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Abstract
Recently, alternating direction method of multipliers (ADMM) attracts much atten-
tions from various fields and there are many variant versions tailored for different
models. Moreover, its theoretical studies such as rate of convergence and extensions
to nonconvex problems also achieve much progress. In this paper, we give a survey
on some recent developments of ADMM and its variants.

Keywords Alternating direction method of multipliers · Global convergence · Rate
of convergence · Nonconvex optimization
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1 Introduction

In this paper, we survey the developments of the alternating direction method of
multipliers (ADMM) and its variants for solving the minimization problemwith linear
constrains and a separable objective function which is the sum of many individual
functions without coupled variables:

min

{
m∑
i=1

θi (xi )
∣∣∣ m∑

i=1

Ai xi = b, xi ∈ Xi , i = 1, · · · ,m

}
, (1)
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2 D. Han

where θi : R
ni → R ∪ {∞} are closed proper functions; Ai ∈ R

l×ni ; Xi ⊆ R
ni

are closed and convex nonempty sets; b ∈ R
l ; and

∑m
i=1 ni = n. As a linearly

constrained optimization problem, though the model (1) is special, it is rich enough to
characterize many optimization problems arising from various application fields, e.g.,
the image alignment problem in [1], the robust principal component analysis model
with noisy and incomplete data in [2], the latent variable Gaussian graphical model
selection in [3], the quadratic discriminant analysis model in [4] and the quadratic
conic programming in [5]; just list a few.

We now give some concrete application models.
�1-norm minimization: In some applications such as statistics, machine learning,

and signal processing, one wants to find a ‘sparse’ solution from the given data.
Let b ∈ R

l denote the observed signal and we know that it comes from a linear
transformation A ∈ R

l×n and l << n. The task is to find the sparsest solution, i.e.,
the vector that contains as many zero elements as possible and satisfies the equation
Ax = b. Let ‖y‖0 denote the number of nonzero elements of the vector y, then we
can formulate the problem as

min
x∈Rn

1

2
‖Ax − b‖2 + μ‖x‖0, (2)

where μ > 0 is a scalar regularization parameter that is usually chosen by cross-
validation. Introducing a new variable, we can reformulate (2) as

min
x∈Rn

{
1

2
‖Ax − b‖2 + μ‖y‖0

∣∣∣ x = y

}
, (3)

which is a special case of (1) with m = 2.
Since the zero norm is discontinuous and nonconvex, researchers usually replace

it with its convex hull, the �1-norm. Then, (2) and (3) can be relaxed to

min
x∈Rn

1

2
‖Ax − b‖2 + μ‖x‖1, (4)

and

min
x∈Rn

{
1

2
‖Ax − b‖2 + μ‖y‖1

∣∣∣ x = y

}
, (5)

respectively. The model (4) is just the well-known lasso [6].
A generalization of the above model is that it is not the solution itself but its linear

transformation is required to be sparse, and the optimization model is

min
x∈Rn

1

2
‖Ax − b‖2 + μ‖Fx‖0, (6)
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A Survey on Some Recent Developments… 3

where F is an arbitrary linear transformation. Again, after introducing an auxiliary
variable, we get a special case of (1) with m = 2,

min
x∈Rn

{
1

2
‖Ax − b‖2 + μ‖y‖0

∣∣∣ Fx = y

}
;

and replacing the zero norm with its convex hull, the �1-norm, we obtain its relaxed
model

min
x∈Rn

{
1

2
‖Ax − b‖2 + μ‖y‖1

∣∣∣ Fx = y

}
, (7)

which is called generalized lasso. When F is the difference matrix

Fi j =
⎧⎨
⎩

1, j = i + 1,
−1, j = i,
0, otherwise,

then ‖Fx‖1 is the total variation of x [7], which finds wide applications in image
processing.

Other �1-normminimization models that can be reformulated into (1) include basis
pursuit [8], Huber function fitting [9], group lasso [10], etc.

Matrix completion: In some applications such as the movie ratings in the Netflix
problem, part of the data (elements of a matrix) is unaccessible, and the task is filling
in the missing entries of a partially observed matrix. That is, given a ratings matrix in
which each entry (i, j) represents the rating of movie j by customer i if customer i
has watched movie j and is otherwise missing, we would like to predict the remaining
entries. A property that helps to accomplish the task is that the preferred matrix is low
rank, or its rank is known as priori; otherwise the hidden entries could be assigned
arbitrary values.

Let M be the matrix to be recovered and let � be the set of locations corresponding
to the observed entries ((i, j) ∈ � if Mi j is observed). The optimization model is [11]

min
x∈Rl×n

{
rank(x)

∣∣∣ xi j = Mi j , for (i, j) ∈ �
}

. (8)

As (5) to (2), we can also relax and reformulate (8) to the convex separable problem

min
x,y∈Rl×n

{
‖x‖∗

∣∣∣ x = y, yi j = Mi j , for (i, j) ∈ �
}

, (9)

where ‖x‖∗ denotes the nuclear norm of the matrix x which is defined as the sum of
its singular values. Then, we obtain a special case of (1) for m = 2 and with matrix
variables.

Robust principal component analysis:Given part of the elements of a data matrix
which is the superposition of a low rank matrix and a sparse matrix, the robust prin-
cipal component analysis (RPCA) is to recover each component individually [12].
Moreover, the given data may be corrupted by noises. As in the matrix completion
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4 D. Han

example, let � be the set of locations corresponding to the given entries, and let
P� : R

l×n → R
l×n be the orthogonal projection onto the span of matrices vanishing

outside of �, i.e., the i j-th entry of P�(x) is xi j if (i, j) ∈ � and zero otherwise. The
optimization model for the robust principal component analysis problem is

min
x∈Rl×n

{
rank(x) + τ1‖y‖0 + τ2‖P�(z)‖2F

∣∣∣ x + y + z = M
}

, (10)

where M is the given data, ‖ · ‖F denotes the Frobenius norm of a matrix. Relaxing
the rank and the zero norm with their convex hull, we obtain a relaxation [2]

min
x∈Rl×n

{
‖x‖∗ + τ1‖y‖1 + τ2‖P�(z)‖2F

∣∣∣ x + y + z = M
}

. (11)

Both (10) and (11) fall into the framework of (1) with m = 3.
Note that the original application models (2), (6), (8) and (10) contain discrete

terms such as the �0-norm and the rank function, and they are nonconvex optimization
problems. Solving these optimization problems are usually NP-hard (nondeterministic
polynomial hard). Peoples thus heuristically turn to solving their relaxation problems
(5), (7), (9) and (11). Fortunately, under suitable conditions, the relaxed problem and
the original one share the same solutions [11,13].

The relaxation problems (5), (7), (9) and (11) are convex optimization problems,
and there aremany state-of-the-art solvers for solving them. In particular, the problems
can be further reformulated as a linear programming (LP) or a semidefinite program-
ming (SDP) and the interior point algorithm and Newton’s methods can solve them.
Nevertheless, the rapid increase in the dimension brings great challenge to the solvers
[14]. However, the hardness induced by the high dimension can be alleviated by uti-
lizing the problems’ structure. In all these models, the objective function is the sum
of several individual functions, and the constraints are linear equalities. We call these
optimizationmodels, and the uniform (1), separable optimization problemswith linear
constraints.

Among the methods that take advantage of the separable structure of the model
(1), the alternating direction method of multipliers (ADMM) attracts much attentions.
For solving these modern application problems arising from big data and artificial
intelligence, ADMM performs reasonably well. Though the individual component
functions can be nonsmooth, the subproblems in ADMM are very easy to solve, and
they usually even possess closed-form solution. This makes the method relatively
simple in application. Moreover, in these applications, extremely high accuracy is not
required, and as a consequence, the slow ‘tail convergence’ in ADMM is not a serious
impact.

With the rapid development of ADMM, there have been several survey papers. In
particular:

• In [15], the authors gave a thorough survey of ADMM, mainly from the viewpoint
of the applications from statistics and machine learning. Essentially, it is these
applications from big data and artificial intelligence that make the renaissance of
ADMM.
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• In [16], the author delineated the origin of ADMM from a historical point of view.
ADMMoriginates fromnumerical partial differential equations [17–19] developed
it and extended it to variational inequality problems.

• In [20], the authors pointed out that while ADMM can be regarded as an inexact
application of the well-known augmented Lagrangian method (ALM), it is helpful
to the convergence analysis. They then suggested an accessible version of the
‘operator splitting’ version of the ADMM convergence proof.

Though these papers survey ADMM from different point of view, there are still very
large part of the recent developments that are not mentioned, e.g., the extension of
the classical two-block case to the multi-block case; the rate of convergence; and the
extension to the nonconvex case. In this paper, we give a thorough survey on these
aspects of the developments of ADMM.

ADMM is an augmented Lagrangian-based method. Introducing a Lagrange multi-
plier λ to the linear constraint, we can write down the augmented Lagrangian function
associated with (1)

Lβ(x1, · · · , xm, λ) =
m∑
i=1

θi (xi ) − 〈λ,

m∑
i=1

Ai xi − b〉 + β

2

∥∥ m∑
i=1

Ai xi − b
∥∥2,

where β > 0 is a parameter.
Throughout, the solution set of (1) is assumed to be nonempty. Moreover, we use

the notation X = X1 × X2 × · · · × Xm and x = (x1, x2, · · · , xm) ∈ R
n , and denote

by x−i the subvector of x excluding only xi , i.e.,

x−i := (x1, x2, · · · , xi−1, xi+1, · · · , xm) ∈ R
n−ni , i = 1, · · · ,m.

Similarly, denote by X−i the subset of X excluding only Xi , i.e.,

X−i := X1 × X2 × · · ·Xm ⊆ R
n−ni , i = 1, · · · ,m.

In the alternating direction method of multipliers for solving (1), the variable x1 plays
only an intermediate role and is not involved in the execution of the main recursion.
Therefore, the input for executing the next iterate of ADMM is only xk−1 and λk , and
in the convergence analysis, we usually use the sequence {(xk−1, λ

k)}. For notation
convenience, let v = (x−1, λ) and w = (x, λ). The variables with superscript such as
v∗, vk , w∗ and wk can be defined similarly.

For any vector x , min{0, x} is a vector with the same dimension of x , whose i th
element is xi if xi < 0 and 0 otherwise. The Euclidean norm is denoted by ‖ · ‖.
For any convex function θ : X → (−∞,+∞], we use dom θ to denote its effective
domain, i.e., dom θ := {x ∈ X : θ(x) < ∞}; epi θ to denote its epigraph, i.e.,
epi θ := {(x, t) ∈ X × R : θ(x) � t}; and θ∗ : X → (−∞,+∞] represents
its Fenchel conjugate, i.e., θ∗(y) = sup

x
{y�x − θ(x)}. The multivalued mapping

∂θ : R
n ⇒ R

n is called the subdifferential of θ and its element ξ ∈ ∂θ(x) is a
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6 D. Han

subgradient of θ satisfying

θ(z) � θ(x) + 〈ξ, z − x〉, ∀z.

For a setC inR
n , ri(C) denotes the relative interior ofC ; and PC denotes the Euclidean

projector onto C , which maps a vector in R
n onto the nearest point of C if it is closed.

The rest of the paper is organized as follows. In the next section, we give a simple
review of the augmented Lagrangian method due to the fact that (one of the main
understanding of ADMM), ADMM is an approximate application of ALM, using
one path of block coordinate minimization to approximately minimize the augmented
Lagrangian per iteration. We then review the classical ADMM in Sect. 3, where we
divide it into four subsections focusing on four different factors. The first one is
deriving ADMM from the Douglas–Rachford splitting method (DRSM) which helps
understand the convergence analysis, and the other three factors will impact the effi-
ciency of the implementation of ADMM, i.e., selection of the penalty parameter, easier
subproblems from splitting, and approximate solution of the subproblems. In Sect. 4,
we review the results on the rate of convergence of ADMM, including the sublinear
rate and the linear rate of convergence. In Sect. 5, we review the extensions and vari-
ants of ADMM. We first present the counter example from [21], which shows that for
the multi-block case, although the direct extension of ADMMconverges and performs
well inmany applications, it does not converge for the convex separable problem of the
form (1) whenm � 3. We then review two development directions for the multi-block
case, i.e., conditions that guarantee the convergence and simple variants of the algo-
rithm such as a correction-step. In Sect. 6, we review the recent develop of ADMM
for solving (1) where some of the component functions θi are nonconvex. Usually, it
is regarded that when there is a nonconvex component, the minimization problem (1)
is harder than its convex counterpart. We show that for some special cases, e.g., when
m = 2 and the model is ‘strongly+weakly’ convex1, it is the same to the total convex
case. For the general model when there is no strongly convex component, we can also
have some results with the aid of the Kurdyka–Lojasiewicz inequality [22,23] or(and)
the error bound conditions. In Sect. 7, we list some future research questions (topics)
and conclude the paper.

2 The Augmented LagrangianMethod

The classical augmented Lagrangianmethod (ALM) [24,25] for solving the linearly
constrained optimization problem

min
{
θ(x)

∣∣∣ Ax = b
}

, (12)

1 A function f is ‘strongly’ convex with modulus α1 > 0 if f − α1
2 ‖·‖2 is a convex function; it is ‘weakly’

convex with modulus α2 > 0 if f + α2
2 ‖ · ‖2 is convex.
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A Survey on Some Recent Developments… 7

where θ : R
n → R∪{∞} is a closed proper convex function, A ∈ R

l×n , and b ∈ R
l .

