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Abstract
There exist linear relations among tensor entries of low rank tensors. These linear

relations can be expressed by multi-linear polynomials, which are called generating
polynomials. We use generating polynomials to compute tensor rank decompositions
and low rank tensor approximations. We prove that this gives a quasi-optimal low rank
tensor approximation if the given tensor is sufficiently close to a low rank one.
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1 Introduction

Let m and n1, · · · , nm be positive integers. A tensor F of order m and dimension
n1 × · · · × nm can be labeled such that

F = (Fi1,··· ,im )1�i1�n1,··· ,1�im�nm .

Let F be a field (either the real fieldR or the complex fieldC). The space of all tensors
of order m and dimension n1 × · · · × nm with entries in F is denoted as Fn1×···×nm .
For vectors vi ∈ F

ni , i = 1, · · · ,m, their outer product v1 ⊗ · · · ⊗ vm is the tensor in

Jiawang Nie is partially supported by the NSF grant DMS-2110780. Li Wang is partially supported by the
NSF grant DMS-2009689.

B Jiawang Nie
njw@math.ucsd.edu

Li Wang
li.wang@uta.edu

Zequn Zheng
zez084@ucsd.edu

1 Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA

2 Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-023-00455-7&domain=pdf
http://orcid.org/0000-0003-2637-8274


J. Nie et al.

F
n1×···×nm such that

(v1 ⊗ · · · ⊗ vm)i1,··· ,im = (v1)i1 · · · (vm)im

for all labels in the corresponding range. A tensor like v1 ⊗· · ·⊗ vm is called a rank-1
tensor. For every tensor F ∈ F

n1×···×nm , there exist vector tuples (vs,1, · · · , vs,m),
s = 1, · · · , r , vs, j ∈ F

n j , such that

F =
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m . (1)

The smallest such r is called the F-rank ofF , for which we denote rankF(F). When r
is minimum, Eq. (1) is called a rank-r decomposition over the field F. In the literature,
this rank is sometimes referenced as the Candecomp/Parafac (CP) rank.We refer to [1,
2] for various notions of tensor ranks. Recent work for tensor decompositions can be
found in [3–9]. Tensors are closely related to polynomial optimization [10–14]. Tensor
decomposition has been widely used in temporal tensor analysis including discover-
ing patterns [15], predicting evolution [16], and identifying temporal communities
[17], and in multirelational data analysis including collective classification [18], word
representation learning [19], and coherent subgraph learning [20]. Tensor approxima-
tion has been explored in signal processing applications [21] and multidimensional,
multivariate data analysis [22]. Various other applications of tensors can be found in
[23–25]. Throughout the paper, we use the Hilbert-Schmidt norm for tensors:

‖F‖ =
√ ∑

1�i j�n j ,1� j�m

|Fi1,··· ,im |2.

The low rank tensor approximation (LRTA) problem is to find a low rank tensor
that is close to a given one. This is equivalent to a nonlinear least square optimization
problem. For a given tensor F ∈ F

n1×···×nm and a given rank r , we look for r vector
tuples v(s) := (vs,1, · · · , vs,m), s = 1, · · · , r , such that

F ≈
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m, vs, j ∈ F
n j .

This requires to solve the following nonlinear least squares optimization

min
vs, j∈Fn j , j=1,··· ,m

∥∥F −
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m
∥∥2. (2)

When r = 1, the best rank-1 approximating tensor always exists and it is equivalent
to computing the spectral norm [26, 27]. When r > 1, a best rank-r tensor approx-
imation may not exist [28]. Classically used methods for solving low rank tensor
approximations are the alternating least squares (ALS) method [29–31], higher-order
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power iterations [32], semidefinite relaxations [10, 12], SVD-based methods [33],
optimization-based methods [8, 34]. We refer to [3, 35] for recent work on low rank
tensor approximations.

Contributions

In this paper, we extend the generating polynomial method in [7, 35] to compute
tensor rank decompositions and low rank tensor approximations for nonsymmetric
tensors. First, we estimate generating polynomials by solving linear least squares.
Second, we find their approximately common zeros, which can be done by computing
eigenvalue decompositions. Third, we get a tensor decomposition from their common
zeros, by solving linear least squares. To find a low rank tensor approximation, we
first apply the decomposition method to obtain a low rank approximating tensor and
then use nonlinear optimization methods to improve the approximation. Our major
conclusion is that if the tensor to be approximated is sufficiently close to a low rank
one, then the obtained low rank tensor is a quasi-optimal low rank approximation.
The proof is based on perturbation analysis of linear least squares and eigenvalue
decompositions.

The paper is organized as follows. In Sect. 2, we review some basic results about
tensors. In Sect. 3, we introduce the concept of generating polynomials and study their
relations to tensor decompositions. In Sect. 4, we give an algorithm for computing
tensor rank decompositions for low rank tensors. In Sect. 5, we give an algorithm for
computing low rank approximations. The approximation error analysis is also given.
In Sect. 6, we present numerical experiments. Some conclusions are made in Sect. 7.

2 preliminary

Notation

The symbol N (resp., R, C) denotes the set of nonnegative integers (resp., real,
complex numbers). For an integer r > 0, denote the set [r ] := {1, · · · , r}. Uppercase
letters (e.g., A) denotematrices, Ai j denotes the (i, j)th entry of thematrix A, andCurl
letters (e.g.,F) denote tensors,Fi1,··· ,im denotes the (i1, · · · , im)th entry of the tensor
F . For a complex matrix A, A� denotes its transpose and A∗ denotes its conjugate
transpose. The Kruskal rank of A, for which we denote κA, is the largest number k
such that every set of k columns of A is linearly independent. For a vector v, the (v)i
denotes its i th entry and diag(v) denotes the square diagonal matrix whose diagonal
entries are given by the entries of v. The subscript vs:t denotes the subvector of v whose
label is from s to t . For a matrix A, the subscript notation A:, j and Ai,:, respectively,
denote its j th column and i th row. Similar subscript notation is used for tensors. For
two matrices A, B, their classical Kronecker product is denoted as A � B. For a set
S, its cardinality is denoted as |S|.
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For a tensor decomposition for F such that

F =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m . (3)

we denote the matrices

U ( j) = [u1, j , · · · , ur , j ], j = 1, · · · ,m.

The U ( j) is called the j th decomposing matrix for F . For convenience of notation,
we denote that

U (1) ◦ · · · ◦U (m) =
r∑

i=1

(U (1)):,i ⊗ · · · ⊗ (U (m)):,i .

Then the above tensor decomposition is equivalent to F = U (1) ◦ · · · ◦U (m).
For a matrix V ∈ C

p×nt , define the matrix-tensor product

A := V ×t F

is a tensor in Cn1×···×nt−1×p×nt+1×···×nm such that the i th slice of A is

Ai1,··· ,it−1,:,it+1,··· ,im = VFi1,··· ,it−1,:,it+1,··· ,im .

