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Abstract
Numerous intriguing optimization problems arise as a result of the advancement of
machine learning. The stochastic first-ordermethod is the predominant choice for those
problems due to its high efficiency. However, the negative effects of noisy gradient
estimates and high nonlinearity of the loss function result in a slow convergence rate.
Second-order algorithms have their typical advantages in dealingwith highly nonlinear
and ill-conditioning problems. This paper provides a review on recent developments
in stochastic variants of quasi-Newton methods, which construct the Hessian approxi-
mations using only gradient information. We concentrate on BFGS-based methods
in stochastic settings and highlight the algorithmic improvements that enable the
algorithm to work in various scenarios. Future research on stochastic quasi-Newton
methods should focus on enhancing its applicability, lowering the computational and
storage costs, and improving the convergence rate.
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1 Introduction

In essence, artificial intelligence is a process of optimization. The intelligencewe are
trying to develop almost always comes back to the optimization problem in the end.
Whichever traditionalmachine learning, deep learning or reinforcement learning, their
core concepts can be attributed to optimization problems. As a result, optimization
theory and algorithms constitute a fundamental component of machine learning and
become one of its main pillar. Additionally, the objective function in machine learning
always takes on a special form, making it possible to create an optimization algorithm
that can effectively handle massive amounts of data.

In machine learning, it is common to encounter optimization problems involving
tens of millions of training examples and variables. Consider the following general
optimization problem in an expectation form,

min
w∈Rd

F(w) = E[ f (w, ξ)], (1)

where f : R
d → R, ξ ∈ R

dξ denotes a random variable with distribution P , and E[·]
represents the expectation with respect to ξ . In machine learning, the function f (·, ξ)

is implicitly given or the distributionP is unknown, making it difficult to calculate the
function value and gradient. A special case of (1) that arises frequently in machine
learning is the empirical risk minimization problem,

min
w∈Rd

F(w) = 1

n

n∑

i=1

f (w; ξi ), (2)

where the training set is assumed to be a collection of independent and identically
distributed (i.i.d.) samples ξi = (xi , yi ) with i ∈ {1, 2, · · · , n} according to P via
certain observations. And n is the number of data sample which is always extremely
large.

Gradient descent (GD) is a popular approach to solve (2); it usually employs the
following updates as shown in (3). But the computation cost of full gradient is expen-
sive, so it is imperative to employ stochastic approximation (SA) algorithms to solve
large-scale optimization problems, which can be traced back to the seminal work by
[1]. The predominant methodology in machine learning advocates the use of stochas-
tic gradient descent (SGD) methods [2]. In the k-th iteration, SGD chooses a subset
Nk ⊂ {1, 2, · · · , n} randomly and then calculates the stochastic gradient ∇FNk (wk)

as shown in (3),

wk+1 = wk − αkgk, gk :=

⎧
⎪⎪⎨

⎪⎪⎩

∇F(wk) = 1
n

n∑
i=1

∇ f (w; ξi ), (GD)

∇FNk (wk) = 1
|Nk |

∑
i∈Nk

∇ f (w; ξi ), (SGD)
(3)

where αk > 0 is the k-th step size. ∇FNk (wk) is an unbiased estimate of the gradient
of F at wk , namely E[∇FNk (wk)] = ∇F(wk).
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SGD methods are widely used in machine learning [3–6]. There are also sev-
eral variants, including momentum [7, 8], Nesterov-accelerated gradient [9], adaptive
learning-method [10–12], etc. In practice, SGDwith momentum is widely used, espe-
cially in deep learning [13, 14]. When deterministic risk components predominate in
the beginning of the process, Nesterov’s acceleration can speed up the rate of conver-
gence of SGD [15, 16]. Adaptive learning methods, such as Adagrad [10], Adadelta
[11], Adam [12], compute adaptive learning rates for each parameter, where Adam
algorithmoutperforms other adaptive learningmethods. However, sinceαk must decay
to zero for convergence, SGDmethods suffer from the adverse effect of noisy gradient
estimates and slower convergence rate. To address this limitation, methods endowed
with variance reduction [17] capabilities have been developed. Stochastic variance
reduced methods [18] can converge linearly on strongly convex problems, including
SAG [19, 20], SAGA [21], SVRG [22], SARAH [23]. SAG and SAGA need to store
the auxiliary vectors for every sample, which amounts to anO(nd) storage. The SVRG
method only requiresO(d)memory and consists of two loops: an outer loop where the
reference gradient g̃k = ∇F(w̃k) is calculated, and an inner loop where the stochastic
gradient steps are updated using gt = ∇FNt (wt ) − ∇FNt (w̃k) + g̃k .

SGD methods, which take into account only gradient information, have a number
of drawbacks, including relatively slow convergence and sensitivity to hyperparameter
settings. Additionally, SGD methods suffer from ill-conditioning problem and often
offer limited opportunities for parallelism. Second-order optimization methods have
the potential to address these well-known shortcomings by integrating curvature infor-
mation [24]. As a result, some methods employ second-order derivative information;
the update rule is presented as

wk+1 = wk − αk B
−1
k ∇FNk (wk) or wk+1 = wk − αk Hk∇FNk (wk), (4)

where Bk , Hk represent the Hessian and the inverse Hessian of object function or the
corresponding approximate matrix in the first k-th iteration, respectively.

Compared with the first-order methods, the second-order methods have many
advantages. The most crucial one is scale-invariant [17], without it, poorly scaled
parameters will be much harder to optimize. Another advantages of second-order
algorithm are that each iteration, whatever based on gradient or curvature, chooses the
subsequent iterate by first computing the minimizer of a second-order Taylor series
approximation as follows:

qk(w) = F(wk) + ∇F(wk)
�(w − wk) + 1

2
(w − wk)

�B(w − wk). (5)

The GD iteration takes B = I , while Newton’s method takes B = Hk or B = B−1
k ,

and quasi-Newton’s method chooses the approximate Hk or Bk which is constructed
using only gradient information.

123



248 T.-D. Guo et al.

1.1 Stochastic Second-Order Methods in Machine Learning

Numerous stochastic second-order algorithms have been proposed in recent years
for finite sum functions, primarily employing random sampling techniques to approx-
imate the true gradient and Hessian. Byrd et al. [25, 26] proposed and analyzed the
complexity and sample size of a subsampled Newton-CG algorithm. Erdogdu et al.
[27] explored a subsampled Newton algorithm combined with low-rank approxima-
tion when the sample size is much larger than the number of parameters, that is n � d,
and analyzed its convergence rate. Utilizing random matrix concentration inequali-
ties, Mooney et al. [28] analyzed the global and local convergence rate of subsampled
Newton methods when n, d � 1. Xu et al. [29] exploited the convergence rate of sub-
sampled Newton algorithm in nonuniform sampling schemes. Ballapragada et al. [30]
analyzed the convergence rate of the subsampled Newton algorithm in expectation.
Zhang et al. [31] proposed a technique combining variance reduction with subsam-
pling to improve the convergence rate and analyzed the convergence rate when the
subproblem is a quadratic function. In [32], Pilanci et al. proposed a new Newton
sketch algorithm; they calculated the approximate Newton step by randomly pro-
jected Hessian and established its superlinear convergence under certain conditions.
The numerical performance of Newton sketch algorithm and subsampled Newton
algorithm was compared by Berahas et al. [33].