The iterative scheme of (ALM) is

{
xk+1 = argmin

x
Lβ(x, λk),

λk+1 = λk − τβ(Axk+1 − b),
(13)

where τ ∈ (0, 2) is a parameter and

Lβ(x, λ) = θ(x) − 〈λ, Ax − b〉 + β

2
‖Ax − b‖2,

is the augmented Lagrangian function, λ ∈ R
l is the Lagrange multiplier associated

with the linear equality constraint, and β > 0 is a penalty parameter.
Let

dβ(λ) = inf
x
Lβ(x, λ)

denote the augmented dual function of (12). Then, dβ is a differentiable function and

∇dβ(λ) = −(Ax(λ) − b),

where x(λ) is the optimal solution of the following problem (with parameter λ)

x(λ) ∈ argmin
x

Lβ(x, λ). (14)

Here and throughout the paper, we use ‘argmin’ to denote the solution set of the
minimization problem. Moreover, ∇dβ is Lipschitz continuous with constant 1/β.
Hence, the augmented Lagrangian method can be viewed as a gradient method for the
augmented dual problem

max
λ

dβ(λ).

The differentiability of dβ is based on the fact that, although the solution x(λ) is
usually not unique, Ax is a constant over X(λ), where X(λ) denotes the set of optimal
solutions for (14). The following two lemmas are Lemmas 2.1-2.2 in [26], respectively.
The proof is mainly based on the Danskin’s Theorem [27, Prop. 4.5.1].

Lemma 1 For any λ ∈ R
l , Ax is a constant over X(λ). Thus, the dual function dβ(·)

is differentiable everywhere and

∇dβ(λ) = −(Ax(λ) − b),

where x(λ) ∈ X(λ) is any minimizer of (14).
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8 D. Han

Lemma 2 ∇dβ is Lipschitz continuous with constant 1/β. That is,

‖∇dβ(λ1) − ∇dβ(λ2)‖ � 1

β
‖λ1 − λ2‖, ∀λ1, λ2 ∈ R

l .

The optimality condition for (12) are the primal feasibility and dual feasibility

Ax∗ − b = 0, A�λ∗ ∈ ∂θ(x∗).

Assuming that strong duality holds, the optimal value of the primal and the dual
problems are the same. Once we get the dual optimal solution λ∗, the original solution
can be obtained by solving the optimization problem

min
x

Lβ(x, λ∗).

A predecessor of the augmented Lagrangian method is the dual ascent method. The
Lagrangian function for (12) is

L(x, λ) = θ(x) − 〈λ, Ax − b〉,

and the dual function is

d(λ) = inf
x

L(x, λ) = −θ∗(A�λ) + b�λ,

where θ∗ is the conjugate of θ [28]. The iterative scheme of the dual ascent method is

{
xk+1 = argmin

x
L(x, λk),

λk+1 = λk − αk(Axk+1 − b),

where αk > 0 is a step size.
The augmentedLagrangianmethod is usuallymore efficient (less cpu time infinding

an approximate solution) and robust (performance that does not heavily depend on
parameters such as the initial point, the step size) than the dual ascentmethod.However,
the dual ascent method has its advantage that it can lead to a decentralized algorithm
in the primal subproblems, e.g., the objective function is the sum of some component
functions. However, it is not an easy task to have a ‘full’ decentralized manner in both
primal and dual variables; the interested reader is referred to [29].

3 The Alternating DirectionMethod of Multipliers

The classical alternating direction method of multipliers (ADMM) is for solving
the linearly constrained convex optimization problemwith two blocks of variables and
functions

min
{
θ1(x1) + θ2(x2)

∣∣∣ A1x1 + A2x2 = b
}

, (15)
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A Survey on Some Recent Developments… 9

where θi : R
ni → R∪{∞} are closed proper convex functions, Ai ∈ R

l×ni , i = 1, 2,
and b ∈ R

l .

Definition 1 A KKT point for problem (15) is some (x∗
1 , x

∗
2 , λ

∗) ∈ R
n1 × R

n2 × R
l

such that

1. x∗
1 minimizes θ1(x1) − 〈λ∗, A1x1〉 with respect to x1;

2. x∗
2 minimizes θ2(x2) − 〈λ∗, A2x2〉 with respect to x2;

3. A1x∗
1 + A2x∗

2 = b.

Let λ ∈ R
l be the Lagrange multiplier, and let β > 0 be a penalty parameter. The

augmented Lagrangian function of (15) is

Lβ(x1, x2, λ) = θ1(x1)+θ2(x2)−〈λ, A1x1+A2x2−b〉+β

2
‖A1x1+A2x2−b‖2, (16)

and the iterative scheme of ADMM is⎧⎪⎪⎨
⎪⎪⎩
xk+1
1 = argmin

x1
Lβ(x1, xk2 , λ

k),

xk+1
2 = argmin

x2
Lβ(xk+1

1 , x2, λk),

λk+1 = λk − τβ(A1x
k+1
1 + A2x

k+1
2 − b),

(17)

where τ ∈
(
0, 1+√

5
2

)
. In most part of the paper, we omit the parameter τ for succinct-

ness of the discussion (τ is fixed to be 1); though in applications, a larger τ is much
advisable. ADMM was originally proposed by Glowinski and Marrocco [17], and
Gabay and Mercier [18]. Recently, due to its great success in solving the optimization
problems arising frommachine learning, statistics, artificial intelligence, ADMM gets
more and more attentions, and there have several survey papers from different point
of view [15,16,20].

One can certainly group the two blocks of variables and functions into a single
variable and a single function, and then use the augmented Lagrangian method to
solve it, with the following iterative scheme:

{
(xk+1

1 , xk+1
2 ) = arg min

x1,x2
Lβ(x1, x2, λk),

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b).

(18)

However, such a scheme does not exploit the separable structure of the problem (15),
and usually, the (x1, x2)-minimization problem has to be iteratively solved. Obviously,
the scheme (17) is capable of exploiting the properties of θ1 and θ2 individually,
making the subproblems much easier and sometimes easy enough to have closed-
form solutions.

Comparing the (x1, x2)-minimization problem in (18) and (17), we can understand
the ADMM as a Gauss–Seidel implementation for solving (18), approximately with
a single iterative [16]. On the other hand, it can also be understood as the Douglas–
Rachford splitting method applying to the dual problem of (15) [30].
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10 D. Han

3.1 Deriving ADMM fromDouglas–Rachford Splitting

There are several ways deriving ADMM from the Douglas–Rachford splitting
method and here we adopt that in [31]. Consider the problem (15) where θ1 and
θ2 are proper closed convex functions. Its dual function is

d(λ) = inf
x1,x2

θ1(x1) + θ2(x2) − λ�(A1x1 + A2x2 − b)

= inf
x1

{θ1(x1) − λ�A1x1} + inf
x2

{θ2(x2) − λ�A2x2} + λ�b

= − sup
x1

{−θ1(x1) + λ�A1x1} − sup
x2

{−θ2(x2) + λ�A2x2} + λ�b

= −θ∗
1 (A�

1 λ) − θ∗
2 (A�

2 λ) + λ�b,

and the dual problem is

max
λ

d(λ) = −θ∗
1 (A�

1 λ) − θ∗
2 (A�

2 λ) + λ�b, (19)

where λ ∈ R
l is the dual variable. From the Fermat’s rule, if λ∗ is an optimal solution

of the dual problem (19), then
0 ∈ ∂d(λ∗). (20)

Let ‘ri,’ ‘dom,’ and ‘◦’ denote the relative interior of a set, the domain of a function,
and the composition of two operators, respectively. Assuming that

ri(dom(θ1 ◦ A�
1 )) ∩ ri(dom (θ2 ◦ A�

2 )) �= ∅,

then it follows from [28, Thm. 23.8] and [28, Thm. 23.9] that

∂d(λ) = −A1∂θ∗
1 (A�

1 λ) − A2∂θ∗
2 (A�

2 λ) + b. (21)

Problem (20)–(21) is a special case of the zero finding problem

0 ∈ F(λ∗) = (F1 + F2)(λ
∗), (22)

where
F1(λ) = A1∂θ∗

1 (A�
1 λ) − b and F2(λ) = A2∂θ∗

2 (A�
2 λ). (23)

For any α > 0, we have [30]

0 ∈ (F1 + F2)(λ) ⇐⇒ z = (1/2I + 1/2RαF1RαF2)(z), λ = JαF2(z), (24)

where for amaximalmonotone operator T : R
n ⇒ R

n , JαT = (I+αT )−1 denotes the
resolvent of T , and RαT = 2JαT − I denotes its Cayley operator (reflection operator).
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A Survey on Some Recent Developments… 11

The iteration scheme of Douglas–Rachford splitting method (DRSM) [32] for solving
(22) is

λk+1 = JαF2(z
k),

vk+1 = JαF1(2λ
k+1 − zk),

zk+1 = zk + vk+1 − λk+1.

Evaluating the resolvent involves a minimization step. Using the structure of F2 in
(23), let λk+1 = JαF2(z

k), and xk+1
2 ∈ ∂θ∗

2 (A�
2 λk+1), then

λk+1 = JαF2(z
k) ⇐⇒ λk+1 = zk − αA2x

k+1
2 .

Recall that for any proper closed convex function f and any vector x , a vector ξ ∈
∂ f (x) is equivalent to x ∈ ∂ f ∗(ξ) [28, Thm 23.5]. Consequently,

xk+1
2 ∈ ∂θ∗

2 (A�
2 λk+1) ⇐⇒ A�

2 λk+1 ∈ ∂θ2(x
k+1
2 )

⇐⇒ 0 ∈ ∂θ2(x
k+1
2 ) − A�

2 z
k + αA�

2 A2x
k+1
2

⇐⇒ xk+1
2 = argmin

x2

{
θ2(x2) − (zk)�A2x2 + α

2
‖A2x2‖2

}
.

Similarly, for vk+1 = JαF1(2λ
k+1 − zk), let x̄ k+1

1 ∈ ∂θ∗
1 (A�

1 vk+1), then we get

x̄ k+1
1 = argmin

x1

{
θ1(x1) − (zk − 2αA2x

k+1
2 )�(A1x1 − b) + α

2
‖A1x1 − b‖2

}
,

vk+1 = zk − α(A1 x̄
k+1
1 − b) − 2αA2x

k+1
2 .

Making these explicit together, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
2 = argmin

x2

{
θ2(x2) − (zk)�A2x2 + α

2
‖A2x2‖2

}
,

λk+1 = zk − αA2x
k+1
2 ,

x̄ k+1
1 = argmin

x1

{
θ1(x1) − (zk + 2αA2x

k+1
2 )�(A1x1 − b) + α

2
‖A1x1 − b‖2

}
,

vk+1 = zk − α(A1 x̄
k+1
1 − b) − 2αA2x

k+1
2 ,

zk+1 = zk − α(A1 x̄
k+1
1 + A2x

k+1
2 − b).

Removing λk+1 and vk+1 and then substituting zk = λk − α(A1 x̄ k1 − b), we have

⎧⎪⎪⎨
⎪⎪⎩
xk+1
2 = argmin

x2

{
θ2(x2) − (λk)�A2x2 + α

2
‖A1 x̄

k
1 + A2x2 − b‖2

}
,

λk+1 = λk − α(A1 x̄ k1 + A2x
k+1
2 − b),

x̄ k+1
1 = argmin

x1

{
θ1(x1) − (λk+1)�(A1x1 − b) + α

2
‖A1x1 + A2x

k+1
2 − b‖2

}
.
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12 D. Han

Finally, we swap the order to get the correct dependency and substitute x̄ k1 = xk+1
1 to

get the alternating direction method of multipliers:

⎧⎪⎨
⎪⎩
xk+1
1 = argminx1

{
θ1(x1) − (λk)�A1x1 + α

2 ‖A1x1 + A2xk2 − b‖2} ,

xk+1
2 = argminx2

{
θ2(x2) − (λk)�A2x2 + α

2 ‖A1x
k+1
1 + A2x2 − b‖2

}
,

λk+1 = λk − α(A1x
k+1
1 + A2x

k+1
2 − b).

From the above subsection, we can see that the classical alternating direction
method of multipliers for solving (15) can be viewed as an application of the Douglas–
Rachford splitting method (24) to solving the optimality condition of the dual (19).
As a consequence, the global convergence of ADMM can be obtained directly from
the convergence result of the Douglas–Rachford splitting method [30, Thm. 8]. Here,
we summarize the convergence of ADMM in a similar way of [20, Prop. 4.6].

Theorem 1 Consider the problem (15) where θ1 and θ2 are proper closed convex
functions. Let

d1(λ) := min
x1∈Rn1

{θ1(x1) − 〈λ, A1x1〉}, d2(λ) := min
x1∈Rn2

{θ2(x2) − 〈λ, A2x2〉}. (25)

Suppose that all subgradients of the functions d1 and d2 at each point λ ∈ R
l take the

form A1 x̄1 and A2 x̄2, respectively, where x̄i , i = 1, 2 attain the stated minimum over
xi in (25). Let the constant β > 0 be given and there exists a KKT point for problem
(15). Then, the sequences {xk1 } ⊂ R

n1 , {xk2 } ⊂ R
n2 , and {λk} ⊂ R

l conforming to the
recursions (17) converge, i.e., λk → λ∞, A1xk1 → A1x∞

1 , A2xk2 → A2x∞
2 , where

(x∞
1 , x∞

2 , λ∞) is some KKT point for problem (15).

3.2 Selection of the Penalty Parameter

The penalty parameter β in the augmented Lagrangian function plays an important
role for the methods, both ALM and ADMM. Experience on applications has shown
that, if the fixed penalty β is chosen too small or too large, the efficiency of the
methods can be degraded significantly. In fact, there is no ‘optimal’ fixed parameter.
For ALM,Rockafellar proposed that it should be varied along the iteration [33,34]. For
ADMM, He and Yang [35] suggest to choose βk either in an increasing manner or in
a decreasing manner; [36] took a decreasing sequence of penalty symmetric positive-
definite matrices; and in [37,38], the authors designed a self-adaptive strategy for
choosing the parameter, i.e., the parameter can be increased and can be decreased
according to some rules. The adjusting rule in [37,38] is:

βk+1 :=
⎧⎨
⎩

(1 + μ)βk, if ‖rk‖ > ν1‖sk‖,
βk/(1 + μ), if ‖rk‖ < ν2‖sk‖,
βk, otherwise,

(26)
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where μ, ν1, ν2 are positive parameters, and

rk = A1x
k
1 + A2x

k
2 − b

and

sk = βk A�
1 A2(x

k+1
2 − xk2 )

denote the primal error and the dual error associated with the iteration, respectively.
The philosophy behind this ‘simple scheme that oftenworkswell’ [15] is as follows.