2.1 Flatteningmatrices

We partition the dimensions n1, n2, · · · , nm into two disjoint groups I1 and I2 such
that the difference

∣∣∣∣∣∣

∏

i∈I1
ni −

∏

j∈I2
n j

∣∣∣∣∣∣

is minimum. Up to a permutation, we write that I1 = {n1, · · · , nk}, I2 =
{nk+1, · · · , nm}. For convenience, denote that

I = {
(ı1, · · · , ık) : 1 � ı j � n j , j = 1, · · · , k

}
,

J = {
(ık+1, · · · , ım) : 1 � ı j � n j , j = k + 1, · · · ,m

}
.

For a tensor F ∈ C
n1×···×nm , the above partition gives the flattening matrix

Flat(F) := (Fı,j
)
ı∈I ,j∈J . (4)

This gives the most square flattening matrix for F . Let σr denote the closure of all
rank-r tensors in C

n1×···×nm , under the Zariski topology (see [36]). The set σr is
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an irreducible variety of Cn1×···×nm . For a given tensor F ∈ σr , it is possible that
rank(F) > r . This fact motivates the notion of border rank:

rankB(F) = min {r : F ∈ σr } . (5)

For every tensor F ∈ C
n1×···×nm , one can show that

rank Flat(F) � rankB(F) � rank(F). (6)

A property P is said to hold generically on σr if P holds on a Zariski open subset T
of σr . For such a property P, each u ∈ T is called a generic point. Interestingly, the
above three ranks are equal for generic points of σr for a range of values of r .

Lemma 1 Let s be the smaller dimension of the matrix Flat(F). For every r � s, the
equalities

rank Flat(F) = rankB(F) = rank(F) (7)

hold for tensors F in a Zariski open subset of σr .

Proof Let φ1, · · · , φ� be the r × r minors of the matrix

Flat

(
r∑

i=1

xi,1 ⊗ · · · ⊗ xi,m
)

. (8)

They are homogeneous polynomials in xi, j (i = 1, · · · , r , j = 1, · · · ,m).

Let x denote the tuple
(
x1,1, x1,2, · · · , xr ,m

)
. Define the projective variety in

P
r(n1+···+nm )−1

Z = {x : φ1(x) = · · · = φ�(x) = 0} . (9)

Then Y := P
r(n1+···+nm )−1\Z is a Zariski open subset of full dimension. Consider the

polynomial mapping π : Y → σr ,

(
x1,1, x1,2, · · · , xr ,m

)

→

r∑

i=1

(
xi,1

)
⊗ · · · ⊗

(
xi,m

)
. (10)

The image π(Y ) is dense in the irreducible variety σr . So, π(Y ) contains a Zariski
open subset Y of σr (see [37]). For each F ∈ Y , there exists u ∈ Y such that
F = π(u). Because u /∈ Z , at least one of φ1(u), · · · , φ�(u) is nonzero, and hence
rank Flat(F) � r . By (6), we know (7) holds for allF ∈ Y since rank(F) � r . Since
Y is a Zariski open subset of σr , the lemma holds.

By Lemma 1, if r � s and F is a generic tensor in σr , we can use rank Flat(F) to
estimate rank(F). However, for a genericF ∈ C

n1×···×nm such that rank Flat(F) = r ,
we cannot conclude F ∈ σr .
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2.2 Reshaping of tensor decompositions

A tensor F of order greater than 3 can be reshaped to another tensor F̂ of order
3. A tensor decomposition of F̂ can be converted to a decomposition for F under
certain conditions. In the following, we assume a given tensor F has decomposition
(3). Suppose the set {1, · · · ,m} is partitioned into 3 disjoint subsets

{1, · · · ,m} = I1 ∪ I2 ∪ I3.

Let pi = |Ii | for i = 1, 2, 3. For the reshaped vectors

⎧
⎨

⎩

ws,1 = us,i1 � · · · � us,i p1 for I1 = {i1, · · · , i p1},
ws,2 = us, j1 � · · · � us, jp2 for I2 = { j1, · · · , jp2},
ws,3 = us,k1 � · · · � us,kp3 for I3 = {k1, · · · , kp3},

(11)

we get the following tensor decomposition:

F̂ =
r∑

s=1

ws,1 ⊗ ws,2 ⊗ ws,3. (12)

Conversely, for a decomposition like (12) for F̂ , if allws,1, ws,2, ws,3 can be expressed
as rank-1 products as in (11), then Eq. (12) can be reshaped to a tensor decomposition
for F as in (3). When the flattened tensor F̂ satisfies some conditions, the tensor
decomposition of F̂ is unique. For such a case, we can obtain a tensor decomposition
for F through decomposition (12). A classical result about the uniqueness is the
Kruskal’s criterion [38].

Theorem 1 (Kruskal’s criterion, [38]) Let F = U (1) ◦ U (2) ◦ U (3) be a tensor with
each U (i) ∈ C

ni×r . Let κi be the Kruskal rank of U (i), for i = 1, 2, 3. If

2r + 2 � κ1 + κ2 + κ3,

then F has a unique rank-r tensor decomposition.

The Kruskal’s criterion can be generalized for more range of r as in [39]. Assume
the dimension n1 � n2 � n3 � 2 and the rank r is such that

2r + 2 � min(n1, r) + min(n2, r) + min(n3, r),

or equivalently, for δ = n2 + n3 − n1 − 2, r is such that

r � n1 + min{1
2
δ, δ}.

If F is a generic tensor of rank r as above in the space C
n1×n2×n3 , then F has a

unique rank-r decomposition. The following is a uniqueness result for reshaped tensor
decompositions.
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Theorem 2 (Reshaped Kruskal Criterion, [39, Theorem 4.6]) For the tensor space
C
n1×n2×···×nm with m � 3, let I1 ∪ I2 ∪ I3 = {1, 2, · · · ,m} be a union of disjoint sets

and let

p1 =
∏

i∈I1
ni , p2 =

∏

j∈I2
n j , p3 =

∏

k∈I3
nk .

Suppose p1 � p2 � p3 and let δ = p2 + p3 − p1 − 2. Assume

r � p1 + min{1
2
δ, δ}. (13)

If F is a generic tensor of rank r in C
n1×n2×···×nm , then the reshaped tensor F̂ ∈

C
p1×p2×p3 as in (12) has a unique rank-r decomposition.

3 Generating Polynomials

Generating polynomials can be used to compute tensor rank decompositions. We
consider tensors whose ranks r are not bigger than the highest dimension, say, r � n1
where n1 is the biggest of n1, · · · , nm . Denote the indeterminate vector variables

x1 = (x1,1, · · · , x1,n1), · · · , xm = (xm,1, · · · , xm,nm ).

A tensor in Cn1×···×nm can be labeled by monomials like x1,i1x2,i2 · · · xm,im . Let

M := {
x1,i1 · · · xm,im | 1 � i j � n j

}
. (14)

For a subset J ⊆ {1, 2, · · · ,m}, denote that

J c := {1, 2, · · · ,m}\J ,

MJ := {
x1,i1 · · · xm,im | x j,i j = 1 ∀ j ∈ J c

}
,

MJ := span{MJ }.
(15)

A label tuple (i1, · · · , im) is uniquely determined by the monomial x1,i1 · · · xm,im . So
a tensor F ∈ C

n1×···×nm can be equivalently labeled by monomials such that

Fx1,i1 ···xm,im
:= Fi1,··· ,im . (16)

With the new labeling by monomials, define the bi-linear product

〈
∑

μ∈M
cμμ,F〉 :=

∑

μ∈M
cμFμ. (17)

In the above, each cμ is a scalar and F is labeled by monomials as in (16).
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Definition 1 ([40, 41]) For a subset J ⊆ {1, 2, · · · ,m} and a tensor F ∈ C
n1×···×nm ,

a polynomial p ∈ MJ is called a generating polynomial for F if

〈pq,F〉 = 0 for all q ∈ MJ c . (18)

The following is an example of generating polynomials.

