — ZZS ® P ® R - S R (44)
21, 3r
s=1
Step 6 Let %! = [?] and 052 = §; foreachs =1, --- ,r.
S
Output A rank-r approximation tensor
xer — Z o5 1 o5 2 S ® psm. (45)

If F is sufficiently close to a rank-r tensor, then X8 is expected to be a good rank-r
approximation. Mathematically, the tensor X'8? produced by Algorithm 3 may not be
a best rank-r approximation. However, in computational practice, we can use (45) as
a starting point to solve the nonlinear least squares optimization

r 2
”f Zus,l ®us,2®_._®us,m (46)

s=1

(us 1 .. uJ m)

to improve the approximation quality. Let X°P" be a rank-r approximation tensor
r
Xopt = Zus,l ® us,Z Q- ® usm (47)

which is an optimizer to (46) obtained by nonlinear optimization methods with X°P!
as the initial point.

5.1 Approximation Error Analysis

Suppose the tensor F has a best (or nearly best) rank-r approximation
r
=X @HeE") e ® (). (48)
S§=

Let £ be the tensor such that

F=x»4e¢ (49)
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We analyze the approximation performance of X' when the distance ¢ = ||£]| is
small. For a generating matrix G and a generic § = (§; x)(j.x)e» denote that

M[&, G] = > EaMIMG. (50)

(j,k)eY

1
> &k

(j.k)er
Recall the A[F, j], b[F, j, k] as in (23). Note that

ALF, j1=ALXY, j1+ ALE, jl,

51
bIF, j, kl =b[X", j k]l +bIE, j, k. Gl

Suppose ()cs’j)1 #0forj=2,---,m.

Theorem 6 Let X'8P be produced by Algorithm 3. Let F, xbs xyort g xS &jk be
as above. Assume the following conditions hold:

(i) The subvectors (x'"D 1., -+, (x"D) 1.y are linearly independent.

>i1) All matrices A[F, j] and A[XPs, Jj1(3 < j < m) have full column rank.
(iii) The first entry ()cs'f)1 #*0forallj=2,---,m.
(iv) The following scalars are pairwisely distinct

Do ERC e D E (52)

(J,k)er (J,k)ex
If the distance € = || F — 58| is sufficiently small, then
1A — X8P)| = O(e) |F = &8P| = O(e). (53)

where the constants in the above O (-) only depend on F and &.

Proof By conditions (i) and (iii) and by Theorem 3, there exists a generating matrix
G"* for X% such that

ALXS, UMIRIGE DT = bLX"s, j, k] (54)

forall j € {2,--- ,m}andk € {2,---,n;}. Note that Y7k is the least squares solution
to (42), so for each (j, k) € T,

Yik = ALF, 1T bIF, j, k), MIA[GE]= ALXY, j1T - blX", j, k).

(The superscript © denotes the pseudoinverse of a matrix.) By (49), for j =2, --- , m,
we have
”A[]:’j]_A[sz’j]HF< ”‘7:_sz“ < e, (55)
|6LF. j. k] = bLXP, j K| o < | F — X% <e.
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Hence, by the condition (ii), if ¢ > 0 is small enough, we have

[yt = mit6™ | = o). (56)

forall (j, k) € Y. This follows from perturbation analysis for linear least squares (see
[42, Theorem 3.4]).
By (48) and Theorem 3, fors = 1,--- ,r and (j, k) € T, it holds that

Mj,k[GbS] (xS,1> — (xS,j) <xS,]) .
1ir k Lir

This means that each (x“)lzr is an eigenvector of MJ*[GP5], associated with the
eigenvalue (xs’j)k, foreachs =1, -- -, r. The matrices M-j*k[GbS] are simultaneously

diagonalizable, by the condition (i). So M[&, G”*] is also diagonalizable. Note the
eigenvalues of M|[£, G ] are the sums in (52). They are distinct from each other,
by the condition (iv). When € > 0 is small enough, MI[&, G"5] also has distinct
eigenvalues. Write that

0 =[G"Dry - @iy

Note that Q' M[&, G’*1Q = D is an eigenvalue decomposition. Up to a scaling on
P in algorithm 3, it holds that

s —x*'l2 = O(e), D — Allr = O(e). (57)

We refer to [43] for the perturbation bounds in (57). The constants in the above O(-)
eventually only depend on F, &.