These methods we mentioned above are of the form

Ak pk = −∇FNk (wk) , wk+1 = wk + αk pk, (6)

where Ak � 0 is a stochastic approximation of the Hessian and the conjugate gradient
(CG) [34] method is always used by investigators to solve it inexactly. In subsampled
Newton method,

Ak = ∇2FSH (wk) = 1

|SH |
∑

i∈SH
∇2 f (wk; ξi ), (7)

where SH ⊂ {1, 2, · · · , n} is chosen at random either uniformly or in a nonuni-
form manner [29]. While Newton sketch algorithm defines a random sketch matrix
Dk ∈ R

q×n with the property that E[(Dk)
�Dk/q] = In (q < n) at each iter-

ation and then calculates a square-root decomposition of the Hessian ∇2F(wk),
denoted by ∇2F(wk)

1/2 ∈ R
n×d , and defines the Hessian approximation as Ak =((

Dk∇2F (wk)
1/2)�

Dk∇2F (wk)
1/2

)
. Agarwal et al. [35] proposed LiSSA, a new

Newton-type algorithm for generalized linear models, with the complexity increasing
linearly with the amount of parameters.

In addition to the direct approximation of Hessian, the quasi-Newton approach has
also been used in stochastic settings. Bordes et al. [36] proposed an SGD algorithm
based on diagonal curvature estimation matrix. Byrd et al. [37] combined SGD and
limited memory BFGS (L-BFGS). Stochastic L-BFGS algorithmwith variance reduc-
tion was proposed by Moritz et al. [38]. Gower et al. [39] propose a stochastic block
L-BFGS method with variance reduction and demonstrate its linear convergence rate.
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Although themajority of these works focus on smooth objective functions, nonsmooth
regularizations like the L1 norm are frequently taken into account in practice. How to
create nonsmooth stochastic second-order algorithms is a crucial challenge.

Deep learning has been shown to be resistant to algorithmswith certain optimization
errors in real applications. As a result, some sophisticated traditional optimization
methods can be simplified to some extent, allowing the algorithm to be applied to the
neural network and the training speed to be greatly accelerated. Many second-order
methods for neural network, including the generalized Gaussian Newton (GGN) and
the Kronecker-factored approximate curvature (K-FAC) method, have been proposed
recently.

The Hessian-free (HF) and Gauss–Newton methods are two examples of GGN
methods.HF [40] solves a sub-optimization problemusing the conjugate gradient (CG)
algorithm, which does not require explicitly forming the curvature matrix but instead
uses Hessian-vector products. It was demonstrated in [41] that Hessian-free works
very well for training deep neural networks (DNNs) and recurrent neural networks
(RNN) if it is correctly planned and implemented. In [42], the Gauss–Newton matrix
is investigated to approximate the Hessian matrix, and [43] studies a practical block-
diagonal approximation to the Gauss–Newton matrix.

The Kronecker-factored approximate curvature (K-FAC) [44, 45] is an effective
method for simulating natural gradient descent (NGD),with a high-quality approxima-
tion of the Fisher information matrix. NGD [46–48] is an information geometry-based
second-order optimization method. It employs the Fisher information matrix (FIM)
as the curvature, which provides the overall perspective of the loss function and
converges faster than the first-order method. Given the cross-entropy loss function
F(w) = E[− log p(y|x, w)], where x, y are the input and label, p(y|x, w) repre-
sents the density function of a predictive distribution Py|x . The FIM is formulated as
F = E[∇w log p(y|x, w)∇w log p(y|x, w)�]. Consider a deep neural network with
� layers and denote the outputs of the i-th layer as bi , the inputs of the i-th as ai−1
and a weight matrix of the i-th layer as Wi . The precise computation performed at
each layer: bi = Wiai−1, ai = φi (bi ), where φ is an element-wise nonlinear func-

tion. Define w = [
vec (W1)

� vec (W2)
� · · · vec (W�)

�]�
, Dv = − d log p(y|x,w)

dv and
gi = Dbi . In the first step, K-FAC approximates FIM into block matrix:

F = E[DwDw�]
≈ diag (F1, F2, · · · , F�)

= diag
(
E

[
vec(DW1) vec(DW1)

�]
, · · · , E

[
vec(DW�), vec(DW�)

�])
.

Noting that DWi = giai−1, that is vec(DWi ) = vec(giai−1) = ai−1 ⊗ gi , then each
block of FIM can be rewritten as

Fi = E
[
vec(DWi ) vec(DWi )

�]
= E

[
ai−1a

�
i−1 ⊗ gi g

�
i

]

≈ E
[
ai−1a

�
i−1

]
⊗ E

[
gi g

�
i

]
= Ai−1 ⊗ Gi .
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Since (A ⊗ B)−1 = A−1 ⊗ B−1 for any matrices A and B, we can compute the
block-diagonal FIM easily as

F−1
i = (Ai−1 ⊗ Gi )

−1 = A−1
i−1 ⊗ G−1

i .

K-FAC was first proposed for MLPs [44] and then extended to CNNs [45]. An
eigenvalue-corrected Kronecker factorization (EKFAC), which can approximate FIM
significantly better than K-FAC, was developed by George et al. [49]. Shampoo
[50] extends adaptive learning rate methods by using a block-diagonal Kronecker-
factored preconditioning matrix. However, in fact, the exact strategies used by the
present approximation scheme for the inverse of FIM still demand a lot of processing
resources. Recently, Chen et al. [51] proposed a novel Trace-based Hardware-driven
layer-ORiented natural gradient descent computation method (THOR), in which the
update interval is gradually increased and the matrix trace is used to determine which
blocks of FIMneed to be updated. TheK-FACalgorithm simplifies the natural gradient
method and obtains a Kronecker product approximation. In practical implementation,
it uses block-diagonal or block-tridiagonal approximation to obtain the second-order
optimization approach for neural network, which significantly speeds up neural net-
work training.

Stochastic second-order methods make judicious use of curvature information and
have proven to be effective for a variety of machine learning tasks [24]. Existing
stochastic second-order methods can be classified as follows: stochastic Newtonmeth-
ods [25–30, 33, 52–55]; stochastic quasi-Newton methods (SQNM) [37, 52, 56–61];
generalized Gauss–Newton (GGN) methods [40, 41, 43, 62–64]; Kronecker-factored
approximate curvature (K-FAC) methods [44–51, 65, 66].

2 The Deterministic Quasi-NewtonMethods

Numerous efforts have been done to develop quasi-Newton methods that incorpo-
rate the curvature information of the objective function without computing second
derivatives, including the symmetric rank-1 method (SR1) [67–69], DFP rule of Davi-
don [70] and Fletcher and Powell [71], the Greenstadt [72] rule, and others. The most
well-known one is the BFGSmethod, which is now a fundamental component of many
modern optimization techniques and is named after Broyden, Fletcher, Goldfarb, and
Shanno [73–76] who proposed the algorithm independently at nearly the same time.
The BFGS update has a number of exceptional qualities, including “self-correcting”
qualities [69]. As a result, BFGS updating is currently regarded as the most effective
of all quasi-Newton updating formulas.

2.1 The BFGS and L-BFGS

TheBFGSmethod iteratively updates an estimate of the inverseHessian, Hk = B−1
k .