Example 1 Consider the cubic order tensor F ∈ C
3×3×3 given as

[F:,:,1 F:,:,2 F:,:,3
] =

⎡

⎣
11 20 10
7 10 5
12 18 9

15 24 12
15 18 9
24 30 15

7 10 5
9 10 5
14 16 8

⎤

⎦ .

The following is a generating polynomial for F :

p := (2x1,1 − x1,2)(2x2,1 − x2,2).

Note that p ∈ M{1,2} and for each i3 = 1, 2, 3,

p · x3,i3 = (2x1,1 − x1,2)(2x2,1 − x2,2)x3,i3 .

One can check that for each i3 = 1, 2, 3,

4F1,1,i3 − 2F1,2,i3 − 2F2,1,i3 + F2,2,i3 = 0.

This is because
[
4 −2 −2 1

]
is orthogonal to

[F1,1,i3 F1,2,i3 F2,1,i3 F2,2,i3

]

for each i3 = 1, 2, 3.

Suppose the rank r � n1 is given. For convenience of notation, denote the label set

J := {(i, j, k) : 1 � i � r , 2 � j � m, 2 � k � n j }. (19)

For amatrixG ∈ C
[r ]×J and a triple τ = (i, j, k) ∈ J , define the bi-linear polynomial

φ[G, τ ](x) :=
r∑

�=1

G(�, τ )x1,�x j,1 − x1,i x j,k ∈ M{1, j}. (20)

The rows of G are labeled by � = 1, 2, · · · , r , and the columns of G are labeled by
τ ∈ J . We are interested inG such that φ[G, τ ] is a generating polynomial for a tensor
F ∈ C

n1×n2×···×nm . This requires that

〈φ[G, τ ] · μ,F〉 = 0 for all μ ∈ M{1, j}c .
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The above is equivalent to the equation (F labeled as in (16))

r∑

�=1

G(�, τ )Fx1,�·μ = Fx1,i x j,k ·μ. (21)

Definition 2 ([40, 41]) When (21) holds for all τ ∈ J , the G is called a generating
matrix for F .

For given G, j ∈ {2, · · · ,m} and k ∈ {2, · · · , n j }, we denote the matrix

M j,k[G] :=

⎡

⎢⎢⎢⎣

G(1, (1, j, k)) G(2, (1, j, k)) · · · G(r , (1, j, k))
G(1, (2, j, k)) G(2, (2, j, k)) · · · G(r , (2, j, k))

...
...

. . .
...

G(1, (r , j, k)) G(2, (r , j, k)) · · · G(r , (r , j, k))

⎤

⎥⎥⎥⎦ . (22)

For each ( j, k), define the matrix/vector

⎧
⎪⎨

⎪⎩

A[F , j] :=
(
Fx1,�·μ

)

μ∈M{1, j}c ,1���r
,

b[F , j, k] :=
(
Fx1,�·x j,k ·μ

)

μ∈M{1, j}c ,1���r
.

(23)

Equation (21) is then equivalent to

A[F , j](M j,k[G])� = b[F , j, k]. (24)

The following is a useful property for the matrices M j,k[G].
Theorem 3 ([40, 41]) Suppose F = ∑r

s=1 u
s,1 ⊗ · · · ⊗ us,m for vectors us, j ∈ C

n j .
If r � n1, (us,2)1 · · · (us,m)1 �= 0, and the first r rows of the first decomposing matrix

U (1) := [u1,1 · · · ur ,1]

are linearly independent, then there exists a G satisfying (24) and satisfying (for all
j ∈ {2, · · · ,m}, k ∈ {2, · · · , n j } and s = 1, · · · , r)

M j,k[G] · (us,1)1:r = (us, j )k · (us,1)1:r . (25)

4 Low Rank Tensor Decompositions

Without loss of generality, assume the dimensions are decreasing as

n1 � n2 � · · · � nm .

We discuss how to compute tensor decomposition for a tensor F ∈ C
n1×···×nm when

the rank r is not bigger than the highest dimension, i.e., r � n1. As in Theorem 3, the
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decomposing vectors (us,1)1:r are common eigenvectors of thematricesM j,k [G], with
(us, j )k being the eigenvalues, respectively. This implies that the matrices M j,k[G] are
simultaneously diagonalizable. This property can be used to compute tensor decom-
positions.

Suppose G is a matrix such that (24) holds and M j,k[G] are simultaneously diag-
onalizable. That is, there is an invertible matrix P ∈ C

r×r such that all the products
P−1M j,k[G]P are diagonal for all j = 2, · · · ,m and for all k = 2, · · · , n j . Suppose
M j,k[G] are diagonalized such that

P−1M j,k[G]P = diag[λ j,k,1, λ j,k,2, · · · , λ j,k,r ] (26)

with the eigenvalues λ j,k,s . For each s = 1, · · · , r and j = 2, · · · ,m, denote the
vectors

us, j := (1, λ j,2,s, · · · , λ j,n j ,s). (27)

When F is rank-r , there exist vectors u1,1, · · · , ur ,1 ∈ C
n1 such that

F =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m . (28)

The vectors us,1 can be found by solving linear equations after us, j are obtained for
j = 2, · · · ,m and s = 1, · · · , r . The existence of vectors us,1 satisfying tensor
decomposition (28) is shown in the following theorem.

Theorem 4 Let F = V (1) ◦ · · · ◦ V (m) be a rank-r tensor, for matrices V (i) ∈ C
ni×r ,

such that the first r rows of V (1) are linearly independent. Suppose G is a matrix
satisfying (24) and P ∈ C

r×r is an invertible matrix such that all matrix products
P−1 · M j,k[G] · P are simultaneously diagonalized as in (26). For j = 2, · · · ,m
and s = 1, · · · , r , let us, j be vectors given as in (27). Then, there must exist vectors
u1,1, · · · , ur ,1 ∈ C

n1 such that tensor decomposition (28) holds.

Proof Since the matrix P = [
p1 · · · pr

]
is invertible, there exist scalars c1, · · · , cr ∈

C such that
F1:r ,1,··· ,1 = c1 p1 + c2 p2 + · · · + cr pr . (29)

Consider the new tensor

H :=
r∑

s=1

cs ps ⊗ us,2 ⊗ · · · ⊗ us,m .