Note that (Jg, - - - , ¥,) is the least squares solution to (43) and
r
le:i,:,m,: = sz’l Y xs,2 ® xs,3 ®- - @x>". (58)
s=1

Due to perturbation analysis of linear least squares, we also have
195 = x"2[l2 = O(e). (59)

Note that the subvectors (x*:1) r+1:n, satisfy the equation

.
Xrbjrl:m,:,m,: = Z(xs,l)r‘i‘li”l ®XS’2 ® - @x"". (60)

s=1
Recall that (Zj,---,Z,) is the least squares solution to (44). Due to perturbation

analysis of linear least squares, we further have the error bound
G Dty = Zll2 = O(e). 61)
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Summarizing the above, we eventually get | X8 — X bs|| = O(e), so

|7~ xr) < |7 -

+ Hﬁcbs — xep H — 0(s).
The constant for the above O (-) eventually only depends on F, &.

5.2 Reshaping for Low Rank Approximations

Similar to tensor decompositions, the reshaping trick as in Sect. 4.2 can also be used
for computing low rank tensor approximations. Form > 3, atensor F € C*1 /2> X/m
can be reshaped as a cubic tensor F € CP1xp2xp3 a5 in (12). Similarly, Algorithm 3
can be used to compute low rank tensor approximations. Suppose the computed rank-r
approximating tensor for F is

,
xer =30t @it @i, (62)
s=1
Typically, the decomposing vectors w*!, w*2, *3 may not be reshaped to rank-1
tensors. Suppose the reshaping is such that LUuhUlz ={1,2,---,m}is aunion of
disjoint label sets and the reshaped dimensions are

=[]n. p2=]]ni. p3=]]n

iely ieh ielz

Letm; = |I;| fori = 1,2, 3. By the reshaping, the vectors ws can be reshaped back
to a tensor W* of order m;, foreachi = 1,2,3. If m; = 1, W5 is a vector. If
m; = 2, we can find a best rank-1 matrix approximation for Wi If m; > 3, we can
apply Algorithm 3 with » = 1 to get a rank-1 approximation for Wi In application,
we are mostly interested in reshaping such that all m; < 2. Finally, this produces a
rank-r approximation for F.

The following is a low rank tensor approximation algorithm via reshaping tensors.

Algorithm 4 (low rank tensor approximations via reshaping.)

Input A tensor F € C">"2*"m and a rank r.

Step 1 Reshape F to a cubic order tensor F e Cpixp2xps, R

Step 2 Use Algorithm 3 to compute a rank-r approximating tensor X'$” as in (62) for
F.

Step 3 For eachi = 1,2, 3, reshape each vector w* “ back to a tensor W of order
m; as above.

Step 4 Foreachi = 1,2, 3, compute a rank-1 approximating tensor X* for W* of
order m; as above.

,

Output Reshape the sum Y X1 @ X52 @ X3 to a tensor in C"1*12% X which

is a rank-r approxAiHiation for F.
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We can do a similar approximation analysis for Algorithm 4 as for Theorem 6. For
cleanness of the paper, we do not repeat that.

6 Numerical Experiments

In this section, we apply Algorithms 1 and 3 to compute tensor decompositions and
low rank tensor approximations. We implement these algorithms in MATLAB 2020b
on a workstation with Ubuntu 20.04.2 LTS, Intel ®Xeon(R) Gold 6248R CPU @
3.00GHz and memory 1TB. For computing low rank tensor approximations, we use
the function cpd_nls provided in Tensorlab 3.0 [44] to solve nonlinear least
squares optimization (46). The A8 denotes the approximating tensor returned by
Algorithm 3, and X°P" denotes the approximating tensor obtained by solving (46),
with X'8? as the initial point. In our numerical experiments, if the rank r is unknown,
we use the most square flattening matrix to estimate r as in (4) and Lemma 1.