The optimality conditions for (15) are primal feasibility

0 = A1x
∗
1 + A2x

∗
2 − b, (27)

and dual feasibility

0 ∈ ∂θ1(x
∗
1 ) − A�

1 λ∗,

and
0 ∈ ∂θ2(x

∗
2 ) − A�

2 λ∗. (28)

From the ADMM iteration scheme (17) we can see that

0 ∈ ∂θ1(x
k+1
1 ) − A�

1 λk+1 − βk A
�
1 A2(x

k
2 − xk+1

2 ),

and

0 ∈ ∂θ2(x
k+1
2 ) − A�

2 λk+1.

Hence, we can see that

⎛
⎝ rk+1

sk+1

0

⎞
⎠ ∈

⎛
⎝ A1x

k+1
1 + A2x

k+1
2 − b

∂θ1(x
k+1
1 ) − A�

1 λk+1

∂θ2(x
k+1
2 ) − A�

2 λk+1

⎞
⎠ ,

and the primal residual and the dual residual of the iterative scheme (17) to the optimal-
ity conditions (27)–(28) are rk+1 and sk+1. Since ADMM is a primal–dual algorithm,
it will be desirable that the primal residual and the dual residual behave in a coherent
way. The adjust rule (26) is exactly that when comparing to the dual residual the primal
residual is too large, it increases the penalty parameter; when comparing to the dual
residual the primal residual is too small, it decreases the penalty parameter; otherwise,
there is no need of adjustment for the parameter.

We have the following convergence results on the alternating direction methods of
multipliers with self-adaptive parameter selecting strategy [37, Theorem 4.1].
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14 D. Han

Theorem 2 Consider the optimization problem (15) and let {xk1 , xk2 , λk} be the
sequence generated by the self-adaptive ADMM,

⎧⎪⎪⎨
⎪⎪⎩
xk+1
1 = argmin

x1
Lβk (x1, x

k
2 , λ

k),

xk+1
2 = argmin

x2
Lβk (x

k+1
1 , x2, λk),

λk+1 = λk − τβk(A1x
k+1
1 + A2x

k+1
2 − b),

(29)

where τ ∈
(
0, 1+√

5
2

)
, and {βk} is selected according to the strategy (26). Then,

λk → λ∞, A1xk1 → A1x∞
1 , A2xk2 → A2x∞

2 , where (x∞
1 , x∞

2 , λ∞) is some KKT
point of (15).

3.3 Easier Subproblems

Onemain reason for the renaissance of ADMM is that when applying to themodern
application models, the subproblems are easy to solve, and in fact, in many cases, they
possess closed-form solutions. For example, for solving the �1-norm minimization
problem (5), the iterative scheme is

xk+1 := (A�A + β I )−1(A�b + β(yk − λk)),

yk+1 := Sν/β(xk+1 + λk),

λk+1 := λk − (xk+1 − yk+1),

where for α > 0, Sα is the soft thresholding operator and is defined as

Sα(x) :=
⎧⎨
⎩
x − α, if x > α,

0, if |x | � α,

x + α, if x < −α.

The x-minimization is a system of linear equations, and the coefficient matrix is
symmetric and positive definite. Hence, it can be solved easily; particularly, when A
has some circulant structure as those in signal/image processing, the system can be
solved via fast Fourier transform and the computation cost is very low. However, when
we have to solve the subproblems via iterative algorithms, we need to balance the cost
on the subproblems solving and the outer iteration. That is, we need design variant of
the classical ADMM with easier subproblems.

In applications, there are usually simple constraints for the variables, e.g., in image
processing, the value of pixels should be bounded in [0, 255] or [0, 1], and we have
the following optimization model [39]:

min
{
θ1(x1) + θ2(x2)

∣∣∣ A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2

}
, (30)

where Xi are closed convex subsets of R
ni , i = 1, 2. Certainly, we can move the

constraints to the objective function via the indicator function for a given closed
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convex set S

δS(x) =
{
0, if x ∈ S,

∞, otherwise.

Nevertheless, the corresponding subproblems are still constrained optimization prob-
lems, which usually exclude the possibility of having closed-form solutions, even for
the case that both the function θi and Ai are simple enough, e.g., when θi is the �1-
norm and Ai is the identity. In [40], the authors designed a new variant ADMM-type
method, in which the main cost is to solve the following optimization problems

⎧⎪⎪⎨
⎪⎪⎩
xk+1
1 = argmin

x1∈Rn1

{
θ1(x1) + 1

2β

∥∥∥x1 − sk1

∥∥∥2} ,

xk+1
2 = argmin

x2∈Rn2

{
θ2(x2) + 1

2β

∥∥∥x2 − sk2

∥∥∥2} ,

(31)

where ski := xki + βξ ki − γαkei (xki , λ
k)), ξ ki = (1/β)(sk−1

i − xki ) ∈ ∂θi (xki ), and

ei (x
k
i , λ

k) = xki − PXi [xki − β(ξ ki − A�
i λk)],

αk is the step size that computed according to some formula to ensure convergence,
which can also be chosen smaller than a threshold.

Comparing the iterative scheme (31) with the ADMM scheme (17), we can find
that

1. Nomatter if there is a constraintXi for the i th-minimization problem, and nomatter
what the constraint matrix Ai is, the i th-minimization problem in (31) is always
the evaluation of the proximal operator of the component function θi at a given ski .
This will be particularly advantageous when both the function θi and the set Xi are
simple in the sense that evaluation their individual proximal operator (projection
onto the set) is easy, while evaluation the proximal operator jointly is difficult.

2. The iterative scheme (31) is essentially coming from the application of theDouglas–
Rachford splitting method [32] to the optimality condition for (15), following with
a simple decouple skill. Recall that ADMM is the application of the Douglas–
Rachford splitting method [32] to the dual of (15), and (31) provides an alternative
for solving (15). The numerical results reported in [40] show the advantage of
(31) over ADMM, especially when the subproblems of ADMM do not possess
closed-form solutions while (31) has.

The following result shows that the alternating direction methods of multipliers
with easier subproblems is convergent [40, Thm. 4.1].

Theorem 3 Consider the optimization problem (30) and let {xk1 , xk2 , λk} be the
sequence generated by (31). Then, {(xk1 , xk2 , λk)} converges to a solution of (30).

Remark 1 Besides the numerical advantage listed above, the customized decompo-
sition algorithm also has some advantages from the theoretical point of view. In
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16 D. Han

particular, as stated in Theorem 3, the ‘whole’ sequence {(xk1 , xk2 , λk)} converges to a
solution {(x∞

1 , x∞
2 , λ∞)}.

3.4 Approximate Solutions of the Subproblems

The slow ‘tail convergence’ in ADMM is used to be criticized by some researchers.
However, in recent applications, the large-scale optimization problems are not required
to be solved to obtain solutions with extremely high accuracy. Hence, there is no
need to get solutions with high accuracy per iteration. On the same time, when the
subproblems are solved numerically, we must design some stopping criteria to exit
the inner iteration. Only after this, ADMM can be a practical algorithm. Although it
is a long history adopting approximate solutions of subproblems [41], the first inexact
ADMM comes from [38]. In [38], besides selecting the penalty parameter in a self-
adaptive way, they designed an accuracy criterion, under which the algorithm still
converges.

To get an inexact ADMM, the authors [38] modified the subproblems in (16) by
adding a quadratic term as done in [42], and the iterative scheme is

⎧⎪⎪⎨
⎪⎪⎩
xk+1
1 ≈ argmin

x1
Lβ(x1, xk2 , λ

k) + 1
2‖x1 − xk1‖2Hk

1
,

xk+1
2 ≈ argmin

x2
Lβ(xk+1

1 , x2, λk) + 1
2‖x2 − xk2‖2Hk

2
,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b).

(32)

The accuracy criterion is
‖xk+1

i − x̃ k+1
i ‖ � νi,k . (33)

The scaler sequences {νi,k} are nonnegative sequences satisfying ∑∞
k=1 νi,k < +∞,

Hk
i � α I with α > 0, and x̃ k+1

i are the exact solutions of the corresponding subprob-
lems.

At the first glance, it seems the accuracy criterion (33) is impractical, since it
involves the exact solution x̃ k+1

i . However, since the objective functions in (33) are
strongly convex with modulus rk > α > 0, according to Lemma 1 in [38], we have
that for x1-minimization problem

‖xk+1
1 − x̃ k+1

1 ‖2 � 2μ〈E1,μ(xk+1
1 ), f1,k(x

k+1
1 )〉 − ‖E1,μ(xk+1

1 )‖2, ∀ μ � r−1
k ,

(34)
where

E1,μ(xk+1
1 ) = xk+1

1 − PX1 [xk+1
1 − μ f1,k(x

k+1
1 )], (35)

and ξ k+1
1 ∈ ∂θ1(x

k+1
1 ),

f1,k(x
k+1
1 ) := ξ k+1

1 − A�
1 λk + βA�

1 (A1x
k+1
1 + A2x

k
2 − b) + Hk

1 (xk+1
1 − xk1 ). (36)
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For the exact solution x̃ k+1
1 , replacing xk+1

1 with x̃ k+1
1 in (35) and ξ k+1

1 ∈ ∂θ1(x
k+1
1 )

with ξ̃ k+1
1 ∈ ∂θ1(x̃

k+1
1 ) in (36), we have

E1,μ(x̃ k+1
1 ) = 0, μ〈E1,μ(x̃ k+1

1 ), f1,k(x̃
k+1)〉 − ‖E1,μ(x̃ k+1

1 )‖2 = 0

and recall that (see Eq. (2.2) in [38])

2μ〈E1,μ(xk+1
1 ), f1,k(x

k+1
1 )〉 − ‖E1,μ(xk+1

1 )‖2 � ‖E1,μ(xk+1
1 )‖2.

We can take μ � α−1 and find xk+1
1 such that

2μ〈E1,μ(xk+1
1 ), f1,k(x

k+1
1 )〉 − ‖E1,μ(xk+1

1 )‖2 � ν21,k . (37)

This guarantees that ‖xk+1
1 − x̃ k+1

1 ‖ � ν1,k . Note that there is no x̃
k+1
1 in (37). Inequal-

ity (37) provides a practical and achievable condition of satisfying (33). Following the
same discussion, a similar condition of satisfying (33) can be established for the x2-
minimization problem.

The inequality (34) is an error bound inequality [43] in the sense that the left is the
distance between a point xk+1

1 and a solution point x̃ k+1
1 , and the right-hand side is a

function of xk+1
1 . This is due to the quadratic terms added to the objective functions,

which makes the objective function being strongly convex. Besides this property,
another important effect is to improve the condition number of the problem. Recall
that the convergence property of the numerical algorithms for solving the optimization
problems, from the steepest gradient method, the conjugate gradient method, to the
Newton’s type methods, all depend on the condition number. From this point of view,
the quadratic term makes more state-of-the-art solvers to be available.

Note that we also have freedom in choosing the matrix Hk , and in [38], it suggests
that we choose it in a self-adaptive way as (26). Note however, in some applications as
those listed in the introduction part, the original objective function θi is easy enough
in the sense that it possesses the separable structure, e.g., the �1-norm, which is the
sum of the absolute of its entries, while the coefficient matrix Ai may not possess any
structure. In other words, the difficulty in solving the ADMM subproblems is caused
by the augmented quadratic term. In this case, we can select Hk

i = μi,k I − βA�
i Ai ,

leading to the proximal operator evaluating subproblems:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1∈Rn1

{
θ1(x1) + μ1,k

2

∥∥∥x1 − (xk1 + (1/μ1,k)A
�
1 λ̄k)

∥∥∥2} ,

xk+1
2 = argmin

x2∈Rn2

{
θ2(x2) + μ2,k

2

∥∥∥x2 − (xk2 + (1/μ2,k)A
�
2 λ̂k)

∥∥∥2} ,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b),

(38)

where

λ̄k = λk − β(A1x
k
1 + A2x

k
2 − b),
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18 D. Han

and

λ̂k = λk − β(A1x
k+1
1 + A2x

k
2 − b).

The iterative scheme (38) is called linearized alternating direction method of multi-
pliers [44–46], whose main computational task is the proximal operator evaluating,
and has shown its advantage in solving modern optimization problems arising from
statistics [47].

The technique of linearizing the quadratic term of the augmented Lagrangian func-
tion to reduce the computational cost in solving the subproblems can be dated back to
the work in [48], where the authors proposed the following iterative scheme

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1∈Rn1

{
θ1(x1) + μ1,k

2

∥∥∥x1 − (xk1 + (1/μ1,k)A
�
1 λ̄k)

∥∥∥2} ,

xk+1
2 = argmin

x2∈Rn2

{
θ2(x2) + μ2,k

2

∥∥∥x2 − (xk2 + (1/μ2,k)A
�
2 λ̄k)

∥∥∥2} ,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b).

(39)

Comparing the two augmented Lagrangian-based splitting schemes (38) and (39), we
can find that the only difference between them is that (38) solves the twominimization
problems in a Gauss–Seidel manner, while (39) solves them in a Jacobian manner.
Some variants of (39) can be found in [49].