In the following, we show thatF1:r ,:,··· ,: = H and there exist vectors u1,1, · · · , ur ,1 ∈
C
n1 satisfying equation (28).
By Theorem 3, one can see that the generating matrix G for F is also a generating

matrix forH, so it holds that

〈φ[G, τ ]p,F〉 = 〈φ[G, τ ]p,H〉 = 0, for all p ∈ M{1, j}c . (30)
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Therefore, we have

〈φ[G, τ ]p,H − F〉 = 0, for all p ∈ M{1, j}c . (31)

By (29), one can see that

(H − F)1:r ,1,··· ,1 = 0. (32)

In (31), for each τ = (i, 2, k) ∈ J and p = 1, we can get

(H − F)1:r ,:,1,··· ,1 = 0.

Similarly, for τ = (i, 2, k) ∈ J and p = x3, j3 , we can get

(H − F)1:r ,:,:,1,··· ,1 = 0.

Continuing this, we can eventually getH = F1:r ,:,:,··· ,:. Since the matrix (V (1))1:r ,: is
invertible, there exists a matrix W ∈ C

n1×r such that V (1) = W (V (1))1:r ,:. Observe
that

F = W ×1 F1:r ,:,:,··· ,: = W ×1 H.

Let us,1 = W · (cs ps) for s = 1, · · · , r . Then tensor decomposition (28) holds.

4.1 An Algorithm for Computing Tensor Decompositions

Consider a tensorF ∈ C
n1×n2×···×nm with a given rank r . Recall that the dimensions

are ordered such that n1 � n2 � · · · � nm . We discuss how to compute a rank-r
tensor decomposition for F . Recall A[F , j], b[F , j, k] as in (23), for j > 1. Note
that A[F , j] has the dimension N j × r , where

N j := n2 · · · nm
n j

. (33)

If r � N j , then the matrices A[F , j] have full column rank for generic cases. For
instance, r � N3 if m = 3 and r � n2. Since N2 is the smallest, we often use the
matrices A[F , j] for j � 3. For convenience, denote the label set

ϒ := {( j, k) : 3 � j � m, 2 � k � n j }. (34)

In the following, we consider the case that r � N3. For each pair ( j, k) ∈ ϒ , linear
system (24) has a unique solution, for which we denote

Y j,k = M j,k[G].
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For j = 2, equation (24) may not have a unique solution if r > N2. In the following,
we show how to get the tensor decomposition without using the matrices M2,k[G]. By
Theorem 3, the matrices Y j,k are simultaneously diagonalizable, that is, there is an
invertible matrix P ∈ C

r×r such that all products P−1Y j,k P are diagonal for every
( j, k) ∈ ϒ . Suppose they are diagonalized as

P−1Y j,k P = diag[λ j,k,1, λ j,k,2, · · · , λ j,k,r ] (35)

with the eigenvalues λ j,k,s . Write P in the column form

P = [
p1 · · · pr

]
.

For each s = 1, · · · , r and j = 3, · · · ,m, let

vs, j := (1, λ j,2,s, · · · , λ j,n j ,s). (36)

Suppose F has a rank-r decomposition

F =
r∑

s=1

us,1 ⊗ · · · ⊗ us,m .

Under the assumptions of Theorem 3, linear system (24) has a unique solution for
each pair ( j, k) ∈ ϒ . For every j ∈ {3, · · · ,m}, there exist scalars cs, j , cs,1 such that

us, j = cs, jv
s, j , us,1 = cs,1 ps .

Then, we consider the sub-tensor equation in the vector variables y1, · · · , yr ∈ C
n2

F1:r ,:,··· ,: =
r∑

s=1

ps ⊗ ys ⊗ vs,3 ⊗ · · · ⊗ vs,m . (37)

There are rn2 · · · nm equations and rn2 unknowns. This overdetermined linear system
has solutions such that

ys = cs,2u
s,2, for some cs,2 ∈ C.

After all ys are obtained, we solve the linear equation in z1, · · · , zr ∈ C
n1−r

Fr+1:n1,:,··· ,: =
r∑

s=1

zs ⊗ ys ⊗ vs,3 ⊗ · · · ⊗ vs,m . (38)

After all ys, zs are obtained, we choose the vectors (s = 1, · · · , r )

vs,1 =
[
ps
zs

]
, vs,2 = ys .
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Then we get the tensor decomposition

F =
r∑

s=1

vs,1 ⊗ vs,2 ⊗ · · · ⊗ vs,m . (39)

Summarizing the above, we get the following algorithm for computing tensor
decompositions when r � n1 and r � N3. Suppose the dimensions are ordered
such that n1 � n2 � · · · � nm .

Algorithm 1 (Rank-r tensor decomposition)

Input A tensor F ∈ C
n1×···×nm with rank r � min(n1, N3).

Step 1 For each pair ( j, k) ∈ ϒ , solve the matrix equation for the solution Y j,k :

A[F , j]Y j,k = b[F , j, k]. (40)

Step 2 Choose generic scalars ξ j,k . Then compute the eigenvalue decomposition
P−1Y P = D for the matrix

Y := 1∑
( j,k)∈ϒ

ξ j,k

∑

( j,k)∈ϒ

ξ j,kY
j,k .

Step 3 For s = 1, · · · , r and j � 3, let vs, j be the vectors as in (36).
Step 4 Solve linear system (37) for vectors y1, · · · , yr .
Step 5 Solve linear system (38) for vectors z1, · · · , zr .

Step 6 For each s = 1, · · · , r , let vs,1 =
[
ps
zs

]
and vs,2 = ys .

Output A tensor rank-r decomposition as in (39).

The correctness of Algorithm 1 is justified as follows.

Theorem 5 Suppose n1 � n2 � · · · � nm and r � min(n1, N3) as in (33). For a
generic tensor F of rank-r , Algorithm 1 produces a rank-r tensor decomposition for
F .

Proof This can be implied by Theorem 4.

4.2 Tensor Decompositions Via Reshaping

A tensor F ∈ C
n1×···×nm can be reshaped as a cubic order tensor F̂ as in (12). One

can applyAlgorithm1 to compute tensor decomposition (12) for F̂ . If the decomposing
vectorsws,1, ws,2, ws,3 can be reshaped to rank-1 tensors, then we can convert (12) to
a tensor decomposition forF . This is justified by Theorem 2, under some assumptions.
A benefit for doing this is that we may be able to compute tensor decompositions for
the case that

N3 < r � p2,
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with the dimension p2 as in Theorem 2. This leads to the following algorithm for
computing tensor decompositions.

Algorithm 2 (Tensor decompositions via reshaping.) Let p1, p2, p3 be dimensions as in Theorem 2.
Input A tensor F ∈ C

n1×···×nm with rank r � p2.
Step 1 Reshape the tensor F to a cubic tensor F̂ ∈ C

p1×p2×p3 as in (12).
Step 2 Use Algorithm 1 to compute the tensor decomposition

F̂ =
r∑

s=1

ws,1 ⊗ ws,2 ⊗ ws,3. (41)

Step 3 If allws,1, ws,2, ws,3 can be expressed as outer products of rank-1 tensors as in (11), then output
the tensor decomposition as in (3). If one ofws,1, ws,2, ws,3 cannot be expressed as in (11), then
the reshaping does not produce a tensor decomposition for F .

Output A tensor decomposition for F as in (3).