Example 2 Consider the tensor F € C****3 whose slices F.oa, Fo.0, F. .3 are,
respectively

27253542144 3252 56|42 264845
48 68 80 80| 68 76 100 96 | 64 60 88 76
26 24 34 40 (42 30 50 5247 27 53 47
334149 66|46 46 62 76|45 37 57 60

By Lemma 1, the estimated rank is r = 4.
Applying Algorithm 1 with » = 4, we get the rank-4 decomposition F = U1 o
U@ oU®, with

86 49 11

1 1
1111
8121612 L3l
n _ 2 _ |2 3 3) _
Uri=la6an2|" V" =|1131]Y ?Hg
412 8 9 14132 317
Example 3 Consider the tensor in C>*4*3*3
F=vVDoy@,oy®oy®,
where the matrices V@ are
105 -9-57 1o 88 2°
86 397 0-1-46 8
vih=1-9-17 3-1|, v®= :
7 —7-22 10
9 —7-88 =3 2 10 =3 —1 -3
—-110 7 =310 .
52 —2-73 82 —710 =5
v =19 3 77 =2, v =14-84 —6-10].
0-1010 6 10 50 7 -1 -2 |
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By Lemma 1, the estimated rank » = 5.
Applying Algorithm 1 with » = 5, we get the rank-5 tensor decomposition F* =
UDoUPoU® o UM, where the computed matrices U@ are

—400 180 1008 2800 —210

1111 1
—320 216 336 5040 —210 0 113 4
vl =360 —36 784 1680 30 |, uP=|" 97§ |,
—360 —252 896 —4480 150 _2 WiY
40 360 —784 1680 —300 9882
11 111
3 9 3 7 2
A i A
[0 -5-5-7 3
11 1 11
U@ — %—4—‘7L —% 2.
2
1§ 0 -1 -3

Example 4 Consider the tensor F € C>*3** such that

i i /
ﬂ],iz,i_z:il‘l‘%"‘%‘l‘ l%‘f"%“‘l%

for all i1, i2, i3 in the corresponding range. The 5 biggest singular values of the flat-
tening matrix Flat(F) are

109.7393, 5.2500, 0.1068, 8.325 x 107>, 3.401 x 10~

Applying Algorithm 3 with rank r = 2, 3, 4, 5, we get the approximation errors

r 2 3 4 5
|F — xs8P| 5.123 7 x 107! 6.864 7 x 1072 1.055 8 x 1072 9.944 9 x 1073
| F — xopt) 1.541 0 x 10! 1.375 4 x 1072 2.662 5 x 1073 4.900 2 x 1074

For the case r = 3, the computed approximating tensor by Algorithm 3 and by
solving (46) is UDoU® o UD, with

—0.4973 —7.6813 11.7465
—0.2525 —6.965 1 12.4970
UMD =|-0.0872 —6.0497 13.2858
—0.0132 —5.05211 14.1423
—0.0010 —4.0469 15.077 1
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1.0000 1.0000 1.0000
0.5058 0.9211 1.0306
U® =10.1713 0.8167 1.0649 | ,
0.0262 0.7003 1.1042
0.0136 0.5807 1.1490

1.0000 1.0000 1.0000
0.50750.9289 1.0216
0.1756 0.8323 1.0469
0.0399 0.7231 1.0771

U® =

Example 5 Consider the tensor F € CO*6x6x3x4 guch that
Firin.isis,is = arctan(iy + 2ip + 3iz + 4igq + Sis),

for all iy, i2, i3, i4, i5 in the corresponding range. The 5 biggest singular values of the
flattening matrix Flat(F) are

101.71, 7.7529 x 1072, 2.2870 x 1073, 7.2294 x 107>, 2.0633 x 107°.

Applying Algorithm 3 with rank r = 2, 3,4, 5, we get the approximation errors as
follows:

r 2 3 4 5
| F — x8P) 9.814 8 x 1073 3.198 7 x 1073 5.794 5 x 1073 1.012 1 x 1073
| F — xort) 5311 1% 1073 22623 x 1074 3.088 9 x 1079 17523 x 107°

For the case r = 3, the computed approximating tensor by Algorithm 3 and by
solving (46)is UD o UP o UG o U® o UO), with