When the curvature condition is met, the secant equation (8) always has a solution
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Hk+1,
wk+1 − wk = Hk+1 (∇F(wk+1) − ∇F(wk)) . (8)

We require Hk+1 to be, in certain ways, the closest to the current matrix Hk in order
to determine Hk+1 uniquely. In other words, we solve the problem below

min
H

‖H − Hk‖
s.t. H = H�, Hyk = sk,

(9)

where sk = wk+1 − wk , yk = ∇F(wk+1) − ∇F(wk). Different matrix norms can be
used in (9), with the weighted Frobenius norm; we can derive the unique solution,

Hk+1 =
(
I − ρksk y

�
k

)
Hk

(
I − ρk yks

�
k

)
+ ρksks

�
k , (10)

that is
Hk+1 = V�

k HkVk + ρksks
�
k , (11)

where ρk = 1
y�
k sk

and Vk = I − ρk yks�
k , applying the Sherman–Morrison–Woodbury

formula [77] to (10), we obtain

Bk+1 = Bk − Bksks�
k Bk

s�
k Bksk

+ yk y�
k

y�
k sk

. (12)

Nocedal and Liu [69, 78, 79] proposed the idea of only using themost recent iterates
and gradients in forming the inverse Hessian approximation to handle large-scale
optimization problems. By storing only a small number of vectors of length d which
implicitly represent the approximations rather than fully dense d × d approximations,
thesemethods retain straightforward and compact approximations ofHessianmatrices.

Algorithm 1 Deterministic BFGS Method
1 initial parameter w0, inverse Hessian approximation H0,ε > 0;
2 k = 0;
3 while ‖∇F(wk )‖ > ε do;
4 Compute search direction pk ← −Hk∇F(wk );
5 Set wk+1 = wk + αk pk where αk is computed from a line search procedure;
6 Define sk = wk+1 − wk and yk = ∇F(wk+1) − ∇F(wk );
7 Hk+1 = (I − ρksk y

�
k )Hk (I − ρk yks

�
k ) + ρksks

�
k

8 k = k + 1;
9 end while

By saving a certain amount (m) of the vector pair {si , yi } used in formulas (10) and
(11), they implicitly store a modified version of Hk . A sequence of inner products and
vector summations involving ∇Fk and the pairs {si , yi } for i = k −m, · · · , k − 1 can
be used to obtain the product Hk∇Fk . The L-BFGS approximation Hk satisfies the
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following formula when choosing an initial Hessian approximation H0
k :

Hk =
(
V�
k−1 · · · V�

k−m

)
H0
k (Vk−m · · · Vk−1)

+ ρk−m

(
V�
k−1 · · · V�

k−m+1

)
sk−ms

�
k−m (Vk−m+1 · · · Vk−1)

+ ρk−m+1

(
V�
k−1 · · · V�

k−m+2

)
sk−m+1s

�
k−m+1 (Vk−m+2 · · · Vk−1)

+ · · ·
+ ρk−1sk−1s

�
k−1.

(13)

The oldest vector pair in the collection of pairs {si , yi } is replaced by the new pair
{sk, yk} acquired from the current step after the new iteration has been computed.
The limited-memory BFGS algorithm can be stated formally as Algorithm 2 with the
two-loop recursion [69].

Algorithm 2 Deterministic L-BFGS
1 Choose starting point w0, integer m > 0;
2 k ← 1;
3 while no converge do
4 Choose H0

k ;
5 Compute pk ← −Hk∇Fk from two-loop recursion;
6 Computer wk+1 ← wk + αk pk , where αk is computed from a line search procedure;
7 if k > m then
8 Discard the vector pair {sk−m , yk−m } from storage;
9 end if
10 Compute and save sk ← wk+1 − wk , yk ← ∇Fk+1 − ∇Fk ;
11 k ← k + 1;
12 end while

3 The Challenges of Quasi-NewtonMethods in Stochastic Settings

SGD methods are widely used to solve (2), but they may not be suitable for ill-
conditioned and nonconvex problems, which are better treated with second-order
information. Although quasi-Newton algorithms have been extensively studied in
the deterministic case, can we directly apply them to solve optimization problems
in machine learning? When we investigate the extension of a quasi-Newton method
from the deterministic setting to the stochastic setting, the answer is not encouraging,
there are some difficulties:

(1) Gradient measurements are noisy. The noise in the gradients in the stochastic setup
may taint the correction pairs {si , yi }. Let gk = ∇F(wk) + ek , if ek is larger than
the gk or if ‖si‖ is too small, then the dominant of “difference of two successive
gradients” is just the difference of noise, which indicates that the vector yi can be
very inaccurate.
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(2) Line search is highly problematic. In the stochastic context, neither F(w) nor
∇F(w) is available to us; instead, we only have access to noisy versions of them,
and the global validity of the criteria they employ cannot be established from
local subsamples. For instance, we may accept a step size αk in the case where
the observed cost has sufficiently decreased, but the true objective function may
have increased [80]. However, without line search, there is no guarantee that the
curvature condition si yi > 0 holds.

(3) Theobjective function is nonconvexor/andnonsmooth. Several objective functions
inmachine learning are only convex, not strongly convex. Additionally, nonconvex
optimization has fundamental practical value in applications like those resulting
from the usage of neural networks. The main obstacle to overcome when creating
stochastic quasi-Newton algorithms for nonconvex problems in machine learning
is how to preserve the positive definiteness of Bk (or Hk).

(4) The computational cost is prohibitively expensive. To store and update Bk , BFGS
requires O(d2) space, whereas L-BFGS requires only O(md) space and time per
iteration.However, variables inmachine learning are highly dimensional, and there
are a tremendous amount of samples.

The purpose of this paper is to provide a review on the stochastic quasi-Newton
methods that have been demonstrated in both theory and practice to be effective at
counteracting the negative impacts of challenging curvature in stochastic optimization.
This paper attempts to demonstrate how to overcome the aforementioned difficulties
in order to design more widely applicable stochastic quasi-Newton methods.

4 Basic Stochastic Quasi-NewtonMethods

To solve (1) or (2), a number of stochastic quasi-Newton methods have been pre-
sented in recent years. In this section, we introduce the basic SQNM which draws
lessons from the ideas of [59].

4.1 Sublinear Convergence

Online BFGS (oBFGS) [52] is a pioneering work in stochastic adaptations of the
BFGSmethod. The oBFGS algorithm is a direct generalization of the BFGS algorithm
that employs stochastic gradients rather than full gradients. It took consistent gradient
measurements on the same data set Nk , i.e.,∇FNk (wk+1)−∇FNk (wk), which is named
“gradient displacements”. The update of Bk is then modified by scaling down the last
term of the update (10) by a factor 0 < σ � 1 and selecting the step size without line
search. To deal with the small eigenvalues, they add λsk (λ � 0) to yk (which means
modifying the BFGS update to estimate the inverse of H + λI ), that is

yk = ∇FNk (wk+1) − ∇FNk (wk) + λsk .
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Algorithm 3 Stochastic BFGS Methods
1 initial parameter w0, sequence of step size αk > 0, inverse Hessian approximation H0;
2 k = 0;
3 while no converge do;
4 Compute pk ← −Hk∇FNk (wk );
5 Set wk+1 = wk + αk pk ;
6 Compute sk = wk+1 − wk ;
7 Compute yk by gradient displacements or Hessian action as (17);
8 Compute Hk+1;
9 k = k + 1;
10 end while
11 return wk .

The online L-BFGS (oL-BFGS) was also proposed in [52] for solving large-scale
optimization problems when the O(d2) cost of storing and updating Hk would be
prohibitively expensive. oL-BFGS reduces the memory requirements as well as the
computational cost of each iteration toO(md). Under the assumption that the objective
function is strongly convex and smooth, and the second moment of the stochastic
gradient is bounded, oL-BFGS converges to the optimal solution at a rate of O(1/k)
in expectation [81].