For Algorithm 2, we have a similar conclusion like Theorem 5. For cleanness of
the paper, we do not repeat it here.

5 Low Rank Tensor Approximations

When a tensor F ∈ C
n1×···×nm has the rank bigger than r , the linear systems in

Algorithm 1may not be consistent. However, we can find linear least squares solutions
for them. This gives an algorithm for computing low rank tensor approximations.
Recall the label set ϒ as in (34). The following is the algorithm.

Algorithm 3 (Rank-r tensor approximation.)

Input A tensor F ∈ C
n1×n2×···×nm and a rank r � min(n1, N3).

Step 1 For each pair ( j, k) ∈ ϒ , solve the linear least squares problem

min
Y j,k∈Cr×r

∥∥∥∥A[F , j](Y j,k)T − b[F , j, k]
∥∥∥∥
2

. (42)

Let Ŷ j,k be an optimizer.
Step 2 Choose generic scalars ξ j,k and let

Ŷ [ξ ] = 1∑
( j,k)∈ϒ

ξ j,k

∑

( j,k)∈ϒ

ξ j,k Ŷ
j,k .

Compute the eigenvalue decomposition P̂−1Ŷ [ξ ]P̂ = 
 such that P̂ =[
p̂1 · · · p̂r

]
is invertible and 
 is diagonal.

Step 3 For each pair ( j, k) ∈ ϒ , select the diagonal entries

diag[λ̂ j,k,1 λ̂ j,k,2 · · · λ̂ j,k,r ] = diag(P̂−1Ŷ j,k P̂).

For each s = 1, · · · , r and j = 3, · · · ,m, let

v̂s, j = (1, λ̂ j,2,2, · · · , λ̂ j,n j ,s).
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Step 4 Let (ŷ1, · · · , ŷr ) be an optimizer for the following least squares:

min
(y1,··· ,yr )

∥∥∥∥F1:r ,:,··· ,: −
r∑

s=1

p̂s ⊗ ys ⊗ v̂s,3 ⊗ · · · ⊗ v̂s,m
∥∥∥∥
2

. (43)

Step 5 Let (ẑ1, · · · , ẑr ) be an optimizer for the following least squares:

min
(z1,··· ,zr )

∥∥∥∥Fr+1:n1,:,··· ,: −
r∑

s=1

zs ⊗ ŷs ⊗ v̂s,3 ⊗ · · · ⊗ v̂s,m
∥∥∥∥
2

. (44)

Step 6 Let v̂s,1 =
[
p̂s
ẑs

]
and v̂s,2 = ŷs for each s = 1, · · · , r .

Output A rank-r approximation tensor

X gp :=
r∑

s=1

v̂s,1 ⊗ v̂s,2 ⊗ · · · ⊗ v̂s,m . (45)

IfF is sufficiently close to a rank-r tensor, thenX gp is expected to be a good rank-r
approximation. Mathematically, the tensor X gp produced by Algorithm 3 may not be
a best rank-r approximation. However, in computational practice, we can use (45) as
a starting point to solve the nonlinear least squares optimization

min
(us,1,··· ,us,m )

∥∥∥∥F −
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m
∥∥∥∥
2

. (46)

to improve the approximation quality. Let X opt be a rank-r approximation tensor

X opt :=
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m (47)

which is an optimizer to (46) obtained by nonlinear optimization methods with X opt

as the initial point.

5.1 Approximation Error Analysis

Suppose the tensor F has a best (or nearly best) rank-r approximation

X bs :=
r∑

s=1

(xs,1) ⊗ (xs,2) ⊗ · · · ⊗ (xs,m). (48)

Let E be the tensor such that

F = X bs + E . (49)
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We analyze the approximation performance of X gp when the distance ε = ‖E‖ is
small. For a generating matrix G and a generic ξ = (ξ j,k)( j,k)∈ϒ , denote that

M[ξ,G] := 1∑
( j,k)∈ϒ

ξ j,k

∑

( j,k)∈ϒ

ξ j,kM
j,k[G]. (50)

Recall the A[F , j], b[F , j, k] as in (23). Note that

A[F , j] = A[X bs, j] + A[E, j],
b[F , j, k] = b[X bs, j, k] + b[E, j, k]. (51)

Suppose
(
xs, j

)
1 �= 0 for j = 2, · · · ,m.

Theorem 6 Let X gp be produced by Algorithm 3. Let F ,X bs,X opt , E, xs, j , ξ j,k be
as above. Assume the following conditions hold:

(i) The subvectors (x1,1)1:r , · · · , (xr ,1)1:r are linearly independent.
(ii) All matrices A[F , j] and A[X bs, j] (3 � j � m) have full column rank.
(iii) The first entry

(
xs, j

)
1 �= 0 for all j = 2, · · · ,m.

(iv) The following scalars are pairwisely distinct

∑

( j,k)∈ϒ

ξ j,k(x
1, j )k, · · · ,

∑

( j,k)∈ϒ

ξ j,k(x
r , j )k . (52)

If the distance ε = ‖F − X bs‖ is sufficiently small, then

‖X bs − X gp‖ = O(ε) ‖F − X gp‖ = O(ε). (53)

where the constants in the above O(·) only depend on F and ξ .

Proof By conditions (i) and (iii) and by Theorem 3, there exists a generating matrix
Gbs for X bs such that

A[X bs, j](M j,k[Gbs])T = b[X bs, j, k] (54)

for all j ∈ {2, · · · ,m} and k ∈ {2, · · · , n j }. Note that Y j,k is the least squares solution
to (42), so for each ( j, k) ∈ ϒ ,

Y j,k = A[F , j]† · b[F , j, k], M j,k[Gbs
0 ] = A[X bs, j]† · b[X bs, j, k].

(The superscript † denotes the pseudoinverse of a matrix.) By (49), for j = 2, · · · ,m,
we have ∥∥A[F , j] − A[X bs, j]∥∥F �

∥∥F − X bs
∥∥ � ε,∥∥b[F , j, k] − b[X bs, j, k]∥∥F �

∥∥F − X bs
∥∥ � ε.

(55)
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Hence, by the condition (ii), if ε > 0 is small enough, we have

∥∥∥Y j,k − M j,k[Gbs]
∥∥∥ = O(ε). (56)

for all ( j, k) ∈ ϒ . This follows from perturbation analysis for linear least squares (see
[42, Theorem 3.4]).

By (48) and Theorem 3, for s = 1, · · · , r and ( j, k) ∈ ϒ , it holds that

M j,k[Gbs]
(
xs,1

)

1:r =
(
xs, j

)

k

(
xs,1

)

1:r .

This means that each
(
xs,1

)
1:r is an eigenvector of M j,k[Gbs], associated with the

eigenvalue
(
xs, j

)
k , for each s = 1, · · · , r . ThematricesM j,k[Gbs] are simultaneously

diagonalizable, by the condition (i). So M[ξ,Gbs] is also diagonalizable. Note the
eigenvalues of M[ξ,Gbs] are the sums in (52). They are distinct from each other,
by the condition (iv). When ε > 0 is small enough, M[ξ,Gbs] also has distinct
eigenvalues. Write that

Q = [
(x1,1)1:r · · · (xr ,1)1:r

]
.