[—0.0134 —0.0347 1.552 4 [1.0000 1.0000 1.0000]]
—0.0112 —0.0329 1.5525 0.7011 0.8992 1.000 1
() _ | 00094 -0.0312 15526 | ) 0.4939 0.8080 1.0003
= | —0.0079 —0.0295 1.5527 | 0.34850.7260 1.0004 | °
—0.0066 —0.0280 1.5528 0.2459 0.6523 1.0006
| —0.0056 —0.0265 1.5529 0.1734 0.586 1 1.0007 |
1.0000 1.0000 1.0000 10000 1.0000 1.0000
0.588 6 0.8523 1.0002
0.4949 0.8078 1.0003
3 _ | 0.34900.7258 1.0004 |
U® = U = |0.2463 0.6521 1.0006 | ,
0.2064 0.6183 1.0006
0121405269 10008 0.12110.5269 1.0008
‘ ‘ ' 0.0596 0.4256 1.001 1 |

 0.0715 0.4489 1.001 1
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1.0000 1.0000 1.0000
0.4161 0.7656 1.0003
0.1730 0.5862 1.0007
0.07110.4489 1.001 1

U® —

Example 6 As in Theorem 6, we have shown that if the tensor to be approximated is
sufficiently close to a rank-r tensor, then the computed rank-r approximation X8 is
quasi-optimal. It can be further improved to a better approximation X°?’ by solving
nonlinear optimization (46). In this example, we explore the numerical performance
of Algorithms 3 and 4 for computing low rank tensor approximations. For the given
dimensions ny, - - - , n,;,, we generate the tensor

-
R = Zus’l QU @ut™M,
s=1

where each u*/ € C" is a complex vector whose real and imaginary parts are gen-
erated randomly, obeying the Gaussian distribution. We perturb R by another tensor
&, whose entries are also generated with the Gaussian distribution. We scale the per-
turbing tensor £ to have a desired norm €. The tensor F is then generated as

F =R+E.
We choose ¢ to be one of 1072, 10™%, 107°, and use the relative errors

IF — xep| |7 = x|

o gp=—"%5—"> P_Opt=
1€ 1€

to measure the approximation quality of X8, X°P!, respectively. For each case of
(ny,-+-,ny),r and €, we generate 10 random instances of R, F, £. For the case
(ny, -+, nym) = (20,20, 20, 20, 10), Algorithm 4 is used to compute A'#P. All other
cases are solved by Algorithm 3. The computational results are reported in Tables 1.
For each case of (ny, --- , n,,) and r, we also list the median of above relative errors
and the average CPU time (in seconds). The tg, and top denote the average CPU time
(in seconds) for Algorithms 3/4 and for solving (46), respectively.

In the following, we give a comparison with the generalized eigenvalue decompo-
sition (GEVD) method, which is a classical one for computing tensor decompositions
when the rank r < np. We refer to [45, 46] for the work about the GEVD method.
Consider a cubic order tensor F € C">*"2X" with ny > np > n3. Suppose
F=UDoU® oUD is a rank-r decomposition and r < ns. Assume its first
and second decomposing matrices U1, U® have full column ranks and the third
decomposing matrix U® does not have colinear columns. Denote the slice matrices

Fi = Frrra, F2oi= Frraen. (63)
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Table 1 Computational performance of Algorithms 3 and 4 and of nonlinear optimization (46)

r € P_gp t_gp p_opt t_opt r € L_gp t_gp p_opt t_opt

(n1, na, n3)=(50,50,50) (n1, na, n3)=(60, 50, 40)

10 1072 163 0.08 099 157 15 1072 1749 019 099 2.17
1074 632 0.10 099 1.16 1074 1080 0.5 099 1.36
107 384 0.09 099 0.83 107 516 020 099 1.10

20 1002 2583 029  0.99 299 30 1072 2870 040 098 6.95
1074 541 028 099 1.99 1074 1577 037 098 3.61
107 3041 029 0.99 1.49 107 5096 037 098 227

30 1002 2791 050 098 708 45 1072 3548 061 097 2573
1074 21382 043 098 3.73 1074 3503 063 097 8.08
107 1797 047 098 220 1076 3467 061 097 5.69

(n1, na, n3)=(100,100,100) (n1, no, n3)=(150,150,150)

20 1072 1121 086 100 636 30 1072 859 2.92 100  17.17
1074 348 085 1.00 424 1074 3.8 3.05 100 11.20
1076 388 0.83 1.00 3.20 1076 424 3.42 .00 11.75