In some applications, each component function θi itself is composed with a smooth
convex function and a simple nonsmooth function, i.e., θi = ϑi + ιi where ϑi is
a smooth convex function and ιi is a nonsmooth convex function. The optimization
model (15) is

min
{
ϑ1(x1) + ι1(x1) + ϑ2(x2) + ι2(x2)

∣∣∣ A1x1 + A2x2 = b
}

. (40)

There are two smooth parts in the xi -minimization problem in (17),ϑi and the quadratic
term. One can choose to either linearize one of them, or linearize both of them,
depending on the problem data’s structure. If one linearizes both of them, the resulting
linearized ADMM has the following iterative scheme:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1∈Rn1

{
ι1(x1) + μ1,k

2

∥∥∥x1 − (xk1 + (1/μ1,k)[∇ϑ1(x
k
1 ) + A�

1 λ̄k])
∥∥∥2} ,

xk+1
2 = argmin

x2∈Rn2

{
ι2(x2) + μ2,k

2

∥∥∥x2 − (xk2 + (1/μ2,k)[∇ϑ2(x
k
2 ) + A�

2 λ̂k])
∥∥∥2} ,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b),

(41)
and the xi -minimization problem is simply the evaluating of the proximal operator of
the nonsmooth convex function ιi . Also, the minimization subproblems can be solved
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in a parallel manner,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1∈Rn1

{
ι1(x1) + μ1,k

2

∥∥∥x1 − (xk1 + (1/μ1,k)[∇ϑ1(x
k
1 ) + A�

1 λ̄k])
∥∥∥2} ,

xk+1
2 = argmin

x2∈Rn2

{
ι2(x2) + μ2,k

2

∥∥∥x2 − (xk2 + (1/μ2,k)[∇ϑ2(x
k
2 ) + A�

2 λ̄k])
∥∥∥2} ,

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b).

(42)
The inequality (33) and the summable requirement on the error parameter sequences

{νi,k} (or squares summable [50]) makes it not always handy in applications. Actu-
ally, one will prefer to relative error criteria. The relative criterion was introduced
in [51] for finding the zero of a maximal monotone operator, which includes convex
optimization and monotone variational inequality problems as special cases. Using an
approximate solution under relative accuracy criterion, the next iterate is generated
by a projection onto a hyperplane. Numerical algorithms with relative accuracy cri-
teria are further studied in [52–54]. For the problem (1) with one block, i.e., m = 1,
[55] proposed a practical relative error criterion for augmented Lagrangian method
(13). Exploiting the relationship between the ADMM and both the proximal point
algorithm and Douglas–Rachford splitting method for maximal monotone operators,
recently, [56,57] proposed two new inexact ADMMs. In [56], a summable criterion
and a relative criterion were presented. The relative criterion is presented in [56,57],
while it is restrictive in the sense that it allows only one of the two subproblems to be
minimized approximately, which covers commonly encountered special cases such as
lasso. Most recently, [58] proposed two relative criteria for ADMM. In the first one,
it was also restricted that only one subproblem can be solved approximately, and to
improve the numerical performance, the parameter τ can be larger. In the second one,
both subproblems were allowed to be solved approximately, while the dual step size
parameter τ was restricted less than 1.

4 Rate of Convergence

With the popular of the research on the numerical variants and applications of the
alternating direction method of multipliers, theoretical analysis on its convergence
behavior, in addition of global convergence, rate of convergence attracts more and
more attentions.

4.1 Sublinear Rate

For first-order-based method, a measure for the convergence speed is the iteration
complexity, O(1/t), O(1/t2) and so on, where t is the iteration counter [59]. A worst-
case O(1/t) convergence rate means that the solution accuracy under certain criteria
is of the order O(1/t) after t iterations of the iterative scheme, or equivalently, that
it requires at most O(1/ε) iterations to find a solution to an accuracy of ε. For the
convex optimization problem (15), ADMMs convergence rate appears to be at most
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sublinear, and [60,61] showed it has a worst-case iteration complexity of O(1/t) in
an ergodic sense2.

There are several different measure functions in the literature. Here, we introduced
two of them. The first one is as follows:

Definition 2 w̃ is an ε-solution of (15), if

g(w̃) � ε,

where
g(w̃) = sup

w∈�∩Dw̃

{θ(x̃) − θ(x) + 〈w̃ − w, F(w)〉} . (43)

Here, we use the notation

θ(x) = θ1(x1) + θ2(x2), � := R
n1 × R

n2 × R
l ,

and

Dw̃ := {w | ‖w − w̃‖ � δ}

with δ > 0 being a scalar. Moreover,

x =
(
x1
x2

)
, w =

⎛
⎝ x1
x2
λ

⎞
⎠ , F(w) =

⎛
⎝ −A�

1 λ

−A�
2 λ

A1x1 + A2x2 − b

⎞
⎠ . (44)

The above definition was used in [60]. It arises essentially from characterizing the
optimality condition of (15) with a variational inequality (VI), i.e., finding

w∗ := (x∗
1 , x

∗
2 , λ

∗) ∈ � := R
n1 × R

n2 × R
l

such that

VI(�, F, θ) : θ(x) − θ(x∗) + 〈w − w∗, F(w∗)〉 � 0, ∀w ∈ �, (45)

Let {wk} be the sequence generated by the ADMM (17), and define

w̃k :=
⎛
⎜⎝

xk+1
1
xk+1
2

λk − β(A1x
k+1
1 + A2xk2 − b)

⎞
⎟⎠ and H :=

⎛
⎜⎝
0 0 0

0 βA�
2 A2 0

0 0 1
β
Im

⎞
⎟⎠ .

2 The convergence rate is in the ‘ergodic’ sense means that the approximate solution with a certain accuracy
is found based on all k iterates.
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[60] proved that

θ(x̃t ) − θ(x) + 〈w̃t − w, F(w)〉 � 1

2(t + 1)
‖w − w0‖2H , ∀w ∈ �, (46)

where

w̃t = 1

t + 1

t∑
k=0

w̃k .

Then, to obtain the conclusion, set

d := sup{‖w − w0‖H | w ∈ Dw̃t };

consequently, for a given accuracy tolerance ε > 0, it holds that after at most � d2
2ε −1�

iterations,
g(w̃t ) � ε. (47)

There are two main differences between (47) and (45). The first one is that the
inequality has been relaxed from zero to a nonnegative parameter ε; and the second
one is that there is an artificial constraint Dw̃t . Although (47) reduces to (45) when
ε = 0, the added constraint Dw̃t means that they are vastly different when ε > 0. In
fact, if there is no constraint Dw̃t , the function defined by (43) is exactly the dual-gap
function for the variational inequality characterization (45) [43, Eq.(2.3.13)] satisfying

0 � g(w) � ∞, ∀w ∈ �,

and if g(w) = 0, thenw is a solution for (45). Hence, g can be used as an approximate
function for variational inequality characterization [43]. The measure (43), due to the
restrict Dw̃t , may cause the measure too loose [62].

We now introduce the second measure. Since (15) is a constrained optimization
problem, a natural way measuring an approximate solution is that both the objective
function value and the constraint validation [62,63].

Definition 3 Consider the constrained optimization problem

min θ(u), u ∈ �.

We say that u∗ is an ε-optimal solution ũ if

θ(ũ) − θ(u∗) � ε, and d � ε, where d := inf{‖ũ − u‖ | u ∈ �}, (48)

where the first inequality represents the objective function approximation and the
second one represents the constraint violation.
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Cai and Han [62] considered the sublinear rate of convergence of the generalized
ADMM (G-ADMM) proposed in [30]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin

{
θ1(x1) − xA

�
1 A�

1 λk + β

2
‖A1x1 + A2x

k
2 − b‖2

}
, (49a)

xk+1
2 = argmin

{
θ2(x1) − xA

�
2 A�

2 λk + β

2
‖αA1x

k+1
1 − (1 − α)(A2x

k
2 − b) + A2x2 − b‖2

}
,

(49b)
λk+1 = λk − β(αA1x

k+1
1 − (1 − α)(A2x

k
2 − b) + A2x

k+1
2 − b), (49c)

where the parameter α ∈ (0, 2) is an acceleration factor. It is usually suggested that
we take α ∈ (1, 2). Note that the original ADMM scheme (17) is a special case of the
G-ADMM scheme (49a)–(49c) with α = 1. Using these measures, it is proved that
G-ADMM needs at most

⌈
ω
ε

⌉
iterations to obtain an ε-optimal solution, where ω is

ω := 1

2
sup

‖λ‖�ρ

∥∥∥∥ y0 − ŷ
λ0 − λ

∥∥∥∥
2

Hαβ

and Hαβ :=
(

β
α
BA�

B 1−α
α

BA�

1−α
α

B 1
αβ

Im

)
. (50)

Comparing with results in [60], the number of iterations in the above results required
is dependent of the distance between the initial point w0 and the solution set, which
is meaningful since usually the number of iterations should be larger when the initial
point is further away from the solution set and smaller when it is nearer to the solution
set.

The results in [60,62] are in the ergodic sense, since they used the information from
the whole iterative sequence. If we can establish the monotonic decrease in the mea-
sure sequence, the same results under the non-ergodic sense can be obtained, i.e., the
measure only uses the current iterative information.Moreover, the complexity is essen-
tially o(1/t) instead of O(1/t) [64]. For more results on the sublinear convergence of
ADMM, we can refer to [65–67].

4.2 Linear Rate

Compared with the large amount of literature mainly being devoted to the applica-
tions of the ADMM, there is a much smaller number of papers targeting the linear rate,
in particular the Q-linear rate, convergence analysis. Recall that the classical ADMM
for the two-blockmodel (15) can be viewed as the application of theDouglas–Rachford
splitting method applied to the dual problem of (15), and the Douglas–Rachford split-
ting method can be viewed as a special application of the proximal point algorithm
(PPA) for certain maximal monotone operator. As a consequence, one can derive the
corresponding R-linear rate convergence of the ADMM from [68] on the Douglas–
Rachford splittingmethodwith a globallyLipschitz continuous and stronglymonotone
operator, and [33,41,69] on the convergence rates of the PPAs under various error
bound conditions imposed on certain splitting operator. Using these connections. An
early work [70] proved the global R-linear convergence rate of the ADMM when it is
applied to linear programming.

123



A Survey on Some Recent Developments… 23

Recently, more and more interesting developments on the linear convergence rate
of the ADMM were established.

For convex quadratic programming, [71] provided a local linear convergence result
under the conditions of the uniqueness of the optimal solutions to both the primal and
dual problems and the strict complementarity. The quadratic programming problem
considered in [71] is

min
1

2
x�Qx + q�x s.t. Cx = c, x � 0, (51)

and to use ADMM, it was reformulated into

min
1

2
x�Qx + q�x s.t. Cx = c, x = z, z � 0, (52)

which is a special case of the separable quadratic programming problem. A direct
using of the classical ADMM yields the procedure

1. Set

xk+1 = argmin
x

1

2
x�Qx + q�x − x�λk + β

2
‖x − zk‖2 s.t. Cx = c; (53)

2. Set

zk+1 = argmin
z

z�λk + β

2
‖xk+1 − z‖2 s.t. z � 0; (54)

3. Set

λk+1 = λk − β(xk+1 − zk+1).

The first step (53) is equivalent to a well-conditioned saddle-point problem, which is
well-studied in linear algebra society. The second step (54) is essentially the orthogonal
projection onto the nonnegative orthant,

zk+1 = max{0, xk+1 − λk/β}.

These special structures in the algorithm enable to use tools from numerical linear
algebra to establish the local linear convergence of ADMM under the conditions
mentioned above [71].

In [72], the authors established the local linear rate convergence of the generalized
ADMM in the sense of [30], which does not assume the restrictive conditions such as
uniqueness and strict complementarity of the solution. In the following, we introduce
their results for the classical ADMM. The quadratic programming problem considered
there is

min
1

2
x�Qx + q�x + 1

2
y�Ry + r�y s.t. Ax + By = b, x ∈ X , y ∈ Y, (55)
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where Q and R are symmetric positive semidefinite matrices in R
n×n , and R

m×m ,
respectively; A ∈ R

l×n and B ∈ R
l×m are two given matrices, and q ∈ R

n , r ∈ R
m ,

and b ∈ R
l are given vectors. X = {x |Cx = c, x ∈ R

n(Rn+)} and Y = {y|Dy =
d, y ∈ R

m(Rm+)} are two polyhedral sets. (55) includes (52) as a special case with
X = {x |Cx = c, x ∈ R

n}; Y = {y|y ∈ R
m+}; R and r are zero matrix and zero

vector, respectively; and A = −B = I . The first key result established in [72] is the
following lemma.

Lemma 3 The sequence {wk := (xk, yk, λk)} generated by the ADMM satisfies

∥∥∥∥ yk+1 − y∗
λk+1 − λ∗

∥∥∥∥
2

H
�

∥∥∥∥ yk − y∗
λk − λ∗

∥∥∥∥
2

H
− 1

β

∥∥∥∥ yk − yk+1

λk − λk+1

∥∥∥∥
2

G

�
∥∥∥∥ yk − y∗

λk − λ∗
∥∥∥∥
2

H
− 1

β

∥∥∥∥ yk − yk+1

λk − λk+1

∥∥∥∥
2

H
, (56)

where

G :=
(

β2B�B βB�
βB Im

)
and H :=

(
βB�B 0

0 1
β
Im

)
. (57)

Based on (56), the main task is to bound the first term or the second term by the

third one, i.e., bound

∥∥∥∥ yk+1 − y∗
λk+1 − λ∗

∥∥∥∥
2

H
or

∥∥∥∥ yk − y∗
λk − λ∗

∥∥∥∥
2

H
by

∥∥∥∥ yk − yk+1

λk − λk+1

∥∥∥∥
2

H
.