To construct the correction pairs, stochastic quasi-Newton (SQN) [37] decouples
the computation of the stochastic gradient from the curvature estimate. This method
calculates yk using a Hessian-vector product [25] as (17), which is referred to as
“Hessian action” [82]. The results of numerical experiments show that SQN is reliable
and effective, although it does not improve convergence rate. In Algorithm 3, we
formalize the sublinear convergent stochastic BFGS algorithms [37, 52, 56, 81].

4.2 Linear Convergence

Despite being successful in extending the use of quasi-Newtonmethods to stochastic
settings, the convergence rate of the aforementioned methods is sublinear. This is
not better than the SGD convergence rate. The negative impact of noisy gradient
estimations results in a slow, sublinear rate of SGD convergence [17]. Both in theory
and in practice, stochastic variance reducedmethods produce a faster convergence than
SGD [18]. A stochastic L-BFGS algorithm [38] that extensively draws on SQN and
incorporates variance reduction [22] was proposed. This is the first linearly convergent
stochastic quasi-Newton algorithm (Algorithm 4). To calculate the search direction,
this algorithm computes a variance-reduced gradient as shown below

gt = ∇FNt (wt ) − ∇FNt (w̃) + g̃k, (14)

where g̃k is the full gradient at w̃. Variance-reduced gradient is also used by the VITE
algorithm [83], which combines regularized stochastic BFGS (RES) [56]/oBFGS
with semi-stochastic gradient descent (S2GD) [84]. Using a coordinate transform
framework, Zhao et al. [85] revisited the algorithms and enhanced the results of its
convergence rate.
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Algorithm 4 Stochastic Quasi-Newton Methods with Variance-Reduced Gradient
1 initial parameter w̃0, step size α > 0, parameters m, M and C ;
2 r = 0;
3 for k = 0, 1, 2, · · · do
4 Compute a full gradient g̃k = ∇F(w̃k )

5 Set w0 = w̃k
6 for t = 0, · · · ,m − 1 do
7 Compute a variance reduced gradient gt
8 Set wt+1 = wt − αHr gt
9 if t ≡ 0 mod C then
10 Set r ← r + 1
11 w̄r = 1

C
∑t−1

j=t−C w j
12 Compute sr = w̄r − w̄r−1 and yr by Hessian action;
13 Compute Hr
14 end if
15 end for
16 Set w̃k+1 = wm
17 end for

Gao [86] extends the standard BFGS by incorporating information of ∇2F(w)

along multiple directions in each update to improve the accuracy of the local Hessian
approximation. Gower et al. [39] then presented a new quasi-Newton approach that
uses stochastic block BFGS updates [86] in combination with SVRG.

4.3 Superlinear Convergence

The incremental quasi-Newton (IQN) [58] method is the first stochastic quasi-
Newton method to achieve superlinear convergence. The information corresponding
to the i-th function fi at step k is referred to as zki ,∇ fi (zki ) and Bk

i (for simplifying
notation, let fi (w) = f (w; ξi ) ). Consider the second-order approximation of the
objective function fi (w), which is centered around the current iterate zi ,

fi (w) ≈ fi
(
zki

)
+ ∇ fi

(
zki

)� (
w − zki

)
+ 1

2

(
w − zki

)� ∇2 fi
(
zki

) (
w − zki

)
,

then the function F(w) can be approximated with

F(w) ≈ 1

n

n∑

i=1

[
fi (z

k
i ) + ∇ fi (z

k
i )

�(w − zki ) + 1

2
(w − zki )

�Bk
i (w − zki )

]
. (15)

As a result, the updated iterate wk+1 can be defined as the minimizer of the quadratic
programming in (15), which is explicitly given by

wk+1 =
(
1

n

n∑

i=1

Bk
i

)−1 [
1

n

n∑

i=1

Bk
i z

k
i − 1

n

n∑

i=1

∇ fi (z
k
i )

]
. (16)
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It should be noted that the update in (16) demonstrates that the variable wk+1 is a
function of the stored information of all functions f1, · · · , fn . As a result, they only
update the local information of one function, chosen in a cyclic manner, in each
iteration of the IQN method. Let ik be the index of the function selected at time k.
Then, the update of BFGS can be used to compute the Hessian approximation Bk

ik

corresponding to fik while leaving all other the same, i.e., Bk+1
i = Bk

i for i �= ik . It
is obviously that the update of IQN cannot be implemented at a low computational
cost because it necessitates computation of the sums 1

n

∑n
i=1 B

k
i ,

∑n
i=1 B

k
i z

k
i , as well

as the inversion
( 1
n

∑n
i=1 B

k
i

)−1
. This restricts the use of the algorithms, though they

discuss an efficient implementation of IQN that costs O(d2).
The disadvantage of incremental second-order methods like IQN and stochastic

Newton method (SNM) [87] is that they have computational and memory costs per
iteration that are greater than or equal toO(d2). This is prohibitive in situations where
the number of model parameters is large. Chen [88] creates a new stochastic average
Newton (SAN) method that is inexpensive to implement when solving regularized
generalized linear models, with an iteration cost of the order of O(d).

5 Practical Considerations

The algorithmic advancements made by various SQNM are outlined in this section,
along with a number of implementation-related topics including selecting the step size
and how to generate the correction pairs.

5.1 The Correction Pairs

The updating rules for the correction pairs represent the primary distinction between
various SQNM. Both oBFGS and RES compute y on the same subset Nk , i.e., yk =
∇FNk (wk+1) − ∇FNk (wk) as opposed to the variation ∇FNk+1(wk+1) − ∇FNk (wk),
even though the former requires twice as many stochastic gradient evaluations and the
latter is insufficient in the stochastic scenario to ensure convergence [56, 81].

However, if the size of Nk is too small, the gradient estimates will be extremely
noisy, which will have a negative impact on the final Hessian approximation. Berahas
et al. [89, 90] proposed to construct the correction pairs by computing gradients based
on the overlap of successive batches Ok = Nk ∩ Nk+1 �= ∅. The only restriction is
that this overlap should not be too small. However, a nonuniform sampling strategy
can produce a sample size that is considerably less than what uniform sampling calls
for

gradient displacements yk = ∇FNk (wk+1) − ∇FNk (wk),

Hessian action yk = ∇2FSH (w̄k)sk .
(17)

Another popular way to construct the correction pairs is proposed in SQN [37],
which decouples the stochastic gradient and curvature estimate calculation. This
approach calculates yk via a Hessian-vector product [25], named “Hessian action”
[82], where sk is the difference of disjoint average between the 2C most recent iter-
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ations which means that they compute correction pairs every C iterations, w̄k =
1
C

∑t−1
j=t−C w j . And ∇2FSH (wk) is a subsampled Hessian defined as (7). We can use

the directional derivative [91] to calculate the Hessian-vector product at a low cost
without explicitly constructing ∇2FSH (w). Hessian actions can prevent the potential
negative consequences of differencing noisy gradients, but at the cost of more com-
putation because the batch size |SH | must be selected to be large enough to get useful
curvature estimates. In a similar vein, AdaQN [92] computed y bymatrix-vector prod-
uct for training RNNs rather than using the subsampled Hessian but instead used the
empirical Fisher information matrix [46, 48]. Hessian action offers a number of inter-
esting qualities. First, since this cost is spread out overC iterations, more computation
may be done for the curvature computation. Additionally, using the Hessian action
allows for a more robust estimation of curvature, especially when ‖s‖ is small and the
gradients are noisy.