40 1072 2417 176 099 1780 60 1072 4980  6.04 1.00 8731
1074 1160 165 099 11.02 1074 1377 5.89 100 24.96
1070 1109 161 099 797 107 1749  6.07 1.00  18.81

60 1072 1871 340 099 2816 90 1072 29.44 10.64 099 9878
1074 2628 341 099 1725 1074 15249 1053 099  43.58
107 1912 349 099 13.14 107 17.01 1006 099  26.98

(n1, na, n3, n4)=(20,20,20,20,10) (n1, na, n3, n4)=(60,50,40,30)

24 1072 3793  0.88 1.00 45.56 20 1072 3142 278 1.00 31.16
10074 9.10 092 1.00 15.86 1074 117 276 1.00 939
1070 71516 091 1.00 15.63 107 414 279 100 948

48 1072 166.00 195 1.00 270.56 40 1072 699 752 1.00 31.81
107% 16162 193 1.00 40.63 1074 258 732 1.00 20.07
107 5201 193 1.00 21.71 107© 249 722 100 2022

721072 7370  3.10 100 102.90 60 1072 1148 9.83 1.00 48.08
107%  113.13 3.06 1.00 70.13 1074 638 9.80 1.00 3897
1070 3428  3.03 1.00 3672 107 1635 9.76 1.00 30.38

One can show that

Fi=U\) - diagU)- W), F=U) -diagU;))- U2)". (64
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D

This implies that the columns of (U l(:r r)—‘r are generalized eigenvectors of the matrix

pair (F lT , F2—r ). Consider the transformed tensor

. o
F =W )™ x1 Fra, (65)
Foreachs =1, --- , r,theslice .7:] = U;(,? . (U;(g))T is arank-1 matrix. The matrices
U@, U can be obtained by computing rank-1 decompositions for the slices Fs.:ee
After this is done, we can solve the linear system

UDoy@oyu® =F (66)

to get the matrix U1, The following is the GEVD method for computing cubic order
tensor decompositions when the rank r < n5.

Algorithm 5 (The GEVD method.)

Input A tensor F € C"1*"2*"3 with the rank r < np.
1. Formulate the tensor F as in (65).
2. Fors =1,---,r, compute U;{E), U;(i) from the rank-1 decomposition of the
matrix }A'S,;,;.
3. Solve linear system (66) to get UV,
Output The decomposing matrices UV, U® U®),

We compare the performance of Algorithm 1 and Algorithm 5 for randomly gener-
ated tensors with the rank r < ns. We generate F = U o U® o U® such that each
U® e C">*"_ The entries of U are randomly generated complex numbers. Their
real and imaginary parts are randomly generated, obeying the Gaussian distribution.
For each case of (n1, --- , n,) and r, we generate 20 random instances of F. Algo-
rithm 5 is implemented by the function cpd_gevd in the software Tensorlab. All
the tensor decompositions are computed correctly by both methods. The average CPU
time (in seconds) for Algorithm 1 is denoted as time-gp, while the average CPU
time for the GEVD method is denoted as time-gevd. The computational results

Table2 A comparison for the

performance of Algorithms 1 (n1, n2, n3) " time-gevd time-gp

and 5 (40,30,30) 30 091 0.29
(50,50,50) 50 4.77 0.85
(100,100,100) 80 12.17 5.54
(150,150,150) 100 79.85 13.30
(200,200,200) 120 161.83 25.71
(250,250,250) 140 285.03 55.71
(300,300,300) 100 306.64 61.38
(400,400,400) 180 934.15 271.21
(500,500,500) 200 1 688.98 539.75
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are reported in Table 2. The numerical experiments show that Algorithm 1 is more
computationally efficient than Algorithm 5.

7 Conclusions

This paper gives computational methods for computing low rank tensor decomposi-
tions and approximations. The proposed methods are based on generating polynomials.
For a generic tensor of rank r < min(n1, N3), its tensor decomposition can be obtained
by Algorithm I . Under some general assumptions, we show that if a tensor is suf-
ficiently close to a low rank one, then the low rank approximating tensor produced
by Algorithm 3 is quasi-optimal. Numerical experiments are presented to show the
efficiency of the proposed methods.
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