To this end, recall the residual function of the first-order optimality condition for
(55)

e(w, β) :=
⎛
⎝ eX (w, β)

eY (w, β)

e�(w, β)

⎞
⎠ :=

⎛
⎝ x − PX [x − β(Qx + q − A�λ)]

y − PY [y − β(Ry + d − B�λ)]
Ax + By − b

⎞
⎠ ,

and the following error bound result [43,73].

Lemma 4 Let � be a polyhedral set. Then, there exists scalars ε > 0 and τ > 0 such
that

d(w,�∗) � τ‖e(w, 1)‖ (58)

for all w ∈ � with ‖e(w, β)‖ � ε, where �∗ is the set of primal dual solutions of the
first-order optimality condition for (55), d(w,�∗) is the distance from w to the set
�∗.

Abasic property for the residual is that for a givenw ∈ �, the magnitude ‖e(w, β)‖
is increasing with β, while ‖e(w, β)‖/β is decreasing with β (see [74] for a simple
proof). That is, for any β̃ � β > 0 and w ∈ �,

‖e(w, β̃)‖ � ‖e(w, β)‖
and

‖e(w, β̃)‖
β̃

� ‖e(w, β)‖
β

.
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As a consequence, for any fixed γ > 0,

‖e(w, 1)‖ � max{γ, 1/γ }‖e(w, γ )‖.

Thus, (58) holds for any fixed γ > 0, i.e.,

d(w,�∗) � τ‖e(w, γ )‖.

Take γ = 1 is only for the purpose of simplicity.
Based on this lemma, we have the following result.

Lemma 5 Let {wk := (xk, yk, λk)} be the sequence generated by ADMM. Then,

‖e(wk+1, 1)‖2 �
∥∥∥∥ yk − yk+1

λk − λk+1

∥∥∥∥
2

G2

, (59)

where

G2 :=
(

β2B�AA�B 0
0 1

β2 I

)
.

Using (58) and (59), one can easily bound the distance between the iterates and the
solution set with the two consecutive iterates. Hence, the local linear rate of conver-
gence of ADMM for solving quadratic programming is established [72, Thm. 3.2].

Theorem 4 Let {wk} be the sequence generated by the ADMM scheme and denote
{vk = (yk, λk)}. When the iterativewk is close enough to�∗ such that ‖e(wk, 1)‖ � ε

is satisfied, we have

dist2Hα
(vk+1,�∗) � 1

1 + ξ
· dist2H (vk,�∗), (60)

where

ξ := λmin(H)

βτ 2λmax(H)λmax(G2)
> 0.

Recently, [75] showed that the local linear rate result in [72] can be globalized under
a slightly more general setting for the ADMM and a linearized ADMM. The key is
that instead of the local error bound result, a new ‘global’ error bound for piecewise
linear multifunction can be used.

Lemma 6 [76, Thm. 3.3] Let F be a piecewise linear multifunction. For any κ > 0,
there exists η > 0 such that

dist (x, F−1(0)) � η dist (0, F(x)), ∀‖x‖ < κ.
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A multi-valued mapping F is piecewise linear if its graph gph F := {(x, y)|y ∈
F(x)} is the union of finitely many polyhedral sets. One important class of piecewise
linear multi-valued mappings is the subdifferential of convex piecewise linear-
quadratic functions. A closed proper convex function θ is said to be piecewise
linear-quadratic if dom θ is the union of finitely many polyhedral sets and on each
of these polyhedral sets, θ is either an affine or a quadratic function. In [77], it showed
that a closed proper convex function θ is piecewise linear-quadratic if and only if the
graph of ∂θ is piecewise polyhedral; see [78] for a complete proof and its extensions.

Most recently, [79] considered the model (32) and under a calmness condition
only, it provides a global Q-linear rate convergence analysis for the ADMM. Here, the
definition of calmness is taken from [80, Sec. 3.8(3H)], which says that amultifunction
F : X ⇒ Y is calm at (x0, y0) ∈ gph F with modulus κ0 � 0 if there exist a
neighborhood V of x0 and a neighborhood W of y0 such that

F(x) ∩ W ⊆ F(x0) + κ0‖x − x0‖BY , ∀ x ∈ V ,

where BY denotes the unit ball in the Euclidean space Y .
Furthermore, it is well-known, e.g., [80, Thm. 3H.3], that for any (x0, y0) ∈ gph F ,

the mapping F is calm at x0 for y0 if and only if F−1, the inverse mapping of F , is
metrically subregular at y0 for x0, i.e., there exist a constant κ ′

0 � 0, a neighborhood
W of y0, and a neighborhood V of x0 such that

dist(y, F(x0)) � κ ′
0 dist(x

0, F−1(y) ∩ V ), ∀ y ∈ W . (61)

In [65], the authors provided a number of scenarios on the linear rate convergence
for theADMMandADMMwith quadratic terms (similar to (32) but allowing Hk

i to be
positive semidefinite, denoted by sPADMM) under the assumptions that either θ1 or θ2
is strongly convexwith aLipschitz continuous gradient, and the boundedness condition
on the generated iteration sequence and others. [65] also made a detailed comparison
between their linear rate convergence result and that of [68]. Other interesting results
can be found in [81,82], etc.

5 Extensions and Variants

As shown in the introduction, modern applications arise a lot of problems that
naturally (or after a simple reformulation) possess the structure as (1), where each
component function θi represents one natural property of the system. The most impor-
tant intrinsic character of the model is that each component function θi is simple
enough in the sense that its proximal operator is easy to evaluate or even possesses
closed-form solution, while the composition of any two (or more) of them is difficult.
Hence, in the numerical algorithm, dealing them one by one, in a Gauss–Seidel man-
ner or a Jacobi manner, is a fundamental choice. For the case that there is just one, or
there are two component functions, the classical augmented Lagrangian method and
the alternating direction method of multipliers, not only possess beautiful theoretical
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convergence results, but also exhibit good performance in many applications. While
for the model (1) with m � 3, the situation is totally different.

One certainly can treat the well-structured problem (1) using theALM scheme (13),
and can also regroup the variables and component functions into two blocks and then
treat the resulting model using the ADMM scheme (17). However, these two schemes
treat the problem on a generic purpose and ignore completely, or at least partially, the
favorable separable structure in (1). Thus, this straightforward application of ALM
or ADMM to (1) is not recommended. On the other hand, (13) and (17) provide us
the possibility of developing customized algorithms with consideration of the specific
structure of (1). Taking a close look at the minimization problem in (13) and (17),
we find that the minimization tasks over the variables xi ’s are coupled only by the

quadratic term
β

2

∥∥∥∥∥
m∑
i=1

Ai xi − b

∥∥∥∥∥
2

or the quadratic term of partial regroup of them.

Therefore, we can split the minimization subproblem in (13) and (17) into m easier
and smaller subproblems by applying a Gauss–Seidel or Jacobian decomposition to
this quadratic term. With the alternating direction method of multipliers (17) in mind,
one may naturally, incline to extend the scheme to the general case of (1) with m � 3,
obtaining the scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
i = arg min

xi∈Xi

{
θi (xi ) − (λk)�

( i−1∑
j=1

A j x
k+1
j + Ai xi +

m∑
j=i+1

A j xkj − b
)

+ β
2

∥∥ i−1∑
j=1

A j x
k+1
j + Ai xi +

m∑
j=i+1

A j xkj − b
∥∥2}, i = 1, · · · ,m;

λk+1 = λk − β
( m∑
i=1

Ai x
k+1
i − b

)
.

(62)
Though the numerical efficiency of (62) was verified empirically [1,2], the theoreti-
cal convergence was only partially understood. During the last decade, research was
mostly focused on the following three topics about decomposition methods for (1):

1. Does the scheme (62), the direct extension of ADMM for m � 3, converge for the
convex case?

2. If the answer is ‘no’, then under what additional conditions does it converge?
3. Can the iterate generated by (62) be slightly twisted such that the convergence can

be guaranteed?

5.1 A Counter Example

A simple example against the convergence of the heuristic extension of ADMM
(62) was reported in [21], where they consider the special cases where θi ≡ 0 for
i = 1, 2, 3, and the problem (1) reduces to solving the linear homogeneous equation

A1x1 + A2x2 + A3x3 = 0, (63)
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where Ai ∈ R
3 and the matrix [A1, A2, A3] is nonsingular and xi ∈ R. With these

settings, the problem (63) has a unique solution x1 = x2 = x3 = 0. When applying
the iterative scheme (62) to (63), the recursion is

xk+1
1 = 1

A�
1 A1

(
−A�

1 A2x
k − A�

1 A3x
k
3 + A�

1 λk
)

,

and ⎛
⎝ xk+1

2
xk+1
3

λk+1

⎞
⎠ = M

⎛
⎝ xk2
xk3
λk

⎞
⎠ , (64)

where M = L−1R and

L =
⎛
⎜⎝

A�
2 A2 0 01×3

A�
3 A2 A�

3 A3 01×3

A2 A3 I3×3

⎞
⎟⎠ ,

and

R =
⎛
⎜⎝

0 −A�
2 A3 A�

2

0 0 A�
3

03×1 03×1 I3×3

⎞
⎟⎠ − 1

A�
1 A1

⎛
⎜⎝

A�
2 A1

A�
3 A1

A1

⎞
⎟⎠ (−A�

1 A2,−A�
1 A3, A

�
1 ).

After getting the reformulation (64), the task to get a counterexample is then to set the
conceret data Ai for i = 1, 2, 3, such that the spectral radius of M , denoted by ρ(M),
is larger than 1.

The concrete example constructed in [21] is

A = (A1, A2, A3) =
⎛
⎝1 1 1
1 1 2
1 2 2

⎞
⎠ ,

for which the associated matrix M is

M = 1

162

⎛
⎜⎜⎜⎜⎝

144 −9 −9 −9 18
8 157 −5 13 −8
64 122 122 −58 −64
56 −35 −35 91 −56

−88 −26 −26 −62 88

⎞
⎟⎟⎟⎟⎠

and

ρ(M) = 1.028 > 1.

Aconcrete example against the convergenceof the heuristic extensionof the alternating
direction method of multipliers to m � 3 is thus presented.
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5.2 Conditions Guaranteeing Convergence

For the general convex case, people cannot manage to prove the convergence of the
direct extension scheme (62) for m � 3. (In fact, the example in the last subsection
shows its divergence.) Prior to the work [21], people try to prove the convergence of
(62) by imposing some additional conditions on the problems’ data.

In [21], the authors also gave some conditions on the constraintmatrices that guaran-
tee the convergence of (62). For example, when A�

1 A2 = 0, or A�
1 A3 = 0, A�

2 A3 = 0,
they proved that the sequence generated by (62) converges and the worst convergence
complexity is O(1/t). Since for these cases themodel is essentially a two-blockmodel
and (62) is in some sense equivalent to (17), the convergence is long-established.

Most work on conditions that guarantee convergence of ADMM for (1) considers
the properties of the objective functions θi . A strictly stronger condition than convexity
is strong convexity. For the general case m � 3, the first sufficient convergence
condition for (62) was given in [83], where it states that:

Theorem 5 Suppose that for all i = 1, · · · ,m, θi are strongly convex with constant
μi > 0 and

β < min
1�i�m

{
2μi

3(m − 1)‖Ai‖2
}

. (65)

Then, the sequence {xk} generated by (62) converges to a solution of (1) and {λk}
converges to an optimal multiplier.

In [21], it gave the strongly convex minimization problem with three variables:

min 0.05x21 + 0.05x22 + 0.05x23

s.t.

⎛
⎝1 1 1
1 1 2
1 2 1

⎞
⎠

⎛
⎝ x1
x2
x3

⎞
⎠ = 0,

for which the iteration scheme of the direct extension of ADMM (62) can also be
reformulated as the recursion (64). Forβ = 1, the spectral radius of the involvedmatrix
is 1.008 7, indicating that the direct extension recursion does not always converge for
strongly convex optimization problems, justifying the necessary of choosing a suitable
penalty parameter β, as (65).

The requirement that all the component functions θi , i = 1, · · · ,m, are strongly
convex is too restrictive, excluding the potential applications of ADMM (62). Some
studies then try to weaken this restriction. In [84,85], the condition was relaxed and
only m − 1 functions in the objective are required to be strongly convex to ensure the
convergence of (62). Note that in ADMM, even for the classical case that m = 2, the
first component does not appear in the convergence analysis, and it is usually regarded
as an auxiliary part for the algorithm. From this point of view, it is not surprising
that the strong convexity requirement can be relaxed from all components to m − 1
components. However, assuming the strong convexity form−1 functions still excludes
most of the applications that can be efficiently solved by the scheme (62). Thus, these
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conditions are only of theoretical interests and they are usually too strict to be satisfied
by the mentioned applications.

Understanding the gap between the empirical efficiency (less cputime cost than
other algorithms) of (62) and the lack of theoretical conditions that can both ensure
the convergence of (62) and be satisfied by some applications of the abstract model (1)
motivated further results. For notation simplicity, the results are for the casem = 3 and
can be easily extended to the general casem > 3. In [5,86], the authors independently
showed that the convergence of (62) can be ensured when one function in the objective
of (1) is strongly convex, the penalty parameter β is appropriately restricted and some
assumptions on the linear operators Ai ’s hold—some conditions that hold for some
concrete applications of (1). The assumption on the penalty parameter β in [5] is
determined through checking the positive definiteness of some operators because it
targets a setting more general than (62) with larger step sizes for updating λ and semi-
proximal terms for regularizing the xi -subproblems. While in [86], it also established
the convergence rate for the scheme (62), including the worst-case convergence rate
measured by the iteration complexity and the globally linear convergence rate in
asymptotical sense under some additional assumptions. See also [26,84,85,87] for
some convergence rate analysis for (62).

5.3 Correction Step for Convergence

Besides additional conditions for ensuring the convergence of the direct extension
of ADMM for the general case m � 3, a parallel line is slightly twisting the iterate.
Observing the high numerical efficiency of (62) in practice, the slighter of the twist,
the more desirable in keeping the nice property of the algorithm.