Note that Q−1M[ξ,Gbs]Q = D is an eigenvalue decomposition. Up to a scaling on
P̂ in algorithm 3, it holds that

‖ p̂s − xs,1‖2 = O(ε), ‖D − 
‖F = O(ε). (57)

We refer to [43] for the perturbation bounds in (57). The constants in the above O(·)
eventually only depend on F , ξ .

Note that (ŷs, · · · , ŷr ) is the least squares solution to (43) and

X bs
1:r ,:,··· ,: =

r∑

s=1

xs,1 ⊗ xs,2 ⊗ xs,3 ⊗ · · · ⊗ xs,m . (58)

Due to perturbation analysis of linear least squares, we also have

‖ŷs − xs,2‖2 = O(ε). (59)

Note that the subvectors (xs,1)r+1:n1 satisfy the equation

X bs
r+1:n1,:,··· ,: =

r∑

s=1

(xs,1)r+1:n1 ⊗ xs,2 ⊗ · · · ⊗ xs,m . (60)

Recall that (ẑ1, · · · , ẑr ) is the least squares solution to (44). Due to perturbation
analysis of linear least squares, we further have the error bound

‖(xs,1)r+1:n1 − ẑs‖2 = O(ε). (61)
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Summarizing the above, we eventually get ‖X gp − X bs‖ = O(ε), so

∥∥F − X gp
∥∥ �

∥∥∥F − X bs
∥∥∥ +

∥∥∥X bs − X gp
∥∥∥ = O(ε).

The constant for the above O(·) eventually only depends on F , ξ .

5.2 Reshaping for Low Rank Approximations

Similar to tensor decompositions, the reshaping trick as in Sect. 4.2 can also be used
for computing low rank tensor approximations. Form > 3, a tensorF ∈ C

n1×n2×···×nm

can be reshaped as a cubic tensor F̂ ∈ C
p1×p2×p3 as in (12). Similarly, Algorithm 3

can be used to compute low rank tensor approximations. Suppose the computed rank-r
approximating tensor for F̂ is

X̂ gp :=
r∑

s=1

ŵs,1 ⊗ ŵs,2 ⊗ ŵs,3. (62)

Typically, the decomposing vectors ŵs,1, ŵs,2, ŵs,3 may not be reshaped to rank-1
tensors. Suppose the reshaping is such that I1 ∪ I2 ∪ I3 = {1, 2, · · · ,m} is a union of
disjoint label sets and the reshaped dimensions are

p1 =
∏

i∈I1
ni , p2 =

∏

i∈I2
ni , p3 =

∏

i∈I3
ni .

Let mi = |Ii | for i = 1, 2, 3. By the reshaping, the vectors ŵs,i can be reshaped back
to a tensor Ŵ s,i of order mi , for each i = 1, 2, 3. If mi = 1, Ŵ s,i is a vector. If
mi = 2, we can find a best rank-1 matrix approximation for Ŵ s,i . If mi � 3, we can
apply Algorithm 3 with r = 1 to get a rank-1 approximation for Ŵ s,i . In application,
we are mostly interested in reshaping such that all mi � 2. Finally, this produces a
rank-r approximation for F .

The following is a low rank tensor approximation algorithm via reshaping tensors.

Algorithm 4 (low rank tensor approximations via reshaping.)

Input A tensor F ∈ C
n1×n2×···×nm and a rank r .

Step 1 Reshape F to a cubic order tensor F̂ ∈ C
p1×p2×p3 .

Step 2 Use Algorithm 3 to compute a rank-r approximating tensor X̂ gp as in (62) for
F̂ .

Step 3 For each i = 1, 2, 3, reshape each vector ŵs,i back to a tensor Ŵ s,i of order
mi as above.

Step 4 For each i = 1, 2, 3, compute a rank-1 approximating tensor X̂ s,i for Ŵ s,i of
order mi as above.

Output Reshape the sum
r∑

s=1
X̂ s,1 ⊗ X̂ s,2 ⊗ X̂ s,3 to a tensor in Cn1×n2×···×nm , which

is a rank-r approximation for F .
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We can do a similar approximation analysis for Algorithm 4 as for Theorem 6. For
cleanness of the paper, we do not repeat that.

6 Numerical Experiments

In this section, we apply Algorithms 1 and 3 to compute tensor decompositions and
low rank tensor approximations. We implement these algorithms in MATLAB 2020b
on a workstation with Ubuntu 20.04.2 LTS, Intel ®Xeon(R) Gold 6248R CPU @
3.00GHz and memory 1TB. For computing low rank tensor approximations, we use
the function cpd_nls provided in Tensorlab 3.0 [44] to solve nonlinear least
squares optimization (46). The X gp denotes the approximating tensor returned by
Algorithm 3, and X opt denotes the approximating tensor obtained by solving (46),
with X gp as the initial point. In our numerical experiments, if the rank r is unknown,
we use the most square flattening matrix to estimate r as in (4) and Lemma 1.

Example 2 Consider the tensor F ∈ C
4×4×3 whose slices F:,:,1,F:,:,2,F:,:,3 are,

respectively

⎡

⎢⎢⎣

27 25 35 42
48 68 80 80
26 24 34 40
33 41 49 66

44 32 52 56
68 76 100 96
42 30 50 52
46 46 62 76

42 26 48 45
64 60 88 76
47 27 53 47
45 37 57 60

⎤

⎥⎥⎦ .

By Lemma 1, the estimated rank is r = 4.
Applying Algorithm 1 with r = 4, we get the rank-4 decomposition F = U (1) ◦

U (2) ◦U (3), with

U (1) =

⎡

⎢⎢⎣

8 6 4 9
8 12 16 12
4 6 4 12
4 12 8 9

⎤

⎥⎥⎦ , U (2) =

⎡

⎢⎢⎣

1 1 1 1
1
2 1 3 1

3
1 1 3 1
1 4 1 2

3

⎤

⎥⎥⎦ , U (3) =
⎡

⎣
1 1 1 1
2 1 1 2
1 2

3
3
4 3

⎤

⎦ .