Berahas et al. [93] propose that new curvature pairs be sampled at each iteration.
They choose random directions (τi ) to sample points around the current iteration and
establish the iteration displacement s = rτi ( where r is the sampling radius) before
generating y using gradient displacements ∇FN (w) − ∇FN (w + rτi ) or Hessian
action (17). By utilizing parallel/distributed computing settings, this approach can
capture more recent and local information to improve the Hessian approximations.
Another noteworthy point is that the convergence result for nonconvex problems can
be proven because we can force the curvature pairs to meet the curvature requirement
s�y > ε‖s‖2 > 0 by eliminating those that do not.

5.2 The Choice of H0

The initial approximation H0 has no universally effective magic formula in all cases.
Most stochastic BFGSmethods choose a small multiple of identitymatrix I as H0, i.e.,
ε I . Stochastic L-BFGS methods always set H0

k = γk I, γk = (s�
k−1yk−1)/(y�

k−1yk−1)

as the standard L-BFGS. Byrd et al. [25] propose to employ a conjugate gradient
iteration as subsampled Newton methods to indirectly define H0

k . According to some
works [94, 95], H0

k is defined as follows:

H0
k =

(
max

(
γ
k
,min

(
γ̂k, γ̄k

)))
I,

where 0 < γ
k

< γ̄k can be constants or iteration-dependent to prevent H0
k from

becoming nearly singular or nonpositive-definite.
AdaQN [92] was proposed for training RNNs, in which the inverse-Hessian matrix

is initialized using accumulated gradient information. It is the same as the scaling
matrix used by Adagrad [10] during each iteration

[
H (0)
k

]

i i
= 1√∑k

j=0

[
g j

]2
i + ε

,∀i = 1, · · · , d.
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5.3 Hessian or Inverse Hessian Approximation

As is well known, Bk+1 or Hk+1 cannot be determined just by the secant equation.
The quasi-Newton methods require the matrix Bk+1 to be close to the matrix Bk in
order to resolve this indeterminacy. Mokhtari et al. [56] proposed that in BFGS, the
matrix Bk+1 is selected as the one that satisfies the secant conditionwhile being closest
to Bk in terms of the Gaussian differential entropy,

Bk+1 = argmin
B

tr[B−1
k (B)] − log det[B−1

k (B)] − d

s.t. Bsk = yk, B � 0.
(18)

In the stochastic setting, they replace B with B − δ I in (18) to prevent the smallest
eigenvalue of Bk to from approaching 0 over time. Furthermore, RES establishes the
corrected variation ỹk = yk − δsk to ensure that all eigenvalues of Bk+1 exceed δ > 0,
in other words, if ỹ�

k sk = (yk − δsk)�sk is positive, then all eigenvalues of Bk+1 are
larger than δ. Bk+1 can be explicitly given by the expression

Bk+1 = Bk + ỹk ỹ�
k

s�
k ỹk

− Bksks�
k Bk

s�
k Bksk

+ δ I .

In order to determine Hk , Adrian et al. [96, 97] employ amethod similar to standard
BFGS (9) and solve the regularized least-square problem as follows:

Hk = argmin
H

‖HYk − Sk‖2F + λ
∥∥H − H̄k

∥∥2
F , (19)

where Yk �
[
yk−m+1, · · · , yk

]
, Sk �

[
sk−m+1, · · · , sk

]
. The regulator matrix H̄k

acts as a prior on H and can be modified at each iteration k. It was confirmed that the
solution to Eq. (19) is given by

Hk =
(
λH̄k + SkY

�
k

) (
λI + YkY

�
k

)−1
.

Stocastic block BFGS [39] constructs an update which satisfies a sketched version
of the equation, namely

Hk∇2F(wk)Dk = Dk,

where Dk ∈ R
d×q is a randomly generated matrix, which has relatively few columns

(q � d). Then, the stochastic blockBFGSupdate is definedby theweighted projection

Hk = arg min
H∈Rd×d

‖H − Hk−1‖2k
s.t. H∇2FSH (wk)Dk = Dk, H = H�,

(20)
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where ‖H‖2k � Tr(H∇2FSH (wk)H�∇2FSH (wk)), and tr denotes the trace. The solu-
tion is

Hk = DkΔk D
�
k + (I − DkΔkY

�
k )Hk−1(I − YkΔk Dk), (21)

whereΔk � (D�
k Yk)

−1 and Yk � ∇2FSH (wk)Dk , the same solutionwas given in [98–
100] for multiple secant equations. The numerical results show that stochastic bock
BFGS ismore flexible. Similarly,Ma et al. [101] utilize theweak secant equation [102]
to build an adaptive parameter-wise diagonal quasi-Newton for training DNNs. All
existing quasi-Newton algorithms, according toHennig et al. [99], can be reformulated
and extended into a probabilistic interpretation. By utilizing this discovery, known as
the Gaussian prior Hessian approximation, Wills et al. [103] provide a probabilistic
quasi-Newton approach; more details are available in [80, 103].

5.4 The Step Size

The necessity to choose an appropriate step size is still another significant obstacle
to the development of stochastic quasi-Newton algorithms. The groundbreaking work
of Robbins and Monro [1] made the following conclusion: the step size in stochastic
situations should satisfy the conditions

∞∑

k=1

αk = ∞ and
∞∑

k=1

α2
k < ∞.

It is always necessary to use a “sufficiently small” constant or a diminishing step size,
but it might be challenging to choose the appropriate constant step size. Therefore,
the most popular option is that

αk = k0
k0 + k

α0, (22)

where α0, k0 > 0 are tuning parameters. SQNM, when combined with a variance-
reduced gradient, always employs a constant step size. However, we concentrate on
adaptive step size and stochastic line search (SLS).

Zhou et al. [104] develop a stochastic adaptive BFGS (SA-BFGS) for self-
concordant function [105]. They examine whether the Wolfe condition is met for
the adaptive step size αk in the method. Otherwise, SA-BFGS will switch back to
taking an SGD step. Since we only have access to a noisy version of the gradient in the
stochastic setting, it is difficult to ensure that the update direction is a descent direction.
In [106], an available SLS algorithm was proposed, which employs the framework
of Gaussian processes and Bayesian optimization. The step length that best satisfies
a probabilistic measure combining reduction in the cost function with satisfaction of
the Armijo condition is chosen [80].

The key to designing a SLS is ensuring that there is a decrease in the true
function value with a high probability when only stochastic approximations can
be observed. Based on variance estimates, sample size selection makes the angle
between search direction pk and ∇F(wk) is an acute angle with high probability, that
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is E[p�
k ∇F(wk)] < 0. Sample size selection is always used in the design of SLS

and is critical in both the evaluation of gradients and the incorporation of curvature
information [26, 107–110]. A practical inner product quasi-Newton (IPQN) test was
proposed in [111] to ensure the stochastic quasi-Newton search direction makes an
acute angle with the true quasi-Newton direction in expectation

E

[(
(Hk∇F(wk))

� (
Hkgk

) − ‖Hk∇F(wk)‖2
)2]

� θ2‖Hk∇F(wk)‖4,

where θ > 0. Progressive Batching L-BFGS [111] performs a backtracking line search
that aims to satisfy the Armijo condition

FNk

(
wk − αk Hkg

Nk
k

)
� FNk (wk) − cαk(g

Nk
k )�Hkg

Nk
k , (23)

where c > 0. If the condition is not satisfied, set αk = αk/2.
The line search proposed by Wills et al. [80] is conceptually more similar to this

procedure. All existing quasi-Newton algorithms, according to Hennig et al. [99],
can be interpreted as maximizing a posteriori estimates. Based on this, Wills et al.
[80] proposed a Gaussian prior quasi-Newton approximation and a mechanism to
ensure that the search direction is a descent direction in expectation, E[p�

k ∇F(wk)] <

0. Then, they developed a stochastic line search procedure that satisfies an Armijo
condition in expectation for early iterations

E[ f̂ (wk + α pk) − f̂ (wk) − cαkg
�
k pk] � 0,

where f̂ (wk) is subsampled function. However, this method assumes that the gradient
is tainted by additive Gaussian noise, which is inappropriate for some problem classes,
particularly when the noise distribution has heavy tails [80].