This line of study is motivated by the observation that though the point generated
by the direct extension of ADMM (62) is not qualified as the next iterate, it provides
useful information, utilizing which judiciously can construct convergent and efficient
algorithms.

Recall that one way to prove the convergence of the classical alternating direction
method of multipliers is based on the contraction property of the iterates, or the Fejér
monotonicity of the iterates with respect to the solution set. The Fejér monotonicity
[88, Def. 5.1] of a sequence with respect to a closed convex set � says that for two
consecutive point vk+1 and vk , we have

dist2(vk+1,�) � dist2(vk,�) − c0‖vk − vk+1‖2, (66)

where

dist(v,�) := inf
u∈�

‖u − v‖

denotes the distance between a point v and�. Oncewe can prove that theADMM-type
step (62) can generate a point, denoted by x̃ k , and based on which a descent direction
d(x̃ k) of the implicit measure function dist(v,�) can be constructed, then we can
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generate the next iterate xk+1 via the simple principle

xk+1 = xk − αkd(x̃ k), (67)

where αk is a step size, which can be a constant (setting down prior to the start of
the iterative process according to some rule) or be computed along the iterate. Such a
correction step can not only guarantee that the whole generated sequence converges to
a solution of the problem, but also provide new freedom in the manner of generating
the auxiliary point x̃ k .

In [89], an ADMM with Gaussian back substitution was proposed. Let α ∈ (0, 1),
and let

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

βA�
2 A2 0 · · · · · · 0

βA�
3 A2 βA�

3 A3
. . .

...
...

...
. . .

. . .
...

βA�
m A2 βA�

m A3 · · · βA�
m Am 0

0 0 · · · · · · 1
β
Im

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

βA�
2 A2 βA�

2 A3 · · · βA�
2 Am βA�

2

βA�
3 A2 βA�

3 A3 . . . βA�
3 Am βA3

...
...

. . .
...

...

βA�
m A2 βA�

m A3 · · · βA�
m Am βA�

m
A2 A3 · · · Am

1
β
Im

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then, define

H = diag(βA�
2 A2, βA�

3 A3, · · · , βA�
m Am,

1

β
Im).

Suppose that for all i = 2, · · · ,m, A�
i Ai is nonsingular. Consequently, M is nonsin-

gular and H is symmetric and positive definite. With the given iterate wk , and let w̃k

be generated by the ADMM scheme (62), then the new iterate wk+1 is generated as
follows:

vk+1 = vk − αM−A�
H(vk − ṽk), (68)

and

xk+1
1 = x̃ k1 .

The construction of the matrices M and Q is to guarantee that the generated sequence
converges to a solution of the problem, based on the fact that for any v∗ ∈ V∗,
−M−A�

H(vk − ṽk) is a descent direction of the implicit function dist2G(v,V∗) with
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G = MH−1M� at the point v = vk . Based on this fact, the step size can be chosen
dynamically [90]

α∗
k = ‖vk − ṽk‖2H + ‖vk − ṽk‖2Q

2‖vk − ṽk‖2H
and the Gaussian back substitution procedure can be modified accordingly into the
following form:

H−1M�(vk+1 − vk) = γα∗
k (v

k − ṽk),

where γ ∈ (0, 2) is a relaxation constant.
From the implementation point of view, note that the matrix M is a lower triangular

matrix and H is a diagonal matrix. As a consequence, the matrix M−T H in (68) is
an upper triangular matrix. The procedure can be performed in an inverse order by
updating λ, xm , xm−1, · · · , x2, x1 sequently, and this is where the name ‘Gaussian
back substitution’ comes from.

The main cost in the back substitution step is in the computation of the inverse
of the matrices A�

i Ai . Hence, the algorithm has its potential advantages in the case
that A�

i Ai is easy to invert, especially for the case that A�
i Ai = I , as for the robust

principal component analysis problem (11).
Many efforts were devoted to simplifying the correction step. For the case that

m = 3, [91] proposed a new correction scheme. Since the numerical experiments
from various applications indicate the direct extension of ADMM is efficient, we
should twist the component variables as few as possible. The prediction step and the
correction step of the method in [91] are

S1. Prediction step: Generate the predictor w̃k = (x̃ k, ỹk, z̃k, λ̃k) via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃k = argmin { f (x) − (λk )�Ax + β

2
‖Ax + Byk + ζ k − b‖2 | x ∈ X }, (69a)

ỹk = argmin {g(y) − (λk )�By + β

2
‖Ax̃k + By + ζ k − b‖2 | y ∈ Y}, (69b)

z̃k = argmin {h(z) − (λk )�Cz + β

2
‖Ax̃k + B ỹk + Cz − b‖2 | z ∈ Z}, (69c)

λ̃k = λk − β(Ax̃k + B ỹk + Cz̃k − b); (69d)

and

S2. Correction step: Generate the new iterate (xk+1, yk+1, ζ k+1, λk+1) by

⎧⎪⎪⎨
⎪⎪⎩
xk+1 = x̃ k,
yk+1 = ỹk,
ζ k+1 = ζ k − α(ζ k − Cz̃k + Byk − B ỹk),
λk+1 = λk − α(λk − λ̃k),

(70)

respectively.
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Note that the subproblems (69a)–(69c) in the prediction step are slightly different
from the ADMM scheme (62) in the quadratic terms of the augmented Lagrangian
function. In (69a)–(69c), an auxiliary variable ζ was introduced, which took the place
of Cz. Hence, the computational cost on solving the subproblems is the same as (62).
However, it provides great benefit in the correction step. In the correction step, the x
part and the y part were kept, and only the z part and the dual variable were twisted.
Moreover, the cost is very low, and it does not involve any additional matrix-vector
product. The rule behind the introduction of the auxiliary variable ζ is simple, which
is just from the observation that in the x and the y subproblem, what we essentially
need is the information of Byk and Czk , but not yk and zk . Hence, in the procedure,
we provide the information of Byk and Czk via the variable yk and ζ k , respectively.

For the general separable model (1), [26] proposed the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
i = arg min

xi∈Xi

{
θi (xi ) − (λk)�

( i−1∑
j=1

A j x
k+1
j + Ai xi +

m∑
j=i+1

A j xkj − b
)

+ β
2

∥∥ i−1∑
j=1

A j x
k+1
j + Ai xi +

m∑
j=i+1

A j xkj − b
∥∥2}, i = 1, · · · ,m,

λk+1 = λk − τβ
( m∑
i=1

Ai x
k+1
i − b

)
,

(71)
where τ > 0 is sufficiently small. Denote the point generated by (62) by w̃k , the new
iterate wk+1 generated by (71) can be viewed as one that generated by

{
xk+1 = x̃k,
λk+1 = λk − τ(λk − λ̃k),

and as a consequence, the algorithm can be viewed as a prediction-correction method
that only twists the dual variable λ. Assuming an error bound condition and some
others, [26] provided a linear rate convergence of (71). From the theoretical point of
view, this constitutes important progress on understanding the convergence and the
linear rate of convergence of the ADMM, while from the computational point of view,
this is far from being satisfactory as in practical implementations one always prefers
a larger step length for achieving numerical efficiency.

The correction step can not only guarantee the convergence of the ADMM, but also
provide the freedom on generating the predictor. The predictor in ADMM scheme
(62) is generated in a Gaussian–Seidel manner, and an alternative is to generate them
simultaneously, leading to Jacobi-type splitting methods. In [92], a parallel splitting
augmented Lagrangian method was proposed, whose prediction step and correction
step are
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S1. Prediction step Generate the predictor w̃k = (x̃ k, λ̃k) via solving the following
convex programs for i = 1, · · · ,m (possibly in parallel):

x̃ ki = arg min
xi∈Xi

⎧⎪⎨
⎪⎩θi (xi )−〈λk, Ai xi 〉+β

2

∥∥∥∥∥∥
i−1∑
j=1

A j x
k
j + Ai xi+

m∑
j=i+1

A j x
k
j−b

∥∥∥∥∥∥
2
⎫⎪⎬
⎪⎭ ,

and

λ̃k = λk − β
( m∑

i=1

Ai x̃
k
i − b

)
.

S2. Convex combination step to generate the new iterate

wk+1 = wk − γαk(w
k − w̃k),

where

αk := ϕ(xk, x̃ k)

ψ(xk, x̃ k)
,

ϕ(xk, x̃ k) :=
m∑
i=1

‖Ai xki − Ai x̃ki ‖2 +
∥∥∥ m∑
i=1

Ai xki − b
∥∥∥2,

ψ(xk, x̃ k) := (m + 1)
( m∑
i=1

‖Ai xki − Ai x̃ki ‖2
)

+
∥∥∥ m∑
i=1

Ai x̃ki − b
∥∥∥2.

The benefit introduced by the parallelization is great [92]; further results also indicated
when there aremany blocks of variables the advantage of Jacobi-type splittingmethods
becomes more obvious [93–96].

Computing the step size αk just involves matrix-vector production, which is simple.
Nevertheless, in some applications the prediction step is also low cost. In this case, we
need to further simplify the correction step, e.g., adopting a constant step. Essentially,
it was proved in [92, Lem. 3.6] that the step size αk computed is uniformly bounded
below from zero; i.e., there is αmin := 1/(3m + 1), such that for all k � 0, αk � αmin.
Consequently, a constant step size α ∈ (0, αmin) is possible.

Extending the customized Douglas–Rachford splitting method (31) to the multi-
block case, [97] proposed the following distributed splitting method:

Find (xk+1, λk+1) ∈ � such that

⎧⎪⎪⎨
⎪⎪⎩

λ̄k = λk − β
(∑m

i=1 Ai xki − b
)
,

xk+1
i = argmin

xi∈Rni

{
θi (xi )+ 1

2β

∥∥xi − ωk
i

∥∥2} , (i = 1, 2, · · · ,m),

λk+1 = λk − γαk
(̃
e(xk, β) − β

∑m
i=1 Ai ei (xki , λ̄

k)
)
,
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where ωk
i = xki + βξ ki − γαkei (xki , λ̄

k) with ξ ki ∈ ∂θi (xki ) and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αk := ϕ(xk ,λ̄k ,β)

ψ(xk ,λ̄k ,β)
,

ϕ(xk, λ̄k, β) := 1
2

∥∥E(xk, λ̄k, β)
∥∥2 + 1

2

∥∥̃e(xk, β)
∥∥2 −

m∑
i=1

β ẽ(xk, β)�Ai ei (xki , λ̄
k),

ψ(xk, λ̄k, β) :=
m∑
i=1

∥∥ei (xki , λ̄k)∥∥2 +
∥∥∥∥̃e(xk, β) − β

m∑
i=1

Ai ei (xki , λ̄
k)

∥∥∥∥
2

.

Here ⎧⎨
⎩
ei (xi , λ) := xi − PXi

{
xi − β(ξi − A�

i λ)
}
, (i = 1, 2, · · · ,m),

E(x, λ, β) := ( e1(x1, λ), · · · , em(xm, λ), ẽ(x, β) ) ,

ẽ(x, β) := β
(∑m

i=1 Ai xi − b
)
.

Combining the idea of Gauss–Seidel splitting and Jacobian splitting, several partial
parallel splitting methods were proposed. For simplicity, let m = 3. [98] proposed
to solve the first subproblem and then to solve the second and the third in a parallel
manner; [99] presented a partial parallel splitting method and adopted a relaxation
step with low computational cost, in which the variables were updated in the order
x1→λ→ (x2, x3), rather than x1→ (x2, x3)→λ; [91] proposed to just corrected the
last primal variable x3 and the multiplier to keep the efficiency of the splitting method,
and such an idea was exploited in [100] for image processing.

6 Solving Nonconvex Problems

Consider again the two-block model (1) with m = 2. For the case that both
components of the objective function are convex, the convergence of ADMM is well-
understood, both for the global convergence, the sublinear convergence measured
by iteration complexity, and linear convergence. When one or both of the component
objective functions are nonconvex, the convergence analysis for ADMM ismuchmore
challenging, and it is only partially understood. On the other hand, as stated in the
introduction, the applications usually involve models (1) where at least one compo-
nent function is nonconvex. This phenomenon inspires the recent interest in studying
convergence of ADMM for nonconvex model (1).

6.1 Convergence under KL Properties

A very important technique to prove the convergence for nonconvex optimization
problems relies on the assumption that the objective functions satisfies the Kurdyka–
Lojasiewicz inequality. The importance of Kurdyka–Lojasiewicz (KL) inequality is
due to the fact that many functions satisfy this inequality. In particular, when the func-
tion belongs to some functional classes, e.g., semi-algebraic (such as ‖·‖p

p, p ∈ [0, 1]
is a rational number), real subanalytic, log-exp (see also [101–104] and references
therein), it is often elementary to check that such an inequality holds. The inequality
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was established in the pioneering and fundamental works [22,23], and it was recently
extended to nonsmooth functions in [103,104].

Definition 4 ([101] Kurdyka–Lojasiewicz inequality) Let f : R
n → R ∪ {∞} be a

proper lower semicontinuous function. For −∞ < η1 < η2 � +∞, set

[η1 < f < η2] = {x ∈ R
n : η1 < f (x) < η2}.

We say that function f has theKL property at x∗ ∈ dom ∂ f if there exist η ∈ (0,+∞],
a neighborhood U of x∗, and a continuous concave function ϕ : [0, η) → R+, such
that

(i) ϕ(0) = 0;
(ii) ϕ is C1 on (0, η) and continuous at 0;
(iii) ϕ′(s) > 0,∀s ∈ (0, η);
(iv) for all x inU ∩[ f (x∗) < f < f (x∗)+η], the Kurdyka–Lojasiewicz inequality

holds:
ϕ′( f (x) − f (x∗))d(0, ∂ f (x)) � 1.