Example 3 Consider the tensor in C
5×4×3×3

F = V (1) ◦ V (2) ◦ V (3) ◦ V (4),

where the matrices V (i) are

V (1) =

⎡

⎢⎢⎢⎢⎣

10 5 −9 −5 7
8 6 −3 −9 7

−9 −1 7 −3 −1
9 −7 −8 8 −5

−1 10 7 −3 10

⎤

⎥⎥⎥⎥⎦
, V (2) =

⎡

⎢⎢⎣

−1 9 −8 8 2
0 −1 −4 6 8
7 −7 −2 2 10
2 10 −3 −1 −3

⎤

⎥⎥⎦ ,

V (3) =
⎡

⎣
5 2 −2 −7 3
9 −3 −7 7 −2
0 −10 10 6 10

⎤

⎦ , V (4) =
⎡

⎣
8 2 −7 10 −5
4 −8 4 −6 −10
5 0 7 −1 −2

⎤

⎦ .
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By Lemma 1, the estimated rank r = 5.
Applying Algorithm 1 with r = 5, we get the rank-5 tensor decomposition F =

U (1) ◦U (2) ◦U (3) ◦U (4), where the computed matrices U (i) are

U (1) =

⎡

⎢⎢⎢⎢⎣

−400 180 100 8 280 0 −210
−320 216 336 504 0 −210
360 −36 −784 168 0 30

−360 −252 896 −448 0 150
40 360 −784 168 0 −300

⎤

⎥⎥⎥⎥⎦
, U (2) =

⎡

⎢⎢⎣

1 1 1 1 1
0 − 1

9
1
2

3
4 4

−7 − 7
9

1
4

1
4 5

−2 10
9

3
8 − 1

8 − 3
2

⎤

⎥⎥⎦ ,

U (3) =
⎡

⎣
1 1 1 1 1
9
5 − 3

2
7
2 −1 − 2

3
0 −5 −5 − 6

7
10
3

⎤

⎦ ,

U (4) =
⎡

⎣
1 1 1 1 1
1
2 −4 − 4

7 − 3
5 2

5
8 0 −1 − 1

10
2
5

⎤

⎦ .

Example 4 Consider the tensor F ∈ C
5×5×4 such that

Fi1,i2,i3 = i1 + i2
2

+ i3
3

+
√
i21 + i22 + i23

for all i1, i2, i3 in the corresponding range. The 5 biggest singular values of the flat-
tening matrix Flat(F) are

109.739 3, 5.250 0, 0.106 8, 8.325 × 10−3, 3.401 × 10−4.

Applying Algorithm 3 with rank r = 2, 3, 4, 5, we get the approximation errors

r 2 3 4 5

‖F − X gp‖ 5.123 7 × 10−1 6.864 7 × 10−2 1.055 8 × 10−2 9.944 9 × 10−3

‖F − X opt‖ 1.541 0 × 10−1 1.375 4 × 10−2 2.662 5 × 10−3 4.900 2 × 10−4

For the case r = 3, the computed approximating tensor by Algorithm 3 and by
solving (46) is U (1) ◦U (2) ◦U (3), with

U (1) =

⎡

⎢⎢⎢⎢⎣

−0.497 3 −7.681 3 11.746 5
−0.252 5 −6.965 1 12.497 0
−0.087 2 −6.049 7 13.285 8
−0.013 2 −5.052 1 14.142 3
−0.001 0 −4.046 9 15.077 1

⎤

⎥⎥⎥⎥⎦
,
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U (2) =

⎡

⎢⎢⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.505 8 0.921 1 1.030 6
0.171 3 0.816 7 1.064 9
0.026 2 0.700 3 1.104 2
0.013 6 0.580 7 1.149 0

⎤

⎥⎥⎥⎥⎦
,

U (3) =

⎡

⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.507 5 0.92 8 9 1.021 6
0.175 6 0.832 3 1.046 9
0.039 9 0.723 1 1.077 1

⎤

⎥⎥⎦ .

Example 5 Consider the tensor F ∈ C
6×6×6×5×4 such that

Fi1,i2,i3,i4,i5 = arctan(i1 + 2i2 + 3i3 + 4i4 + 5i5),

for all i1, i2, i3, i4, i5 in the corresponding range. The 5 biggest singular values of the
flattening matrix Flat(F) are

101.71, 7.752 9 × 10−2, 2.287 0 × 10−3, 7.229 4 × 10−5, 2.063 3 × 10−6.

Applying Algorithm 3 with rank r = 2, 3, 4, 5, we get the approximation errors as
follows:

r 2 3 4 5

‖F − X gp‖ 9.814 8 × 10−3 3.198 7 × 10−3 5.794 5 × 10−3 1.012 1 × 10−5

‖F − X opt‖ 5.311 1 × 10−3 2.262 3 × 10−4 3.088 9 × 10−5 1.752 3 × 10−6

For the case r = 3, the computed approximating tensor by Algorithm 3 and by
solving (46) is U (1) ◦U (2) ◦U (3) ◦U (4) ◦U (5), with

U (1) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.013 4 −0.034 7 1.552 4
−0.011 2 −0.032 9 1.552 5
−0.009 4 −0.031 2 1.552 6
−0.007 9 −0.029 5 1.552 7
−0.006 6 −0.028 0 1.552 8
−0.005 6 −0.026 5 1.552 9

⎤

⎥⎥⎥⎥⎥⎥⎦
,U (2) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.701 1 0.899 2 1.000 1
0.493 9 0.808 0 1.000 3
0.348 5 0.726 0 1.000 4
0.245 9 0.652 3 1.000 6
0.173 4 0.586 1 1.000 7

⎤

⎥⎥⎥⎥⎥⎥⎦
,

U (3) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.588 6 0.852 3 1.000 2
0.349 0 0.725 8 1.000 4
0.206 4 0.618 3 1.000 6
0.121 4 0.526 9 1.000 8
0.071 5 0.448 9 1.001 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,U (4) =

⎡

⎢⎢⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.494 9 0.807 8 1.000 3
0.246 3 0.652 1 1.000 6
0.121 1 0.526 9 1.000 8
0.059 6 0.425 6 1.001 1

⎤

⎥⎥⎥⎥⎦
,
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U (5) =

⎡

⎢⎢⎣

1.000 0 1.000 0 1.000 0
0.416 1 0.765 6 1.000 3
0.173 0 0.586 2 1.000 7
0.071 1 0.448 9 1.001 1

⎤

⎥⎥⎦ .

Example 6 As in Theorem 6, we have shown that if the tensor to be approximated is
sufficiently close to a rank-r tensor, then the computed rank-r approximation X gp is
quasi-optimal. It can be further improved to a better approximation X opt by solving
nonlinear optimization (46). In this example, we explore the numerical performance
of Algorithms 3 and 4 for computing low rank tensor approximations. For the given
dimensions n1, · · · , nm , we generate the tensor

R =
r∑

s=1

us,1 ⊗ us,2 ⊗ · · · ⊗ us,m,

where each us, j ∈ C
n j is a complex vector whose real and imaginary parts are gen-

erated randomly, obeying the Gaussian distribution. We perturb R by another tensor
E , whose entries are also generated with the Gaussian distribution. We scale the per-
turbing tensor E to have a desired norm ε. The tensor F is then generated as

F = R + E .

We choose ε to be one of 10−2, 10−4, 10−6, and use the relative errors

ρ_gp = ‖F − X gp‖
‖E‖ , ρ_opt =

∥∥F − X opt
∥∥

‖E‖

to measure the approximation quality of X gp, X opt, respectively. For each case of
(n1, · · · , nm), r and ε, we generate 10 random instances of R,F , E . For the case
(n1, · · · , nm) = (20, 20, 20, 20, 10), Algorithm 4 is used to compute X gp. All other
cases are solved by Algorithm 3. The computational results are reported in Tables 1.
For each case of (n1, · · · , nm) and r , we also list the median of above relative errors
and the average CPU time (in seconds). The tgp and topt denote the average CPU time
(in seconds) for Algorithms 3/4 and for solving (46), respectively.