Xie et al. [112] demonstrated that there is a step size that satisfies the Armijo–Wolfe
conditions for both the noisy and true objective functions under the assumption of the
errors in function and gradient are bounded for all w. However, in order to guarantee
that the condition number of the Hessian approximations is bounded, they need to be
aware of the strong convexity parameter, which is typically unknown. A new noise-
tolerant quasi-Newton algorithmwas proposed by Shi et al. [61], which has no need for
exogenous function information. The noise-tolerant L-BFGS is linearly convergent to
a neighborhood of the solution determined by the noise level if the objective function
F is μ-strongly convex and has L-Lipschitz continuous gradients.

5.5 Diagonal Approximation

Rapid training progress is possible with diagonally scaled stochasic first-order algo-
rithms like Adagrad [10], Adadelta [11], RMSprop, Adam [12]. Numerous SQNM
also use a diagonal matrix to approximate the Hessian. Bordes et al. [36] studied SGD
with a diagonal rescaling matrix based on the secant condition, named SGD-QN. The
approach is highly effective and successful enough to be named the winner of the first
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PASCAL Large Scale Learning Challenge [113] because it just requires scalar com-
putation. The corrected SGD-QN algorithmwas then proposed in [114] to reap the full
benefits of a diagonal scaling strategy. The Hessian is also approximated by Apollo
[101] via a diagonal matrix, the elements of which are obtained by the variational
method under the constraints of the parameter-wise weak secant equation. In terms
of convergence speed and generalization performance, Apollo outperforms SGD and
different variants of Adam significantly.

5.6 Regularization

oBFGS may produce divergent sequences when the noise of stochastic gradients is
catastrophically amplified in curvature estimation. Regularization is incorporated into
RES [56] to address this problem. It redefines Bk+1 as the solution of the problem as
follows:

Bk+1 = argmin
B

tr[B−1
k (B − δ I)] − log det[B−1

k (B − δ I)] − d

s.t. Bsk = ỹk, B � 0.
(24)

The term B − δ I rather than B in (24) is to preserve the smallest eigenvalue of Bk

from 0. The identity bias term Γ I is added to the update of RES as follows:

wk+1 = wk − αk(B
−1
k + Γ I)∇FNk (wk), (25)

which is always used to ensure the positive definiteness of the Hessian approximation.
Under the same supposition as oBFGS, the RES method converges to the optimal
solution at a rate of O(1/k) in expectation [56]. To address the merely convex or
non-Lipschitz problem, Yousefian et al. [60, 115–118] construct a set of SQNM with
regularization terms, in which the regularization parameter is updated iteratively and
decays to zero.

5.7 Parallel Implementations

Stochastic quasi-Newton methods are more memory intensive and more expensive
(per iteration) than SGD. As a result, it is critical to effectively scale and parallelize
SQNM in a distributed system. By avoiding the pricey dot product operations in
the two-loop recursion, vector-free L-BFGS [119] significantly increases computing
performance while using MapReduce. On the High-Performance Computing Cluster
(HPCC) Systems platform, Najafabadi et al. [120] provide a parallelized version of the
L-BFGS algorithm. Some of the computing nodes responsible for evaluating the func-
tion and gradient in parallel implementations are unable to deliver results on schedule.
By performing quasi-Newton update depending on the overlap between succeeding
batches, the multi-batch L-BFGS [89, 90] is intended to operate in a distributed setting
to address this. They also proposed sampled L-BFGS and sampled L-SR1 methods
[93], both of which have enough concurrency to benefit from parallel/distributed com-
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puting environments. The sampled L-SR1 approach is then described by Jahani et
al. [121] in a scalable distributed implementation that is communication-efficient by
applying sketching techniques to reduce the quantity of data communicated at each
iteration.

6 Advanced Algorithms

Wediscuss extensions to the fundamental SQNM in this section. Some of thesemod-
ifications make the techniques more general to deal with more challenging situations,
like problems that are not smooth and/or strongly convex. Other expansions develop
quicker algorithms by using extra algorithmic techniques or problem structure.

6.1 AcceleratedVariants

The momentum term [7, 8, 13, 122] and Nesterov’s accelerated method [9] can
accelerate the convergence of SGD and sometimes provide a distinct improve-
ment in performance for neural network training [123]. The approach for SQNM
acceleration is described in several works [124–129]. Nesterov’s accelerated quasi-
Newton (NAQ) method [124] is a recently proposed BFGS acceleration method. A
stochastic variant of the NAQ technique called o(L)NAQ [125] was also devised,
and it was found to perform better than the o(L)BFGS method. Then, Yasuda et
al. [127] introduced the stochastic variance reduced Nesterov’s accelerated quasi-
Newton (SVR-NAQ) approach, which is superior to oNAQ since it updates theHessian
matrix with less noise. Chang et al. [126] propose a new sL-BFGS algorithm by
importing a proper momentum, which is based on SQN [37] and stochastic L-BFGS
with nonuniform sampling [85]. The complexity went from O (

(n + κHκ) d log 1
ε

)

to O ((
n + κH

√
κ
)
d log 1

ε

)
, where κ and κH represent the condition number of

F and the Hessian approximation, respectively. A faster stochastic L-BFGS was
proposed by Gao and Huang [128], and the oracle complexity was improved to

O
((

n + κκH
1+√

κκH /n

)
log

( 1
ε

))
. For training neural networks, Indrapriyadarsini et al.

[129] propose a new limited memory Nesterov’s accelerated symmetric rank-1 (L-
SR1-N) method. It is demonstrated that the proposed L-SR1-N converges to a
stationary point both theoretically and experimentally.

6.2 Relaxing Smoothness

For classical (L)BFGS, the objective function must be smooth since the quasi-
Newton direction produced at a nonsmooth point is not always a descent direction.
Yu et al. [130] suggested a subgradient (L)BFGS for which global convergence can
be restored by determining a descent direction and applying a line search. Yousefian
and Nedić [116] modified the update rule as wk+1 = wk − αk Hk∇FNk (wk + zk),
where zk is a uniform random variable drawn from a ball centered at the origin with
radius r > 0. They establish the convergence properties of the scheme in the absence
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of the Lipschitzian property with this modification and a few acceptable assumptions.
Jalilzadeh et al. [60, 117] drew on the Moreau proximal smoothing [131],

f η(x) � min
u

{
f (u) + 1

2η
‖u − w‖2

}
,

{
ηk := ηk−1, if k is odd ,

ηk < ηk−1, otherwise ,
(26)

and they only reduce the smoothing parameter η after an odd number of iterations
as the right-hand side of (26). Then, they utilized the ηk-smoothed function Fηk to

calculate yk = ∇F
ηδ
k

Nk
(wk) − ∇F

ηδ
k

Nk
(wk−1), where 0 < δ � 1 is scalar that controls

the level of smoothing.
Numerous studies take into account the following optimization problem:

min
w∈Rd

F(w) = F(w) + h(w),

where h is a nonsmooth convex function, such as �1 regularization. Stochastic proximal
Newton-type approaches for these kinds of nonsmooth problems are investigated in
[132–134].