Here and in the following, ∂ f (x) denotes the limiting-subdifferential, or simply the
subdifferential, of a proper lower semicontinuous function. Let us list some definitions
of subdifferential calculus [78,105].

Definition 5 Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous function.

(i). The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f , written
as ∂̂ f (x), is the set of vectors x∗ ∈ R

n that satisfy

lim
y �=x

inf
y→x

f (y) − f (x) − 〈x∗, y − x〉
‖y − x‖ � 0.

When x /∈ dom f , we set ∂̂ f (x) = ∅.
(ii). The limiting subdifferential, or simply the subdifferential, of f at x ∈ dom f ,

written as ∂ f (x), is defined as follows:

∂ f (x) = {x∗ ∈ R
n : ∃xn → x, f (xn) → f (x), x∗

n ∈ ∂̂ f (xn),with x∗
n → x∗}.

Definition 6 ([102] Kurdyka–Lojasiewicz function) If f satisfies the KL property at
each point of dom ∂ f , then f is called a KL function.

Using Kurdyka–Lojasiewicz property, convergence of some optimization methods
was established. Some latest references are gradient-related methods [106], proximal
point algorithm [107–109], nonsmooth subgradient descent method [110], etc., (see
also [111,112]). In the field of ADMM studies, relying on the assumption that the
Kurdyka–Lojasiewicz inequality holds for certain functions, [113,114] proved con-
vergence of variant ADMM for (15) with some special structures. [113] considered a
special case of problem (15) with A2 = −I and b = 0, i.e., the problem

min
{
θ1(x1) + θ2(x2)

∣∣∣ A1x1 − x2 = 0
}

, (72)
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and proposed a variant of ADMMby regularizing the second subproblem. Their recur-
sion is ⎧⎨

⎩
xk+1
2 ∈ arg min{Lβ(xk1 , x2, λ

k)},
xk+1
1 ∈ arg min{Lβ(x1, x

k+1
2 , λk) + �φ(x1, xk1 )},

λk+1 = λk − β(A1x
k+1
1 − xk+1

2 ),

(73)

where the function φ is strictly convex and �φ is the Bregman distance with respect
to φ,

�φ(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉.

When φ = 0, the algorithm (73) reduces to the classic ADMM (17). Assuming that
the penalty parameter is chosen sufficiently large; and one of the component function,
θ1, is twice continuously differentiable with uniformly bounded Hessian, Li and Pong
proved that if the sequence generated by the algorithm (73) has a cluster point, then
it gives a stationary point of the nonconvex problem (72), i.e., a point (x1, x2, λ) that
satisfies ⎧⎨

⎩
0 ∈ ∂θ1(x1) − A�

1 λ,

0 ∈ ∂θ2(x2) + λ,

0 = A1x1 − x2.

Reference [114] proposed to regularize both subproblems, resulting the following
variant ADMM ⎧⎪⎪⎨

⎪⎪⎩
xk+1
2 ∈ arg min{Lβ(xk1 , x2, λ

k) + �ψ(x2, xk2 )},
xk+1
1 ∈ arg min{Lβ(x1, x

k+1
2 , λk) + �φ(x1, xk1 )},

λk+1 = λk − β(A1x
k+1
1 − A2x

k+1
2 ).

(74)

Under the assumptions that A1 is full row rank, either Lβ(x1, x2, λ) with respect to x1
or φ is μ1 strongly convex with μ1 > 0, and some other mild conditions, they proved
the sequence generated by (74) converges to a stationary point.

Reference [115] considered solving the model (72) with the classical ADMM (17),
where they made the following assumption:

Assumption 1 Consider the classical ADMM (17) solving the model (72). Suppose
that θ1 : Rn → R ∪ {∞} is a proper lower semicontinuous function, θ2 : R

m → R

is a continuously differentiable function with ∇θ2 being Lipschitz continuous with
modulus L > 0, and suppose that the augmented Lagrangian function associated
to the model (72) is a KL function. Moreover, suppose following two items for the
parameters hold:

• β > 2L , then δ = β−L
2 − L2

β
> 0,

• A�
1 A1 � μI for some μ > 0.

Note that the conditions assumed in Assumption 1 are much weaker than those in
[113,114].
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Measuring the iterates {wk = (xk1 , x
k
2 , λ

k)} by the augmented Lagrangian function
Lβ associated with the model (72), it was first proved that

Lβ(wk+1) � Lβ(wk) − δ‖xk+1
2 − xk2‖2.

Note that if we can establish that

Lβ(wk+1) � Lβ(wk) − δ‖wk+1 − wk‖2, (75)

then we get the ‘sufficient’ decrease in the iterate {wk} measured by Lβ . Thanks to
the Lipschitz continuity of ∇θ2 and the optimality condition for the x2-subproblem,
we can reach the aim with judicious choice of the penalty parameter ensuring that
β−L
2 − L2

β
> 0. Then with the aid of the KL property, the convergence and the rate of

convergence of ADMM can be established, and we summarize them in the following
two theorems.

Theorem 6 Suppose that Assumption 1 holds. Let {wk = (xk, yk, λk)} be the sequence
generated by the ADMM procedure (17) which is assumed to be bounded. Suppose
that θ1 and θ2 are semi-algebraic functions, then {wk} has finite length, that is

+∞∑
k=0

‖wk+1 − wk‖ < +∞, (76)

and as a consequence, {wk} converges to a critical point of Lβ(·).
Theorem 7 (Convergence rate) Suppose that Assumption 1 holds. Let {wk =
(xk, yk, λk)} be the sequence generated by the ADMM procedure (17) and converges
to {w∗ = (x∗, y∗, λ∗)}. Assume that Lβ(·) has the KL property at (x∗, y∗, λ∗) with
ϕ(s) = cs1−θ , θ ∈ [0, 1), c > 0. Then, the following estimations hold:

(i) If θ = 0, the sequence {wk = (xk, yk, λk)} converges in a finite number of
steps.

(ii) If θ ∈ (0, 1
2 ], there exist c > 0 and τ ∈ [0, 1), such that

‖(xk, yk, λk) − (x∗, y∗, λ∗)‖ � cτ k .

(iii) If θ ∈ ( 12 , 1), there exists c > 0, such that

‖(xk, yk, λk) − (x∗, y∗, λ∗)‖ � ck
θ−1
2θ−1 .

The key role played by the KL property [113–115] is as follows. After establishing
the sufficient descent of the augmented Lagrange function (75), one can prove that if
wk+1 �= wk , then for any η > 0, and ε > 0, there exist k̄ > 0, such that for any k > k̄,

d(wk, S(w0)) < ε, Lβ(w∗) < Lβ(wk) < Lβ(w∗) + η,
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wherew∗ ∈ S(w0) and S(w0) is the set of cluster points of the sequence {wk}generated
by theADMM (17) (respectively, (73) or (74)). Applying the uniformizedKL property
[116], we conclude that for any k > k̄

ϕ′(Lβ(wk) − Lβ(w∗))d(0, ∂Lβ(wk)) � 1.

Moreover, the concavity of ϕ means

ϕ (Lβ(wk) − Lβ(w∗)) − ϕ(Lβ(wk+1) − Lβ(w∗)) �
ϕ′ (Lβ(wk) − Lβ(w∗))(Lβ(wk) − Lβ(wk+1)).

A simple further argument establishes (76) and the reader is referred to [113–115] for
more details.

Convergence of ADMM for nonconvex optimization problems without using KL
property, but with similar property was established recently, e.g.,

• Wang et al. [117] proposed the concept of restricted prox-regularity (see Definition
2 in [117]): For a lower semicontinuous function f , let M ∈ R+, f : R

n →
R ∪ {∞}, and let

SM := {x ∈ dom( f ) : ‖d‖ > M for all d ∈ ∂ f (x)}.

Then, f is called restricted prox-regular if, for any M > 0 and bounded set
T ⊆ dom( f ), there exists γ > 0 such that

f (x) +γ

2
‖x − y‖2 �

f (x) + 〈d, y − x〉, ∀y ∈ T \SM , y ∈ T , d ∈ ∂ f (x), ‖d‖ � M .

Under the conditions that the objective function is restricted prox-regular and it is
also coercive on the feasible set, it proved that the generated sequence has a cluster
point which is solution of (72).

• Jia et al. [118] proved that if certain error bound condition like (58) holds, the
sequence generated by the ADMM for solving the nonconvex optimization prob-
lem (72) converges locally with a linear rate.

• Jiang et al. [119] considered a proximal ADMM for solving linearly constrained
nonconvex optimization models. Under the assumption that all the block variables
except for the last block were updated with the proximal ADMM, while the last
block was updated either with a gradient step or a majorization–minimization step,
they showed the iterative sequence converges to a stationary point.

• Zhang et al. [120] proposed a proximal ADMMfor solving the linearly constrained
nonconvex differentiable optimization problems, in which the authors introduced
a “smoothed" sequence of primal iterates, and added to the augmented Lagrangian
function an extra quadratic term. Under some additional conditions such as strict
complementarity, Lipschitz continuity of the gradient of the objective function,
they proved the iterative sequence converges to a stationary point and established
its rate of convergence.
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Sufficient conditions guaranteeing the boundedness of the generated iterate
sequence {wk} are also presented; see Lemma 3.5 in [115].

In [121], the authors considered the general separable optimization problem with
linear equality constraint (1) where one or more components are nonconvex, i.e.,

min
m∑
i=1

θi (xi )

s.t. A1x1 + A2x2 + · · · + Am−1xm−1 + xm = b,

where θ1 : R
n1 → R ∪ {∞} is a proper lower semicontinuous function, θi : R

ni →
R, i = 2, · · · ,m − 1 and θm : R

s → R are continuous differentiable functions with
∇θi being Lipschitz continuous with modulus Li > 0, Ai ∈ R

s×ni , i = 1, · · · ,m−1
is a given matrix and b ∈ R

s is a vector. Set L := max
2�i�m

Li and assume the following

two items hold:

(i) β > max{2L, L
μ
};

(ii) A�
1 A1 � μI , A�

2 A2 � μI for some μ > 0.

Then, similar results as those for the two-block can be established.
Guo et al. [122] then gave another extension of the result in [115], where they

considered the nonconvex optimization problem

min θ1(x1) + θ2(x2) + H(x1, x2)

s.t. A1x1 + x2 = b,
(77)

where θ1 : R
n1 → R∪{∞} is a proper lower semicontinuous function, θ2 : R

n2 → R

is a continuously differentiable function whose gradient ∇θ2 is Lipschitz continuous
with constant L2 > 0, H : R

n1 × R
n2 → R is a smooth function, A1 ∈ R

n2×n1 is a
given matrix, and b ∈ R

n2 is a vector.
Letβ > 0 be a given parameter and the augmentedLagrangian function for problem

(77) is

Lβ(x1, x2, λ):=θ1(x1)+θ2(x2)+H(x1, x2)−λ�(A1x1+x2−b)+β

2
‖A1x1+x2−b‖2,

where λ is the Lagrangian multiplier associated with the linear constraints. Based on
alternately optimizing the augmented Lagrangian function Lβ(·) for one variable but
with the others fixed, the alternating direction method of multipliers generates the
iterative sequence with the following recursion:

⎧⎪⎪⎨
⎪⎪⎩
xk+1
1 ∈ argmin

x1
{Lβ(x1, x

k
2 , λ

k)},
xk+1
2 ∈ argmin

x2
{Lβ(xk+1

1 , x2, λ
k)},

λk+1 = λk − β(A1x
k+1
1 + xk+1

2 − b).

(78)
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Assume that θ1 : R
n → R ∪ {∞} is a weakly convex function with constant ω > 0

and assume the following items hold:

(i) All the component functions are bound below, i.e.,

inf
(x,y)∈Rn1×R

n2
H(x1, x2) > −∞, inf

x1∈Rn1
θ1(x1) > −∞, inf

x2∈Rn2
θ2(x2) > −∞;

(ii) For any fixed x1, the partial gradient ∇x2H(x1, x2) is globally Lipschitz with
constant L2(x1), that is

‖∇x2H(x1, x̄2) − ∇x2H(x1, x̂2)‖ � L2(x1)‖x̄2 − x̂2‖, ∀x̄2, x̂2 ∈ R
n2;

For any fixed x2, the partial gradient ∇x1H(x1, x2) is globally Lipschitz with
constant L3(x2), that is

‖∇x1H(x̄1, x2) − ∇x1H(x̂1, x2)‖ � L3(x2)‖x̄1 − x̂1‖, ∀x̄1, x̂1 ∈ R
n1;

(iii) There exist L2, L3 > 0 such that

sup{L2(x
k
1 ) : k � 0} � L2, sup{L3(x

k
2 ) : k � 0} � L3;

(iv) ∇H is Lipschitz continuous on bounded subsets of R
n1 × R

n2 . In other words,
for each bounded subset B1 × B2 ⊆ R

n1 × R
n2 , there exists M > 0 such that

for all (xi , yi ) ∈ B1 × B2, i = 1, 2:

‖ (∇x H(x1, y1) − ∇x H(x2, y2),∇y H(x1, y1) − ∇y H(x2, y2))‖
� M‖(x1 − x2, y1 − y2)‖;

(v) A�A � μI for some μ > 0;
(vi) The penalty parameter β satisfies β > max {β1, β2} , where

β1 := (L3 + ω) + √
(L3 + ω)2 + 16μM2

2μ

and

β2 :=
(L1 + L2) +

√
(L1 + L2)2 + 16(L2

1 + M2)

2
.