In the following, we give a comparison with the generalized eigenvalue decompo-
sition (GEVD) method, which is a classical one for computing tensor decompositions
when the rank r � n2. We refer to [45, 46] for the work about the GEVD method.
Consider a cubic order tensor F ∈ C

n1×n2×n3 with n1 � n2 � n3. Suppose
F = U (1) ◦ U (2) ◦ U (3) is a rank-r decomposition and r � n2. Assume its first
and second decomposing matrices U (1),U (2) have full column ranks and the third
decomposing matrix U (3) does not have colinear columns. Denote the slice matrices

F1 := F1:r ,1:r ,1, F2 := F1:r ,1:r ,2. (63)
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Table 1 Computational performance of Algorithms 3 and 4 and of nonlinear optimization (46)

r ε ρ_gp t_gp ρ_opt t_opt r ε ρ_gp t_gp ρ_opt t_opt

(n1, n2, n3)=(50,50,50) (n1, n2, n3)=(60, 50, 40)

10 10−2 1.63 0.08 0.99 1.57 15 10−2 17.49 0.19 0.99 2.17

10−4 6.32 0.10 0.99 1.16 10−4 10.80 0.15 0.99 1.36

10−6 3.84 0.09 0.99 0.83 10−6 5.16 0.20 0.99 1.10

20 10−2 25.83 0.29 0.99 2.99 30 10−2 28.70 0.40 0.98 6.95

10−4 5.41 0.28 0.99 1.99 10−4 15.77 0.37 0.98 3.61

10−6 30.41 0.29 0.99 1.49 10−6 50.96 0.37 0.98 2.27

30 10−2 27.91 0.50 0.98 7.08 45 10−2 35.48 0.61 0.97 25.73

10−4 213.82 0.43 0.98 3.73 10−4 35.03 0.63 0.97 8.08

10−6 17.97 0.47 0.98 2.20 10−6 34.67 0.61 0.97 5.69

(n1, n2, n3)=(100,100,100) (n1, n2, n3)=(150,150,150)

20 10−2 11.21 0.86 1.00 6.36 30 10−2 8.59 2.92 1.00 17.17

10−4 3.48 0.85 1.00 4.24 10−4 3.18 3.05 1.00 11.20

10−6 3.88 0.83 1.00 3.20 10−6 4.24 3.42 1.00 11.75

40 10−2 24.17 1.76 0.99 17.80 60 10−2 49.80 6.04 1.00 87.31

10−4 11.60 1.65 0.99 11.02 10−4 13.77 5.89 1.00 24.96

10−6 11.09 1.61 0.99 7.97 10−6 17.49 6.07 1.00 18.81

60 10−2 18.71 3.40 0.99 28.16 90 10−2 29.44 10.64 0.99 98.78

10−4 26.28 3.41 0.99 17.25 10−4 152.49 10.53 0.99 43.58

10−6 19.12 3.49 0.99 13.14 10−6 17.01 10.06 0.99 26.98

(n1, n2, n3, n4)=(20,20,20,20,10) (n1, n2, n3, n4)=(60,50,40,30)

24 10−2 37.93 0.88 1.00 45.56 20 10−2 31.42 2.78 1.00 31.16

10−4 9.10 0.92 1.00 15.86 10−4 1.17 2.76 1.00 9.39

10−6 715.16 0.91 1.00 15.63 10−6 4.14 2.79 1.00 9.48

48 10−2 166.00 1.95 1.00 270.56 40 10−2 6.99 7.52 1.00 31.81

10−4 161.62 1.93 1.00 40.63 10−4 2.58 7.32 1.00 20.07

10−6 52.01 1.93 1.00 21.71 10−6 2.49 7.22 1.00 20.22

72 10−2 73.70 3.10 1.00 102.90 60 10−2 11.48 9.83 1.00 48.08

10−4 113.13 3.06 1.00 70.13 10−4 6.38 9.80 1.00 38.97

10−6 34.28 3.03 1.00 36.72 10−6 16.35 9.76 1.00 30.38

One can show that

F1 = U (1)
1:r ,: · diag(U (3)

1,: ) · (U (2)
1:r ,:)

�, F2 = U (1)
1:r ,: · diag(U (3)

2,: ) · (U (2)
1:r ,:)

�. (64)
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This implies that the columns of (U (1)
1:r ,r )−� are generalized eigenvectors of the matrix

pair (F�
1 , F�

2 ). Consider the transformed tensor

F̂ = (U (1)
1:r ,r )

−1 ×1 F1:r ,:,:, (65)

For each s = 1, · · · , r , the slice F̂s,:,: = U (2):,s ·(U (3):,s )� is a rank-1matrix. Thematrices
U (2), U (3) can be obtained by computing rank-1 decompositions for the slices F̂s,:,:.
After this is done, we can solve the linear system

U (1) ◦U (2) ◦U (3) = F (66)

to get the matrixU (1). The following is the GEVD method for computing cubic order
tensor decompositions when the rank r � n2.

Algorithm 5 (The GEVD method.)

Input A tensor F ∈ C
n1×n2×n3 with the rank r � n2.

1. Formulate the tensor F̂ as in (65).
2. For s = 1, · · · , r , compute U (2):,s , U (3):,s from the rank-1 decomposition of the

matrix F̂s,:,:.
3. Solve linear system (66) to get U (1).

Output The decomposing matrices U (1),U (2),U (3).

We compare the performance of Algorithm 1 and Algorithm 5 for randomly gener-
ated tensors with the rank r � n2. We generate F = U (1) ◦U (2) ◦U (3) such that each
U (i) ∈ C

ni×r . The entries of U (i) are randomly generated complex numbers. Their
real and imaginary parts are randomly generated, obeying the Gaussian distribution.
For each case of (n1, · · · , nm) and r , we generate 20 random instances of F . Algo-
rithm 5 is implemented by the function cpd_gevd in the software Tensorlab. All
the tensor decompositions are computed correctly by both methods. The average CPU
time (in seconds) for Algorithm 1 is denoted as time-gp, while the average CPU
time for the GEVD method is denoted as time-gevd. The computational results

Table 2 A comparison for the
performance of Algorithms 1
and 5

(n1, n2, n3) r time-gevd time-gp

(40,30,30) 30 0.91 0.29

(50,50,50) 50 4.77 0.85

(100,100,100) 80 12.17 5.54

(150,150,150) 100 79.85 13.30

(200,200,200) 120 161.83 25.71

(250,250,250) 140 285.03 55.71

(300,300,300) 100 306.64 61.38

(400,400,400) 180 934.15 271.21

(500,500,500) 200 1 688.98 539.75
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are reported in Table 2. The numerical experiments show that Algorithm 1 is more
computationally efficient than Algorithm 5.

7 Conclusions

This paper gives computational methods for computing low rank tensor decomposi-
tions and approximations. The proposedmethods are based ongenerating polynomials.
For a generic tensor of rank r � min(n1, N3), its tensor decomposition can be obtained
by Algorithm 1 . Under some general assumptions, we show that if a tensor is suf-
ficiently close to a low rank one, then the low rank approximating tensor produced
by Algorithm 3 is quasi-optimal. Numerical experiments are presented to show the
efficiency of the proposed methods.
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