6.3 Relaxing Strong Convexity

Convex functions are the focus of the majority of theories for stochastic quasi-
Newton methods. In the absence of strong convexity, there are few convergence rate
statements. For faster convergence and better theory, the objective function in machine
learning is always regularized with the term 1

2μ‖w‖2. However, the optimal solution
to the F(w) + 1

2μ‖w‖2 is not the optimal solution to the original problem. To deal
with the merely convex objective function, Yousefian et al. [60, 115, 117, 118] develop
a number of regularized SQN methods. They allow regularization parameters to be
updated and decay to zero as iterations progress. Cyclic regularized stochastic BFGS
(CR-SQN) [115] generates a sequence {wk} for any k � 0

wk+1 := wk − αk

(
B−1
k + δk I

) (∇FNk (wk) + μkwk
)
, (27)

where μk > 0 is the regularization parameter of the gradient mapping, and they only
update μk if k is even. The corresponding update rule of Bk+1 is following,

Bk+1 :=
⎧
⎨

⎩
Bk − Bksks�k Bk

s�k Bksk
+ ỹk (ỹk )

�
s�k ỹk

+ ρμk I, k is even ,

Bk, k is odd ,
(28)

where ỹk := ∇FNk (wk+1) − ∇FNk (wk) + (1 − ρ)μksk for an even k, 0 < ρ < 1
is the regularization factor. In this way, it is easy to prove that s�

k ỹk � (1 −
ρ)μk ‖wk+1 − wk‖2 > 0.
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Iteratively regularized stochastic limited-memory BFGS (IRS-L-BFGS) updates
the parameter as (29)

wk+1 := wk − αk Hk
(∇FNk (wk) + μk (wk − w0)

)
, (29)

where the update policy for Hk and the update rule for the regularization parameter
μk are based on the following general procedure,

{
Hk := Hk,m, μk := μk−1, if k is odd,

Hk = Hk−1, μk < μk−1, otherwise.
(30)

The {si , yi } is defined for any odd k � 1,

s�k/2� := wk − wk−1,

y�k/2� := ∇FNk−1 (wk) − ∇FNk−1 (wk−1) + τμδ
ks�k/2�,

where τ > 0 and 0 < δ � 1 are parameters to control the level of regularization in
the matrix Hk , and the perturbation term μδ

ks�k/2� → 0, as k → ∞. In terms of the

value of the objective function, IRS-L-BFGS shows a convergence rate O(k−( 13−ε)),
where ε is an arbitrary small positive scalar.

6.4 Nonconvex Problems

The main difficulty in developing quasi-Newton methods for nonconvex problems
is that the Hessian of the objective function is not positive definite. In the deterministic
scenario, several techniques, including cautious updating [135] and damping [136],
have been proposed to establish convergence of the BFGS method in the nonconvex
setting. Berahas and Takáč [89, 90] skip the Hessian update if the curvature condition
y�
k sk � ε‖sk‖2 is not satisfied. Similarly, sampled L-BFGS [93] updates the (inverse)
Hessian approximation using only the set of curvature pairs satisfying y�

k sk � ε‖sk‖2.
In stochastic optimization, damping is more frequently used. Several works [57,

94, 95] use damping to make sure that Hk or Bk are positive definite. They define

ȳk = ϑk yk + (1 − ϑk) Bksk, (31)

where ϑk =

⎧
⎪⎨

⎪⎩

c4s�k Bksk
s�k Bksk−s�k yk

, if s�
k yk < (1 − c)s�

k Bksk,

1, otherwise.
However, the self-correcting properties of BFGS-type updates could be ruined

by damping. Self-correcting BFGS (SC-BFGS), which uses a damping procedure
intended to maintain these properties, was proposed in [137]. In SC-BFGS, ȳ =
βksk + (1−βk)αk yk , where βk is the smallest value in the interval [0, 1] such that the
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following crucial bounds are satisfied:

η1 �
s�
k ȳk

‖sk‖22
and

‖ȳk‖22
s�
k ȳk

� η2, η1 ∈ (0, 1) and η2 ∈ (1,∞).

The sequence of inverse Hessian approximations must satisfy this inequality in order
to ensure that the global convergence guarantees are met.

Some SQNM approximate the Hessian via a diagonal matrix [101, 138]; these
methods always rectify the absolute value of Bk with a convexity hyper-parameter
σ to handle nonconvexity, i.e., rectify (Bk, σ ) = max (|Bk | , σ ), where the function
rectify(·, σ ) is similar to the rectified linear unit (ReLU) [139] with a threshold of σ .

6.5 Hybrid Stochastic Second-Order Methods

To improve practical performance, a number of hybrid stochastic second-order algo-
rithms have been proposed. The term "hybrid" refers to the elaborate fusion of these
stochastic first- or second-ordermethods. Incorporating quasi-Newton techniqueswith
SGD methods could shorten the optimization process and eliminate the need to fine-
tune optimization hyperparameters.

Symmetric blOckwise truNcated optimIzation Algorithm (SONIA) [140] bridges
the gap between first- and second-order methods by computing a search direction in
one subspace that incorporates curvature information and performing a scaled gradient
descent step in the orthogonal complement.

Yang et al. [141] discovered an intriguing fact: the true Hessian matrix is frequently
a combination of a cheap part and a costly part, i.e.,∇2F(w) = H(w)+Π(w), where
H(w) is relatively cheap and accessible, while Π(w) is expensive or even not com-
putable. For example, the subsampled Hessian matrix, the GGN/FIM, or any other
approximation matrices are all examples of H(w), which stands for a matrix with par-
tial Hessian information. We can employ SQNM to update Π(w). For training neural
network, the Kronecker-factored quasi-Newton method [82, 142] was proposed. They
approximate the Hessian by a block-diagonal matrix that is the Kronecker product of
two considerably small matrices A−1

i and G−1
i , then they use BFGS update to approx-

imate them with innovative damping and Hessian-action [37, 39, 100] techniques.

7 Discussion and the Future

In this paper, we studied stochastic second-order approaches, particularly stochastic
quasi-Newton methods, for large-scale machine learning. We began by briefly out-
lining the optimization problem in machine learning, and then, we summarized the
existing stochastic first-order and second-order methods. The SQNM based on BFGS,
which is currently regarded as the most effective quasi-Newton updating formula, was
the main topic of discussion in this paper. Although there have been some other intelli-
gent works presented that we do not mention, the majority of the algorithms we cover
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are representative. Following that, we briefly discuss some future research directions
in stochastic second-order methods.

More complex optimization techniques have been used as computing hardware
has advanced. The second-order optimization method can speed up the training of
deep neural networks, but more effective optimization algorithms cannot be applied
directly because they frequently require higher-order function information, such as
Hessian, and the acquisition and calculation of this information are not feasible due
to the excessive number of parameters. Therefore, the practical application of second-
order method for training neural networks is limited by the enormous calculation cost.
Deep learning is robust to optimization algorithms; therefore, some advanced classic
optimization techniques can be reduced and applied to neural networks to significantly
speed up training.