The convergence result is as follows:

Theorem 8 Let {wk} be the sequence generated by the ADMM (78) which is assumed
to be bounded. Suppose that Lβ(·) is a KL function, then {wk} has finite length, that
is +∞∑

k=0

‖wk+1 − wk‖ < ∞,

123



42 D. Han

and as a consequence, we have {wk} converges to a critical point of Lβ(·).
Remark 2 Note that most algorithms mentioned above cannot solve the general non-
convex, constrained optimization problem (1), even for m = 2 (15). They rely on
the assumption that their exists only one nonsmooth component, and the others are
smooth with Lipschitz gradients. Another assumption is that A1 is of full row rank or
Image(A2) ⊆ Image(A1), which is not satisfied in many practical problems. There-
fore, the convergence of ADMM for many nonconvex problems is still unknown.

6.2 Convergence with Special Structures

Studies on special classes of nonconvex optimization problems were performed
recently, e.g., [123] proved the convergence of ADMM for consensus problems. In
this subsection, we focused on the problems having the following structure:

min
x∈Rn

f (x) + g(x). (79)

Recall that ADMM is the application of the Douglas–Rachford splitting algorithm to
the dual of (15), which has the form of (79), and the convergence has beenwell-studied
[30] when both the two component functions are convex. When there is a nonconvex
component function, the study is in its infancy. Recently, the convergence ofDRSM for
solving (79) was established [124–126] with the assumption that f : R

n → R ∪ {∞}
and g : R

n → R ∪ {∞} are proper and lower semicontinuous, f is strongly convex
with constant μ > 0, and g is semiconvex with constant ω > 0.

The model (79) arises frequently in the big data and artificial intelligence fields,
where f (x) represents a data-fidelity term and g(x) is a sparsity-driven penalty term.
Usually, weak convexity can often reduce bias in nonzero estimates (which is a serious
problem for various convex penalty terms), see, e.g., [127–129] for some applications
in sparse signal recovery applications. In particular, it was proved that several popular
penalty functions are weakly convex [130].

1. The smoothly clipped absolute deviation (SCAD) penalty [131]: Let

gλ(θ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ|θ |, |θ | � λ,

−θ2+2aλ|θ |−λ2

2(a−1) , λ < |θ | � aλ,

(a+1)λ2

2 , |θ | > aλ,

(80)

where a > 2 and λ > 0. Then SCAD is given by
∑n

i=1 gλ(|xi |) with

gλ(|xi |) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ|xi |, |xi | � λ,

−x2i +2aλ|xi |−λ2

2(a−1) , λ < |xi | � aλ,

(a+1)λ2

2 , |xi | > aλ.
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It was proved that gλ defined by (80) is semiconvex with modulus 1/(a − 1) [130,
Thm. 3.1].

2. The minimax concave penalty (MCP) proposed in [132]: Let

Pγ (|θ |; λ) :=
{

λ|θ | − 1
2γ θ2, |θ | < λγ,

λ2γ
2 , |θ | � λγ,

(81)

with γ > 0 and λ > 0. For x ∈ R
n , the minimax concave penalty (MCP) is given

by
∑n

i=1 Pγ (|xi |; λ) with

Pγ (|xi |; λ) :=
{

λ|xi | − 1
2γ |xi |2, |xi | < λγ,

λ2γ
2 , |xi | � λγ.

It was proved that Pγ defined by (81) is semiconvex with modulus 1/γ [130, Thm.
3.2].

3. Smoothed surrogate of the �p-norm: For any 0 < p < 1 and ε > 0, the function∑n

i=1
(|xi | + ε)p is semiconvex with constant p(1 − p)ε p−2 [130, Thm. 3.3].

The classical convergence results [32,68] were built on the Krasnosel’skiı̆–Mann
theorem [88, Thm. 5.14], which states that if D is a nonempty closed convex subset of
R
n and T : D → D is a nonexpansive operator such that Fix(T ) �= ∅, then starting

with z0 ∈ D, the iterative scheme zk+1 := (1 − α)zk + αT (zk) for 0 < α < 1
generates {zk} converging to a point in Fix(T ). Recall that the DRSM (24) for solving
(79) takes the form ((24) is a special case with α = 1/2)

zk+1 = ((1 − α)I + αRμ f Rμg)(zk), (82)

where Rμ f := 2proxμ f − I and Rμg := 2proxμg − I are the reflection operators of
f and g; and proxμ f and proxμg are their proximal operators, respectively, where for
a proper lower semicontinuous function f and a scalar μ > 0,

proxμ f (x) ∈ argmin
y

{
f (y) + 1

2μ
‖x − y‖2

}
.

When f is convex, then it follows from [88, Prop. 12.27] that proxλ f is a single-valued
mappingwhich is also firmly nonexpansive3. As a consequence, the reflection operator
Rμ f := 2proxμ f − I is nonexpansive [88, Prop. 4.2]. Then, according to [88, Prop.
4.21], if both f and g are convex, Rμ f Rμg is nonexpansive. The convergence of (82)
is then a direct consequence of the Krasnosel’skiı̆–Mann theorem.

3 Let D be a nonempty subset of R
n and let T : D → R

n . Then T is firmly nonexpansive if

‖T x − T y‖2 + ‖(I − T )x − (I − T )y‖2 � ‖x − y‖2, ∀x, y ∈ D.
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If either f or g is nonconvex, the situation is totally changed since the above
argument is not correct due to the fact that the reflection operator of the nonconvex
mapping may be expansive. To ensure the nonexpansiveness of Rμ f Rμg such that the
Krasnosel’skiı̆–Mann theorem is still compliant, one needs further conditions on the
data.

In [124], it established the convergence of DRSM under the further assumption
that f is strongly convex with constant ν > 0, g is semiconvex with constant ω > 0,
and ν = ω. Moreover, f is assumed to be second-order differentiable with ∇ f being
Lipschitz continuous with constant σ > 0. One may argue that since the whole model
is convex, we can set f̃ (x) := f (x) − ν

2‖x‖2 and g̃(x) := g(x) + ν
2‖x‖2 and convert

(79) to
min f̃ (x) + g̃(x) (83)

and the DRSM (82) is transformed into

zk+1 = ((1 − α)I + αR
μ f̃ Rμg̃)(zk) (84)

and the convergence of (84) is well-understood. Unfortunately, although theoretically
the model (83) is equivalent to (79), the numerical behavior of DRSM applying to
them is different; results tested on a simple example reported in [124] indicated that
in some cases, one prefers the original one (82) to the reformulation (84).

In [133], the DRSM is applied to a feasibility reformulation of the minimization
of the sum of a proper lower semicontinuous function (not necessarily convex) and
a weakly convex function whose gradient is required to be Lipschitz continuous, and
both the functions are required to satisfy theKurdyka–Lojasiewicz inequality. It should
be mentioned that the strong convexity implies the Kurdyka–Lojasiewicz inequality,
see [101,116], while there is no differentiability requirement on g in [124].

The differentiability on f required in [124] was removed in [125]; alternately, it
assumed that f is strongly convex with constant ν and g is semiconvex with constant
ω, and ν > ω. The scalar relationship ν > ω means the whole objective function
in (79) is strongly convex and thus it satisfies the Kurdyka–Lojasiewicz inequality.
But the assumption on g is weaker than [133] because there is no differentiability
assumption on g. The justification of considering this situation is illustrated via the
joint image denoising and sharpening problem in [134], where the optimization model
is

min
x∈Rn

c

2
‖x − b‖2 + ι[0,1](x) + ‖∇x‖2,1 − ν

2
‖∇x‖22,2. (85)

In (85), x ∈ R
n is the vector representation of a digital image to be recovered, b ∈

R
n is an observed image; ∇ := (∇1,∇2) : R

n → R
n × R

n denotes a discrete
gradient operator where ∇1 : R

n → R
n and ∇2 : R

n → R
n are the standard finite

difference with periodic boundary conditions in the horizontal and vertical directions,
respectively; ‖∇x‖2,1 is the total variational regularization term [7] to preserve sharp
edges; − ν

2‖∇x‖22,2 is a sharpening/edge enhancement term aiming at removing a blur
if the blur is assumed to follow a diffusion process; and

ι[0,1](x) :=
{
0, 0 � x � 1;
∞, else.
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The definitions of ‖ · ‖2,1 : R
n × R

n → R and ‖ · ‖2,2 : R
n × R

n → R are given
respectively by

‖y‖2,1 :=
n∑

i, j=1

√
|y1i, j |2 + |y2i, j |2, ∀y = (y1, y2) ∈ R

n × R
n;

and

‖y‖2,2 :=
√√√√ n∑

i, j=1

|y1i, j |2 + |y2i, j |2, ∀y = (y1, y2) ∈ R
n × R

n .

Themain results of [125] are based on another important result, i.e., Fejérmonotone
theorem [88, Thm. 5.5], which states that in R

n , if a sequence {xk} is Fejér monotone
with respect to a nonempty subset D and every cluster point of {xk} belongs to D,
then {xk} converges to a point in D. To prove the Fejér monotone of the sequence
generated by (82), it first established in [125] that for a proper lower semicontinuous
strongly convex function f with constant ν > 0 and for any x, y ∈ R

n and μ > 0,
we have

‖Rμ f (x) − Rμ f (y)‖2 � ‖x − y‖2 − 4νμ‖proxμ f (x) − proxμ f (y)‖2. (86)

On the same time, for a proper lower semicontinuous function g : R
n → R ∪ {∞}

which is weakly convex with constant ω > 0, we have that for any x, y ∈ R
n and

0 < μ < 1
ω
,

‖Rμg(x) − Rμg(y)‖2 � ‖x − y‖2 + 4ωμ‖proxμg(x) − proxμg(y)‖2. (87)

Based on (86) and (87), though we cannot obtain the nonexpansiveness of Rμ f Rμg

or Rμg Rμ f , we can prove that if ν > ω and 0 < μ <
(1−α)(ν−ω)

νω
, then there exists

η1 > 0 and η2 > 0 such that the sequence {zk} generated by the DRSM (82) satisfies

‖zk+1−z∗‖2 � ‖zk −z∗‖2−η1‖zk+1−zk‖2−η2‖proxμg(zk)−proxμg(z
∗)‖2, (88)

where z∗ is a fixed point of Rμ f Rμg(z∗), i.e., z∗ = Rμ f Rμg(z∗). Thus, the conver-
gence of the sequence {zk} generated by the DRSM (82) follows immediately from
(88). Moreover, {proxμg(zk)} converges to the unique solution of model (79).

Besides the global convergence of theDRSM(82) for the ‘strongly+weakly’ convex
model (79), [125] also establishes its sublinear rate and linear rate of convergence,
under additional mild conditions, and we summarize them below.

Theorem 9 Let {zk} be the sequence generated by the DRSM (83) with ν > ω and
0 < μ <

(1−α)(ν−ω)
νω

. Then, there exists η1 > 0 such that

‖̃e(zk, μ)‖2 � d2(z0,Fix(T̃DR))

(k + 1)η1α2 , ∀k � 0.
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Moreover, it holds that

‖̃e(zk, μ)‖2 = o(1/k), as k → ∞.

That is, the rate of asymptotic regularity for T̃DR is o(1/
√
k), where T̃DR := ((1 −

α)I +αRμ f Rμg) is called a Douglas–Rachford operator; Fix(T̃DR) is the set of fixed
point of T̃DR ; and

ẽ(z, μ) := z − Rμ f Rμg(z).

Theorem 10 Let {zk} be the sequence generated by theDRSM (83)with ν > ω and 0 <

μ <
(1−α)(ν−ω)

νω
; z∗ a fixed point of Fix(T̃DR). Assume that ẽ(·, μ) = (I −Rμ f Rμg)(·)

is metrically subregular at z∗ for 0with neighborhood N (z∗) of z∗ andmodulus κ > 0.
Take sufficiently small r > 0 such that B(z∗, r) ⊆ N (z∗). Then for any starting point
z0 ∈ B(z∗, r) and for any k � 0, we have

d(zk+1,Fix(T̃DR)) �

√
1 − η1α2

κ2 · d(zk,Fix(T̃DR)).

That is, the DRSM (83) converges to Fix(T̃DR) linearly.

[126] then further weaken the requirement ν > ω in [125] to ν = ω; and the
objective function is only convex but not strongly convex. The cost is that f is further
assumed to be continuously differentiable such that ∇ f is Lipschitz continuous with
constant L > 0. Nonetheless, the assumption in [126] is still weaker than that in [124].
Besides, they also allowed that the reflection (proximal) operators to be evaluated
approximately, which is important from numerical point of view.

7 Conclusions

In this paper, we gave a survey of the popular numerical algorithm, the alternating
direction method of multiplier, for solving large-scale structured optimization prob-
lems, i.e., the optimization problem whose objective function is the sum of some
component functions and each of them only depends on its own variable; the total
variables are coupled via a linear equality. The classical ADMM is for solving the
special case that there are only two block of variables, which can be dated back to
the Douglas–Rachford splitting method, and interests on it rose up again in the last
decade, along with the requirement for solving the general case with multi-block of
variables. Though there has explosive growth of the results as we have surveyed, there
are still some tasks to complete.

1. Improvements of the complexity. Several sublinear rate of convergence of ADMM,
measured by certain merit functions, were established to be O(1/k). The existing
works related to how to derive a worst-case O(1/k2) convergence rate for the
ADMM either require stronger assumptions or are eligible only for some variants
of the original ADMM scheme [135,136].
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2. Linear rate of convergence under weaker conditions. Similar for works on O(1/k2)
convergence rate for the ADMM, works for linear rate convergence of the ADMM
also depend on additional assumptions which are only satisfied by special cases
such as linear programming, piecewise linear-quadratic programming.

3. More efficient results on multi-block case. Currently, there are lots of works on
solving the general case (1) with m � 3. However, due to its complication there
are still great demands for further developments of efficient ‘customized’ methods.

4. More results for solving the nonconvex case. The development of ADMM for
solving (1) involving nonconvex component functions is still in its infancy; and
the current works are very limited. For example, the results [115] is for the special
case that θ2 is smooth and A2 = −I , while in applications, θ2 is nonsmooth and
A2 is even not a square matrix.
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