Although no theory exists to clearly analyze or explain the precise effects of opti-
mization models and algorithms on the generalization of neural networks, relevant
research is still being conducted in this area, and optimization methods for deep
learning have become the mainstream, with many extraordinary algorithms emerging.
Theoretical evaluations of algorithm performance currently lag considerably behind
the practical application. The efficiency analysis of traditional optimization methods
often stops at the analysis of convergence order, while various improvements based on
SGD methods are the same convergence order in theory in deep learning. However,
even the progress of constant level can significantly increase training efficiency in
practice. This demonstrates that traditional theoretical analysis methods cannot fully
accommodate machine learning, but there is currently no reasonable additional theo-
retical analysis standard. In fact, the majority of the present approaches are difficult
to theoretically analyze in terms of performance and can only be evaluated through
tests with large amounts of data. Although the Adagrad method has been shown to
have good convergence and lower regret accumulation, practice shows that Adagrad
reduces the learning rate too quickly on many problems, resulting in unsatisfactory
training efficiency.

In addition to the significant theoretical challenges, the development of more effec-
tive optimization methods like K-FAC shows that there is still a large research space
to be discovered regarding the training of deep neural networks. Stochastic second-
order algorithms still have numerous limitations in comparison with the well-studied
first-order method. Although the current second-order algorithms utilized for deep
neural network training are significantly more effective, they have more restrictions
than SGD approaches in terms of the types of problems that may be addressed. For
instance, the implementation of K-FAC is complicated and heavily dependent on the
unique neural network structure, making it more challenging than other approaches.
The K-FAC approach can only be employed in the context of traditional convolution
networks, such as image recognition, whereas Transformer model, which is frequently
used in natural language processing, requires significant modification. Future research
will focus heavily on finding ways to get around these restrictions, create second-order
algorithms that are applicable to many applications, or enhance the training effect of
second-order algorithms.

Under some conditions, gradient descent can converge linearly in the deterministic
setting, whereas quasi-Newton methods can converge superlinearly. Typically, SGD
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can only achieve the sublinear convergence rate, but variance reduction can enable
linear convergence. As shown in Sect. 4, some SQNM achieve sublinear convergence.
SQNM with variance-reduced gradient can converge linearly; it does not recover a
superlinear convergence rate. Although the IQN can converge superlinearly by using
a proper quadratic approximation of individual functions, the memory required by the
IQN is O(nd2), which is unacceptable for high-dimensional or large-scale problems.
As a result, a superlinear convergent stochastic quasi-Newton approach with lower
costs is a promising area for further study [59]. Another point worth noting is that
most SQNM avoid possible difficulties with BFGS or L-BFGS updating by assuming
that the quality of gradient differences is sufficiently controlled. This is something that
can be addressed.

Dynamic sample size schemes [26, 107] have served as the foundation for many
variance reduction schemes in machine learning [60, 117]. The sample size used to
approximate the Hessian strongly influences the performance of the subsampled New-
ton method. In addition, the construction of gradient displacement y within allowable
error bounds also required careful consideration of sample size selection. The basic
idea behind dynamic sample size is to increase the size of the training sample used in
the gradient and Hessian evaluation by a factor. SGD methods converge linearly for
strongly convex problems by utilizing dynamic sample size, and this scheme is used
in stochastic second-order algorithms [143, 144]. If the initial sample size is suffi-
ciently large, Jin and Mokhtari [144] demonstrate that the subproblems can be solved
superlinearly fast by applying quasi-Newton methods. But only convex environments
are covered by their assurances. Another disadvantage is that the sample size needs to
be increased geometrically, and the literature offers no direction on how to select the
factor (AdaQN choose 2 [144]). As a result, investigating the use of dynamic sample
size strategies in quasi-Newton methods is an intriguing line of research that merits
further research. In addition, sampling is also a major concern in machine learning
stochastic optimization techniques.

The step size is a crucial hyperparameter in the optimization process that has a
direct impact on how well it works in practical applications. In deterministic settings,
line search can be used to determine the step size. However, stochastic line search is
computationally prohibited in machine learning since we only have subsampled data
on function value, gradient, and Hessian approximation. How to make sure that the
search direction is a descent direction in expectation is thefirst difficulty in constructing
the SLS. Another issue is that wemay reject an appropriate αk if the observed objective
function value increases, even if the true cost has decreased sufficiently. Some studies
proposed the IPQN test with a dynamic sample size. Another class of SLS is being
developed that is based on a probabilistic framework for the Hessian; these methods
are derived from the fact that all existing quasi-Newton algorithms can be interpreted
as maxima of Gaussian posterior probability distributions [99]. There has always been
a need for study in the area of stochastic line search.

In nonconvex settings, an essential challenge in designing quasi-Newton methods
is that the eigenvalues of (inverse) Hessian approximations are not uniformly bounded
above and away from zero. The positive-definite Hessian approximations were pre-
served in several studies via damping or regularization. Simultaneously, amore careful
calculation method of correction pairs {si , yi } is used to keep the gradient noise within
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an acceptable range. However, the self-correcting property of updates of the BFGS
type could be ruined by damping techniques. Moreover, BFGS has some disadvan-
tages when trying to enforce the positive definiteness of the approximated Hessian
matrices in a nonconvex setting. As a result, developing a convergent quasi-Newton
method for nonconvex settings is a very active direction of research.

Limitedmemory quasi-Newtonmethods form the basis of themajority of SQNM.A
significant challenge with L-BFGS is that, while memory sizem can have a significant
effect on performance, it is difficult to predictwhichmemory sizewillwork best. Boggs
and Byrd [145] recently proposed that each iteration choose a different memory size
adaptively. Additionally, a displacement aggregation strategy [146] is suggested for
the curvature pairs stored in an L-BFGS. These adaptive L-BFGS, however, cannot
be used directly in stochastic scenarios. Therefore, stochastic L-BFGS or L-SR1 with
adaptive memory size is a promising approach.

In the stochastic contexts, the intelligent fusion of second-ordermethods has already
demonstrated its special attractiveness. On somemachine learning problems, the struc-
tured stochastic quasi-Newton methods (S2QN) [141] framework is fairly competitive
with the state-of-the-art approaches. If the sample size is large enough, a local super-
linear convergence result is assured. On a number of CNN tasks, a new class of
Kronecker-factored quasi-Newton methods (KF-QN-CNN) [142] outperformed state-
of-the-art first- and second-order methods. Such methods have numerous obvious
advantages, including comparable memory requirements, lower per-iteration time
complexity, and less expensive computation. An intriguing study area would be to
create a better framework that combines the advantages of stochastic first-order and
second-order optimization methods.

Learning to optimize (L2O) has gained popularity in recent years, and it is based
on “learning to learn” or “meta learning” [147, 148]. The primary goal of L2O is
to develop optimization methods by leveraging neural networks. L2O has begun to
show great promise in a few applications and optimization domains. Egidio et al. [149]
proposed using the truncated backpropagation through time algorithm to learn the step-
size policy for L-BFGS in a constrained domain. On some problems, the suggested
step-size strategy is competitive with heuristically tuned optimization procedures. As
a result, we may be able to use objective function and gradient information to learn an
approximate “quasi-Newton” optimizer for machine learning. However, L2O research
is still in its infancy,with numerous open challenges and research opportunities ranging
from practice to theory.
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